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First-principles methods for time-resolved angular resolved photoelectron spectroscopy play a
pivotal role in providing interpretation and microscopic understanding of the complex experimental
data and in exploring novel observables or observation conditions that may be achieved in future

experiments.

Here we describe an efficient, reliable and scalable first-principles method for tr-

ARPES based on time-dependent density functional theory including propagation and surface effects
usually discarded in the widely used many-body techniques based on computing the non-equilibrium
spectral function and discuss its application to a variety of pump-probe conditions. We identify four
conditions, depending on the length of the probe relative to the excitation in the materials on the one
hand and on the overlap between pump and probe on the other hand. Within this paradigm different
examples of observables of time-resolved ARPES are discussed in view of the newly developed and
highly accurate time-resolved experimental spectroscopies.

I. INTRODUCTION

Angular  resolved  photoelectron  spectroscopy
(ARPES) is a long standing well established tech-
nique to observe the electronic energy dispersion in
solids and surfaces. Indeed, it is the standard technique
for the electronic structure of solids and the observed
spectral functions are well understood from a theoretical
point of view in terms of quasiparticles and their life-
times, including manifestations of complex quasiparticle
interactions™2. Like many other spectroscopies, the
possibility to perform time-resolved measurements has
opened new avenues to observe dynamical processes and
today, time-resolved (tr)-ARPES is a widely employed
technique with a vast breadth of applications. This
raises new challenges for the theoretical description of
the observed dynamical effects as well as the simulation
of the observation process itself.

Equilibrium ARPES is usually described within re-
sponse theory, that captures the processes around the
excitation and emission of the photoelectron. On the
most basic level Fermi’s Golden Rule, often referred to
as the one step model®*, describes the probability of pro-
ducing a photo-electron by the dipole matrix element of
the material state and the continuum. This can be re-
fined by more sophisticated final states, modelling the
detector etc. Such a description, however, neglects dy-
namical effects that occur in the photoemission process,
such as the scattering of excited electrons before they
leave the material. This is attempted to be captured
by the so called three step model, which accounts for
the excitation, transport through the material, eventual
emission and detection of the photoelectron, which al-

lows to phenomenologically include the effects of excita-
tion of or scattering with other material modes during the
photo-hole creation process, such as plasmons, phonons
as well as electron-electron scattering. The more rigor-
ous description of many-body perturbation theory based
on quantum field theory, avoids the separation in steps
as well as phenomenological assumptions and has been
very successful in describing the many-body interactions
through self-energies and their signatures in the recorded
spectral functions. However, for time-domain measure-
ments, the equilibrium quasi-particle approximation is
not sufficient, because it does not account for the two-
time nature of electronic correlations and the fundamen-
tal changes a system can undergo when it is excited®.

The formulation of the time-resolved ARPES process
with non-equilibrium Green’s functions® is considered
as the most comprehensive theoretical description. Re-
cently, it has been approached even as a first princi-
ples computational technique and demonstrated to be
feasible for a real material”, while lattice model based
approaches have been implemented as well®. The non-
equilibrium Greens functions approach allows to compute
the time-dependent spectral function of materials, tak-
ing into account the complex many-body excitation?, de-
excitation and decoherence'®, dynamical correlation!!-'2,
excitations in strongly correlated systems!'®!* and life-
time effects.

In this article we will present another realistic and ac-
curate approach for the first-principles computation of
time-resolved ARPES that is based on time-dependent
density functional theory (TDDFT)!528. While in prin-
ciple equivalent in scope and accuracy for coherent ex-
citations to the quasiparticle method, TDDFT is lim-
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FIG. 1. Different pump-probe conditions considered in this review. We distinguish the cases where pump (red line) and probe
(blue lines) are either overlapping or not. The pump creates an excitation (green line) in the material. Depending on the
relative time-scale between the probe envelope and the period of the excitation, we further distinguish the cases of long and
short probes. The blue shaded areas indicate the time scales at which the excitation is probed. Each of these four conditions

allow the observation of different phenomena.

ited by the available approximations to the complex
exchange-correlation functional, but has the advantage
of computational efficiency??. Most applications of the
Green’s function methods give the quasiparticle spectral
functions, whereas the method we discuss here explicitly
computes the photo-ionization current and constructs
the ARPES spectrum from its energy and momentum
distribution, in a conceptual analogue to the photoelec-
tron detector. TDDFT, being a theory for the electronic
density, does not natively include electron-phonon cou-
pling, however, it can be coupled to the classical ionic
motion of the lattice through Ehrenfest molecular dy-
namics. This allows to describe the effects of coherent
phonon excitations on the tr-ARPES spectrum??. In
such a quantum-classical coupled system it is not pos-
sible to accurately describe the exchange of energy be-
tween the lattice and electrons®® 32, hence processes like
thermalization and decoherence can not be described in
this approach. Nevertheless, decoherence effects can be
accounted for in TDDFT by phenomenological scattering
times and coupling to an density matrix>?, while the cou-
pling of quantum nuclear dynamics to a first-principles
approach is under development34-37.

Here, we will discuss examples of observables of ex-
cited states in solids accessed via time-resolved ARPES
and their theoretical description and first-principles sim-

ulation with TDDFT. To organise the examples we con-
sider the paradigmatic regimes of short and long probes
applied during and after the pump pulse, as sketched in
Fig. 1. The length of the probe pulse is here to be under-
stood relative to the excited mode of the solid that is be-
ing created or the frequency of the pump that is applied.
Probing a system with a long probe while the pump is
applied allows the observation of Floquet states that have
received considerable recent attention, because they of-
fer the possibility to transiently alter the topology of a
material®®. We will discuss how they are imprinted in the
ARPES spectrum and issues and limitations that arise
for they experimental detection. While Floquet states
are usually associated with periodic driving fields, it is
also possible to apply Floquet theory to states of a solid
after the pump, when a coherent eigenmode of the mate-
rial is dressing the electronic structure. This possibility
to create a field-free Floquet material, will be discussed
alongside its signatures in ARPES spectra which can be
observed under a long probe regime. By contrast, short
probes allow to observe the electronic structure as it fol-
lows the oscillation of the excitation mode or pump field.
In the latter case one can obtain streaking traces from
solids, which gives access to the intrinsic times with which
electrons are ejected into the continuum. In the time do-
main following the pump, the short probe regime allows



to observe the coupling to the electronic structure to el-
emental modes, which we will show here for the example
of electron-phonon coupling.

It is worth mentioning that here we do not discuss the
most widely considered observable of tr-ARPES, that is
rise and decay times of excited state populations, because
it is well covered elsewhere and in the other contributions
to this special issue.

II. TR-ARPES WITH TDDFT

TDDFT3? 4! provides a practical framework to treat
quantum dynamics of many-electron systems out of equi-
librium. The theory is based on the Runge-Gross theo-
rem that establishes the one-to-one correspondence be-
tween the time dependent many-body wavefunction and
the corresponding time-dependent density, n(t). From
this tenet, by employing the Kohn-Sham (KS) scheme,
one can reformulate the time-dependent problem of in-
teracting electrons in terms of a fictitious non-interacting
system — the KS system — having the same density as the
interacting one at all times. In formulas this translates
into a set of single particle equations for each, doubly
occupied, KS orbital, ¢; (r,t), representing N electrons
in the simulation cell, of the form
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where, Vj,,(r) indicates the external potential generated
by ions, Vg[n](r) is the Hartree potential, the electro-
static potential generated by the charge density of the
electrons, Vg [n](r) is the exchange and correlation po-
tential accounting for the many-body interaction, and the
square bracket is a customary notation indicating the
functional dependence on the density. For convenience
we consider the integrals in reciprocal space discretized
over a grid of k-points covering the Brillouin zone. The
right hand side of Eq. (1) defines the KS Hamiltonian
which we denote with fIKS. The coupling with external
electric fields is expressed in the velocity gauge and in the
dipole approximation i.e. with a spatially uniform vec-
tor potential A(t) = fcf dr E(7). Here, we are con-
cerned only Wlth a purely electrlc Vector potential. To
include magnetic fields, one would have to employ the
generalization of TDDFT to current-density functional
theory. Although, here we use the dipole approxima-
tion, the scheme we discuss is generally valid and can be
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FIG. 2. Schematic representation of the continuum states
used to represent the photoelectrons away from the material.
The assumption is made that beyond a certain distance from
the materials surface the states are well represented by Volkov
states.

Y

applied beyond the dipole approximation and deal with
arbitrary fields. Atomic units, i = m, = e = 1, are used
trough the paper unless specified otherwise.

The time-dependent vector potential in Eq. (1) can
represent any linear combination of fields and naturally
includes the case of two fields, pump and probe, needed
to perform tr-ARPES measurements. It must be noted
that a perturbative treatment of the problem becomes
unfeasible to describe the state-of-the-art experimental
condition, where highly-nonlinear dynamics is induced by
strong fields. Direct integration approaches to Eq. (1),
like the propagation in real-time of the equations, remain
the only practical option.

There are few options to extract the directly recorded
tr-ARPES observable from a real-time TDDFT calcu-
lation which contains more than the electronic spectral
function that is usually the result of other many-body ap-
proaches. The first option is to extract the photoelectron
angular distribution from the flux of the ionization cur-
rent through a surface with the t-SURFF method!®19:42,
This approach requires to account explicitly for the sur-
face termination of the material and to partition the
spatial dimension perpendicular to the surface, z, into
an inner, Q, and an outer, Q region like depicted in
Fig. 2. This partitioning sets the stage for the approxima-
tion of the physical division between the material surface
and the photoelectron detector that constitutes the basic
ansatz of the approach. In this division electrons in the
inner region are fully interacting among each other, with
the ions of the crystal and with the external field while
in the outer region they interact only with the external
field. Formally it means that the Hamiltonian of the sys-
tem is decomposed into the KS Hamiltonian in Q and the
Volkov Hamiltonian in Q as following



N {HKs(I‘,t) ifreQ (3)

H(r,t) = . _
( ) Hv(I‘,t) ifre

where the Volkov Hamiltonian, ﬁv, is the Hamiltonian
governing the dynamics of free electrons driven by an ex-
ternal homogeneous vector potential A(t), and is defined

() - 1 (f)+ A“)) . (1)

The time-dependent Schrodinger equation (TDSE) as-
sociated with the Volkov Hamiltonian is solved by wave-
functions of the form

e1'p~re—i<I>(p,t) , (5)
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with
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that are eigenstates of the momentum operator and form
a complete set. This property allows one to use them as
detector states and extract the momentum dependence
of the KS orbitals in the continuum by projection

pilr,t) = / dp bise(p ) xp(r: ) (7)

The total momentum probability, measured in the exper-
iments, is simply obtained by summing up the squared
modulus of the amplitude, b; x(p,t), over states and k-
points,
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Using the continuity equation for the ionization current
is then possible to formulate an equation for the ampli-
tudel&{9 as a flux integral over the surface, S, separating
Q and € as,

bixe(p,t) = — /Ot dr 3’55 ds-xp(r,7) {f) 4 Aiﬂ
9)

This method provides a good estimate of ARPES ma-
trix elements'®. This is due to the fact that the approx-
imation involved in the Hamiltonian ansatz of Eq. (3)
requires that the continuum states of the KS Hamilto-
nian are well approximated by Volkov waves in the de-
tector region €. From Fig. 2 one can see that this ap-
proximation is mostly affected by the tail of the surface
potential extending into the vacuum and that the error

}‘Pi,k(rﬂ')-

can be reduced simply by moving the surface S further
into the vacuum. In practical calculations the dimension
of the simulation box in z is determined by the position
of S and by the absorbing boundary employed to pre-
vent spurious reflections from the boundaries and there-
fore correctly model the vacuum region. The spectrum
of possible boundaries conditions cover a wide range of
alternatives going from simple complex absorbing poten-
tials*3 up to exterior complex scaling®* and sophisticated

open boundary conditions*®.

A characteristic aspect of the semi-periodic boundary
conditions employed in this method is that the surface of
the material must be modeled by a slab geometry. This
offers the possibility to study the electrons transport dy-
namics explicitly naturally beyond the sudden approx-
imation. Even though photoemission essentially probe
surface properties because of the small mean free path
of the photoelectrons in practical calculations one has
to converge with respect to the number of layers needed
to reach the bulk limit with clear implications in terms
of computational costs. Still, many realistic applications
can be treated by this method!®:27:28:46,47

In cases where the demand for accuracy is less strin-
gent one can employ a simpler approach that requires
only to model the dynamics in the bulk without the sur-
face. This is the case for a method that can be derived by
invoking the strong field approximation*® where only the
time evolution under the pump field is required explic-
itly and the effect of the probe is considered at the level
of the one-step model. We can call this approach the
time-dependent one-step model. In this approximation
the ionization amplitude for the i-th band can be writ-
ten??:59 as the time integral of the transition amplitude
between an initial time-dependent state (pump driven),
and a scattering state approximated by a Volkov wave re-
sulting from the action of the probe field, A, (t) = eF(t).
In a formula

biacp) = =i [ dt (OB A (Olin(t)),  (10)

where the bra-ket notation indicates spatial integration
over the unit cell. This formula can be further sim-
plified by using the fact that Volkov waves are eigen-
states of the momentum operator and therefore (xp, (¢)|p-
Apr(D]@iac(D) = P - Apr (t) (xp(D]pic(1). The ioniza-
tion amplitude then becomes,

bi,k(p) = _Zp "€ Z<p‘<p],k> / dt €i¢(p7t)F(t)Cj7i’k(t)
J o

(11)
where the time-dependent KS orbital is expanded in
the basis of the KS orbital at equilibrium (¢ = 0),
lpix(t) = >, cik®)lpix(t = 0)) with coefficients
¢iik(t) = (pjxleik(t)). Note that Eq. (11) reduce to
Fermi’s golden rule in the limit where there is no pump
and the probe is monochromatic, according to the one-
step theory of photoemission.



The advantage of this approach is immediately appar-
ent from Eq. (11) since it only requires the information
of the time dependent projections from a dynamical evo-
lution of the KS orbitals. This is an easily accessible
quantity that can be available to any code capable to
simulate the real-time dynamics of a solid.

A limitation of this approach is that the photoemission
matrix elements, M = (p|p; x), are calculated as an ex-
pansion over plane waves, i.e. as a spatial Fourier trans-
forms of the KS orbitals. While this approach is certainly
convenient from the numerical stand point it delivers only
qualitative results. This is because plane waves are low-
level approximations for the continuum states of the solid
because of the presence of crystal fields, as one can ap-
preciate by looking at Fig 2. In order to improve the
quality one should use more accurate continuum states
of the material such as time-reversed low-energy electron
diffraction (LEED)? states that can be obtained with sep-
arate, static, calculations®!.

It must be noted that basis expansion and final state
approximations, like done by taking Eq. (11) in first-
order perturbation theory, can cause an artificial gauge
dependence that has to be carefully assessed in order to
attain predictive results from theory®?3. Even though
Eq. (11) and Eq. (9) are defined using gauge-invariant
physical states, the Volkov states, theoretical predictions
based on Eq. (9) are more robust because they are de-
fined in terms of the gauge-invariant current operator
instead of the dipole operator. Moreover the spectra ob-
tained with t-SURFF can be systematically converged
by moving the the flux surface S further into the vacuum
to improve the match between plane waves and contin-
uum states whereas the overlap integral in Eq. (11) can
only be improved, as discussed above, by changing the
final state. Indeed t-SURFF has been widely used in the
strong field community*?°* where gauge independence is
crucial and applied, for instance, to laser-induced elec-
tron diffraction?%:26,

III. OVERLAPPING PUMP AND PROBE

Here, we discuss the overlapping pump-prove regime,
where pump and probe pulses are (partially) overlapped.
In this regime, it is on the one hand possible to observe
ultrafast excitation processes directly at their creation
with short (sub-cycle) probe pulses and on the other hand
create dressed states in the solids that emerge when the
probe is longer than the pump carriers.

A. Condition 1: Short-probe in the overlapping
regime

Experiments where the probe pulse extension in time
is of the order or smaller than a single cycle of the pump
carrier, c.f. Fig. 1, provide access to the sub-cycle exci-
tation dynamics in a material. Of particular interest for

excitations in solids is the attosecond time scale (1 as =
107! s) which is the natural scale of electron-hole dy-
namics. Crucial for accessing this time scale is the ability
to generate isolated attosecond pulses®® which also opens
the door on the vast field of the research on attosecond
physics®S.

In this regime tr-ARPES has been employed mainly for
attosecond streaking®’. Attosecond streaking is a pump-
probe technique in which an XUV pulse creates a pho-
toelecton wavepacket that is subsequently streaked by a
moderately strong and carrier-envelope phase (CEP) sta-
bilized IR field (typically of the order I7p &~ 101! W/cm?)
and by this means encode a time information in the
velocity spectrum of the photoelectrons. By carefully
analysing the spectrogram obtained from the expansion
of the photoelectron momentum distribution as a func-
tion of the time-delay it is possible to recover various
contributions. Most notably the Eisenbud-Wigner-Smith
(EWS) time delay of photoemission which defines the
time that is takes for electrons to be released into the
continuum during an ionization process.

The working principle®® is based on the fact that the
electron momentum at the detector, py, is constituted
by the momentum with which the electron reaches the
continuum, pg, shifted by the value of the pump field at
the precise moment in time in which it get released, ¢,
as

Pr=Dpo— Arr(to)/c. (12)

The release time, tg, is the observable that is directly
measured albeit, in many cases, only as a quantity rel-
ative to other ionization channels. It can be thought
as composed of the pump-probe delay, 7, plus a generic
time shift, tg: tg = 7 + tg. The time shift is composed
of a number of contributions originating from different
sources such as atto-chirp, Coulomb tail or lattice scat-
tering, etc. depending on the details of the experiment
including the EWS delay.

Attosecond streaking is considered one of the corner-
stone of attosecond chronoscopy®?%° with ample breadth
of application that ranges from the first experiment on
neon atoms®! to molecules®?:%3 and clusters®?. In solids it
was first employed on Tungsten where tg =~ 100 as delay
in the emission between localized core states and conduc-
tion band states was observed®4%%. In Magnesium it was
employed to investigate the screening in real-time%6-67
and to uncover the dependence on the initial state angu-
lar momentum in WSe, van der Waals crystals®®.

B. Condition 2: Long-probe in the overlapping
regime

When the probe is overlapping in time with a consid-
erable portion of the pump it is possible to create a sit-
uation where resulting ARPES spectrum shows a quasi-
particle spectrum that is not only determined by the in-



trinsic properties of the solid, but shows the spectrum
of the pump-dressed solid. This has gained some recent
attention, because such dressed states can have differ-
ent properties, especially in terms of topology. In the
limit of a constant pump envelope, such states, as well
as their ARPES spectrum, can be described by Floquet
theory%%:70,

The Floquet theorem states that a time-dependent
Schrddinger equation i %% (t) = H(t)¢E (t) with a time-
periodic Hamiltonian (H(¢t) = H(t+T)), can be satisfied
with the following form of the wavefunction, the Floquet
states,

Ga () = e Flua(t), (13)
where wu,(t) are the time-periodic function as
uo (t+T) = wun(t). Hence, one can expand the

periodic part of the Floquet states as

o0
ua(t) = Z eimmu%, (14)

m=—0o0

where  is the fundamental frequency Q = 27/T of the
applied laser. Furthermore, inserting Egs. (13) and (14)
into the original Schrédinger euation, one can obtain the
following eigenvalue equation

Eaug = ZHnmu%a (15>
where the Floquet Hamiltonian H,,,, is given by
1 .
Hom = / dtH (t)e ™% L mQ6,,,. (16)
T

Thus Floquet theory maps the problem of solving a dif-
ferential equation in the time into a static eigenvalue
equation in the energy domain, by means of the dis-
crete Fourier expansion of Eq. (16). Any solution of the
time-dependent Schrédinger equation can then be con-
structed as a linear combination of the Floquet states as
o(t) =, fadk (t), where the coefficients f, depend on
the boundary conditions.

This expansion of the a driven quantum mechanical
system is relevant for tr-ARPES in two ways: (i) be-
cause under these driving conditions ARPES records the
spectrum of the Floquet Hamiltonian, F, instead of
the bare band energies”®7! and (ii) the intensity of the
ARPES spectrum depends on the expansion coefficients
fa- By analysing the photoemission matrix element, c.f.
Eq. (18), in terms of the Floquet expansion the photoe-
mission probability amplitude reads®®

Pp) =Y > falPluz(®)(p- A},)?
5(p?/2 — Eq +nQ — w). (17)

This expression shows that the kinetic energy of the pho-
toelectrons depends on the new, Floquet-eigenvalue F,

and moreover, that the spectrum shows this energy re-
peated at integer intervals of nf). These are the Floquet
sidebands, whose intensity depends on the norm of the
harmonic component uS. The overall intensity of such
a series of E, sidebands is governed by the Floquet ex-
pansion coefficient f,, that depends on how much the
dynamics of the system is described by the Floquet state
Y*. As such Eq. (17) not only shows how an ARPES
spectrum of a continuously driven system can be anal-
ysed, it also illustrates that ARPES is a natural ob-
servable of a Floquet electronic structure*®. This last
point implies that many theoretical proposals relying on
the formation of Floquet states, especially for topological
systems, can, or rather should, be verified with ARPES
experiments’?.

The observation of Floquet electronic structure, is
however, not as straightforward as Eq. (17) suggests. In
the above derivation, Floquet states are derived with an
effective single-particle Hamiltonian without a significant
contribution from other degrees of freedom. On the con-
trary, in real systems, an electron is not an independent
particle but interacts with other degree of freedom such
as phonons, defects and other electrons. As a result, the
formation of single-particle Floquet states is disturbed by
the surrounding environment, and signals from the Flo-
quet bands are suppressed?®4%73 . From the viewpoint of
many-body systems, in principle, one needs to consider
not only electrons but also their surrounding environment
in the framework of the Floquet theory in order to accu-
rately describe dressed matter. If a single-particle degree
of freedom is sufficiently isolated from the other degrees
of freedom, a single-particle Floquet feature can be ob-
served in real experiments. Indeed, this mechanism has
been observed in experiments on BiSe2747® as an avoided
crossing in ARPES sidebands.

So far, we discussed how electronic states in mat-
ter are dressed by light and how their properties are
recorded in the tr-ARPES with the Floquet theory.
These Floquet states are the initial states of the pho-
toemission process induced via the probe pulse, and the
corresponding final states (detector states) of the tr-
ARPES simulation are the Volkov states as described
in Sec. II. Importantly, under a continuous-wave driv-
ing, these Volkov states can be also seen as the corre-
sponding Floquet states. As a result, the observed tr-
ARPES signals may contain additional side-band con-
tributions from the dressed free-electron states; Volkov
states. This effect is known as laser-assisted photoemis-
sion effect (LAPE)" 76, This side-band formation due
to the photo-dressed free-electron states play an essen-
tial role in the reconstruction of attosecond beating by
interference of two-photon transitions (RABBIT) tech-
nique””7®. RABBIT is a technique that allows to re-
cover the phase of the ionized electron wavepacket and
the delay in photoemission. It can be view as technique
complementary to streaking. In solid is was applied to
Nickel™ and Tungsten®® crystals.



IV. NON-OVERLAPPING PUMP AND PROBE

Here, we discuss a regime, where pump and probe
pulses are sufficiently separated in the time-domain. In
this regime one probes only the excitation created by
the pump, rather than its build up or driven states. De-
pending on the relative time-scales of time-resolution and
decay time one can either observe how the excitation is
dissipated through the solid or one can measure dynamics
of the excitation itself.

A. Condition 3: Short-probe in the
non-overlapping regime

In this regime tr-ARPES can be used to probe exci-
tations and eigenmodes of solids on their characteristic
time scales, provided the delay resolution is fast enough
to resolve the internal dynamics. In the following we will
focus on the case where the pump has excited a coherent
phonon and will analyse how in this condition tr-ARPES
can give access to electron phonon coupling.

The lattice displacement associated with a coherent
phonon induces, to first order, a shift in the electronic
band energies depending on the the strength of the
electron-phonon coupling. This can be observed in tr-
ARPES as an oscillation of the spectral function at a
given k-point and by fitting this movement in energy
on can extract the electron phonon coupling®!:82. Al-
ternatively one can perform a Fourier transform of the
time-series obtained by tr-ARPES for each point in the
energy-momentum map and reconstruct the ARPES map
at a given frequency?>8384 ¢ f. Fig. 3(a). This latter op-
tion, Frequency-domain (FD)-ARPES, does not only pro-
vide a novel way of presenting the large amount of data
collected in tr-ARPES measurements with novel high-
resolution detectors, but it also presents the opportunity
of processing the data differently, as we will discuss now.

To analyze the FD-ARPES signal based on the mi-
croscopic theory, we start from the Fermi’s Golden Rule
expression for the photoemission intensity at a given k-
point and originating from a given band orbital ¢ with
energy €

Iic(Exin) = [(fp|A - PlYoa) P F(Q + € — Ewin)  (18)

where Eyi, = p?/2 is the kinetic energy of the photo-
electron, fp is a final state with momentum p, F' is the
spectral lineshape and {2 is the energy of the probe. We
now make the assumption that the lattice excitation is a
coherent phonon or contains a substantial coherent com-
ponent, so that the ionic motion can be described by a
single classical trajectory. Assuming a sinusoidal for the
displacement of the lattice due to the coherent phonon
generation, u(7T) = ugsinweT with the maximum lattice
displacement ug and the phonon frequency wp, we can ac-
count for the effect of the adiabatic coupling to coherent
lattice motion by introducing a parametric dependence of

the band energy and orbital on the lattice displacement
u through ordinary perturbation theory:

Eik[u(T)] = €;x + Ak sin (UJOT) (19)
[Visc[u(T)]) = [thixc) + [9%ixc) sin (woT) (20)

where Ay = uo(¥ik|0V]xk) is the change in orbital
energy at the maximum displacement ug of the lattice,
and g;;(k) = (Yik|0V |1ik) is the diagonal element of the
standard electron-phonon coupling matrix®®, while the

term [0v) = ug Zi# Eg:_(lz)k |1jx) depends on the inter-
i J

band electron-phonon coupling. Inserting these expan-
sions into the Fermi’s Golden Rule expression, Eq. (18),
gives a model for the tr-ARPES intensity of an adiabat-
ically coupled coherent phonon:

(B, ) = Ul Bl ) F Sl

21
and the FD-ARPES map is obtained by Fourier trans-
forming with respect to 7. It is important to note, that
despite the linear expansion of the band properties, this
expression is clearly non-linear in the lattice displace-
ment. Since the coupling is adiabatic, the Fourier trans-
form can only have components at the frequency of the
phonon and its harmonics. For the fundamental fre-
quency this gives

- 1 -~ (F
Iix (Exin, wo) :ﬁMjl (A) * F(E)+

s [4(5) +35(5)] -

(22)

where J,, are Fourier transforms of Bessel functions, x
denotes the convolution product, dM = Re[{¢|A -
Plfo) (fplA - P|dti)] and we have used the shorthand
E =Q+ ey + Eyn.

The expression in Eq. (22) gives the FD-ARPES map
at the phonon-frequency for adiabatic electron-phonon
coupling and an example for such a spectrum is given
in Fig. 3(b), showing the FD-APRES spectrum for
Graphene at the frequency of the coherently excited Eqg
phonon mode. Generally, FD-ARPES spectra can be
used to disentangle a large number of processes linked
to the electron-phonon coupling that affect the ARPES
spectrum. First of all, we note that the expression in
Eq. (22) is purely imaginary, reflecting the assumption of
the adiabatic electron dynamics and the form of the lat-
tice displacement, u(7) = ug sinwy7. The complex phase
is determined by the phase of the time dependence in
Eqgs. (19-20) and is therefore somewhat arbitrary. How-
ever, if the measurements detects another phonon mode
at a different wq the relative phase of the FD-ARPEES
maps can reveal different excitation mechanism for the
two coherent modes, i.e. a displasive vs. an impulsive
Raman process. However, maybe more telling can be the
absence of a unique complex phase across an FD-ARPES
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FIG. 3. (a) Illustration of the FD-ARPES method. Under non-equilibrium conditions each point in an ARPES map acquires
a time dependence that can be analyzed by Fourier transform. Selecting a particular Fourier component for all points allows
the construction of the FD-ARPES map, that gives and energy and momentum resolved view of the couplign of the electronic
structure to a mode with that particular frequency. (b) Computed equilibirum (upper panel) and FD-ARPES (lower panel)
for Graphene the frequency of the Eog phonon mode, which has been coherently excited (adapted from?®).

map. In this case localised deviations of the complex
phase directly signal regions in the Brillouin zone where
the electron-phonon coupling is not adiabatic, pointing
to underlying resonances and points where the electrons
and phonons participate in other excitations. Secondly,
the FD-ARPES expression of Eq. (22) provides a way
to distinguish the type of electron phonon coupling. We
note that the first term has odd symmetry as a function
of energy and depends only on A while the second term
even symmetry and contains 6 M. This means that if an
FD-ARPES map is recorded that features lineshapes of
purely odd symmetry, all the underlying electron-phonon
coupling is provided by the diagonal coupling matrix ele-
ments g;;(k). Conversely, a deviation from the odd sym-
metry means that |di;) contribute to the FD-ARPES
signal, meaning that band-orbitals are affected by the
electron-phonon coupling and that off-diagonal coupling
matrix elements g;;(k) are involved. Finally, we have
shown in Ref.?® that using a perturbative expansion in
terms of small lattice distortions of small coupling, one
can extract the diagonal matrix elements g;; (k) from FD-
ARPES data, thus making the matrix element and ob-
servable of this spectroscopy.

We note that a necessary condition for FD-ARPES
is that the underlying tr-ARPES measurement is able to
resolve dynamics on the the time-scale of the phonon fre-
quency. Hence, it falls in the short probe category, where
short is relative to a previously excited mode. Next, we
will turn to the opposite case, where the probe is longer
than the period of the excited mode.

B. Condition 4: Long-probe in the non-overlapping
regime

In this regime the probe itself does not resolve any dy-
namics on the time scale of the of the excitation. How-
ever, it neither results in a mere average of the signal.
Instead, the correct picture to describe this regime is the
Floquet expansion, despite the fact that there is no pump
anymore. We will illustrate this paradigm again with the
example of a coherent phonon excitation.

We noted section IIIB that when the probe is longer
than the pump duration it may record the Floquet spec-
trum of a material, because the electronic levels appear
as dressed by the photons to the probe. The same pic-
ture applies in the absence of a pump, when a coherent
phonon has been excited in the system. In this case the
Hamiltonian is periodic in time, H(t) = H(t + T) where
the periodicity now results from the oscillating lattice
potential instead of an external field.

To see how the resulting Floquet features depend on
the material properties it is instructive to write the time-
dependent electronic Hamiltonian coupled to a coherent
phonon mode w, at a given k-point as

Hy, (t) = enkclkcilk + Z gmnu(k)cinkcilku,, sin(w,t).

mn

(23)
where u, is the amplitude of the coherent lattice mo-
tion along the phonon eigenvector and ¢ is again the
electron-phonon matrix element. Optically excited co-
herent phonons are typically zone center modes, hence
here we have additionally assumed that the phonon carry
no moment, i.e. ¢ = 0. This formulation now shows that
on the one hand the amplitude u of the lattice motion
takes the role of the laser intensity for the Floquet states
and on the other hand the electron-phonon matrix ele-
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FIG. 4. (a) Computed ARPES spectrum of Graphene with
the E2g mode under Floquet-phonon conditions (adapted
from??). (b) Electron-phonon matrix elements of the Eag
mode of Graphene (adapted from?®). Comparison between
the panels shows that the number of visible sideband broadly
tracks the strength of the electron-phonon coupling. Note,
that the ARPES result also contains photoelectron matrix el-
ements that suppress some bands more than others, leading
to some deviations from this interpretation.

ments g that of the optical dipole matrix elements. This
means that Floquet-phonon features in ARPES depend
directly on the single band electron-phonon matrix ele-
ment, which is somewhat analogous to the above example
of the FD-ARPES case. Indeed, one can view an ARPES
measurement of the Floquet-phonon case as the limit of
the FD-ARPES case, where the probe time is very long,
giving a static, rather than a time-resolved result. Fig. 4
shows an example of a computed ARPES spectrum in the
Floquet-phonon regime, where the momentum and en-
ergy dependence of the the sideband features are clearly
follows that of the electron-phonon matrix elements.
Finally, we comment on the similarity between Floquet
satellites and other satellite or sideband features that
are ubiquitous in many experimental ARPES spectra!:86.
Strong coupling between the electronic structure and
quasiparticle eigenmodes, such as plasmon or indeed
phonons, can lead to sidebands in the ARPES of the
equilibrium material, when the creation of the hole in
the photoemission process also results in the excitation
of a quasiparticle eigenmode of the solid and hence to

a reduced energy of the photoelectron. While this phe-
nomenology is very similar to that of the Floquet, it re-
sults from a very different physical situation: Floquet-
ARPES probes an excited solid while the sidebands ob-
served in equilibrium result from excitations due to the
probing process itself. The two processes can be distin-
guished however, because in the equilibrium solid side-
bands mostly occur below the main band, because the
photoelectron has lost energy. In Floquet-ARPES by
contrast, the already active eigenmode can supply the
photoelectron with additional energy and hence side-
bands occur symmetrically above and below the main
peak.

V. OUTLOOK

Here we have sketched an overview of the developments
we have carried out over the last years to develop a re-
liable, efficient and widely applicable theoretical frame-
work to address all kind of pump-probe conditions and
their respective observables. This is by no means at-
tempting at being comprehensive as many particular con-
ditions and regimes have been omitted. A major point
of interest in tr-ARPES measurements is the observa-
tion of dynamical correlation®”, quasiparticle dynamics,
coupling (decoherence and dissipation effects) and dress-
ing of quasiparticles. Furthermore, the discussion here
has been largely concerned with single photon processes
(with the exception of the condition 1, the standard Flo-
quet case). However, in tr-ARPES the possibility to cre-
ate two (pump+probe) or multiple photon pathways that
can interfere and thus give a different kind of character-
istic spectrum is also possible and widely employed. The
theoretical tool described here, includes such processes
out-of-the-box and remains to be explored. Another yet
to be explored field is the systematic employment of
the FD-ARPES method to eigenmode excitations other
than phonons. For instance plasmon or magnon coupling
should lend itself to be systematically characterised by
this approach, as well as other collective modes such as
the charge-density wave transitions or excitons in the ex-
citon insulator phase. Furthermore, FD-ARPES might
be employed to monitor the electron-phonon coupling
under non-equilibrium conditions, thus possibly giving
insight into phenomena such as light-induced supercon-
ductivity. One further prospect (related to streaking and
RABBIT) could be to study how exciton are formed dur-
ing and get further observations on the ”birth of and ex-
citon”®” or light induced topological phases of matter, for
instance by monitoring Weyl formation® and dynamics,
among others. Recent success in tr-ARPES experiment
investigating the decay dynamics of excitons in TMD8?:%0
suggests that pursuing this route could be feasible.
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