
Designing an API-Based Protocol for the
Interoperability of Textual Resources
Pascal Belouin, Max Planck Institute for the History of Science, DE, pbelouin@mpiwg-berlin.mpg.de
Shih-Pei Chen, Max Planck Institute for the History of Science, DE, schen@mpiwg-berlin.mpg.de
Sean Wang, Max Planck Institute for the History of Science, DE, swang@mpiwg-berlin.mpg.de

Designing a protocol for the interoperability of digital textual resources—or, more simply, a “IIIF for
texts”—remains a challenge, as such a protocol must cater to their vastly heterogenous formats,
structures, languages, text encodings and metadata. There have been many attempts to propose
a standard for textual resource interoperability, from the ubiquitous Text Encoding Initiative (TEI)
format to more recent proposals like the Distributed Text Services (DTS) protocol. In this paper, we
introduce our proposal called SHINE, which prioritizes instead the ease for software developers to
represent and exchange textual resources and their associated metadata. We do so by combining a
hierarchical model of textual structure with a flexible metadata scheme in SHINE, and we continue
to define and develop it based on user-centered and iterative design principles. Therefore, we argue
that SHINE is a protocol for textual interoperability that successfully balances flexibility of resource
representation, consistency across resource representation, and overall simplicity of implementation.

Concevoir un protocole pour l’interopérabilité des ressources textuelles numériques – c’est-à-
dire, un IIIF pour des textes – demeure un défi, puisqu’un tel protocole doit correspondre à leurs
formats considérablement hétérogènes, ainsi qu’à leurs structures, langues, encodages textuels et
métadonnées. Il existe déjà plusieurs tentatives de proposer des standards pour l’interopérabilité des
ressources textuelles, tel que l’ubiquiste Text Encoding Initiative (TEI – Initiative d’encodage textuel)
ou des propositions plus récentes comme le protocole de Distributed Text Services (DTS – Services de
texte distribuées). Dans cet article, nous présenterons une proposition que nous appelons SHINE, qui
priorise la facilité de la représentation et de l’échange des ressources textuelles et des métadonnées
associées pour les développeurs de logiciel. Nous le ferons en combinant un modèle de structure
textuelle hiérarchique avec un schéma de métadonnées flexible dans SHINE et nous le définirons
et le développerons selon des principes axés sur l’utilisateur et selon des principes de conceptions
itératifs. Par conséquent, nous avançons que SHINE est un protocole pour l’interopérabilité textuelle
qui équilibre systématiquement la flexibilité de la représentation de ressources, ainsi que la simplicité
globale de l’implémentation, pour toute représentation de ressources.

Digital Studies/Le champ numérique is a peer-reviewed open access journal published by the Open Library of Humanities.
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS

Belouin, Pascal, Shih-Pei Chen and Sean Wang. 2021.
“Designing an API-Based Protocol for the Interoperability
of Textual Resources.” Digital Studies/Le champ numérique
11(1): 10, pp. 1–17. DOI: https://doi.org/10.16995/
dscn.8103

mailto:pbelouin@mpiwg-berlin.mpg.de
mailto:schen@mpiwg-berlin.mpg.de
mailto:swang@mpiwg-berlin.mpg.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.16995/dscn.8103
https://doi.org/10.16995/dscn.8103

2

1. Introduction
Internet and the digitization of sources profoundly changed the research process in
the humanities. Researchers in text-centric disciplines like history and literature
now access primary and secondary sources from different providers online in various
formats (such as web pages, PDF files, Microsoft Word documents, or TEI documents).
While many could be downloaded and saved locally (or on the cloud), others are locked
in online read-only platforms. This diversity in both document formats and access
avenues (including differing licenses) creates complications for scholars interested
in computational and other large-scale analyses across texts from multiple providers.
For instance, digital research tools for textual analyses, such as tagging or entity
recognition tools, must ingest texts usually by manually uploading documents in
specific formats. Besides technical work to pre-process the texts, many sources are
covered by licenses that might make such upload difficult. Thus, while many sources
and tools are already digital, researchers cannot easily combine and work across them:
the varieties of formats and access rights necessitate significant manual curation;
furthermore, certain licenses (especially on sources from commercial providers) make
more-than-read analyses legally impossible.

To improve interoperability between digital research tools and textual resources on
the web, many have proposed different legal and technical solutions, as well as large
infrastructural projects that address a combination of both. As we summarize elsewhere
(Wang et al. 2019), with few exceptions these proposals tend to bridge the gap by (re-)
centralizing select resources and tools in a contained research environment. Since
acquiring text-mining or similar more-than-read licenses from commercial providers
can be expensive, such proposals require strong financial backers and are difficult to
implement across institutions. Their centralization also limit flexibility for researchers
and make reproducibility more challenging.

We were inspired by the success of International Image Interoperability Framework
(IIIF) as an interoperable protocol for image-based research (Babcock and Di Cresce
2019). Following a similar distributed (or decentralized) approach, we have designed
and implemented a research infrastructure for textual exchange called Research
Infrastructure for the Study of Eurasia (RISE; Wang et al. 2021). We designed RISE to
address these aforementioned issues in a pragmatic manner: RISE combines a robust
authentication and authorization mechanism and clearinghouse (which checks and
delivers exchanges based on agreed-upon rules) into an implemented middleware, with
a relational state transfer (REST)-like application programming interface (API) text
exchange protocol (which we call SHINE) that represents textual resources and their
metadata in a flexible manner. While RISE was initially conceived to address specific

3

challenges related to working with commercial textual resources in Chinese studies
(Wang et al. 2018), its technical design works with textual resources regardless of
language. We believe SHINE can do for textual resources analogous to what IIIF already
did for online image collections. Said more simply, SHINE aims to provide a universal
standard to seamlessly exchange textual resources as IIIF did for visual resources.

In this article, we focus primarily on the issue of designing a protocol for textual
exchange and interoperability. First, we survey past proposals and current attempts
for designing such a protocol to highlight some of the key requirements. We only
focus on attempts that cover all three aspects of textual exchange and interoperability:
discoverability, referencing, and interoperability of the actual resource contents;
therefore, protocols that focus on discoverability or metadata only (such as OAI-
PMH) are excluded. In this sense, we follow existing scholarship on language resource
architecture and processing in computer science that understands interoperability
as “the capacity of programs, components, representations, [and] data structures to
interact” with one another (Witt et al. 2009, 5). Then we describe in detail our attempt
(which is SHINE) and the rationale behind our design, which focuses on providing a
generic and flexible representation for both structure and metadata that would cover
the heterogeneity of textual resources. Our focus on minimal encoding of heterogeneous
textual structures follows what Witt et al. (2009, 9) characterized as an “interlingua
philosophy on interoperability,” which constructs a representation that is a generalized
abstraction over individual representations, in order for analyses and comparisons to
be made across different texts and tools in a pragmatic manner. As a result, SHINE
differs from other attempts of interoperable standards that encodes text contents in
great detail for narrower, more specialized purposes (cf., Volodina et al. 2018; De Jong
et al. 2020). We provide some practical examples to show how various textual resources
could be represented in SHINE. Finally, we critically assess the future of interoperable
text-based digital research and, considering past failures (Dombrowski 2014), the role
research infrastructures could play in the ecosystem.

2. Existing protocols for representing and exchanging textual resources
Various attempts have been made to facilitate the interoperable exchange of textual
resources since as early as 1987 (which predates the World Wide Web). The Text
Encoding Initiative (TEI) initiated that year was an early attempt and has since been
used by many projects, especially in literary studies. TEI guidelines have evolved and
increased significantly in complexity; they are currently at their fifth iteration (Text
Encoding Initiative 2021). Although most research projects today do not implement
TEI with this as their main purpose, an early goal of TEI’s was to “provide a standard

4

format for data interchange in humanities research” (Text Encoding Initiative
1988). As Burnard (2013) noted, in an alternate universe we might have a more
expansive TEI called “Text Encoding for Interchange.” However, this ambition has
fallen away and TEI instead focuses primarily on in-text markup rather than as a
standard protocol for interoperable textual exchange. Therefore, in practice, any
research software that automatically ingests TEI documents will have to confront
this non-interoperability (Schmidt 2014). Furthermore, since TEI’s inception
predates the concept of web services, such use cases were not considered in its native
design.

TEI’s development history shows that achieving extremely fine-grained semantic
interoperability within every text is fundamentally impossible given the level of
encoding (and the resources) it would require, nor is it necessary for many scholarly
purposes. With regards to interoperability on the web, more recent solutions have
been proposed to allow for discoverability, referencing, and interoperability of
textual resources (either in the TEI format or in plain text) that aims for some level
of interoperability that is practical and corresponds to specific research purposes.
The most historically significant effort in this direction is the Canonical Text Services
protocol (CTS). Originally developed in 2010 as part of the Homer Multitext Project,
CTS is a protocol designed to serve TEI texts (Blackwell and Smith 2014), and it allows
well-written software clients to pull these texts from the Homer Multitext Project and,
subsequently, from the Perseus Digital Library.

Digital historians who automatically consume texts from the Perseus Digital
Library have identified lingering issues with CTS. For example, CTS relies on a Uniform
Resource Name (URN) scheme, which can be slightly inconsistent across resources
made available by the Perseus Digital Library (McPhee 2013). Clérice (2018) argued
that one of CTS’s main issues is the fact that it is “tightly coupled to text identifier
syntax,” which entails a number of drawbacks such as a lack of pagination for catalogs.
Furthermore, CTS was initially developed by digital classicists as a project-specific
standard, which makes wider adoption more challenging. Despite these shortcomings,
CTS remains in use by Perseus and a few other projects such as Paraphrasis.org, but its
uptake as a standard is limited.

A more recent development in the quest to create a protocol facilitating textual
resource interoperability is the Distributed Text Services (DTS) initiative, which started
in 2015. As DTS developers described it,

The Distributed Text Services effort has been inspired, informed and influenced by

the Canonical Text Services protocol (CTS). CTS has allowed many classical, canon-

ical texts encoded in TEI to be made available in a machine-actionable, linked open

5

data fashion. However, the CTS API is tightly coupled to the CTS URN identifier sys-

tem which does not support citation systems used by more modern content or other

forms of writing, such as papyri or inscriptions. The API also does not adhere to

modern community standards for Web APIs (Distributed Text Services 2020).

In response, DTS adopts specifications of the Hydra Core Vocabulary (Lanthaler 2020),
which combines the REST architectural style and Linked Data principles “to provide
a vocabulary which enables a server to advertise valid state transitions.” An API
compatible with DTS provides three operation endpoints:

1. Collections Endpoint for navigating the text collection contents;
2. Navigation Endpoint for navigating within a single text document; and
3. Documents Endpoint to retrieve complete or partial texts.

The first two endpoints return JavaScript Object Notation for Linked Data (JSON-LD),
a method to encode linked data using JSON, an open data exchange format for data
consisting of attribute-value pairs and is in general the data format used for JavaScript
and Web APIs, and the third returns the requested text or fragment primarily in TEI-
XML. This results in a protocol that adheres strictly to the two most influential principles
for modern web service design, REST and “hypermedia as the engine of application
state” (HATEOAS; Fielding 2000), and arguably makes the DTS protocol future-proof,
self-documented, and sufficiently flexible to represent any type of catalog of textual
sources. Furthermore, its use of JSON-LD, a format increasingly popular among digital
humanists, is another strong point. DTS’s adherence to TEI’s legacy, however, meant
that alternative formats, including plain texts, always require additional calls and
returns, which increase the required efforts for implementation. DTS also includes
features for write-backs that alter texts on the server, as well as detailed citation-
related designs in both document and navigation endpoints. Such features derived from
TEI serve specialized purposes, yet are not necessary for simple exchanges of texts in
the form of original or primary sources.

Our pursuit for simplicity and pragmatic implementation is why we developed
separately another protocol for textual resource interoperability rather than adopting
DTS. There are several reasons for this decision. The first is contextual. As we described
elsewhere (Wang et al. 2018), we initially developed RISE as a distributed research
infrastructure for Chinese studies and, as the necessity of an interoperable protocol
became obvious, designed SHINE accordingly. This contextual legacy provided a
certain degree of freedom; since we tackled the problem of textual representation and
exchange from the ground up and focused in the first instance only on structured plain
text, quite serendipitously we were able to avoid TEI’s specter.

6

Our specific origin also resulted in important technical differences from DTS. Since
RISE focuses on improving linkages between distributed textual collections and digital
research tools, SHINE’s initial design focused on this specific type of interoperability
and, accordingly, targeted users who are primarily software developers rather than
researchers. Our focus on the ease of implementation for developers (especially of
digital research tools that consume textual resources) distinguishes SHINE from
other attempts and results in more pragmatic design choices. In our opinion, software
development practices usually develop organically and iteratively; they are informed
by, but not fully adherent to, academic design and best practices. Indeed, the history of
computer science is full of great ideas and concepts that were only marginally adopted
by software development practitioners, such as the OSI model (Russell 2013) and the
Semantic Web (Target 2018). Unfortunately, the strict constraints and principles from
HATEOAS and pure RESTful web services are, at least for the time being, victims of the
same fate. Practitioners have argued, for example, that “when designing a hypermedia
API, you’re really designing for a client that does not, and will never, exist” (Knupp
2014); one even went as far as calling HATEOAS “useless” (Reiser 2018). Cognizant of
this history, we decided to design SHINE in a “REST-like” manner to better facilitate
adoption and implementation by both resource providers and research tool developers.

In practice, this “REST-like” manner for developing APIs is already common.
Most APIs by software development practitioners now consist of a set of routes that
allows a client to perform “Create, Read, Update, and Delete” (or CRUD) operations on
domain entities of a particular web service or application (see Open API Initiative 2018
for an example of this type of API commonly implemented for web services). Based on
user-centered design principles (Gulliksen et al. 2003), SHINE includes a rather small
number of entities that represent the structure of a textual resource, to which any type
of metadata properties can be attached. These entities are then exposed by API routes
which permit CRUD operations based on common industry guidelines (Hansson 2006).
We also made a distinction between the act of “cataloging” textual resources and the
simple representation of resources in terms of structure, content, and metadata.

In summary, although our goals are similar, SHINE and DTS represent resources
and catalogs very differently in the API routes, and this difference stems primarily from
development contexts. In designing SHINE, we have decided to sacrifice some strict
adherence for a better balance between academic priorities and ease of uptake. SHINE
and DTS remain complementary, however. As we design and develop SHINE in an agile,
iterative manner, we have over time adopted DTS’s many positive features, particularly
its extensive use of JSON-LD to describe resources and the API scheme itself. One of us
(Belouin) is also an observing member of the DTS Technical Committee, and there is an

7

API adaptor (in beta version) that can pull resources via DTS and make them available
via SHINE endpoints (and vice versa). Given this complementarity, in the next section
we describe SHINE in detail, focusing specifically on how it models and represents
textual resources.

3. Overview of the SHINE protocol
Given our specific focus and from surveying existing attempts, we identified three
criteria for evaluating a protocol for text interoperability: (1) flexibility of resource
representation; (2) consistency across resource representation; and (3) overall
simplicity of the protocol. These three criteria stand in tension, and in designing SHINE
we have strived to achieve a balance among the three (with some trade-offs from each),
rather than privileging one and sacrificing the others.

We also identified the following minimum aspects of textual resources that a
protocol for interoperability must be able to model. First, a discrete textual resource
(e.g., a book) is usually composed of hierarchical sub-parts down to the level of a
single word; we refer to a resource’s internal hierarchy as its “structure.” Textual
resource structures can vary greatly between genres (e.g., compare a newspaper
article in 20th century England to a measured poem from the 7th century in Arabic), and
a protocol must be flexible enough to represent these different structures. Second, a
resource and its hierarchical sub-parts might have different properties or attributes,
such as the language they are written in, their author, or other information relevant
to a particular humanities discipline. One could also consider annotations made
by a particular researcher about (a part of) a textual resource as an attribute. We
refer to these types of information about a resource and its sub-parts “metadata.”
While some information might be considered as both structure and metadata (as
seen in some TEI markups), we enforce clear distinction between these two types
of information, as well as the “content” of a textual resource (i.e., plain texts), in
SHINE.

Based on the above, we devised three main principles to guide the design of the
SHINE protocol:

1. SHINE should be able to represent, with a limited number of entities, the
structure of any genre of textual resources;

2. SHINE should be able to represent any type of metadata, whether associated
with a textual resource or any of its sub-parts; and

3. SHINE should be simple enough so that any developer familiar with current
industry standards in web services can implement it easily.

8

The SHINE protocol, in its current form, conforms to these principles. It is the result
from an iterative design process where the resource representation model was
continually refined as more resource providers and research tools developers adopted
SHINE. We favor this pragmatic approach, as opposed to having researchers dictate
design elements, in order to have SHINE closely reflect actual software development
needs and encourage wider adoption. In other words, our approach takes after larger
discussions regarding the design of distributed information architectures, especially
with regards to RESTful web services (Witt et al. 2009, 9), and seeks to enable actually-
existing workflows for both scholars and research software engineers in a pragmatic
manner (cf., De Jong et al. 2020).

In a nutshell, the SHINE protocol consists of several REST-like routes that expose
structural components of a textual resource. In addition, we also defined “collection”
to group multiple resources. Thus, the building blocks used to represent structure in
SHINE are—from the least to most granular—“collection,” “resource,” “section”
(parts of a text, such as chapters or verses), and “content unit” (the smallest unit of text,
which could be a page, a line, or even a word depending on the resource genre). Sections
can have multiple hierarchical levels with a mechanism through which sections can be
the children of another section, so that genres with more complex hierarchies (e.g., a
novel with chapters, sub-chapter sections, and paragraphs) could still be represented
as flat arrays using regular REST-like routes.

Table 1 shows the minimum set of API routes that a resource provider must
implement to be SHINE-compatible. These seven routes allow any client to pull the
structure, metadata, and content of the textual resources made available by a resource
provider. Although the routes shown here are read-only, additional routes can also be
implemented to allow POST, PUT, and DELETE requests. Thus, mapping this REST-
like API structure to CRUD operations is straight-forward, and a resource provider can
implement a software client to manage these additional operations.

HTTP Verb & Route Description
GET/collections/
GET/collections/{uuid}/
GET/collections/{uuid}/resources
GET/resources/{uuid}/
GET/resources/{uuid}/sections
GET/sections/{uuid}/
GET/sections/{uuid}/content_units
GET/content_units/{uuid}/

Returns all collections
Returns the metadata for a collection
Returns all resources for a collection
Returns the metadata for a resource
Returns the sections for a resource
Returns the metadata for a section
Returns the content units for a section
Returns the metadata for a content unit

Table 1: The minimum set of API routes for a SHINE-compatible resource provider.

9

Each of these structural entities, or building blocks, can have metadata attached to
them. The SHINE protocol represents, stores, and exchanges metadata as data objects
that consist of attribute-value pairs and array data types, modeled after the JSON open
standard (see Figure 1). Metadata fields are grouped by namespace, and we plan to
make SHINE’s metadata schema fully JSON-LD compliant in the next release.

Furthermore, as illustrated in Figure 2, these metadata objects are inherited
from the higher structural entity in the hierarchy of a resource; however, a particular
metadata field can be overridden at a lower structural entity. This metadata model
with inheritance and override mechanisms provides flexibility, and we explore its full
implication in the next section.

3.1 Resource modeling
SHINE’s modeling of textual resources is generic and flexible. It allows for any
granularity for both structural and metadata representation. In general, SHINE’s
hierarchical structure allows for generic representation across genres, while the
metadata inheritance and override mechanisms based on that hierarchy gives SHINE
its flexibility. We demonstrate below several examples on how to work with this

Figure 1: A schematic representation of the SHINE resource representation model.

Figure 2: A simplified example of SHINE’s metadata inheritance and override mechanism.

10

combination of structure and metadata to model multi-lingual resources in SHINE
with ease.

Take a collection of Homer’s classics, composed of various versions of The Iliad
and The Odyssey (some of which were translated or commented on), as an example.
Figure 3 shows how this collection can be modeled in SHINE at higher levels of the
structural hierarchy (collection and resources), while Figure 4 shows the same
collection at lower levels using one resource—the commented version of The Odyssey—
with its sections and content units. We implement a basic set of Dublin Core fields
in SHINE and fetch them from the resource providers, but any additional metadata
information beyond that basic set—if provided by the resource providers—is still
preserved. SHINE’s metadata inheritance and override mechanisms work hierarchically
alongside the resource structure. Any metadata information set at a higher structural
level (e.g., collection) will be automatically inherited by lower levels. For example,
once the creator (Homer) is set at the collection level, then all lower levels (resource,
section, and content unit) in that collection will inherit the same metadata information.
The same process is done with the language (Greek). However, one resource in this
collection is an English translation of The Iliad. For this particular resource, we can
override the inherited language metadata from the collection level (Greek) by changing
it to English at the resource level. This override will not impact any higher level, but
all lower levels of this resource (sections and content units) will inherit the overridden
language metadata of English.

Figure 3: Representing a Homer’s classics collection and its resources using SHINE.

11

SHINE’s metadata can also be used to store and represent information about how
a particular structural entity maps onto specific genres (e.g., poems, paragraphs).
This information can be set under the “shine” namespace of the metadata object.
Figure 4 shows an example using The Odyssey, where “section type” and “content
unit type” are set. Since the structural entity “section” can have multiple hierarchical
levels in SHINE (i.e., a section could have a parent section and multiple children
sections), in some cases it is necessary to describe the type of section level in this
metadata namespace. The SHINE metadata scheme could also represent a particular
relationship between two objects of our model. If, for instance, a content unit
contains a commentary or is a translation of another content unit, the “relations”
metadata namespace can be used to ‘point’ to another content unit and to indicate
the nature of this relationship. An example of this can be seen in Figure 4 in the lower
right corner.

In SHINE, metadata can either be overridden or added to at any level of the hierarchy.
However, one disadvantage of this approach is the fact that one might need to access
the metadata of a parent of a particular object (for instance a section’s resource) to
gain access to all of its metadata. We do hope that the implementation of helpers on the
client side can alleviate this disadvantage of our design to some degree, allowing tool
developers to integrate more easily with the RISE ecosystem.

Figure 4: Representing various sections, content units, and their metadata using SHINE.

12

3.2 Filtering and search
Filtering of resources becomes instinctively straight-forward given the REST-like
routes provided by the SHINE protocol. Filtering based on a particular metadata field,
for example, can be easily done by passing a particular filter string as a parameter to one
of the collection routes, allowing for the filtering of collections, resources, or sections.
Furthermore, we are currently working on defining a set of additional API endpoints
and mechanisms to facilitate more advanced search based on metadata attributes, as
well as full-text search where allowed.

3.3 Cataloging
Cataloging at the collection level could either be seen as a structural issue or a filtering
based on some metadata information issue. We see many resource providers organize
their resource catalog with the former approach. If we continue with the Homer’s classics
example above, a resource provider could create a collection called “Homer’s classics,”
catalog various resources into this collection, and organize them in hierarchical trees.
Based on the metadata information attached to them, resources could be grouped by
theme, language, edition, etc., within this collection. DTS, for instance, employs this
sophisticated method of cataloging that makes top-level collection a first-class citizen.

SHINE, on the other hand, employs the latter method and thus only permits one
level of collection. We decided to sacrifice some theoretical sophistication for the
sake of simple implementation and integration with authorization mechanisms on
the collection routes. Structurally speaking, it is not possible to have a collection of
collections in SHINE. Thus, grouping collections in SHINE must be done by filtering
some metadata attributes, rather than using collections as a complex structural entity.
For example, imagine that in addition to Homer’s classics, two other collections are
represented in SHINE: Jane Austen’s complete works and La Comédie humaine. The
latter consists of plain texts made available by Project Gutenberg, while the other two
were published as collections by Penguin. It is not possible to have a collection of all
collections published by Penguin on a structural level, but it is possible to do this ad hoc
by filtering based on the metadata attribute “publisher: Penguin” on all collections.

3.4 Expanding the metadata object
Since the metadata object in SHINE is—in theory—infinitely expandable, we can use it
for any type of description of a resource or its sub-parts. Thus, not only can metadata be
used to store more conventional metadata information, but it could also include non-
standard information beyond the plain text version of content (such as annotations
and research data). Recall that in SHINE, we strictly enforce the distinction between

13

structure and metadata in our resource modeling. This distinction works well with
interoperability of plain texts but not so much for non-standard and in-text markups
like in TEI. For those who are interested, we can utilize the full flexibility of SHINE’s
metadata scheme to do these TEI-like actions. Therefore, it is possible to, say, have one
resource reference another, or parts of a resource to reference another part, internally
or externally, in SHINE. This would allow us to model entities such as commentaries, as
seen in Figure 4, where a relations namespace is used in the lower right corner.

3.5 Access rights management
Textual resources are covered by different licenses and resource providers might
impose additional restrictions on their access rights. Therefore, in some cases resource
access must be moderated. An authentication and authorization mechanism can
be implemented relatively easily on top of SHINE’s REST-like routes at any level of
structural granularity. Indeed, we implemented access rights management in our
own hosted middleware instance of RISE. One issue we have not resolved, however,
is that more-than-read analyses often require transfer of texts. If the texts have very
stringent restrictions on sharing, in the long-term we may have to implement some
sort of encryption mechanism to fully comply with these kinds of restrictions.

4. Conclusion
The SHINE protocol described in this paper is a second version, and we are implementing
it in the various infrastructural components of RISE. RISE currently links 130,772
resources to an increasing number of research tools. Besides plain texts, we are also
working on mappers that would allow interoperability and transfer of TEI (and other
XML-based textual data) through HTTP content negotiation. In this design and
implementation process, we have solicited feedback from many stakeholders who work
with digital texts and research infrastructures. As we advocate for a user-centered
design, additional feedback from the community is always appreciated to help us refine
our technical products iteratively. At the moment, we are especially looking for library
partners. We believe that involvement and investment from additional stakeholders
will approach our admittedly lofty ambition for a “IIIF for texts.”

Although not the primary focus of this technical paper, SHINE’s development
process also illustrates the non-technical aspects of interoperability or, as De Jong et
al. (2020, 3410) called it, “interoperability at the organisational level.” In Europe, for
example, large research infrastructures like CLARIN provide support at this level, as
do many national-level initiatives. We recognize that these research infrastructures
have accomplished an enormous amount, though as their organizational size grows, so

14

does their distance from researchers’ everyday needs. Our survey consistently shows
that groups such as DTS have similar goals and origins as us, though our designs and
scopes of implementation might be different. We have made SHINE-DTS mappers, and
in our ongoing work with RISE it is possible that—depending on community uptake—
we eventually replace SHINE with DTS entirely. Regardless of what might happen,
we hope that the approach proposed here will shape the design of existing and future
protocols so that we can together realize a “IIIF for text” within the digital humanities
community.

15

Competing Interests

The authors have no competing interests to declare.

Author Contributions

Authors are listed in alphabetical order. Author contributions, described using the CASRAI CredIT
typology, are as follows:

Author names and initials:

Pascal Belouin: PB

Shih-Pei Chen: SC

Sean Wang: SW

The corresponding author is Sean Wang

Conceptualization: PB, SC

Investigation: PB

Methodology: PB, SW

Project administration: SW

Resources: SC, SW

Software: PB

Visualization: PB, SW

Writing – original draft: PB, SW

Writing – review & editing: SW

Editorial contributions

Section and Copy Editor:

Shahina Parvin, The Journal Incubator, University of Lethbridge, Canada

References
Babcock, Kelli, and Rachel Di Cresce. 2019. “Impact of International Image Interoperability
Framework (IIIF) on Digital Repositories.” In New Top Technologies Every Librarian Needs to Know,
edited by Kenneth J. Varnum, 181–96. Chicago: ALA Neal-Schuman.

Blackwell, Christopher, and Neel Smith. 2014. “The Canonical Text Services protocol, version
5.0.rc.2.” Accessed September 10, 2021. http://cite-architecture.github.io/cts_spec/.

Burnard, Lou. 2013. “The Evolution of the Text Encoding Initiative: From Research Project to
Research Infrastructure.” Journal of the Text Encoding Initiative 5. DOI: https://doi.org/10.4000/
jtei.811

http://cite-architecture.github.io/cts_spec/
https://doi.org/10.4000/jtei.811
https://doi.org/10.4000/jtei.811

16

Clérice, Thibault. 2018. “From File Interoperability to Service Interoperability: The Distributed Text
Services.” Paper presented at the annual conference of the Text Encoding Initiative, Tokyo. https://
hal.archives-ouvertes.fr/hal-02196659/.

De Jong, Franciska, Bente Maegaard, Darja Fišer, Dieter van Uytvanck, and Andreas Witt. 2020.
“Interoperability in an Infrastructure Enabling Multidisciplinary Research: The Case of CLARIN.” In
Proceedings of the 12th Language Resources and Evaluation Conference, edited by Nicoletta Calzolari,
Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi,
et al., 3406–13. Marseille: European Language Resources Association. Accessed June 29, 2021.
https://www.aclweb.org/anthology/2020.lrec-1.417/.

Distributed Text Services. 2020. “Distributed Text Services (DTS).” Accessed November 20, 2020.
https://distributed-text-services.github.io/specifications/.

Dombrowski, Quinn. 2014. “What Ever Happened to Project Bamboo?” Literary and Linguistic
Computing 29 (3): 326–39. DOI: https://doi.org/10.1093/llc/fqu026

Fielding, Roy Thomas. 2000. “Architectural Styles and the Design of Network-Based Software
Architectures.” PhD diss., University of California, Irvine. Accessed November 20, 2020. https://
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Gulliksen, Jan, Bengt Göransson, Inger Boivie, Stefan Blomkvist, Jenny Persson, and Åsa Cajander.
2003. “Key Principles for User-Centred Systems Design.” Behaviour & Information Technology 22 (6):
397–409. DOI: https://doi.org/10.1080/01449290310001624329

Hansson, David Heinemeier. 2006. “Resources on Rails.” Keynote presented at RailsConf, Chicago.
Accessed November 20, 2020. https://youtu.be/GFhoSMD6idk.

Knupp, Jeff. 2014. “Why I Hate HATEOAS.” Everything I Know about Python… (blog), June 3. Accessed
November 20, 2020. https://jeffknupp.com/blog/2014/06/03/why-i-hate-hateoas/.

Lanthaler, Markus. 2020. “Hydra Core Vocabulary: A Vocabulary for Hypermedia-Driven Web
APIs.” Accessed November 20, 2020. http://www.hydra-cg.com/spec/latest/core/.

McPhee, Scot. 2013. “How to Retrieve Ancient Text Data from Perseus.” inlustre monumentum est
(blog), April 10. Accessed November 20, 2020. https://inlustre.net/2013/04/how-to-retrieve-
ancient-text-data-from-perseus/.

Open API Initiative. 2018. OpenAPI Specification v3.0.2. Accessed November 20, 2020. https://
spec.openapis.org/oas/v3.0.2.

Reiser, Andreas. 2018. “Why HATEOAS is Useless and What That Means for REST.” Accessed
November 20, 2020. https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-
that-means-for-rest-a65194471bc8.

Russell, Andrew L. 2013. “OSI: The Internet That Wasn’t.” IEEE Spectrum, July 30. Accessed
November 20, 2020. https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-
wasnt.

Schmidt, Desmond. 2014. “Towards an Interoperable Digital Scholarly Edition.” Journal of the Text
Encoding Initiative 7. DOI: https://doi.org/10.4000/jtei.979

Target, Sinclair. 2018. “Whatever Happened to the Semantic Web?” Two-Bit History (blog), May 27.
Accessed November 20, 2020. https://twobithistory.org/2018/05/27/semantic-web.html.

https://hal.archives-ouvertes.fr/hal-02196659/
https://hal.archives-ouvertes.fr/hal-02196659/
https://www.aclweb.org/anthology/2020.lrec-1.417/
https://distributed-text-services.github.io/specifications/
https://doi.org/10.1093/llc/fqu026
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://doi.org/10.1080/01449290310001624329
https://youtu.be/GFhoSMD6idk
https://jeffknupp.com/blog/2014/06/03/why-i-hate-hateoas/
http://www.hydra-cg.com/spec/latest/core/
https://inlustre.net/2013/04/how-to-retrieve-ancient-text-data-from-perseus/
https://inlustre.net/2013/04/how-to-retrieve-ancient-text-data-from-perseus/
https://spec.openapis.org/oas/v3.0.2
https://spec.openapis.org/oas/v3.0.2
https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8
https://medium.com/@andreasreiser94/why-hateoas-is-useless-and-what-that-means-for-rest-a65194471bc8
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt
https://spectrum.ieee.org/tech-history/cyberspace/osi-the-internet-that-wasnt
https://doi.org/10.4000/jtei.979
https://twobithistory.org/2018/05/27/semantic-web.html

17

Text Encoding Initiative. 1988. “Design Principles for Text Encoding Guidelines.” Accessed
September 10, 2021. https://tei-c.org/Vault/ED/edp01.htm#b2b1b3b3b3.

---. 2021. “P5 Guidelines.” Accessed November 20, 2020. https://tei-c.org/guidelines/p5/.

Volodina, Elena, Maarten Janssen, Therese Lindström Tiedemann, Nives Mikelic Preradovic, Silje
Karin Ragnhildstveit, Kari Tenfjord, and Koenraad de Smedt. 2018. “Interoperability of Second
Language Resources and Tools.” In CLARIN Annual Conference 2018 Proceedings, edited by Inguna
Skadina and Maria Eskevich, 90–94. Pisa: CLARIN. https://gup.ub.gu.se/publication/275365
http://www.clarin.eu/sites/default/files/CLARIN2018_Session-4-4_Paper-28_Volodina-Janssen-
Lindstr%C3%B6mTiedemann-Preradovic-Ragnhildstveit-Tenfjord-deSmedt.pdf.

Wang, Sean, Pascal Belouin, Hou Ieong Ho, and Shih-Pei Chen. 2019. “RISE and SHINE: A Modular
and Decentralized Approach for Interoperability between Textual Collections and Digital Research
Tools.” Paper presented at the annual Digital Humanities Conference, Utrecht. Accessed September
7, 2021. https://dev.clariah.nl/files/dh2019/boa/0607.html.

Wang, Sean, Pascal Belouin, Shih-Pei Chen, Brent Ho, and Dagmar Schafer. 2021. “Research
Infrastructure for the Study of Eurasia” Accessed September 06, 2021. https://www.mpiwg-berlin.
mpg.de/research/projects/rise-and-shine-research-infrastructure-study-eurasia

Wang, Sean, Pascal Belouin, Shih-Pei Chen, and Hou Ieong Ho. 2018. “Research Infrastructure for
the Study of Eurasia (RISE): Towards a Flexible and Distributed Digital Infrastructure for Resource
Access via Standardized APIs and Metadata.” Paper presented at the 9th International Conference
of Digital Archives and Digital Humanities, Taipei. Accessed September 07, 2021. https://pure.mpg.
de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3033461.

Witt, Andreas, Ulrich Heid, Felix Sasaki, and Gilles Sérasset. 2009. “Multilingual Language Resources
and Interoperability.” Language Resources and Evaluation 43: 1–14. DOI: https://doi.org/10.1007/
s10579-009-9088-x

https://tei-c.org/Vault/ED/edp01.htm#b2b1b3b3b3
https://tei-c.org/guidelines/p5/
https://gup.ub.gu.se/publication/275365 http://www.clarin.eu/sites/default/files/CLARIN2018_Session-4-4_Paper-28_Volodina-Janssen-Lindstr%C3%B6mTiedemann-Preradovic-Ragnhildstveit-Tenfjord-deSmedt.pdf
https://gup.ub.gu.se/publication/275365 http://www.clarin.eu/sites/default/files/CLARIN2018_Session-4-4_Paper-28_Volodina-Janssen-Lindstr%C3%B6mTiedemann-Preradovic-Ragnhildstveit-Tenfjord-deSmedt.pdf
https://gup.ub.gu.se/publication/275365 http://www.clarin.eu/sites/default/files/CLARIN2018_Session-4-4_Paper-28_Volodina-Janssen-Lindstr%C3%B6mTiedemann-Preradovic-Ragnhildstveit-Tenfjord-deSmedt.pdf
https://dev.clariah.nl/files/dh2019/boa/0607.html
https://www.mpiwg-berlin.mpg.de/research/projects/rise-and-shine-research-infrastructure-study-eurasia
https://www.mpiwg-berlin.mpg.de/research/projects/rise-and-shine-research-infrastructure-study-eurasia
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3033461
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3033461
https://doi.org/10.1007/s10579-009-9088-x
https://doi.org/10.1007/s10579-009-9088-x

