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Brain maintenance has been identified as a major determinant of successful memory aging.
However, the extent to which brain maintenance in support of successful memory aging is
specific to memory-related brain regions or forms part of a brain-wide phenomenon is
unresolved. Here, we used longitudinal brain-wide gray matter MRI volumes in 262
healthy participants aged 55 to 80 years at baseline to investigate separable dimensions
of brain atrophy, and explored the links of these dimensions to different dimensions of cog-
nitive change. We statistically adjusted for common causes of change in both brain and
cognition to reveal a potentially unique signature of brain maintenance related to success-
ful memory aging. Critically, medial temporal lobe (MTL)/hippocampal change and episo-
dic memory change were characterized by unique, residual variance beyond general factors
of change in brain and cognition, and a reliable association between these two residualized
variables was established (r = 0.36, p < 0.01). The present study is the first to provide solid
evidence for a specific association between changes in (MTL)/hippocampus and episodic
memory in normal human aging. We conclude that hippocampus-specific brain mainte-
nance relates to the specific preservation of episodic memory in old age, in line with the
notion that brain maintenance operates at both general and domain-specific levels.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The aging brain is characterized by marked individual
differences in rates of change. This fact serves as a corner-
stone in the theory of brain maintenance, which states that
‘‘[i]ndividual differences in the manifestation of age-related
brain changes and pathology allow some people to show little
or no age-related cognitive decline” (Nyberg et al., 2012, p.
395). Supporting evidence for this notion have been
observed in previous longitudinal studies, with samples
partly overlapping the one from the present study
[11,26], demonstrating positive change-change associa-
tions for hippocampus/medial-temporal lobe (MTL) atro-
phy and episodic memory [6,16,19,32]. A largely
unresolved issue is whether older individuals displaying
minimal hippocampal atrophy are characterized by

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.nbas.2021.100027
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jarkko.johansson@umu.se
https://doi.org/10.1016/j.nbas.2021.100027
http://www.sciencedirect.com/science/journal/25899589
http://www.elsevier.com/locate/nbas


J. Johansson, A. Wåhlin, A. Lundquist et al. Aging Brain 2 (2022) 100027
preserved whole-brain gray matter volumes [22], and
relatedly, whether individuals with well-preserved
episodic-memory in aging also tend to have intact cogni-
tion more generally. Put somewhat differently, this issue
relates to the fundamental question posed by Rabbitt
(1993), ‘‘does it all go together when it goes?”.

Previous longitudinal studies investigating age-related
changes in brain volumes have found correlated changes
for some brain regions [7,30]. Likewise, a high degree of
shared variance in age-related changes across various cog-
nitive abilities has been established [9,39]. As for change-
change associations, Fletcher et al. [8] used multilevel
latent modeling methods to measure individual differences
in rates of change and found that global gray matter atro-
phy was the strongest predictor of general cognitive
decline, whereas specific temporal lobe atrophy and base-
line hippocampal volume showed incremental contribu-
tions. In a recent study, Cox et al. [1] identified three
major dimensions of cortical change, of which the most
general was associated with change in general cognition
as well as the cognitive domains of memory, visuospatial
ability, and processing speed. No additional associations
across distinct spatial dimensions and cognition were
observed [1], but it should be noted that subcortical struc-
tures such as the hippocampus were not part of their anal-
ysis. In sum, previous findings point to the existence of
domain-general dimensions of both cortical change and
cognitive change, with initial evidence that brain changes
and cognitive changes are linked in a domain-general man-
ner. It is an open question whether domain-specific links
above the link at the general level can be observed. Con-
ceptually, it is likely that brain maintenance operates at
both general and domain-specific levels [22,28]. However,
their joint existence in aging-induced change-change rela-
tions of brain and behavior has not been demonstrated
thus far.

In the present study we investigated the potential exis-
tence of a specific relationship between hippocampus/MTL
atrophy and episodic memory decline that extends beyond
general dimensions of correlated change in brain (whole-
brain gray matter) and cognition (episodic memory, pro-
cessing speed, fluid intelligence, verbal fluency)
[1,2,8,14,17,18,25,34]. To address this question, we used
structural equation modeling [SEM; Kievit et al., [15]],
which allows simultaneous modeling of both general and
specific links between brain and cognitive changes, and
thus allowed us to quantify specific associations between
episodic memory changes and hippocampal volume
changes while statistically adjusting for general brain
changes and general cognitive changes.
Materials and Methods

Sample characteristics

The study participants in the present analyses were part
of the longitudinal Betula Prospective Cohort Study on
memory, health and aging [21]). Informed consent was
given by all participants, in accordance with the guidelines
of the Swedish Council for Research in the Humanities and
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Social Sciences. Parts of these data have been reported pre-
viously [11], and we now reanalyze them by a statistical
approach accounting for global dimensions within mea-
sures of both brain and cognition [34]. Within the project,
seven waves of cognitive assessment and three waves of
structural magnetic resonance (MR) imaging have been
conducted. In this study, the sample was based on 262
healthy (no severe neurological disorders or dementia)
older adults, who entered the study at first (1988–1990,
T1) or second (1993–1995, T2) wave of data collection,
and underwent MRI at fifth (2008 – 2010, T5) wave of data
collection. The age of the participants at T5 ranged from 55
to 80 years (mean = 66.5, standard deviation [SD]
= 7.8 years; 53.8% female). Absence of severe neurological
findings was ascertained by a trained neuroradiologist at
each wave of data collection, and clinically relevant signs
of dementia were screened by a gero-psychiatrist also at
each wave of data collection. Of the initially scanned 262
individuals, 155 remained healthy and underwent a
follow-up MRI examination at the sixth (2013–2014, T6,
age 59 – 84 years, mean = 68.8, SD = 7.0, 52.9 % female)
wave of data collection, and 94 remained healthy and
returned for the seventh (2018–2019, T7, age 63 –
88 years, mean = 72.5, SD = 6.4, 57.4 % female) wave of
data collection. Drop out was not completely at random
as described previously between T5 and T6 [11]. Briefly,
the reasons for T5-T6 dropout were; decline to participate
or no contact (n = 92), death (n = 8), and scanned but not
healthy (n = 7). The healthy returnees were found to be
younger (-3.5 years) than the dropouts [11]. Reasons for
T6-T7 dropout were; decline to participate, no contact, or
death (n = 58), and three individuals were scanned but
not finally found to be meet the inclusion criteria (demen-
tia).Lag between T5 and T6 data collection points were in
average four years ± 2.5 months (SD), and between T6
and T7 in average three years ± 3 months (SD).
Cognitive measures

The cognitive tests and testing procedures have been
described previously [11,20]. Episodic memory perfor-
mance was measured by 5 episodic memory tasks. Two
tasks involved immediate free recall of sentences (16 items
each). In one condition participants enacted the sentences
with objects provided by the test leader. In the other, the
sentences were studied visually and verbally without
enactment. After a delay, participants were asked to recall
nouns from the enacted/studied sentences, with noun cat-
egories (e.g., fruits, animals) as cues. Nouns from the
enacted and studied task conditions were counted as sep-
arate measures (16 items each). The fifth measure was
immediate free recall of a list of 12 unrelated nouns. In
order to reduce practice effects, counterbalancing was per-
formed between test occasions such that the item-list that
was studied with enactment at one test occasion, and was
studied without enactment on the next test occasion
5 years later. In addition, there were 8 list-order variations
of each list, which were counterbalanced over test occa-
sions and participants.
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The Block Design test from the revised form of Wechsler
Adult Intelligence Scale [41] was used to assess visuospa-
tial ability and fluid IQ. This test requires the participants
to use colored blocks to recreate spatial patterns shown
to them on cards. The raw score from Block Design (maxi-
mum 51) was used in the current analyses.

Word fluency was measured by 3 conditions in which
participants orally generated as many words as possible,
during 1 min, satisfying the following criteria: (1) starting
with the letter A; (2) 5- letter words with the initial letter
M; and (3) names of professions beginning with the letter
B [20].

The measure of processing speed was based on three
paper–pencil tests. The first was a letter-digit substitution
test requiring participants to pair letters with digits
according to a letter-digit transformation key, which was
given on the top of the paper form. The score was the num-
ber of correct digits that the participant managed to fill in
during 1 min (maximum 125). The second measure was
letter comparison, in which participants were instructed
to compare pairs of nonword strings of 3–9 letters, in order
to judge whether they were the same or different. The
score was the number of correctly judged pairs during
30 s (out of a maximum of 21). A similar test, figure com-
parison, was the final measure of speed. Here participants
compared pairs of abstract line figures during 30 s (maxi-
mum 30). All three versions of the tests listed all test items
simultaneously on one A4-sized paper.

For primary statistical analysis, composite scores of epi-
sodic memory, word fluency and processing speed were
constructed as a sum of the scores from the individual
tests. Earlier investigation using the same tests found sig-
nificantly improved reliability of the composite scores over
the subtest scores [11]. All available tests were included in
the composite scores at each test wave, and changes to the
composition of the episodic memory test battery at W3
were adjusted for as described earlier [12]. An individual
scaling factor was determined using episodic memory test
scores at W1 and W2 to translate a two-test composite
score to a five-test composite score at W3.
MRI data acquisition and estimation of gray matter
volumes

MRI data acquisition and procedures for estimation of
gray matter volumes have been described previously
[11]. MRI data were collected using the same 3 T General
Electric magnet resonance tomograph, equipped with a
32 channel head coil, at all three scanning occasions. T1-
weighted images were acquired with a 3D fast spoiled gra-
dient echo sequence (180 slices with a 1 mm thickness; TR:
8.2 ms, TE: 3.2 ms, flip angle: 12 degrees, field of view:
25 � 25 cm). To obtain measures of GM volume, the T1-
weighted images from three test occasions were first pro-
cessed separately using the standard processing stream in
FreeSurfer v.6.0 (http://surfer.nmr.mgh.harvard.edu/).
Technical details of this procedure have been documented
online and in previous publications [4]. Briefly, the pro-
cessing includes motion correction, normalization of mul-
tiple T1-images, applying a hybrid watershed/surface
3

deformation procedure to remove non-brain tissue, Talair-
ach transformation, segmentation of subcortical WM and
GM structures, intensity normalization, tessellation of the
GM/ WM boundary, topology correction, as well as surface
deformation to optimize placement of GM/WM and gray/
cerebrospinal fluid border. Subsequently the images from
baseline and follow-up were processed through the Free-
Surfer longitudinal processing stream, which creates an
unbiased within-subject template image of the longitudi-
nal data, to increase reliability of the segmentation and
parcellation of brain regions over time [31]. The reported
data were derived from the longitudinal FreeSurfer pipe-
line. For the cortical regions of interests (ROIs) used in
our analyses, the parcellation was based on the ‘‘Desikan-
Killiany” atlas in FreeSurfer [3], while the subcortical seg-
mentation was based on Fischl et al. (2002). Quality of all
segmentations were visually controlled as described previ-
ously, and exclusions of separate regions were made when
necessary [11]. This quality control led to exclusion of all
data from one participant (uncurable segmentation errors),
and from five additional participants one (non-
hippocampal) region was excluded for each individual.

White matter lesion volumes were estimated as
described previously [11], and they were included in con-
trol analysis assessing the influence of gray matter atrophy
to cognition above-and-beyond the effects of cerebrovas-
cular insults. T2-weighted Fluid-Attenuated Inversion
Recovery (FLAIR) images were acquired with a 2D T2 FLAIR
sequence (48 slices with 3 mm thickness; TR: 8000 ms, TE:
120 ms, field of view: 24 � 24 cm). Lesions were seg-
mented by the lesion growth algorithm [36] as imple-
mented in the Lesion Segmentation Tool (LST) version
2.0.14 (http://www.statistical-modelling.de/lst. html) for
SPM12, and threshold at kappa = 0.3.

Statistical analysis

Evaluation of mean change and inter-individual
differences in change

Linear mixed effects models (LME) were configured to
evaluate fixed effects of change over time, time by age
interactions as well as participant-specific random effects
of intercept and slope [5]. Participant-specific random
effects were added to the model one-by-one, to form two
nested models: one with participant-specific intercept
only, and one with both participant-specific intercept and
slope. The complete LME model including participant-
specific intercepts and slopes was defined as follows.

yij ¼ b0 þ b1agei þ b2timeij þ b3agei � timeij þ b0i

þ b1itimeij þ eij

where, yij is either the regional gray matter volume or the
cognitive score for ith participant at jth measurement
occasion. bs denote fixed effect estimates, while bs denote
participant-specific random effect estimates, and e stands
for residual error. Age was entered as ‘‘cohort age” in five
year age segments (45,50, 55, etc.) at baseline and centered
by the mean age, and timewas the time elapsed from study
entry. Fixed effects of this model captured the average lon-
gitudinal change across the participants, the effects of age,
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and age by time interactions, reflecting potential differ-
ences in overall change dependent on baseline age.
Participant-specific longitudinal effects were considered
in a step-wise manner and model comparisons were con-
ducted to evaluate the significance of individual slopes
(b1iÞ. LME fits were conducted using R (version 4.0.3;
https://www.r-project.org/) and package nlme (version
3.1; https://cran.r-project.org/web/packages/nlme), and
model comparisons using a likelihood-ratio-test (LRT). Sig-
nificance (p < 0.05) of the LRT comparing the complete
model with a model excluding participant-specific slopes
was interpreted as an indication of reliable inter-
individual variance in change. The null hypothesis was that
individual change over time would not differ from the
group mean change at each corresponding age segment.
b1i, the random effects of time were used as participant-
specific estimates of change, and indicators for which the
effect was not significant were excluded from subsequent
analysis.
Modeling dimensionality in change

Previous studies suggest a strong general cognitive abil-
ity factor (g-factor) explaining a large portion of inter-
individual differences in cognitive change in aging, accom-
panied by distinct dimension of, for example, memory
change [2,39]. Notably, this organizational structure was
established in an earlier investigation with a sample partly
overlapping the present [23]. Based on these observations,
a hierarchical model was constructed and structural equa-
tion modeling (SEM) in R [lavaan, version 0.6 [33] was con-
ducted using LME-derived individual slopes as estimates of
cognitive change, to statistically adjust for global cognitive
change [2]. All domains with reliable inter-individual dif-
ferences in change (as indicated by the LME fits) were used
as indicators, and each domain was allowed to load on a
common first-level global cognitive factor (g-factor). Load-
ings to the common g-factor were inspected to evaluate
the soundness of this model configuration, and residual
variances of domain-specific indicators were inspected to
evaluate the reliability of inter-individual differences in
each residualized variable. A z-test as provided in lavaan
was used for this purpose, thresholded at P(>|z|) < 0.05. A
factor model with three indicators is a saturated model
hence we do not report measures of goodness-of-fit for this
model.

Previous studies have indicated covariances across
some regional estimates of gray matter change [30], sug-
gesting common causes that explain part of inter-
individual differences in the aging brain. To investigate
the possibility that there are spatially distinct dimensions
of gray matter change (beyond a common cause), we first
conducted exploratory factor analysis (EFA) on regional
estimates of brain change, which mirrors previous analysis
reported by Cox et al. [1]. In analogy to the procedure
applied for cognitive variables, all brain regions exhibiting
reliable inter-individual differences in change (as indicated
by the LME fits) were used as indicators. A bi-factor model
was configured to examine the oblique factor structure
beyond any common variance shared using the
4

Schmid-Leiman transformation [35] in R (psych, version
2.0.9; https://CRAN.R-project.org/package = psych). This
transformation was conducted simultaneously on left and
right hemisphere ROIs and factor loadings were inspected
to detect spatially distinct dimensions of change. Next,
the cortical factor structure identified from Schmid-
Leiman transformation was imposed into a bi-factor SEM
configuration, allowing all indicators to load onto a general
brain factor and additionally to spatially distinct and
mutually uncorrelated factors of brain change. Owing to
our specific hypothesis regarding hippocampus and related
structures, left and right hippocampus and parahippocam-
pal gyrus served as sole indicators of (residual) hippocam-
pal/MTL latent, and their loadings were constrained to be
equal to ascertain that the model is locally identified.
Model fit parameters and loadings to the general brain fac-
tor and specific factors were inspected to evaluate the
soundness of this model configuration. Associations among
gray matter change variables and white matter lesion vol-
umes at T5 were inspected to identify potential confound-
ing factors due to concomitant cerebrovascular insults.

To analyze the degree to which cognitive change was
associated with brain volume change, we then extended
the SEMs to form a single multivariate model of coupled
change in cognition and brain volume (see Fig. 3). The
aggregate model was configured according to the above
descriptions for cognitive and brain volume changes,
allowing for correlations between the variables of interest.
Our primary hypothesis concerned the coupling between
residualized HC/MTL and residualized EM components of
the model, but for the sake of completeness, the correla-
tions were additionally tested across all the available
change-change pairs (general-general, general-specific,
specific-specific). Finally, the correlations were adjusted
for concomitant effects of cerebrovascular integrity by
regressing the white matter lesion volumes at T5 with
the gray matter volume factors in the composite model.
Results

Cognitive changes

The results of the LME model estimations are presented
in Table 1. A significant effect of age was observed for epi-
sodic memory, processing speed, and visuospatial ability
(block design) but not for fluency. A significant mean effect
of time was observed for all cognitive variables, together
with significant negative age by time interaction effects,
suggesting accelerated change at older ages. The
likelihood-ratio tests across LME model configurations
with and without participant-specific effects of time indi-
cated robust inter-individual differences in change for epi-
sodic memory, processing speed, and visuospatial ability
but not for fluency. Due to the lack of reliable inter-
individual differences in change, fluency was excluded
from subsequent analyses.

A preliminary principal component analysis was first
conducted to assess the strength of the hypothesized gen-
eral factor of cognitive change in the present data, using
change in episodic memory, processing speed, and visu-
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Table 1
Statistical results for fixed effects in linear mixed effects models estimating cognitive change over time, and results of model comparison (likelihood-ratio-test;
LRT). Statistically significant effects (p < 0.05) are highlighted using bold font.

Age Time Age � Time LRT

Episodic memory T(289) = �5.14 T(889) = �9.64 T(889) = �5.82 34.72
Fluency T(289) = �0.85 T(795) = �4.68 T(795) = �3.82 0.38
Spatial ability T(289) = �7.96 T(894) = �15.92 T(894) = �2.57 20.8
Processing speed T(289) = �8.56 T(894) = �19.08 T(894) = �4.84 21.18
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ospatial ability as indicators. This analysis corroborated a
strong loading on the first principal component (46% of
total variance explained), which is consistent with a gen-
eral factor. Next, we specified a SEM with a first-level gen-
eral cognitive factor, and freely estimated loadings for the
three indicators. Standardized loadings onto the general
factor were 0.44, 0.61 and 0.29 for episodic memory, pro-
cessing speed, and visuospatial ability, respectively. This
pattern indicated a fairly well-balanced general factor of
change across cognitive domains, though visuospatial abil-
ity loaded less strongly, and confirmed the predicted factor
structure in the present data. Residual variances in each of
the cognitive indicators were statistically significant (z-
values 3.31 – 10.5, p’s < 0.001), allowing for investigating
correlations with brain indicators in a domain-specific
(‘general-cleaned’) manner.
Brain changes

The results of the LME model estimations are presented
in Supplemental Table 1. Reliable inter-individual differ-
ences in gray matter volume change over time were
observed in bilateral hippocampus and in a number of cor-
tical regions. Spatial maps of cortical regions are presented
in Fig. 1. Robust inter-individual differences in change
were observed in bilateral prefrontal cortex, bilateral tem-
poral cortex, and right parietal cortex, but not in sensori-
motor cortex and occipital cortex.

Next, in order to identify common dimensions of brain
atrophy, we conducted an EFA that included brain regions
exhibiting reliable interindividual differences in change. In
an initial principal component analysis, the first compo-
nent accounted for 42% of the total variance, suggesting a
general dimension of gray matter atrophy. Next, we con-
ducted a bi-factor analysis using the Schmid-Leiman trans-
form to investigate the structure of general and region-
specific variation in change. This analysis identified a gen-
eral factor of gray matter volume change [mean g-loading
across regions was 0.40 (0.20–0.70)], and indications for
one additional cortical dimension of specific change was
found (see Supplementary Table 2 for factor loadings
>0.5). This dimension of specific volume change involved
the superior frontal cortex, including bilateral superior
frontal, bilateral caudal middle frontal, and left rostral
middle frontal ROIs (see column F3 in Supplementary
Table 2, mean loading 0.64, eigenvalue 2.4). The other
two oblique factors (F1 & F2 in Supplementary Table 2)
exhibited lower eigenvalues (1.4 and 1.9, respectively)
than F3, lower average loadings (0.3 and 0.4, respectively)
than F3, and consisted of anatomically discontinuous areas,
5

and were therefore not deemed as potential sources of
specific variance in cortical atrophy.

A bi-factor SEM was specified in view of the results
from the EFA in the cortex and a priori factor for hippocam-
pus & medial temporal cortex. A latent variable of general
brain volume change was defined by regions showing a
loading greater than 0.25 to ‘‘g” in the Schmid-Leiman
transformation (see Supplementary Table 2 for loadings),
and orthogonal latent variables of change were defined
for medial temporal lobe (bilateral hippocampus and bilat-
eral parahippocampus), and for superior frontal cortex.
Model fit parameters were as follows: RMSEA = 0.089,
CFI = 0.80, v2 (df = 318) = 702 (p <10�3), indicating accept-
able model configuration. A robust latent variable of gen-
eral brain gray matter volume change was confirmed
(mean loading to g = 0.48 [0.18 – 0.85]), as well as a speci-
fic HC/MTL latent variable (equal loadings of 0.45) and a
specific superior frontal latent variable (mean loading
0.63 [0.45 – 0.70]). There was no evidence for correlation
between the residual HC/MTL and residual superior frontal
variables (correlation = 0.017, p = 0.89). Furthermore, the
hypothesized model including the HC/MTL factor yielded
significantly better representation of the data as compared
to model omitting this factor (Dv2 = 36, p <10�8). Control
analysis using white matter lesion volumes as a covariate
indicated only a trend-level correlation between residual
superior frontal cortex change and lesion volume at T5
(Supplementary Table 3, r = �0.13, p = 0.14). No other cor-
relations approached significance. These results confirmed
that distinct dimensions of MTL/hippocampal and superior
frontal cortex change exhibited significant residual vari-
ance beyond the general dimension of age-related brain
atrophy, that was not strongly associated to cerebrovascu-
lar status.

Linking cognitive and brain changes

Brain-cognition change-change associations were
assessed using a multivariate brain-cognition SEM, config-
ured on the basis of univariate models by allowing correla-
tions between variables of interest. A summary of the pair-
wise correlations is presented in Table 2 (see also Figs. 2
and 3).

We found a statistically significant correlation (r = 0.35,
p = 0.042; Table 2) between the latent variables of general
brain volume change and global change in cognition
(Fig. 2A). Critically, a statistically significant correlation
(r = 0.36, p < 0.01) was detected between the residualized
variables of MTL/hippocampal change and episodic mem-
ory change (Fig. 2B). This result indicates that medial tem-
poral lobe gray matter volume change was specifically



Fig. 1. Regions exhibiting reliable inter-individual differences in gray matter volume change over time. Hippocampus not shown. Warmer color
corresponds to higher likelihood ratio in a model comparison between a reference model and a model including individual rates of change (see Methods for
detail).

Table 2
Pair-wise correlations across the distinct factors of brain-cognition change.
Multivariate SEM analysis was conducted as described in the Methods.
Statistically significant correlations (p < 0.05) are highlighted using bold
font.

Global brain
factor

Hippocampus/
MTL

superior-
PFC

Global cognitive
factor

0.35
(p = 0.042)

0.52 (p = 0.01) 0.30
(p = 0.15)

Episodic
memory

0.09 (p = 0.32) 0.36
(p = 0.0063)

0.05
(p = 0.59)

Processing
speed

0.21
(p = 0.046)

0.14 (p = 0.31) �0.07
(p = 0.47)

Visuospatial
ability

0.02 (p = 0.79) �0.11
(p = 0.41)

0.24
(p = 0.016)
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associated with change in episodic memory, beyond the
general dimensions of gray matter volume and general
cognitive change. In addition, global change in cognition
was related to residualized MTL/hippocampal change
(r = 0.51, p = 0.01, Table 2). Furthermore, a correlation of
global brain change with processing speed change was
detected (r = 0.21, p = 0.046; Table 2), as well as a correla-
tion between residualized superior-PFC change and residu-
alized change in visuospatial ability (r = 0.24, p = 0.016;
Table 2). Control analysis including white matter lesion
volumes at T5 as a regressor confirmed that the correlation
between superior-PFC change and change in visuospatial
ability was not driven by concomitant cerebrovascular
6

insults (r = 0.20, p = 0.032; correlation adjusted for WML
effect; Supplemental Table 4).
Discussion

We used a latent variable approach to separate general
and specific dimensions of cerebral and cognitive changes
and their interrelations. Specifically, we investigated the
extent to which brain maintenance in support of successful
memory aging is specific to memory-related brain regions.
In line with earlier findings, we found that rates of change
across three cognitive domains and across multiple brain
regions are substantially correlated, generalizing the
notion of the positive manifold [37] from cognitive abilities
to cognitive decline and cerebral atrophy in adulthood and
old age. At the same time, we were able to confirm the pos-
tulated specificity of changes in grey-matter volumes for
different cognitive domains. As hypothesized [22], we
found evidence for specificity in the relationship between
changes in hippocampus/MTL volume and changes in epi-
sodic memory.

The presence of a strong factor of general cognitive
change in adulthood and old age [39] has led to the asser-
tion that many of ‘‘the underlying biological causes of cog-
nitive change tend to operate at broad levels affecting
cognition in many forms” [40]. In line with this assertion,
we found that general brain volume change and general
cognitive change are positively correlated. At the same
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time, it also can be expected that the maintenance of a
specific brain structure such as the hippocampus would
be beneficial to cognitive domains that are closely linked
to this structure [22]. This expectation was also borne
out, as we identified several specific associations between
cerebral and cognitive changes. Of particular importance,
we found that changes in HC/MTL volume and changes in
episodic memory establish a specific coupling beyond the
most general levels of cognitive and cerebral aging. The
delineation of a functionally specific link between cerebral
and behavioral levels of analysis is a novel contribution to
the study of normal human cognitive aging. Methodologi-
cally, it demonstrates the utility of a structural modeling
approach to longitudinal data analysis [29].

Recent brain-cognition aging studies have stressed the
importance of correlated change of general dimensions of
brain atrophy and cognitive decline. Using longitudinal
data of gray matter change in elderly, Cox and colleagues
(2021) found low dimensionality of cortical change, which
was related to cognitive change through a general factor of
gray-matter atrophy, in line with Fletcher and colleagues
(2018), yet they also found incremental effects of temporal
lobe atrophy and baseline hippocampal volume to global
cognitive change. The present findings speak for a co-
existence of general and specific change-change associa-
tions in the aging of brain and behavior. Clearly, a strong
g-like factor of cognitive change does not exclude the pres-
ence of reliable individual differences in change at the level
of broad cognitive abilities. For instance, Tucker-Drob [38]
found that 29% of the reliable variance of change in episo-
dic memory is shared with a general factor of change [38],
Fig. 1), but although the percentage might be higher at old
ages [39], Fig. 6, 58%), there is still a large proportion of
7

non-general variance. The present findings extend this
observation to brain-behavior couplings.

Our observations support the assertion of a primary role
of hippocampal/MTL maintenance in successful memory
aging [22,24]. Longitudinal investigations of preserved epi-
sodic memory have found demographic, lifestyle, health-
related, and genetic predictors of group differences among
healthy older adults [13], as well as differences in cortical
and hippocampal brain activity [27]. Longitudinal evidence
further suggests that the number of apolipoprotein E
(APOE) e4-alleles modulates the change-change relation-
ship between episodic memory and hippocampal atrophy
[10]. Here, we found that the specific dimension of episodic
memory change was associated with the specific dimen-
sion of hippocampal/MTL gray matter atrophy but not gen-
eral brain or specific superior-PFC change. In other words,
older adults who declined least in their episodic memory
relative to other participants tended to either exhibit gen-
eral brain maintenance and related preservation of cogni-
tion in general, or specific maintenance of the medial-
temporal lobe structures, but not necessarily other struc-
tures of the brain. We further found that older adults
who declined least in their composite cognitive score rela-
tive to other participants tended to show either less age-
related decline in their composite brain score, or specifi-
cally in their HC/MTL or superior-PFC structures.

There are some limitations of the present study. Most
importantly, the number of observations was relatively
low in terms of the number of participants in the imaging
part of the study (n = 262) and in terms of the follow-up
time points, also with regard to the number of who that
returned for follow-up imaging. At the same time, the
imaging data were collected within a well-established lon-
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gitudinal study of cognitive aging at a single research site
[21], alleviating the typically encountered harmonization
problems in multi-site studies with larger sample sizes.
Furthermore, the analyses were cautiously designed to
avoid the usage of raw change scores and deletion of
incomplete cases, to maximize the ability to reliably detect
change-change associations adjusted for the global effects.
Conclusion

We found evidence for region- and domain-specific lon-
gitudinal associations in normal human cognitive aging,
together with a general association between gray-matter
8

change and cognitive change. In particular, we found that
relatively preserved episodic memory in aging was related
to less medial temporal lobe and hippocampal gray matter
atrophy. These results encourage future investigations of
both domain-specific and domain-general brain-cognition
associations.
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