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Abstract
Computing the convolution A ? B of two length-n integer vectors A, B is a core problem in several
disciplines. It frequently comes up as a subroutine in various problem domains, e.g. in algorithms
for Knapsack, k-SUM, All-Pairs Shortest Paths, and string pattern matching problems. For these
applications it typically suffices to compute convolutions of nonnegative vectors. This problem can
be classically solved in time O(n log n) using the Fast Fourier Transform.

However, in many applications the involved vectors are sparse and hence one could hope for
output-sensitive algorithms to compute nonnegative convolutions. This question was raised by
Muthukrishnan and solved by Cole and Hariharan (STOC ’02) by a randomized algorithm running
in near-linear time in the (unknown) output-size t. Chan and Lewenstein (STOC ’15) presented
a deterministic algorithm with a 2O(

√
log t·log log n) overhead in running time and the additional

assumption that a small superset of the output is given; this assumption was later removed by
Bringmann and Nakos (ICALP ’21).

In this paper we present the first deterministic near-linear-time algorithm for computing sparse
nonnegative convolutions. This immediately gives improved deterministic algorithms for the state-
of-the-art of output-sensitive Subset Sum, block-mass pattern matching, N -fold Boolean convolu-
tion, and others, matching up to log-factors the fastest known randomized algorithms for these
problems. Our algorithm is a blend of algebraic and combinatorial ideas and techniques.

Additionally, we provide two fast Las Vegas algorithms for computing sparse nonnegative con-
volutions. In particular, we present a simple O(t log2 t) time algorithm, which is an accessible
alternative to Cole and Hariharan’s algorithm. Subsequently, we further refine this new algorithm
to run in Las Vegas time O(t log t · log log t), which matches the running time of the dense case apart
from the log log t factor.

Funding This work is part of the project TIPEA that has received funding from the European Re-
search Council (ERC) under the European Unions Horizon 2020 research and innovation programme
(grant agreement No. 850979).

1 Introduction

The convolution of two integer vectors A,B is the vector A?B which is defined coordinate-
wise by (A ? B)k =

∑
i+j=k Ai · Bj . Computing convolutions of integer vectors A,B is

a fundamental computational primitive, which arises in several disciplines of science and
engineering. It has been a vital component in fields like signal processing, deep learning
(convolutional neural networks) and computer vision. Inside traditional algorithm design it
is crucially used as a subroutine in k-SUM [15], Subset Sum [9, 30, 12, 14] and various string
problems [21, 27, 18], to name a few.

The aforementioned applications of interest within theoretical computer science typically
come in the form of nonnegative convolution, where the vectors A,B have nonnegative
entries. In fact, for many applications it suffices to solve the simpler Boolean convolution
problem—here, the vectors A,B have 0–1 entries and the task is to compute the vector A©? B
with entries (A©? B)k =

∨
i+j=k Ai ∧Bj . This problem is equivalent to the computation of

sumsets X + Y = {x + y : x ∈ X, y ∈ Y } and this interpretation shows up very often in
k-SUM and Subset Sum algorithms.
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Moreover, Boolean (or nonnegative) convolutions form an essential ingredient to the
partition-and-convolve design paradigm. The typical task for a problem approachable by
a partition-and-convolve algorithm is to check for solutions of all prescribed sizes k. The
general idea is to partition the search space into (usually) two parts, each of which is solved
recursively. In that way, a size-k solution to the original problem is split into two parts of
sizes i, j such that i+ j = k. Therefore, to check whether there exists a size-k solution to
the original problem we recombine the recursive computations by a Boolean convolution.
This approach is very flexible and can also be applied to other convolution-type problems;
for instance, using nonnegative convolutions in place of Boolean convolutions corresponds
to counting solutions of all prescribed sizes.

Classically, the convolution of length-n vectors can be computed in deterministic time
O(n logn) using the Fast Fourier Transform (FFT). It is widely conjectured that this algo-
rithm is optimal but the evidence is scarce [2, 1] and this remains an important open problem.
Furthermore, it is known that nonnegative convolution, general convolution (where entries
can also be negative or complex) and the computation of Discrete Fourier transforms (DFT)
are computationally equivalent, as each one can be reduced to the other.1

The situation is less clear for sparse convolutions in all regards. Here the goal is to achieve
output-sensitive algorithms where we analyze the running time in terms of t, the combined
number of nonzero entries in A, B and A ? B (in the Boolean and nonnegative cases, t is
dominated by the number of nonzero entries in A?B). The need for such a primitive appears
in many situations, e.g. [18, 25, 15, 12, 13], as one may often be interested in algorithms that
run in time proportional to the actual complexity of the output rather the space the output
points live in. These type of problems have been investigated by different communities,
including fine-grained complexity [15] and string algorithms [18], computer algebra [38] and
compressed sensing [26, 22], and they are very closely related to the famous sparse recovery
problem, see e.g. [23, 22]. Subsequently, we review the most relevant literature on sparse
convolutions.

Randomized Algorithms for Sparse Convolution. A large body of work addresses this
problem [34, 18, 37, 33, 42, 5, 15, 38, 35, 24, 11]. The first breakthrough was a randomized
Las Vegas algorithm for sparse nonnegative convolution in time O(t log2 n), obtained by Cole
and Hariharan [18]. Subsequent work improved upon this result in two directions: On the
one hand, the nonnegativity assumption can be removed by a Monte Carlo algorithm with
the same running time O(t log2 n) [35], or with bit-complexity Õ(t logn) [24]. On the other
hand, there exists an improved Monte Carlo algorithm for sparse nonnegative convolution in
time O(t log t+ polylogn) [11], which is optimal assuming that the dense problem requires
FFT time Θ(n logn). Most of these algorithms rely on a hashing-based approach.

Another more algebraic avenue to sparse convolution algorithms is via polynomial eval-
uation and interpolation. At the heart of this approach lies an old algorithm called Prony’s
method [19] which allows to efficiently interpolate a sparse polynomial. Unfortunately, this
algorithm involves heavy algebraic computations (see [38] for a detailed survey) and the
currently only known way to achieve near-linear running time in t uses randomization [38].
Thus, near-linear-time sparse convolution algorithms resulting from this approach are ran-
domized as well. We compare our work against Prony’s method in more detail in Section 1.2.

Note that in many applications of interest a sparse convolution algorithm is called many
times with varying output size and thus it is desirable to have deterministic (or Las Vegas)
algorithms for performing such a task. Additionally, the fastest known algorithm in the dense
case (FFT) is deterministic, and thus it is natural to wonder to what extent randomization
is necessary in the sparse case.

1 For dense vectors, the nonnegativity assumption can be removed by appropriately increasing all entries.
For the equivalence of computing convolutions and DFTs we remark that it is standard to express
convolutions using DFT and inverse DFT, and the reverse direction is known as well [8] (assuming
complex exponentials can be evaluated in constant time).
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Deterministic Algorithms for Sparse Convolution. The first nontrivial deterministic result
for sparse nonnegative convolution is a data structure that, after preprocessing one of the
vectors in time Θ(t2), computes the convolution with any given query vector in near-linear
time O(t log3 t) [4]. Later, Chan and Lewenstein [15] devised a deterministic algorithm run-
ning in time t · 2O(

√
log t log logn), without preprocessing. Their algorithm is limited in the

sense that it expects as an additional input the support (i.e., the set of nonzero coordinates)
of A ?B. This assumption can be removed as shown by Bringmann and Nakos [13]; in Sec-
tion 1.2 we provide more details. In summary, the state-of-the-art deterministic algorithms
for computing sparse nonnegative convolutions either require heavy precomputations or fail
to achieve near-linear time O(tpolylogn). Our driving question is therefore:

Can sparse nonnegative convolutions be computed
in deterministic time O(tpolylogn)?

1.1 Our Results

Our main result is an affirmative answer to our driving question.

Theorem 1 (Deterministic). There is a deterministic algorithm to compute the convolution
of two nonnegative vectors A,B ∈ Nn in time O(tpolylog(n∆)), where t = ‖A?B‖0 denotes
the number of nonzero entries in A ? B and ∆ = ‖A ? B‖∞ is the maximum entry size.

This result improves the previously best known time t ·2O(
√

log t·log logn) obtained by [15, 13].
As a corollary we can efficiently derandomize known algorithms for several problems

which use sparse nonnegative convolution as a subroutine. For all these applications, we can
simply replace the former randomized algorithms with our deterministic one in a black-
box manner. Of course, for the same derandomization we could alternatively use the
t · 2O(

√
log t log logn) = t · no(1)-time algorithm from [15, 13] and therefore our contribution

can alternatively be seen as improving the best deterministic time from T 1+o(1) to Õ(T ).
Specifically, we obtain improvements for the following problems:

Output-Sensitive Subset Sum: Given a set X of integers and a threshold τ , compute the
set S of all numbers less than τ which can be expressed as a subset sum of X. The best-
known randomized algorithm runs in time Õ(|S|4/3) [12], and it can be derandomized in
same running time.
N -fold Boolean Convolution: Given N Boolean vectors A1, . . . , AN , compute the
Boolean convolution A1©? · · ·©? AN (with or without wrap-around) in input- plus output-
sensitive time. It was recently shown that this problem can be solved in randomized
near-linear time O(tpolylogn) [13]. Our derandomization achieves the same running
time. This yields a new deterministic near-linear-time algorithm for Modular Subset
Sum which is rather different than the known ones [6], as discussed in [13].
Block-Mass Pattern Matching: Given a length-n text T and a length-m pattern P over
the alphabet N, the task is to output all possible indices 0 ≤ k0 ≤ · · · ≤ km ≤ n such that
Pi =

∑
ki≤j<ki+1

Tj for all positions i ∈ [m]. Building on the data structure from [4],
this problem is known to be solvable in deterministic time Õ(n+m) after preprocessing
the text in time O(n2) [3]. The preprocessing time was later reduced to O(n1+ε), for
any ε > 0 [15]. We entirely remove the necessity to precompute and thereby reduce the
total running time to Õ(n+m).
3SUM in Special Cases: In a breakthrough paper, Chan and Lewenstein [15] use so-
phisticated techniques to obtain randomized and deterministic subquadratic algorithms
for a variety of problems related to 3-SUM, such as bounded monotone two-dimensional
3SUM, bounded monotone (min,+)-convolution, clustered integer 3-SUM, etc. The pre-
cise running time of their deterministic algorithm for these problems is O(n1.864). Here
we remove an o(1) overhead in the exponent which is invisible due to rounding the
constant in the exponent.
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In addition to our new deterministic algorithm, we improve the state-of-the-art Las Vegas
algorithms for sparse nonnegative convolutions in two regards: simplicity and efficiency. In
fact, to the best of our knowledge the only known Las Vegas algorithm is due to Cole and
Hariharan [18]; all randomized algorithms published later have only Monte Carlo guaran-
tees [37, 5, 38, 35, 24, 11]. The expected running time of [18] is O(t log2 n) and moreover,
they prove the additional guarantee that their algorithm terminates in time O(t log2 n) with
high probability 1− 1

n . However, the algorithm is very complicated, involves various string
problems as subtasks and the precomputation of a large prime number. We provide an
accessible alternative with the same theoretical guarantees; the simplest version can be
summarized in 13 lines of pseudocode (Algorithm 1 on Page 6).
Theorem 2 (Simple Las Vegas). Given nonnegative vectors A,B ∈ Nn, there exists an
algorithm to compute their convolution A?B in expected time O(t log2 t), where t = ‖A?B‖0.
Moreover, with probability 1− δ the running time is bounded by O(t log2(t/δ)).
In comparison to Cole and Hariharan’s algorithm, our algorithm runs slightly faster in
expectation (at least if t� n) and achieves the same high-probability guarantee (indeed, by
setting δ = 1

n the running time is bounded by O(t log2 n) with probability at least 1 − 1
n ).

We further show how to reduce the expected running time, achieving optimality up to a
log log factor.
Theorem 3 (Fast Las Vegas). Given nonnegative vectors A,B ∈ Nn, there exists an
algorithm to compute their convolution A ? B in expected time O(t log t log log t), where
t = ‖A ? B‖0.
Assuming that FFT-time O(n logn) is best-possible for computing dense convolutions, the
best-possible algorithm for computing sparse convolutions requires time Ω(t log t). Hence,
our algorithm is likely optimal, up to the log log t factor.

1.2 Technical Overview

In this section we briefly outline the ideas behind Theorems 1 to 3.

1.2.1 Deterministic Algorithm

The key machinery powering our deterministic algorithm (Theorem 1) is a basic result from
structured linear algebra which can be viewed as efficiently evaluating and interpolating
sparse polynomials—under certain conditions. We present the algorithm by first explaining
that key part (Part 1) and the assumptions it requires. In Parts 2 and 3 we then remove
these assumptions by appropriate precomputations.

Part 1: Evaluation & Interpolation. The high-level approach follows the typical evaluation
and interpolation pattern. Any vector V can be viewed as a polynomial V (X) =

∑n−1
i=0 ViX

i.
In that analogy, computing the convolution A ? B of two vectors A,B corresponds to com-
puting the product of their respective polynomials A(X) ·B(X). The idea is to:
1 Evaluate A(X) and B(X) at some carefully chosen points ω0, ω1, . . . , ωt−1,
2 Compute the product A(ωi) ·B(ωi) for all i = 0, . . . , t− 1,
3 Interpolate the (hopefully unique) polynomial C(X) with evaluations C(ωi) = A(ωi) ·
B(ωi).

In this way, we have reduced the task to the evaluation and interpolation of sparse polyno-
mials. Let us start with the evaluation problem: Note that computing V (ω0), . . . , V (ωt−1)
is equivalent to computing the following matrix-vector product:

V (ω0)
V (ω1)

...
V (ωt−1)

 =


1 1 · · · 1
ωx1 ωx2 · · · ωxt

...
... . . . ...

ωx1(t−1) ωx2(t−1) · · · ωxt(t−1)



Vx1

Vx2
...
Vxt

 . (∗)
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This matrix has a very special form: It is the transpose of a Vandermonde matrix. It is
known that performing linear algebra operations (such as computing matrix-vector products,
or solving linear systems) with transposed Vandermonde matrices can be implemented in
O(t log2 t) field operations [28, 31, 36]. Thus, by viewing the integer vector V as a vector
over some appropriately large finite field, we can evaluate V (ω0), . . . , V (ωt−1) in near-linear
time. (We remark that this algorithm is numerically unstable, so using complex arithmetic
is not an option.)

To perform the inverse task of interpolating the coefficients Vx1 , . . . , Vxt given the evalu-
ations V (ω0), . . . , V (ωt−1), we view (∗) as a system of linear equations with indeterminates
Vx1 , . . . , Vxt . As mentioned before this problem can be also solved in time O(t log2 t). This
nearly yields the algorithm, however, there are two major obstacles. First, in order to obtain
a unique solution, the equation system should be nonsingular. It is easy to see that this
is equivalent to the condition that ωx1 , . . . , ωxt are pairwise distinct. A reasonable way to
achieve this is to let ω be a finite field element with multiplicative order at least n ≥ deg(V ).
In Part 2 we explain how to obtain such an element. Second, in order to write down the
equation system we have to know the indices x1, . . . , xt, i.e., the support of V . Concretely,
in the algorithm we call the sparse interpolation problem for V = A ? B and we therefore
need to know supp(A ? B) in advance. In Part 3 we discuss a recursive “scaling trick” to
precompute a small superset of supp(A ? B).

Part 2: Finding Large-Order Elements. In this part we care about finding an element ω
with multiplicative order at least n in a finite field of size� n. There is a simple randomized
algorithm: Pick a random element. Unfortunately, the best-known deterministic algorithms
for finding a large-order element in a given prime field Fp require time polynomial in p [16].
Thus it seems intractable to work over a finite field Fp with p ≥ n as originally intended.

Fortunately, in a finite field Fq = Fpm with prime power order, it is possible to find
large-order elements in time poly(p,m) [17, 40, 41]. Specifically, setting p,m = polylog(n)
we can find an element ω with order at least n in time polylog(n) [17]. Working over a finite
field with small characteristic p ≤ polylog(n) has another drawback though: We cannot
recover the entries of the vector A ? B (which can have size up to n, even if A and B are
bit-vectors to begin with). We remedy this problem by computing the convolution A ? B

over several finite fields Fq1 ,Fq2 , . . . , and use the Chinese Remainder Theorem to identify
the correct integer solution afterwards.

Part 3: Recursively Computing the Support. We finally discuss how to precompute the
support supp(A ?B). In fact, it suffices to compute a superset T ⊇ supp(A ?B) with small
size |T | ≤ O(t). We exploit a trick which was first applied to the context of convolutions
in [13]; see also [12, 10]. Construct smaller vectors A′, B′ of length n

2 by A′i = Ai + Ai+n/2
and B′j = Bj + Bj+n/2 (that is, we fold A,B in half). We can recursively compute the
convolution C ′ = A′ ? B′. Then we extract T as

T =
{
k, k + n

2 , k + n : k ∈ supp(C ′)
}
.

This choice is correct: Clearly |T | ≤ 3t, and it is easy to verify that T is indeed a superset of
supp(A?B). The recursion only reaches depth logn, and thus incurs a logarithmic overhead
in the running time.

By combining Parts 2 and 3 we overcome both obstacles outlined in Part 1, and solve sparse
nonnegative convolution in deterministic time O(tpolylog(n∆)).

Comparison to Prony’s Method. Note that our main contribution can also be viewed as a
deterministic near-linear-time algorithm to interpolate a univariate sparse polynomial with
nonnegative coefficients. The classical approach to the sparse interpolation problem is by
Prony’s method—an old algorithm first discovered by Prony in 1795 [19], and rediscovered
later by Ben-Or and Tiwari [7]; see [38] for a detailed survey. Prony’s method involves
heavy algebraic computations such as finding the minimal solution to a linear recurrence,
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Algorithm 1
Input: Nonnegative vectors A,B ∈ Nn

Output: C = A ? B

1 for m← 1, 2, 4, . . . ,∞ do
2 repeat 2 logm times
3 Sample a linear hash function h : [n]→ [m]
4 Compute X ← h(A) ?m h(B)
5 Compute Y ← h(∂A) ?m h(B) + h(A) ?m h(∂B)
6 Compute Z ← h(∂2A) ?m h(B) + 2h(∂A) ?m h(∂B) + h(A) ?m h(∂2B)
7 Initialize R← (0, . . . , 0)
8 for each k ∈ [m] do
9 if Xk 6= 0 and Y 2

k = Xk · Zk then
10 z ← Yk/Xk

11 Rz ← Rz +Xk

12 Let C be the coordinate-wise maximum of all vectors R
13 if ‖C‖1 = ‖A‖1 · ‖B‖1 then return C

polynomial root finding, computing discrete logarithms and linear algebra with (transposed)
Vandermonde systems. These computations can be carried out in near-linear time, but only
using randomization [29, 38]. Our algorithm is similar to Prony’s method with two essential
modifications: We replace the computationally expensive parts using the combinatorial
trick (Part 3, here we critically use that the vectors are nonnegative) and derandomize the
remaining steps (Parts 1 and 2) using classical methods.

1.2.2 Las Vegas Algorithms

Next, we outline the idea behind proving Theorem 2. Algorithm 1 is a simple Las Vegas
algorithm with expected running timeO(t log2 t) as claimed in Theorem 2; however, to obtain
the tail bound on the running time one has to slightly refine Algorithm 1. We provide this
refinement along with a detailed analysis in Section 4; for the rest of the overview we will
analyze the simple version in Algorithm 1.

To understand the pseudocode, we first clarify some notation: For a vector A, we denote
by ∂A its derivative defined coordinate-wise as (∂A)i = i ·Ai. More generally, we denote by
∂dA its d-th derivative with (∂dA)i = id ·Ai. This definition is in slight dissonance with the
analogous definition for polynomials (which would require the derivative vector to be scaled
and shifted), but we prefer this version as it leads to a slightly simpler algorithm.

Moreover, we define hashing for vectors: For a hash function h : [n]→ [m] and a length-n
vector A, define the length-m vector h(A) via h(A)j =

∑
i:h(i)=j Ai. The operator ?m

denotes convolution with wrap-around (see Section 2 for details).
Let us outline the high-level idea of Algorithm 1. The outer loop (Line 1) guesses the

correct sparsity, i.e., as soon as the outer loop reaches a value m ≥ Ω(t) we expect the
algorithm to terminate. Each iteration of the repeat-loop (Line 2) is supposed to produce a
vector R which closely approximates A ? B. More specifically, we prove that R satisfies the
following two properties:

1 It always holds that R ≤ A ? B (coordinate-wise).
2 Equality is achieved at any coordinate with constant probability (provided that the outer

loop has reached a sufficiently large value m ≥ Ω(t)).

It follows that C, the coordinate-wise maximum of several vectors R, also always satisfies
C ≤ A ? B. Hence, the algorithm never outputs an incorrect solution. Indeed, since C and
A?B are nonnegative vectors, the vector C = A?B is the only one simultaneously satisfying
C ≤ A ? B and ‖C‖1 = ‖A ? B‖1 = ‖A‖1 · ‖B‖1. To see that Algorithm 1 terminates fast,
note that the repeat-loop runs for Ω(logm) iterations and thus, using the second claim we
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correctly assign all coordinates with high probability.
The crucial part is to prove that R satisfies the claims 1 and 2. Intuitively, R consists

of all nonzero entries from A ?B which did not suffer from a collision with another nonzero
entry. For a more formal argument, we analyze the inner-most loop (Line 8). For starters,
focus on an iteration k ∈ [m] and suppose that there is only a single nonzero entry in
A ? B, say at z, which is hashed to the bucket k.2 In this case we have Xk = (A ? B)z,
Yk = z · (A ? B)z and Zk = z2 · (A ? B)z. As a consequence, the conditions “Xk 6= 0” and
“Y 2
k = Xk · Zk” in Line 9 are satisfied. The algorithm then correctly identifies z in Line 10

and updates “Rz ← Rz + (A ? B)z” as intended.
However, to prove claim 1 (which is ultimately responsible for the Las Vegas guarantee),

we have to be certain that Lines 10 and 11 are only executed if there is a single entry hashed
to the k-th bucket (otherwise, the index z computed in Line 10 is likely to be nonsense).
The key insight is that the simple test “Y 2

k = Xk · Zk” in Line 9 suffices, as can be proven
by the following lemma (see Section 4 for a proof).

Lemma 4 (Testing 1-Sparsity). If V be a nonnegative vector, then ‖∂V ‖21 ≤ ‖V ‖1 · ‖∂2V ‖1.
This inequality is tight if and only if ‖V ‖0 ≤ 1.

This new tester is one of the reasons why we can achieve the claimed Las Vegas running time
simplifying (and slightly improving) upon Cole and Hariharan’s algorithm. This concludes
the overview of our simple Las Vegas algorithm (Theorem 2).

The insight behind our accelerated Las Vegas algorithm (Theorem 3) is that Algorithm 1
already reaches a very good approximation after much less than O(logm) iterations of the
inner loop. Indeed, after only O(log logn) iterations we expect that algorithm has already
recovered A?B correctly up to a (logn)−Ω(1) fraction of the entries. At this point it becomes
more efficient to switch to another recovery approach which exploits that A?B−C is already
quite sparse, as in [11]. In particular, since A?B−C is a nonnegative vector and its sparsity is
at most t/ logn, say, we can use the hash function h(x) = x mod p for p being a random prime
in [t, 2t]. This family of hash functions (1) satisfies that h(A)?mh(B)−h(C) = h(A?B−C)
(and thus preserves all cancellations) and (2) isolates a constant fraction of elements in
A ? B − C with constant probability to clear up the rest of the elements. Note that it
is important that A ? B − C is t/ logn sparse instead of t sparse for (2) to hold, because
h is only O(logn)-universal. Choosing O(log t) different random primes and using the 1-
sparsity testing we arrive at our desired algorithm. For the sparsity test we require that the
vector A ? B − C is nonnegative.

One catch is that this approach only gives a O(t log t · log logn)-time algorithm (instead
of the desired time with log log t in place of log logn) due to the fact that h(x) is O(logn)-
universal and hence the random prime must be chosen in an interval that is also dependent
on n rather than solely on t. To address this issue we apply the following precomputation:
We hash to a poly(t)-size universe and verify that this hashing was successful in Las Vegas
randomized time, again using our 1-sparsity tester. The details of this step appear in
Section 4.5.

1.3 Discussion and Open Problems

Our work raises several questions.

Better Deterministic Algorithms? By a closer inspection of the time analysis, our de-
terministic algorithm computes the convolution of sparse nonnegative vectors in time
O(t log5(n∆) polyloglog(n∆)).

1 Can the running time be improved? In particular, is it possible to reduce the number of
log factors or can we omit the dependence on n or ∆?

2 Strictly speaking, that condition is not sufficient because linear hashing is only “almost” additive. We
ignore this technical issue in the overview and give the full analysis in Section 4.
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2 Can the restriction to nonnegative vectors be removed, or equivalently, is it possible to
achieve sparse polynomial multiplication in deterministic near-linear time? In our algo-
rithm the only step which exploits nonnegativity is the recursive support computation
(Part 3).

Better Las Vegas Algorithms? We proved that sparse nonnegative convolution is in Las
Vegas time O(t log t log log t).

3 Is the restriction to nonnegative vectors necessary? This seems like a difficult question
because we are not aware of algorithms that run in even slightly subquadratic time in t
(without using heavy pre-computation).

4 Can one achieve O(t log t) Las Vegas running time matching the running time of the
dense case? More specifically, can the sparsity-testing technique which lead to our Las
Vegas algorithms be extended and incorporated to obtain the optimal running time?
Recall that the key step in the analysis is the application of Lemma 4. This lemma can
be generalized as follows: A nonnegative vector V is at most s-sparse if and only if the
following positive-semidefinite matrix is nonsingular:

‖∂0V ‖1 ‖∂1V ‖1 · · · ‖∂sV ‖1
‖∂1V ‖1 ‖∂2V ‖1 · · · ‖∂s+1V ‖1

...
... . . . ...

‖∂sV ‖1 ‖∂s+1V ‖1 · · · ‖∂2sV ‖1

 ;

see for instance [32, Theorem 3A] for a proof. One approach for an improved Las Vegas
algorithm would be to hash to t/ log t buckets using a linear hash function, recover each
bucket as in [11] in O(t log t) time and, using the generalized sparsity-testing technique,
verify that most buckets indeed have sparsity O(log t), which in turn means that all but
a 1/ log t-fraction of A ? B has been successfully recovered; then one can continue and
recover the rest with h(x) = x mod p. Although promising, this approach suffers from
precision issues (when implementing the O(log t)-tester the numbers get too large) and
hence does not lead to the desired O(t log t) time. It would be very interesting to find a
way to circumvent this obstacle and obtain the ideal O(t log t) Las Vegas running time.

2 Preliminaries

Machine Model. Throughout this paper we work over the Word RAM model. In particular,
logical and arithmetic operations on machine words take constant time. Concerning the
sparse convolution problem, we assume that both the indices and entries of the given vectors
fit into a constant number of machine words.

Notation. Let Z and N denote the integers and nonnegative integers, respectively. For a
prime power q, let Fq denote the finite field with q elements. We set [n] = {0, . . . , n − 1}.
We write poly(n) = nO(1), polylog(n) = (logn)O(1) and polyloglog(n) = (log logn)O(1).

We mostly denote vectors by A,B,C with Ai referring to the i-th coordinate in A. We
define the convolution of two length-n vectors A and B as the vector A?B of length 2n− 1
with

(A ? B)k =
∑
i,j∈[n]
i+j=k

Ai ·Bj .

The cyclic convolution A ?m B is the length-m vector with

(A ?m B)k =
∑
i,j∈[n]

i+j≡k (mod m)

Ai ·Bj .
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We refer to supp(A) = {i ∈ [n] : Ai 6= 0} as the support of A, we set ‖A‖0 = | supp(A)| and
say that A is s-sparse if ‖A‖0 ≤ s. If A is a vector with real entries, then we also define
‖A‖1 =

∑
i |Ai| and ‖A‖∞ = maxi |Ai| in the usual way, and we say that A is nonnegative

if all of its entries are nonnegative. We often hash length-n vectors A using an arbitrary
hash function h : [n]→ [m] to shorter length-m vectors h(A) defined by

h(A)j =
∑
i∈[n]
h(i)=j

Ai.

Finite Field Arithmetic. Let q = pm be a prime power. Recall that the prime field Fp can be
represented as Z/pZ, the integers modulo p. The field Fq can be represented as Fp[X]/〈f〉
where f ∈ Fp[X] is an arbitrary irreducible degree-m polynomial. There is a deterministic
algorithm to precompute such an irreducible polynomial f ∈ Fp in time poly(p,m) [39]; we
will point out this step in our algorithms. Having precomputed f , we can perform the basic
field operations in Fq using polynomial arithmetic in time Õ(log q) [43].

Let us quickly recall some definitions from field theory. The multiplicative order of an
element x is the smallest positive integer i such that xi = 1; we also call x an i-th root of
unity. The minimal polynomial of a field element x ∈ F is defined as the smallest-degree
monic polynomial (i.e., with leading coefficient 1) over F which vanishes at x. We say that
two field elements x, y are conjugate if their minimal polynomials coincide.

3 Deterministic Algorithm

In this section we prove Theorem 1. We proceed in three steps, as outlined before.

3.1 The Key Step: Evaluation & Interpolation

The main algebraic ingredient to the algorithm is the following result about efficient com-
putations with transposed Vandermonde matrices. For a proof, see e.g. [28, 31, 36].

Theorem 5 (Transposed Vandermonde Systems). Let F be a field. Given pairwise distinct
elements a0, . . . , an−1 ∈ F and a vector x ∈ Fn, let

M =


1 1 · · · 1
a0 a1 · · · an−1
a2

0 a2
1 · · · a2

n−1
...

...
. . .

...
an−1

0 an−1
1 · · · an−1

n−1

.

Both Mx and M−1x can be computed in deterministic time O(n log2 n) using O(n log2 n)
field operations.

We remark that the transposed Vandermonde matrix M is nonsingular if and only if the
elements a0, . . . , an−1 are pairwise distinct. The next lemma reinterprets this result in terms
of multi-point evaluation and interpolation of sparse polynomials. In analogy to the vector
notation, we denote by supp(A) the set of exponents i for which Xi has a nonzero coefficient
in A, and we say that A is t-sparse if | supp(A)| ≤ t.

Lemma 6 (Sparse Evaluation and Interpolation). Let F be a field and let ω ∈ F have
multiplicative order at least n. The following two computational problems can be solved in
deterministic time O(t log2 t+ t logn):

1 Evaluation: Given a t-sparse degree-n polynomial A, evaluate A(ω0), . . . , A(ωt−1).
2 Interpolation: Given a0, . . . , at−1 ∈ F and a size-t set T ⊆ [n], interpolate the unique

polynomial A with evaluations A(ωi) = ai for all i ∈ [t] and supp(A) ⊆ T .
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Proof. 1 Evaluation: Assume that A has the form A(X) =
∑t
i=1AxiX

xi . We pre-
compute the powers ωx1 , . . . , ωxt by repeated squaring in time O(t logn). We can then
compute the evaluations A(ω0), . . . , A(ωt−1) by computing the following transposed Van-
dermonde matrix-vector product:

A(ω0)
A(ω1)

...
A(ωt−1)

 =


1 1 · · · 1
ωx1 ωx2 · · · ωxt

...
... . . . ...

ωx1(t−1) ωx2(t−1) · · · ωxt(t−1)



Ax1

Ax2
...

Axt

 .
Since ω has order at least n, the elements ωx1 , . . . , ωxt are pairwise distinct. Therefore,
this matrix is nonsingular and we may apply Theorem 5 to efficiently evaluate the product
in time O(t log2 t).

2 Interpolation: Let x1, . . . , xt denote the elements in T . We similarly prepare ωx1 , . . . , ωxt

via repeated squaring. To interpolate A, we solve the following transposed Vandermonde
equation system with indeterminates Ax1 , . . . , Axt :

a0
a1
...

at−1

 =


1 1 · · · 1
ωx1 ωx2 · · · ωxt

...
... . . . ...

ωx1(t−1) ωx2(t−1) · · · ωxt(t−1)



Ax1

Ax2
...

Axt

 .
Again, this matrix is nonsingular and thus Theorem 5 applies to compute a solution in
time O(t log2 t). Setting A =

∑t
i=1AxiX

xi , we have clearly reconstructed a polynomial
with the correct evaluations A(ωi) = ai and support set supp(A) ⊆ T . Moreover, A is
the only polynomial satisfying these conditions since the equation system is nonsingular
and therefore A is uniquely determined.

Using Lemma 6 we obtain our main result assuming we know a superset of the support and
an appropriate element ω.

Lemma 7 (Sparse Convolution over a Large Field). Let F be a field. Given A,B ∈ Fn,
a set T ⊇ supp(A ? B) and an element ω ∈ F with multiplicative order at least n, we
can compute A ? B in deterministic time O(t log2 t+ t logn) using O(t log2 t+ t logn) field
operations. Here, t = ‖A‖0 + ‖B‖0 + |T |.

Proof. We follow an evaluation–interpolation approach. Let us identify vectors with poly-
nomials via A(X) =

∑n−1
i=0 AiX

i. In this correspondence, taking convolutions A ? B corre-
sponds to multiplying polynomials A(X) ·B(X).

We first evaluate A(ω0), . . . , A(ωt−1) and B(ω0), . . . , B(ωt−1) using Lemma 6. We then
apply Lemma 6 again to interpolate a polynomial C(X) with supp(C) ⊆ T and C(ωi) =
A(ωi) ·B(ωi) for all i ∈ [t]. One solution is the correct polynomial C(X) = A(X) ·B(X), and
Lemma 6 guarantees that this is the unique solution. The running time is O(t log2 t+t logn)
as claimed.

It remains to construct ω (see Section 3.2) and to find a superset of the support (see Sec-
tion 3.3).

3.2 Finding Large-Order Elements

We next solve the sparse convolution problem for integer vectors A,B assuming that we
know the support of A ? B, using what we have established in the last section. We start
with the following two lemmas due to Cheng [17]; for completeness we include short proofs.

Lemma 8 ([17]). Let β ∈ Fp be primitive. Then Xp−1 − β ∈ Fp[X] is irreducible.

Proof. Let f = Xp−1 − β and let f = f1 . . . fm denote its factorization into monic ir-
reducibles. We first prove that all factors have the same degree. Let α be a root of f
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(in a field extension). Then {xα : x ∈ F×p } must be the full set of roots of f . Indeed,
(xα)p−1 − β = xp−1β − β = 0 by Fermat’s Little Theorem, and there cannot be other
roots since f has degree p − 1. Pick arbitrary distinct indices 1 ≤ i, j ≤ m; we prove that
deg(fi) ≤ deg(fj). Let x, y ∈ F×p be such that xα is a root of fi and yα is a root of fj . We
can construct a polynomial f ′j(X) = fj(yx−1X), which by construction has degree deg(fj)
and has xα as a root. But recall that fi is irreducible (and monic) and therefore the minimal
polynomial of xα. It follows that deg(fi) ≤ deg(f ′j) = deg(fj). Since i, j were arbitrary we
conclude that all polynomials f1, . . . , fm must have common degree d = p−1

m .
Next, we prove that m = 1. Let α1, . . . , αd denote the roots of f1 (in a field extension).

As observed before, we have that αiα−1
j ∈ Fp for all i, j. Moreover,

∏
i αi is the constant

coefficient of f1 and thus
∏
i αi ∈ Fp. It follows that αd1 =

∏d
i=1 α1α

−1
i αi is an element

of Fp. Recall that α1 is a root of f and hence αp−1
1 = (αd1)m = β. Finally, any value m > 1

would contradict the primitivity of β.

Lemma 9 ([17]). Let f = Xp−1 − β ∈ Fp[X] be an irreducible polynomial. Then X + 1 has
multiplicative order at least 2p in Fp[X]/〈f〉 provided that p ≥ 7.

Proof. Let Fpp−1 denote the field Fp[X]/〈f〉. Let s denote the order of X+1 ∈ Fpp−1 and
let S denote the set of s-th roots of unity in Fpp−1 (that is, S is the set of all polynomials
g ∈ Fp[X]/〈f〉 such that gs = 1 (mod f)). We show that S must be large. We clearly have
X + 1 ∈ S. More generally, for any i ∈ F×p we also have iX + 1 ∈ S since X + 1 and iX + 1
are conjugate over Fp. Furthermore, S is closed under multiplication.

Let E ⊆ Np−1 be the set of all sequences e = (e1, . . . , ep−1) with entry sum
∑
i ei = p−2.

For any such sequence e ∈ E, we define φ(e) =
∏p−1
i=1 (iX + 1)ei ∈ Fpp−1 . By the previous

paragraph, φ is a map φ : E → S. We claim that φ is injective. If φ(e) = φ(e′) for distinct
e, e′ ∈ E, then by definition

p−1∏
i=1

(iX + 1)ei =
p−1∏
i=1

(iX + 1)e
′
i (mod f).

Recall that f has degree p − 1, but
∑
i ei =

∑
i e
′
i < p − 1. It follows that the equation

remains true even without computing modulo f :

p−1∏
i=1

(iX + 1)ei =
p−1∏
i=1

(iX + 1)e
′
i .

However, this identity contradicts unique factorization in Fp[X]. It follows that φ is injective
and therefore s ≥ |S| ≥ |E|. Finally, by a simple counting argument one can show that
|E| =

(2p−4
p−2

)
≥ 2p, for all p ≥ 7.

For the rest of this section, we will analyze Algorithm 2.

Lemma 10 (Correctness of Algorithm 2). Given integer vectors A,B and an arbitrary set
T ⊇ supp(A ? B), Algorithm 2 correctly returns C = A ? B.

Proof. First, focus on an arbitrary iteration i of the loop in Lines 3 to 8. We prove that
the algorithm computes the vector Ci ∈ Fpi which is obtained from C = A ?B by reducing
all coefficients modulo pi. The polynomial Xpi−1 − β computed in Lines 4 and 5 is indeed
irreducible by Lemma 8, so we can represent Fqi as Fpi/〈Xpi−1− β〉 as claimed. Moreover,
the element ω ∈ Fqi constructed in Line 6 has multiplicative order at least 2pi ≥ n by
Lemma 9. The preconditions of Lemma 7 are satisfied (T ⊇ supp(A ? B) ⊇ supp(Ai ? Bi)
and ω has order at least n), hence we correctly compute Ci = Ai ? Bi in Line 8. Note
that although we carry out the computations over the extension field Fqi , the vector Ci is
guaranteed to have coefficients in Fpi .

We finally use the Chinese Remainder Theorem to recover C from its images modulo
p1, . . . , pk. As

∏k
i=1 pi ≥ 2k ≥ n‖A‖∞‖B‖∞ exceeds the maximum coefficient in C, this

recovery step correctly identifies C = A ? B.
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Algorithm 2
Input: Vectors A,B ∈ Zn and a set T ⊇ supp(A ? B)
Output: C = A ? B

1 Let k = dlog(n‖A‖∞‖B‖∞)e
2 Compute the smallest k primes p1, . . . , pk larger than dlogne
3 for i← 1, . . . , k do
4 Find a primitive element β ∈ Fpi by brute-force
5 Let qi = ppi−1

i and represent Fqi as Fpi [X]/〈Xpi−1 − β〉
6 Let ω = X + 1 ∈ Fqi
7 Reduce the coefficients of A,B modulo pi to obtain Ai, Bi ∈ Fnpi ⊆ Fnqi
8 Compute Ci ← Ai ? Bi over Fqi using Lemma 7 with T and ω

9 for each x ∈ T do
10 Use Chinese Remaindering to recover Cx ∈ Z from C1

x ∈ Fp1 , . . . , C
k
x ∈ Fpk

11 return C with entries Cx for x ∈ T and zeros elsewhere

Lemma 11 (Running Time of Algorithm 2). The running time of Algorithm 2 is bounded by
O(t log4 npolyloglogn) where t = ‖A‖0 +‖B‖0 +|T |, assuming that ‖A‖∞, ‖B‖∞ ≤ poly(n).

Proof. Assuming that ‖A‖∞, ‖B‖∞ ≤ poly(n), we have k = dlog(n‖A‖∞‖B‖∞)e ≤
O(logn). Note that p1, . . . , pk ≤ Õ(logn) by the Prime Number Theorem, and therefore
computing these primes in Line 2 takes time Õ(logn), using for instance Eratosthenes’ sieve.
Finding a primitive element β ∈ Fpi in Line 4 takes time Õ(logn) as well and Lines 5 to 7
have negligible costs. Per iteration, running the convolution algorithm in Line 8 takes time
O(t log2 t+t logn) = O(t log2 n) and requires the computation of at most O(t log2 n) field op-
erations in Fqi , thus amounting for time O(t log3 npolyloglogn). In total the loop in Line 3
takes time O(t log4 npolyloglogn). Finally, each call to the algorithmic Chinese Remainder
Theorem in Line 10 takes time O(log2(

∏k
i=1 pi)) = O(log2 n polyloglogn) [43].

We remark that our algorithm can be somewhat simplified by exploiting the following result:
For any finite field Fpm , one can construct in time poly(p,m) a (simple-structured) set which
is guaranteed to contain a primitive element [40, 41]. The drawback is that the running time
worsens by a couple of log factors.

3.3 Recursively Computing the Support

We finally remove the assumption that the support of A ? B is given as part of the input.

Lemma 12 (Deterministic Sparse Nonnegative Convolution). There is a determinis-
tic algorithm to compute the convolution of two nonnegative vectors A,B ∈ Nn in time
O(t log5 npolyloglogn) where t = ‖A ? B‖0, assuming that ‖A‖∞, ‖B‖∞ ≤ poly(n).

Proof. We construct a recursive algorithm for computing C = A ? B using the scaling
trick from [13]. In order to apply Algorithm 2, we first recursively compute a set T ⊇
supp(C). To this end, let A′, B′ be vectors of length dn2 e defined by A′i = Ai + Ai+dn/2e
and B′j = Bj+Bj+dn/2e (that is, we fold A and B in half). We call the convolution algorithm
recursively to compute C ′ = A′ ? B′, and assign

T =
{
k′, k′ + dn2 e, k

′ + 2 · dn2 e : k′ ∈ supp(C ′)
}
.

We claim that indeed T ⊇ supp(C). To see this, let k ∈ supp(C) and write k = i + j for
some i ∈ supp(A) and j ∈ supp(B). By construction we have i′ = i mod dn2 e ∈ supp(A′)
and j′ = j mod dn2 e ∈ supp(B′), and thus k′ = i′ + j′ ∈ supp(C ′). By definition it is
immediate that k′ ∈ {k, k − dn2 e, k − 2 · dn2 e} and therefore k ∈ T .

We finally analyze the running time. It takes time O(|T | log4 n polyloglogn) to call
Algorithm 2 once, by Lemma 10. Note that |T | ≤ 3| supp(C ′)| ≤ 3t, and thus each call takes
time O(t log4 n polyloglogn). Since the length of all vectors is halved in every step, after

12



logn recursion levels the problem has reached constant input size. The total running time
is bounded by O(t log5 npolyloglogn).

The proof of Theorem 1 is now immediate from Lemma 12. To analyze the algorithm for
vectors with entries of size ∆, simply view the vectors as having length n′ = max{n,∆}.

4 Las Vegas Algorithms

The goal of this section is to prove Theorems 2 and 3. We first gather some facts about
hash functions (Section 4.1) and prove the sparsity testing lemma (Section 4.2). Then we
prove Theorem 2 (Section 4.3) and Theorem 3 (Sections 4.4 and 4.5).

4.1 Hashing

Recall that a linear hash function h : [n] → [m] is defined by h(x) = (ax mod N) mod m,
where N ≥ n is fixed and a ∈ [N ] is a random number. Typically N is a prime number, in
which case it is easy to prove that the family is 2-universal. However, this choice is inefficient
since precomputing a prime number N requires time polylogN . In many applications this
overhead is negligible—in our case it would incur an additive polylogn term to the running
time which is otherwise independent of n. One can remove this overhead and perform linear
hashing without prime numbers as proven e.g. in [20]. In Appendix A we provide a different
self-contained proof.

Lemma 13 (Linear Hashing without Primes). Let n ≥ m be arbitrary. There is a family
of linear hash functions h : [n]→ [m] with the following three properties.

1 Efficiency: Sampling and evaluating h takes constant time.
2 Uniform Differences: For any distinct keys x, y ∈ [n] and for any q ∈ [m], the probability

that h(x)− h(y) ≡ q (mod m) is at most O( 1
m ).

3 Almost-Additiveness: There exists a constant-size set Φ ⊆ [m] such that for all keys
x, y ∈ [n] it holds that h(x) + h(y) ≡ h(x+ y) + φ (mod m) for some φ ∈ Φ.

To prove Theorem 3 we additionally make use of another family of hash functions: For a
random prime number p, the hash function h(x) = x mod p satisfies similar properties.

Lemma 14 (Random Prime Hashing). Let n ≥ m be arbitrary. The family of hash functions
h(x) = x mod p where p ∈ [m, 2m] is a random prime satisfies the following three properties.

1 Efficiency: Sampling h takes time polylogm and evaluating takes constant time.
2 Almost-Universality: For any distinct keys x, y ∈ [n], the probability that h(x) = h(y) is

at most O( logn
m ).

3 Additiveness: For all keys x, y ∈ [n] it holds that h(x) + h(y) ≡ h(x+ y) (mod p).

4.2 Derivatives and Sparsity Testing

Recall that we define the derivative ∂A of a vector A coordinate-wise by (∂A)i = i ·Ai, and
we define the d-th derivative ∂dA by (∂dA)i = id · Ai. The crucial ingredient for the Las
Vegas guarantee is the following lemma about testing 1-sparsity of a vector, having access
to its first and second derivatives.

Lemma 4 (Testing 1-Sparsity). If V be a nonnegative vector, then ‖∂V ‖21 ≤ ‖V ‖1 · ‖∂2V ‖1.
This inequality is tight if and only if ‖V ‖0 ≤ 1.

Proof. Note that since V is nonnegative, we can rewrite Vi =
√
Vi ·
√
Vi. The proof is a

straightforward application of the Cauchy-Schwartz inequality:

‖∂V ‖21 =
(∑

i

iVi

)2

=
(∑

i

√
Vi · i

√
Vi

)2

≤

(∑
i

Vi

)(∑
i

i2Vi

)
= ‖V ‖1 · ‖∂2V ‖1.
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Algorithm 3
Input: Nonnegative vectors A,B ∈ Nn and a parameter m
Output: A nonnegative vector R ≤ A ? B, for details see Lemma 16
1 Sample a linear hash function h : [n]→ [m]
2 Compute X ← h(A) ?m h(B)
3 Compute Y ← h(∂A) ?m h(B) + h(A) ?m h(∂B)
4 Compute Z ← h(∂2A) ?m h(B) + 2h(∂A) ?m h(∂B) + h(A) ?m h(∂2B)
5 Initialize R← (0, . . . , 0)
6 for each k ∈ [m] do
7 if Xk 6= 0 and Y 2

k = Xk · Zk then
8 z ← Yk/Xk

9 Rz ← Rz +Xk

10 return R

Recall that the Cauchy-Schwartz inequality is tight if and only if the involved vectors V
and ∂2V are scalar multiples of each other. This is possible if and only if ‖V ‖0 ≤ 1.

4.3 Simple Algorithm

We are finally ready to analyze Algorithm 1. For the ease of presentation, we have extracted
the core part of Algorithm 1 (Lines 3 to 11) as Algorithm 3, and our first goal is a detailed
analysis of that core part.

To increase clarity we shall adopt the following naming convention for the rest of this
section: The indices x, y, z ∈ [n] exclusively denote coordinates of large vectors, whereas
i, j, k ∈ [m] denote coordinates of the hashed vectors, or equivalently, buckets of a hash
function h. The first lemma analyzes the vectors X,Y, Z computed by the algorithm.
Lemma 15. Let h,X, Y, Z be as in Algorithm 3. Moreover, for a bucket k ∈ [m] define the
nonnegative vector V k ∈ Nn by

V kz =
∑

x+y=z
h(x)+h(y)≡k mod m

Ax ·By.

Then Xk = ‖V k‖1, Yk = ‖∂V k‖1 and Zk = ‖∂2V k‖1.

Note that A ? B =
∑
k V

k. Intuitively, the vector V k is that part of A ? B which is hashed
into the k-th bucket.

Proof. We merely showcase that Yk = ‖∂V k‖1; the other proofs are very similar. For
convenience, let us denote equality modulo m by ≡. It holds that:

Yk =
(
h(∂A) ?m h(B) + h(A) ?m h(∂B)

)
k

=
∑
i+j≡k

h(∂A)i · h(B)j + h(A)i · h(∂B)j

=
∑
x,y

h(x)+h(y)≡k

(∂A)x ·By +Ax · (∂B)y

=
∑
x,y

h(x)+h(y)≡k

(x+ y) ·Ax ·By

=
∑
z

z ·
∑

x+y=z
h(x)+h(y)≡k

Ax ·By

=
∑
z

z · V kz

= ‖∂V k‖1.
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Next, we will prove that in every iteration the algorithm computes a feasible approximationR
to the target vector A ? B.

Lemma 16 (Correctness and Running Time of Algorithm 3). Given nonnegative vec-
tors A,B and any parameter m, Algorithm 3 runs in time O(m logm) and computes a
vector R such that for every z ∈ [n]:

Rz ≤ (A ? B)z (always), and
Rz < (A ? B)z with probability at most c · ‖A ? B‖0/m for some constant c.

Proof. Fix an iteration k ∈ [m] of the loop (Line 6) and suppose that the condition in
Line 7 is satisfied. Defining V k as in the previous lemma, we claim that V k is exactly
1-sparse. Indeed, on the one hand, V k is not the all-zeros vector as ‖V k‖1 = Xk > 0. On
the other hand, since ‖V k‖1 · ‖∂2V k‖1 = Xk · Zk = Y 2

k = ‖∂V k‖21 we have that ‖V k‖0 ≤ 1
by Lemma 4. Given that V k is 1-sparse, it is easy to check that the value z := Yk/Xk as
computed in Line 8 is the unique nonzero coordinate in V k, i.e., supp(V k) = {z}. It follows
that the update in Line 9 is in fact an update of the form “R ← R + V k”. Recall that∑
k V

k = A ? B, and thus the first item follows directly.
Next, we focus on the second item. We can assume that z ∈ supp(A?B) as otherwise the

statement is trivial given the previous paragraph. Let Φ ⊆ [m] be the set from Lemma 13.
We say that z collides with another index z′ if there are φ, φ ∈ Φ such that h(z) + φ ≡
h(z′)+φ′ (mod m). If z does not collide with any other z′ ∈ supp(A?B) then we say that z
is isolated. The remaining proof splits into the following two statements:

Each index z ∈ supp(A?B) is isolated with probability 1−O(‖A?B‖0/m). If z collides
with another index z′ then we have h(z) − h(z′) ≡ q (mod m) for some q = φ − φ′,
φ, φ′ ∈ Φ. For any fixed q this event occurs with probability at most O( 1

m ) by the
uniform difference property of linear hashing (Lemma 13). Taking a union bound over
the constant number of elements q, we conclude that z collides with z′ with probability at
most O( 1

m ). Hence the expected number of collisions is O(‖A?B‖/m). Using Markov’s
inequality we finally obtain that a collision occurs with probability at most O(‖A?B‖/m)
and only in that case z fails to be isolated.
Whenever z is isolated we have Rz = (A?B)z. To see this, it suffices to argue that for all k
of the form k ≡ h(z) +φ (mod m), for some φ ∈ Φ, the vectors V k are at most 1-sparse.
In that case the corresponding iterations k each perform the update “R ← R + V k”
in Line 9 and the claim follows since Rz =

∑
k V

k
z = (A ? B)z. So suppose that some

vector V k is at least 2-sparse, i.e., there exist x, x′ ∈ supp(A) and y, y′ ∈ supp(B) such
that h(x)+h(y) ≡ h(x′)+h(y′) ≡ k (mod m) and x+y 6= x′+y′. Then either z′ := x+y
or z′ := x′ + y′ differs from z, and we have witnessed a collision between z and z′. This
contradicts the assumption that z is isolated.

Finally, note that the running time is dominated by the six calls to FFT in Lines 2 to 4
taking time O(m logm). The loop (Line 6) only takes linear time.

Recall that Algorithm 1 simply calls Algorithm 3 several times and returns the coordinate-
wise maximum C of all computed vectors R as soon as ‖C‖1 = ‖A‖1 · ‖B‖1. The bucket
size m increases from iteration to iteration. Given the analysis of Algorithm 3 it remains to
prove that Algorithm 1 is correct and fast, thereby proving Theorem 2.

Lemma 17 (Correctness of Algorithm 1). Whenever Algorithm 1 outputs a vector C, then
C = A ? B (with error probability 0).

Proof. In Line 11, C is computed as the coordinate-wise maximum of several vectors R
computed by Algorithm 3. The previous lemma asserts that R ≤ A ? B (coordinate-wise)
and therefore also C ≤ A ? B. Moreover, since C was returned by the algorithm we must
have ‖C‖1 = ‖A‖1 · ‖B‖1 (Line 13). In conjunction, these facts imply that C = A?B, since
both C and A ? B are nonnegative vectors.

Lemma 18 (Running Time of Algorithm 1). The expected running time of Algorithm 1 is
O(t log2 t), where t = ‖A ? B‖0.
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Algorithm 4
Input: Nonnegative vectors A,B ∈ Nn and a real paramater ε > 0
Output: C = A ? B

1 C ← (0, . . . , 0)
2 for µ← 0, 1, 2, . . . ,∞ do
3 for ν ← 0, 1, 2, . . . , µ do
4 repeat µ · 2ν/(1+ε) times
5 Compute R by Algorithm 3 with parameter m = 2µ−ν
6 Update C ← max{C,R} (coordinate-wise)
7 if ‖C‖1 = ‖A‖1 · ‖B‖1 then return C

Proof. We first prove that the algorithm terminates with high probability as soon as the
outer loop (Line 1) reaches a sufficiently large value. More precisely, let c be the constant
from Lemma 13 and fix any iteration of the outer loop with value m ≥ 2ct. We claim that
the algorithm terminates within this iteration with probability at least 1− t−1. To this end
we analyze the probability of the event Cz = (A ?B)z, for any fixed index z. Recall that C
is the coordinate-wise maximum of 2 logm ≥ 2 log t vectors R computed by Algorithm 3.
For any such vector R, Lemma 16 guarantees that Rz = (A ? B)z with probability at least
1− ct/m ≥ 1

2 . Hence, the probability that Cz = (A ? B)z is at least 1− 2−2 log t = 1− t−2.
By a union bound over the t nonzero entries z, the probability that algorithm correctly
computes C = A ? B in this iteration is at least 1− t−1.

The running time of a single iteration with value m is dominated by the O(logm) calls
to Algorithm 3 taking time O(m logm). Sampling the hash functions h has negligible cost
(by Lemma 13) and so does running the inner-most loop (Line 8). The previous paragraph
in particular shows that the algorithm terminates before the η-th iteration after crossing
the critical threshold m ≥ 2ct, with probability at least 1 − t−η ≥ 1 − 4−η. Hence, we can
bound the expected running time by the total time before this threshold (m < 2ct) plus the
expected time after (m = 2η · 2ct) which can be bounded by a geometric series:

log(2ct)∑
µ=0

O(2µ log2(2µ)) +
∞∑
η=0

4−η ·O((2η · t) · log2(2η · t)) = O(t log2 t).

This finished the analysis of Algorithm 1, but not yet the proof of Theorem 2 which addi-
tionally claims a tail bound on the running time. To get this additional guarantee, we can
modify Algorithm 1 to increase m more carefully; see the pseudocode in Algorithm 4.

Lemma 19 (Correctness and Running Time of Algorithm 4). Given nonnegative vec-
tors A,B ∈ Nn and any parameter ε > 0, Algorithm 4 correctly computes their convolu-
tion A?B in expected time O(t log2 t), where t = ‖A?B‖0. Moreover, with probability 1− δ
it terminates in time

O

(
t log2(t) ·

(
log(t/δ)

log t

)1+ε+o(1)
)
.

Proof. The correctness proof is exactly as in Lemma 17 and can therefore be omitted. We
prove the improved running time bound. Let c be the constant from Lemma 16 and focus
on the iterations of the outer loops (Lines 2 and 3) with values µ = M and ν = N , where

N =
⌈

(1 + ε) log
(

log(t/δ)
log t

)⌉
and M = dlog(2ct)e+N.

In that case we have m = 2µ−ν ≥ 2ct. We claim that the algorithm terminates in this
iteration with probability at least 1− δ. To prove this, we again analyze the probability of
the event Cz = (A?B)z for any fixed index z. The vector C is the coordinate-wise maximum
of all vectors R computed in the inner loop (Line 2) and Lemma 16 proves that the event
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Rz = (A ? B)z happens with probability at least 1 − ct/m ≥ 1
2 . Since the inner loop is

repeated µ · 2ν/(1+ε) times, the event Cz = (A ? B)z happens with probability at least

1− 2−µ·2
ν/(1+ε)

≥ 1− 2− log(t)·log(t/δ)/ log(t) = 1− δ

t
.

By a union bound over the t nonzero coordinates z, the algorithm computes C = A?B (and
consequently terminates) with probability at least 1− δ.

Now, to analyze the running time, we have to bound the running time until the algorithm
reaches the required values µ = M and ν = N . The running time of a single execution of
the inner-most loop is dominated by the call to Algorithm 3 which takes time O(m logm)
by Lemma 16. Thus, with probability 1− δ the total running time is bounded by

M∑
µ=0

µ∑
ν=0

µ · 2ν/(1+ε) ·O(2µ−ν log(2µ−ν)) ≤ O
(
M2

M∑
µ=0

2µ
µ∑
ν=0

2−εν/(1+ε)

)
≤ O(2M ·M2).

Plugging in the definition of M this becomes

O(2M ·M2) = O

(
t ·
(

log(t/δ)
log t

)1+ε
·M2

)
= O

(
t log2(t) ·

(
log(t/δ)

log t

)1+ε+o(1)
)
.

Finally, we derive from the previous paragraph that expected running time is bounded
by O(t log2 t). Indeed, the total running time exceeds ` · t log2 t with probability � O(`−3),
and thus the expected running time is t log2 t ·

∑∞
`=1(`+ 1) ·O(`−3) ≤ O(t log2 t).

This completes the proof of Theorem 2; it suffices to plug in some constant 0 < ε < 1 into
Lemma 19 to obtain the claimed running time O(t log2(t/δ)).

4.4 Accelerated Algorithm

We now speed up Algorithm 4 in expectation. The crucial subroutine in that algorithm is
Algorithm 3 which computes a good approximation R of A ? B. For the improvement we
design a similar subroutine which instead computes a good approximation of A?B−C; see
Algorithm 5.

Lemma 20 (Correctness and Running Time of Algorithm 5). Given vectors A,B,C ∈ Zn
such that A ? B − C is nonnegative, and any parameter m, Algorithm 5 runs in time
O(m logm) and computes a vector R such that for every z ∈ [n]:

Rz ≤ (A ? B − C)z (always), and
Rz < (A?B−C)z with probability at most c logn · ‖A?B−C‖0/m for some constant c.

Proof. Recall that by Lemma 14 the family of hash functions h(x) = x mod p is truly
additive, i.e., satisfies h(x) + h(y) ≡ h(x + y) (mod p) for all keys x, y. As a consequence,
it holds that X = h(A) ?p h(B)− h(C) = h(A ? B −C) and similarly Y = h(∂(A ? B −C))
and Z = h(∂2(A ? B − C)); the proofs of these statements are straightforward calculations.

The rest of the proof is very similar to Lemma 16 and we merely sketch the differences.
We analogously define vectors V k by V kz = (A?B−C)z if z ≡ k mod p and V kz = 0 otherwise.
Then, by the previous paragraph we have Xk = ‖V k‖1, Yk = ‖∂V k‖1 and Zk = ‖∂2V k‖1.
It follows by the same argument, using the sparsity tester (Lemma 4), that the recovered
vector R is exactly R =

∑
k V

k, where the sum is over all vectors V k which are at most
1-sparse. The first item is immediate since

∑
k∈[p] V

k = A ? B − C.
To prove the second item, it suffices to argue that with good probability each nonzero

entry z does not collide with any other nonzero entry z′ under h. In that case, the vector V k
for k = h(z) is 1-sparse and the algorithm correctly computes Rz = (A ? B − C)z. To see
that each index z is likely isolated, we apply the O(logn)-universality of h (Lemma 14): The
probability that z collides with some fixed index z′ is at most O(log(n)/p) ≤ O(log(n)/m).
Taking a union bound over the ‖A ? B − C‖0 nonzero entries z′ yields the claimed bound.
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Algorithm 5
Input: Vectors A,B,C ∈ Zn such that A ? B − C is nonnegative, and a parameter m
Output: A nonnegative vector R ≤ A ? B − C, for details see Lemma 20
1 Sample a random prime p ∈ [m, 2m] and let h(x) = x mod p
2 Compute X ← h(A) ?p h(B)− h(C)
3 Compute Y ← h(∂A) ?p h(B) + h(A) ?p h(∂B)− h(∂C)
4 Compute Z ← h(∂2A) ?p h(B) + 2h(∂A) ?p h(∂B) + h(A) ?p h(∂2B)− h(∂2C)
5 Initialize R← (0, . . . , 0)
6 for each k ∈ [p] do
7 if Xk 6= 0 and Y 2

k = Xk · Zk then
8 z ← Yk/Xk

9 Rz ← Rz +Xk

10 return R

Algorithm 6
Input: Nonnegative vectors A,B ∈ Nn

Output: C = A ? B

1 C ← (0, . . . , 0)
2 for m← 1, 2, 4, . . . ,∞ do
3 repeat 3 log logn times
4 Compute R by Algorithm 3 with inputs A,B and parameter m
5 Update C ← max{C,R} (coordinate-wise)
6 repeat 2 logm times
7 Compute R by Algorithm 5 with inputs A,B,C and parameter m′ = d m

logne
8 Update C ← C +R

9 if ‖C‖1 = ‖A‖1 · ‖B‖1 then return C

Finally, observe that the running time is again dominated by the six calls to FFT in
Lines 2 to 4, which take time O(m logm). Sampling h takes time polylog(m) and the loop
in Line 6 takes linear time.

Next, to obtain the speed-up over Algorithm 4, we combine Algorithms 3 and 5. The rough
idea is that Algorithm 4 reaches a good (but imperfect) approximation C of A?B after only
log logn iterations of the inner-most loop; after that point A ? B − C is sufficiently sparse
so that a few iterations with Algorithm 5 can correct the remaining errors. The resulting
algorithm is summarized in Algorithm 6.

Lemma 21 (Correctness of Algorithm 6). Whenever Algorithm 6 outputs a vector C, then
C = A ? B (with error probability 0).

Proof. We first prove that the algorithm maintains the invariant 0 ≤ C ≤ A ? B. There
are two types of updates. First, for a vector R computed by Algorithm 3, the algorithm
updates “C ← max{C,R}”. Since R satisfies 0 ≤ R ≤ A ? B by Lemma 16, this update
maintains the invariant. Second, for a vector R computed by Algorithm 5, the algorithm
update “C ← C +R”. Since R satisfies 0 ≤ R ≤ A ? B − C by Lemma 20, this update also
upholds the invariant.

It is easy to conclude that the algorithm outputs the correct solution C = A?B, as this
is the only vector 0 ≤ C ≤ A ? B which also satisfies ‖C‖1 = ‖A‖1 · ‖B‖1.

Lemma 22 (Running Time of Algorithm 6). The expected running time of Algorithm 6 is
O(t log t log logn), where t = ‖A ? B‖0.

Proof. For the analysis, we split the execution of the algorithm into two phases: The first
and initial phase ends as soon as ‖A?B−C‖0 ≤ t/ log2 n, and the second phase ends when
the algorithm terminates. To analyze the expected running times of both phases, we assume
that the outer loop (Line 2) has reached a value m ≥ 2ct, where c is the maximum of the
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constants in Lemmas 16 and 20. In this case we claim that a single execution of the loop
body terminates both phases with probability at least 3

4 .

1 For the first phase we analyze the pseudocode in Lines 3 to 5. Fix an arbitrary index
z ∈ supp(A ?B). For a vector R computed by Algorithm 3 we have Rz = (A ?B)z with
probability at least 1 − ct/m ≥ 1

2 , by Lemma 16. If any of the vectors R computed in
Lines 3 to 5 satisfies Rz = (A ? B)z, then we correctly assign “Cz ← max{Cz, Rz}” in
Line 5 (and we never change that entry for the remaining execution of the algorithm).
Since the loop runs for 3 log logn iterations, the probability that Cz remains incorrect is
at most 2−3 log logn = (logn)−3. Therefore, the expected number of incorrectly assigned
coordinates is at most t/ log3 n and by Markov’s inequality that number exceeds t/ log2 n

with probability at most 1/ logn. This is less than 1
8 for sufficiently large n.

2 For the second phase we analyze the pseudocode in Lines 6 to 8. Assuming that the
first phase is finished, we have ‖A ? B − C‖0 ≤ t/ log2 n. The argument is similar to
the first phase: A vector R computed by Algorithm 5 satisfies Rz = (A ? B − C)z with
probability at least 1 − c logn · ‖A ? B − C‖0/m′ ≥ 1 − ct/m ≥ 1

2 . If any vector of
the vectors R computed in Lines 6 to 8 satisfies Rz = (A ? B − C)z then we correctly
update “Cz ← Cz +Rz” (and this entry is unchanged for the remaining execution). The
probability that Cz is still incorrect after 2 logm ≥ 2 log t iterations is 2−2 log t = t−2.
By a union bound over the t nonzero entries z, we have correctly computed C = A ? B

after finishing the loop with probability at least 1− t−1. For sufficiently large t, this is
at least 7

8 .

In combination, with probability 3
4 both phases finish and therefore the algorithm terminates

within a single iteration of the outer loop. Each iteration takes time O(m logm · log logn)
(Lemma 16) plus O(m′ logm′ · logm) = O(m log2m/ logn) (Lemma 20). To bound the total
running time, we use that only with probability 4−η the algorithm continues for another η
iterations of the outer loop after crossing the critical threshold m ≥ 2ct. Hence, the expected
running time is bounded by O(t log t log logn) before that threshold and by

∞∑
η=1

4−η ·O
(

(2η · t) log(2η · t) log logn+ (2η · t) log2(2η · t)
logn

)
= O(t log t log logn)

after. In total, the expected time is O(t log t log logn) as claimed.

4.5 Las Vegas Length Reduction

As a final step, we can reduce the running time of Lemma 22 by replacing the log logn factor
with log log t. To this end, we implement a length reduction which reduces the convolution
of arbitrary-length vectors to a small number of convolutions of length-poly(t) vectors. The
pseudocode is given in Algorithm 7.

Lemma 23 (Correctness and Running Time of Algorithm 7). Given nonnegative vec-
tors A,B, Algorithm 7 correctly computes their convolution A ? B. The expected running
time is O(t log t log log t), where t = ‖A ? B‖.

Proof. We skip the correctness part since the proof is exactly like the correctness argument
of Algorithm 1; the only difference here is that X,Y, Z are computed by Algorithm 6 instead
of FFT, however, Algorithm 6 is a Las Vegas algorithm and therefore also always correct.

To analyze the running, we start by lower bounding the probability that any iteration
terminates the algorithm. We say that a linear hash function h as sampled in Line 3 is good if
for all distinct z, z′ ∈ supp(A?B) and all φ, φ′ ∈ Φ it holds that h(z)+φ 6≡ h(z′)+φ′ (modm);
here Φ is the set in Lemma 13. Following the same arguments as in Section 4.3 one can
prove that Algorithm 7 terminates as soon as a good hash function is sampled. Therefore,
we now lower bound the probability that a random linear hash function h is good. For
fixed z, z′, φ, φ′, the probability that h(z)+φ ≡ h(z′)+φ′ (modm) is at most O( 1

m ). We take
a union bound over the O(t2) choices of z, z′, φ, φ′ and conclude that a random function h is
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Algorithm 7
Input: Nonnegative vectors A,B ∈ Nn

Output: C = A ? B

1 repeat
2 Let m = ‖A‖30 · ‖B‖30
3 Sample a linear hash function h : [n]→ [m]
4 Compute X ← h(A) ?m h(B) by Algorithm 6
5 Compute Y ← h(∂A) ?m h(B) + h(A) ?m h(∂B) by Algorithm 6
6 Compute Z ← h(∂2A) ?m h(B) + 2h(∂A) ?m h(∂B) + h(A) ?m h(∂2B) by Alg. 6
7 Initialize C ← (0, . . . , 0)
8 for each k ∈ [m] do
9 if Xk 6= 0 and Y 2

k = Xk · Zk then
10 z ← Yk/Xk

11 Cz ← Cz +Xk

12 if ‖C‖1 = ‖A‖1 · ‖B‖1 then return C

good with probability at least 1−O(t2/m). Observe that ‖A‖0 +‖B‖0−1 ≤ t ≤ ‖A‖0 ·‖B‖0,
and thus t3 ≤ m ≤ t6. Therefore, for sufficiently large t each iteration of the loop terminates
the algorithm with probability at least 1

2 .
The running time of each iteration i is dominated by the six convolutions computed

by Algorithm 6. Let Ti,1, . . . , Ti,6 denote the running times of these calls, respectively.
Moreover, let Si denote the random variable which indicates whether the i-th iteration
takes place (or whether the algorithm has terminated before). By the previous paragraph
we have that P(Si = 1) ≤ 2−i. The total running time is bounded by

∞∑
i=1

Si ·
6∑
j=1

Ti,j .

Hence, by linearity of expectation and since the random variables Si and Ti,j are indepen-
dent, the expected running time is at most

∞∑
i=1

E(Si) ·
6∑
j=1

E(Ti,j) ≤
∞∑
i=1

2−i ·O(t log t log logm) = O(t log t log log t).

Here, we used the expected time bound from Lemma 22 to bound E(Ti,j).

Lemma 23 completes the proof of Theorem 3.
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A Linear Hashing without Primes

In this section we provide the proof for Lemma 13.
Lemma 13 (Linear Hashing without Primes). Let n ≥ m be arbitrary. There is a family
of linear hash functions h : [n]→ [m] with the following three properties.

1 Efficiency: Sampling and evaluating h takes constant time.
2 Uniform Differences: For any distinct keys x, y ∈ [n] and for any q ∈ [m], the probability

that h(x)− h(y) ≡ q (mod m) is at most O( 1
m ).

3 Almost-Additiveness: There exists a constant-size set Φ ⊆ [m] such that for all keys
x, y ∈ [n] it holds that h(x) + h(y) ≡ h(x+ y) + φ (mod m) for some φ ∈ Φ.

For the proof we need another result. We say that a set A = {r + ia : i ∈ [|A|]} ⊆ Z is an
arithmetic progression with step-width a. The following lemma proves that two arithmetic
progressions with coprime step-widths are as uncorrelated as possible.
Lemma 24. Let A and B be arithmetic progressions with coprime step-widths a and b, re-
spectively. Then |A ∩B| ≤ min{ |A|−1

b , |B|−1
a }+ 1.

Proof. We may assume that A = {0, a, . . . , (|A| − 1)a} and B = {0, b, . . . , (|B| − 1)b}
(remove all points before the first common element of A and B and shift such that the

22



first common element becomes zero). Since a and b are coprime, the intersection A ∩ B
consists only of multiples of ab and thus |A ∩B| ≤ b (|A|−1)a

ab c+ 1. The same bound holds
symmetrically for B.

Proof of Lemma 13. First, assume that m is odd. Let N be the smallest power of two
larger than n·m. We then define the family of hash functions as h(x) = (ax mod N) mod m,
where a ∈ [N ] is a random odd number. We will now prove the three claimed properties for
this family.

1 Efficiency: Sampling h only involves constructing N and sampling a random odd num-
ber. Both operations take constant time in the Word RAM model. Evaluating h is also
in constant time.

3 Almost-Additiveness: Fix any keys x, y ∈ [n]. Then for one of the two choices φ ∈ {0, N}
it holds that (ax mod N) + (ay mod N) = (a(x + y) mod N) + φ. By reducing this
equation modulo m, it follows that Φ = {0, N mod m} is a suitable choice.

2 Uniform Differences: To prove that h satisfies the uniform difference property, it suffices
to prove that h is O(1)-uniform, that is, P(h(z) = ψ) ≤ O( 1

m ) for all z ∈ [n] and ψ ∈ [m].
Indeed, by the previous paragraph we have h(x)− h(y) ≡ q (mod m) only if h(x− y) ≡
q − φ (mod m) for some φ ∈ Φ. Taking a union bound over the constant number of
elements φ then yields the claim.

To check that h is O(1)-uniform, we write z = 2k ·w where w is odd. Then az mod N
is uniformly distributed in A = {2k · i : i ∈ [2−k ·N ]}. Indeed, by identifying [N ] with
the finite ring Z/NZ, A is the smallest additive subgroup of Z/NZ which contains z,
and thus multiplying with a random unit a ∈ (Z/NZ)× randomly permutes z within
that subgroup. It follows that

P(h(z) = ψ) = 2k · |A ∩B|
N

,

where B ⊆ [N ] consists of all numbers equal to ψ modulo m. Observe that A and B are
both arithmetic progressions with step-widths 2k and m, respectively. Recall that m is
odd, therefore 2k and m are coprime and Lemma 24 applies and yields |A∩B| ≤ N

2km +1.
We finally obtain P(h(z) = ψ) ≤ 1

m + n
N ≤ O( 1

m ).

Finally, we remove the assumption that m is odd. If m is even, then we simply apply
the previous construction for m − 1 to obtain a linear hash function h : [n] → [m − 1]
and reinterpret this as a function h : [n] → [m]. It is easy to see that this preserves
efficiency and uniform differences, and we claim that is also preserves almost-additiveness.
Indeed, for arbitrary keys x, y we know that h(x) + h(y) ≡ h(x + y) + φ (mod (m − 1))
for some φ ∈ Φ. Both sides of the equation are integers less than 2m − 2 and hence
their images modulo m − 1 and m, respectively, differ by at most 1. Therefore, we have
h(x) +h(y) ≡ h(x+ y) +φ′ (mod m) for some φ′ ∈ Φ′ = {φ+σ : φ ∈ Φ, σ ∈ {−1, 0, 1}}.
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