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We construct an inspiral-merger-ringdown eccentric gravitational-wave (GW) model for binary black
holes with non-precessing spins within the effective-one-body formalism. This waveform model,
SEOBNRv4EHM, extends the accurate quasi-circular SEOBNRv4HM model to eccentric binaries by
including recently computed eccentric corrections up to 2PN order in the gravitational waveform modes,
notably the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ multipoles. The waveform model reproduces the
zero eccentricity limit with an accuracy comparable to the underlying quasicircular model, with the
unfaithfulness of ≲1% against quasicircular numerical-relativity (NR) simulations. When compared
against 28 public eccentric NR simulations from the Simulating eXtreme Spacetimes catalog with initial
orbital eccentricities up to e ≃ 0.3 and dimensionless spin magnitudes up to þ0.7, the model provides
unfaithfulness < 1%, showing that both the ð2; j2jÞ-modes and the higher-order modes are reliably
described without calibration to NR datasets in the eccentric sector. The waveform model SEOBNRv4EHM
is able to qualitatively reproduce the phenomenology of dynamical captures, and can be extended to
include spin-precession effects. It can be employed for upcoming observing runs with the LIGO-Virgo-
KAGRA detectors and used to re-analyze existing GW catalogs to infer the eccentricity parameters for
binaries with e≲ 0.3 (at 20 Hz or lower) and spins up to ≲0.9–0.95. The latter is a promising region of the
parameter space where some astrophysical formation scenarios of binaries predict mild eccentricity in the
ground-based detectors’ bandwidth. Assessing the accuracy and robustness of the eccentric waveform
model SEOBNRv4EHM for larger eccentricities and spins will require comparisons with, and, likely,
calibration to eccentric NR waveforms in a larger region of the parameter space.
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I. INTRODUCTION

Most inspiraling binaries observed by ground-based
gravitational-wave (GW) detectors are likely to form via
isolated binary evolution [1–14] and are expected to
circularize [15] by the time they enter the detector fre-
quency band. However, a small fraction of binaries may
have non-negligible orbital eccentricity in the LIGO, Virgo
or KAGRA [16–18] frequency band if they form through
dynamical captures and interactions in dense stellar envi-
ronments, such as globular clusters [19–39] or galactic
nuclei [40–47], and through the Kozai-Lidov mechanism
[48,49] in triple systems [50–56]. Thus, measuring eccen-
tricity in the GW signal from merging binaries provides key

information about the origin and the properties of the
population of such binaries [57–62].
So far, the observed GW events detected by LIGO and

Virgo [63–65] are consistent with quasicircular binary
coalescences. Nevertheless, there are increasing efforts to
search for eccentricity signatures in the current GW events
[66–73]. With upcoming upgrades of ground-based detec-
tors and third-generation detectors like the Einstein
Telescope or the Cosmic Explorer [74–77], as well as
future spaceborne detectors like LISA and TianQin [78,79],
the fraction of GW events with non-negligible orbital
eccentricity is expected to significantly increase [80–83].
Therefore, developing accurate waveform models that
include the effects of eccentricity is essential to detect
eccentric binaries, infer their properties, and provide
information on their astrophysical origin.
Gravitational waveforms from inspiraling eccentric bina-

ries have been developed within the post-Newtonian (PN)
formalism [84–100]. Numerical-relativity (NR) simulations
for eccentric binary black holes (BBHs) were produced in
Refs. [70,101–106], but they are still limited to a small
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region of the binary’s parameter space and do not cover
the entire bandwidth of ground-based detectors (unless the
binary total mass is larger than ∼70 M⊙ [106]). Under the
assumption that the binary circularizes before merger,
inspiral-merger-ringdown (IMR) (hybrid) waveforms,
in time or frequency-domain, have been developed in
Refs. [105,107,108] by combining the inspiral phase from
PN with the merger and ringdown signal from either NR or
the effective-one-body (EOB) formalism. Recently, NR
surrogate models for equal-mass nonspinning eccentric
binaries were built in Refs. [106] by directly interpolating
NR simulations. Guided by comparisons with NR simu-
lations, Ref. [109] has proposed a method to include
eccentricity effects in existing quasicircular IMR waveform
models for low eccentricity. Regarding systems with matter
content, like binary neutron stars or neutron-star–black-
hole binaries, there have been also efforts to produce
eccentric NR simulations [110–112], as well as analytical
work studying the coupling between eccentricity and tidal
effects [113–115]. However, complete eccentric IMR
waveform models including matter effects have not been
developed, yet.
Within the efforts to model IMR waveforms for eccentric

BBHs, the EOB formalism [116,117] has recently seen a lot
of progress [118–127]. The EOB formalism is a framework
that combines information from PN theory, NR and BH
perturbation theory to accurately describe the inspiral,
merger and ringdown of a binary coalescence (see e.g.,
Refs. [124,128–140]). The current eccentric EOB wave-
form models are constructed by improving the EOB
description of the eccentric inspiral and plunge, but they still
employ a quasicircular merger-ringdown model [121–
124,127]. Nevertheless, this approach has been able to
construct EOB waveforms that are faithful to existing,
although limited, (public) NR waveforms from the
Simulating eXtreme Spacetimes (SXS) catalog with eccen-
tricity smaller than 0.3 and mild spins.
In this paper, we develop a multipolar eccentric

EOB waveform model that builds on the quasicircular
SEOBNRv4HM model [134] for BBHs with aligned spins1

and includes recently derived eccentric corrections up to
2PN order [126], including spin-orbit and spin-spin inter-
actions, in the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þ
multipoles. This eccentric waveform model, henceforth
SEOBNRv4EHM, has comparable accuracy to the quasicir-
cular SEOBNRv4HM model in the zero eccentricity limit
when compared to quasicircular NR waveforms, and
produces unfaithfulness <1% against eccentric NR simu-
lations [107] from the SXS collaboration. When restricting
to the ð2; j2jÞ-modes we refer to the model as SEOBNRv4E,
in analogy to the quasicircular case, which corresponds
to the SEOBNRv4 model in Ref. [132]. Furthermore,

we develop generic initial conditions for elliptical orbits
including two eccentric parameters. We also implement
hyperbolic-orbit initial conditions, and we briefly show the
ability of the model to reproduce the phenomenology of
hyperbolic encounters, thus paving the path to the descrip-
tion of generic BBH coalescences.
This paper is structured as follows. In Sec. II, we outline

our multipolar eccentric EOB waveforms, and describe
how the eccentricity effects are introduced in each building
block of the model, notably the conservative and dissipative
dynamics and the gravitational waveform modes. We also
develop initial conditions for elliptic orbits including two
eccentric parameters. In Sec. III, we assess the accuracy of
the multipolar eccentric waveform model by comparing it
against 141 NR waveforms in the quasicircular limit, and to
28 public eccentric NR waveforms from the SXSwaveform
catalog [141,142]. We develop an algorithm to estimate the
best matching parameters between the eccentric EOB and
NR waveforms, analyze the robustness of the model across
parameter space and start to estimate for which source’s
parameters and eccentricity, we could anticipate biases in
inference studies if quasicircular-orbit waveforms were
used. In Sec. IV, we summarize our main conclusions
and discuss future work. Finally, in Appendix Awe list the
eccentric corrections to the waveform modes obtained in
Ref. [126], in Appendix B we describe details of the
implementation of the eccentric waveforms modes, and in
Appendix C we provide the expressions of the dynamical
quantities needed for calculating the initial conditions for
eccentric orbits.
In this paper, we use geometric units, setting G ¼ c ¼ 1

unless otherwise specified.

II. ECCENTRIC EFFECTIVE-ONE-BODY
WAVEFORM MODEL

Here, we develop the multipolar eccentric aligned-spin
SEOBNRv4EHM waveform model building on the quasicir-
cular aligned-spin SEOBNRv4HM model [134], which has
been used by LIGO andVirgo to detect GW signals and infer
binary properties [63–65]. More specifically, we provide a
brief description of the (conservative) dynamics in Sec. II A,
waveform modes in Sec. II B, and initial conditions in
Sec. II C.
The EOB formalism maps the two-body dynamics

of objects with masses mi and spins Si, with i ¼ 1, 2,
into an effective dynamics of a test-spin with mass
μ ¼ m1m2=ðm1 þm2Þ and spin S� moving in a deformed
Kerr metric with mass M ¼ m1 þm2 and spin SKerr. The
deformation parameter is the (dimensionless) symmetric
mass ratio ν ¼ μ=M. As we are limiting to spins aligned to
the orbital angular momentum, the only (dimensionless)
spin component on which the dynamics and the waveform
depend is χi ¼ Si · L̂=m2

i , where L̂ is the unit vector in the
direction perpendicular to the orbital plane.

1To ease the notation we use the term aligned spins when
referring to aligned/anti-aligned spins.
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A. Effective-one-body dynamics

The EOB conservative dynamics is governed by
the EOB Hamiltonian, calculated from the effective
Hamiltonian through the energy map [116]

HEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð1Þ

When both spins are aligned with the orbital angular
momentum, the motion is restricted to a plane. This implies
that the dynamical variables entering the Hamiltonian are
the (dimensionless) radial separation r≡ R=M, the orbital
phase ϕ, and their (dimensionless) conjugate momenta
pr ≡ Pr=μ and pϕ ≡ Pϕ=μ. We use the same effective
Hamiltonian, Heff , as described in Refs. [131,143], aug-
mented with the parameters ðK; dSO; dSS;Δt22peakÞ calibrated
to NR waveforms from Ref. [132].
The dissipative dynamics within the EOB formalism is

described by a radiation-reaction (RR) force F , which
enters the Hamilton equations of motion, as [130,144]

_r ¼ ξðrÞ ∂ĤEOB

∂pr�
ðr; pr� ; pϕÞ;

_ϕ ¼ ∂ĤEOB

∂pϕ
ðr; pr� ; pϕÞ;

_pr� ¼ −ξðrÞ ∂ĤEOB

∂r ðr; pr� ; pϕÞ þ F̂ r;

_pϕ ¼ F̂ϕ; ð2Þ
where the dot represents the time derivative d=dt̂,
with respect to the dimensionless time t̂≡T=M, ĤEOB ≡
HEOB=μ, and F̂ϕ ≡ Fϕ=M. The equations are expressed in
terms of pr� ≡ prξðrÞ, which is the conjugate momentum
to the tortoise-coordinate r�, and ξðrÞ≡ dr=dr� can be
expressed in terms of the potentials of the effective
Hamiltonian [144].
In the case of the SEOBNRv4HM waveform model, the

components of the RR force are computed using the
following relations [117,145]

F̂ϕ ¼ −
ΦE

ω
; F̂ r ¼ F̂ϕ

pr

pϕ
; ð3Þ

where ω ¼ _ϕ is the (dimensionless) orbital frequency, and
ΦE is the energy flux for quasicircular orbits written as a
sum over waveform modes using [128,129]

ΦE ¼ ω2

16π

X8
l¼2

Xl

m¼−l
m2

����DL

M
hlm

����
2

; ð4Þ

where DL is the luminosity distance between the binary
system and the observer. The above relation is only valid

for quasicircular orbits as it assumes the relation between
energy and angular-momentum fluxesΦE ¼ ωΦJ, which is
only valid for quasicircular orbits.
We note that in the SEOBNRv4HM model, eccentric

effects are already partially included in the radial compo-
nent of the RR force F̂ r since it is proportional to pr,
whereas the tangential component of the RR force F̂ϕ does
not contain eccentric corrections. Recently, Ref. [126]
derived the eccentric corrections of the RR force up to
2PN order, including spin-orbit and spin-spin interactions,
in a factorized form [128,129]. We have explored adding
those corrections to both components of the RR force in the
SEOBNRv4HM model. However, we find, when doing it,
that the late-inspiral dynamics can lead to differences with
respect to the one of the SEOBNRv4HM model, affecting
the inclusion of the merger-ringdown signal that is inherited
from the SEOBNRv4HM model. This in turn, can lead to
differences between our new model and SEOBNRv4HM in
the quasicircular orbit limit, and, for some binary configu-
rations, to the degradation of the model performance when
compared to quasicircular NR simulations. Since the goal
of this paper is to develop an eccentric waveform model
that reduces to the SEOBNRv4HM model in the quasicir-
cular limit and is faithful to the current (public) SXS NR
eccentric waveforms (which have eccentricity smaller than
0.3), we choose to retain the conservative and dissipative
dynamics of the SEOBNRv4HM model and introduce the
eccentric corrections of Ref. [126] only in the gravitational
modes. The latter are not used to compute the fluxes
employed to construct the RR force. We leave the inclusion
of the eccentric corrections to the RR force for the next
generation of EOBNR models [146], which will be
recalibrated to quasicircular NR simulations.2

B. Effective-one-body gravitational waveforms

As in previous EOBNRmodels, we represent the inspiral-
plunge signal of the SEOBNRv4EHM waveforms as:

hinsp-plungelm ¼ hecclm Nlm; ð5Þ

where the hecclm ’s are the factorized EOB gravitational
modes [128,129], including the 2PN eccentric corrections
derived in Ref. [126], while the Nlm’s are the so-called
nonquasicircular (NQC) terms. More specifically, the hecclm
terms are written as:

hecclm ¼ hNlmSeffðTqc
lm þ Tecc

lm Þðfqclm þ fecclm Þeiδlm ; ð6Þ

2The quasicircular TEOBResumS model [133] does not
include the radial component of the RR force F̂ r, but its
extension to eccentric orbits [123] includes a nonzero F̂ r that
is linear in pr, adds eccentric corrections at Newtonian order in
F̂ϕ, and is recalibrated to NR waveforms in the quasicircular
orbit limit.
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where hNlm is the Newtonian (leading-order) quasicircular
(qc) term, Seff is an effective source term, Tqc

lm resums the
leading logarithms in the tail effects,while δlm contains phase
corrections, and fqclm ensures that the PN expansion of hqclm
agrees with the PN expressions for the modes in the
quasicircular orbit limit. The explicit expressions for the
above terms can be found in Refs. [129,132,134,147].
Furthermore, the term Tecc

lm includes eccentric corrections
to the leading-order hereditary part, while fecclm contains
the eccentric corrections to the 2PN instantaneous part,
including the Newtonian (leading-order) term. Note that
the eccentric corrections are not introduced in δlm. We
note that the eccentric-orbit terms are provided in the
Supplemental Material of Ref. [126], and for complete-
ness, we write them in Appendix A for the ðl; jmjÞ ¼
fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg modes.
We use the same expression of the NQC correction as in

the SEOBNRv4HM model, that is [132,134]

Nlm ¼
�
1þ p2

r�

ðrωÞ2
�
alm1 þ alm2

r
þ alm3
r3=2

��

× exp
�
i
�
blm1

pr�
rω

þ blm2
p3
r�

rω

��
; ð7Þ

where the coefficients ðalm1 ; alm2 ; alm3 ; blm1 ; blm2 Þ are fixed by
requiring that the amplitude, its first and second derivatives,
as well as the GW frequency and its first derivative agree for
every ðl; mÞ-mode with values extracted from NR wave-
forms [134] (i.e., the NR input values). However, as we shall
discuss below, we orbit-average the NQC corrections (7) in
the eccentric SEOBNRv4HM waveform model.
Both the eccentric corrections to the waveform and the

NQC terms are designed to improve the accuracy of the
EOB waveforms. However, we find that modifications to
both have to be introduced in order to improve the
faithfulness of the EOB model to NR simulations. The
eccentric corrections to the modes are derived from PN and
EOB theory, thus they increase the accuracy of the inspiral
part of the eccentric model. Nonetheless, in the strong-field
regime, very close to the merger-ringdown attachment time
[132,134], we found that they can lead to high unfaithful-
ness with respect to NR waveforms. This is due to the fact
that they can modify by orders of magnitude the NR input
values (in particular the amplitude, frequency and their
derivatives) used to compute the coefficients in the NQC
terms. To mitigate this effect, we introduce a sigmoid
function that makes the eccentric corrections, fecclm and Tecc

lm ,
vanish at merger,

wðβ; tβ; tÞ ¼
1

1þ e−βðt−tβÞ
; ð8Þ

where we choose β ¼ 0.09 and tβ ≡ tωpeak − 300, being tωpeak
the time when the peak of ω≡ _ϕ occurs.

Moreover, the NQC corrections to the waveform defined
in Eq. (7) become highly oscillatory during an eccentric
inspiral, as all the dynamical quantities composing its ansatz
have increasing oscillationswith increasing eccentricity. One
approach to circumvent the oscillatory behavior of the NQC
function is the application of a window function [122–
124,127], like the sigmoid in Eq. (8), close to merger. This
window function forces the NQC function to approach unity
during the inspiral, and have significant effects only near
merger.
Herewedevelopanalternativeapproach,whichconsists in

orbit averaging the dynamical quantities entering the ansatz
of the NQC corrections, so that it is a monotonic function
during thewhole evolution. The rationale is that the genuine
oscillations due to the orbital eccentricity are already
included in Eq. (6), thus the role of the NQC corrections is
merely to improve the GW amplitude and frequency of the
EOBmodel duringplungeandmerger using inputs fromNR.
Any dynamical quantity XðtÞ can be orbit-averaged at

the ith-orbit passage as follows,

X̄i ¼
1

tiþ1 − ti

Z
tiþ1

ti

XiðtÞdt; ð9Þ

where ðti; tiþ1Þ correspond to times defining the complete
orbits. We note that in order to perform the orbit average
calculation, we need to identify the times, ti, which define
successive orbits. In practice, we can choose either the
maxima or the minima of any orbital quantity to identify the
orbits. In the case of the orbital separation, these times
correspond to the turning points, either apastron or peri-
astron passages. We decide to use the time of the maxima to
perform the orbit average in Eq. (9), and we associate each
orbit average value to an intermediate time defined as t̄i ¼
ðtiþ1 þ tiÞ=2 [103]. From Eq. (7) it can be seen that the
dynamical quantities entering the NQC corrections are rðtÞ,
pr� ðtÞ and ωðtÞ. Thus, the NQC corrections implemented in
the model can be expressed in terms of the orbit-average
quantities as,

N̄lm ¼
�
1þ p̄2

r�

r̄2ω̄2

�
alm1 þ alm2

r̄
þ alm3
r̄3=2

��

× exp

�
i

�
blm1

p̄r�
r̄ ω̄

þ blm2
p̄3
r�

r̄ ω̄

��
; ð10Þ

where the coefficients ðalm1 ; alm2 ; alm3 ; blm1 ; blm2 Þ are com-
puted as in Eq. (7). Hence, the modes in SEOBNRv4EHM
can be expressed as follows,

h̄insp-plungelm ¼ hNlmSeffTlmflmeiδlmN̄lm; ð11Þ

Tlm ¼ Tqc
lm þ ½1 − wðβ; tβ; tÞ�Tecc

lm ; ð12Þ

flm ¼ fqclm þ ½1 − wðβ; tβ; tÞ�fecclm : ð13Þ
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where the NQC terms N̄lm are given by Eq. (10). The full
details of the orbit averaging procedure can be found in the
Appendix B.
The procedure described above ensures that during

an eccentric inspiral there are no unphysical oscillations
coming from the oscillatory nature of the dynamical
variables in the NQC correction, while the windowing
applied to the eccentric terms close to merger ensures that
the circularization hypothesis at merger is fulfilled, making
the input values of the eccentric model closer to the ones of
the underlying quasicircular model. In Sec. III D, we
quantify the validity in parameter space of the approx-
imations used to treat the NQC corrections. Furthermore, in
Secs. III B and III C, we show that this procedure provides a
quasicircular limit with an accuracy comparable to the
underlying quasicircular SEOBNRv4HM model, and a high
faithfulness when compared to eccentric NR simulations.

C. Eccentric initial conditions

We now complete the eccentric waveform model with
the specification of the initial conditions for elliptical orbits
and hyperbolic orbits.
The gravitational signal emitted by an aligned-spin

eccentric BBH system is described by 6 intrinsic param-
eters: the component masses m1 and m2 (or equivalently
mass ratio q ¼ m1=m2 and total mass M ¼ m1 þm2), the
dimensionless spin components χ1 and χ2 introduced at the
beginning of Sec. II, the orbital eccentricity e, and a radial
phase parameter ζ. For the parameter describing the
position of a point on an ellipse, several options with
different physical meaning are possible: mean anomaly,
relativistic anomaly, true anomaly, etc.. Here, we adopt
the relativistic anomaly. In general relativity, for BBH
systems, the total mass is just a scale parameter that
can be set to 1. Thus, the initial conditions for the EOB
evolution of the SEOBNRv4EHM model depend only on 5
parameters, which have to be specified at a certain starting
frequency ω0.
Since the eccentricity parameter e is gauge dependent,

we can choose a measure of the eccentricity that is as
convenient as possible for the numerical implementation.
The only requirement is that, in the zero eccentricity limit,
we recover the quasicircular initial conditions [145] used in
the SEOBNRv4HM model. Reference [126] derived such
initial conditions for eccentric orbits assuming the perias-
tron as the starting point. Here, we generalize those initial
conditions to start from an arbitrary point on the orbit, thus
making the eccentric initial conditions depend on both e
and ζ.
We use the eccentricity e defined in the Keplerian

parametrization of the orbit

r ¼ 1

upð1þ e cos ζÞ ; ð14Þ

where up is the inverse semilatus rectum, and ζ the
relativistic anomaly, which equals 0 at periastron and π
at apastron. Given the initial orbital frequency ω0, eccen-
tricity e0, relativistic anomaly ζ0, masses, and spins, we
obtain the initial conditions for r0 and pϕ0 in absence of
radiation reaction by solving the following equations:

�∂ĤEOB

∂r
�
0

¼−½ _prðpϕ;e;ζÞ�0;
�∂ĤEOB

∂pϕ

�
0

¼ω0; ð15Þ

with prðpϕ; e; ζÞ and _prðpϕ; e; ζÞ given by the 2PN-order
expressions given in Eqs. (C3) and (C4) of the Appendix C.
Using the solution for r0 and pϕ0, we obtain the initial

condition for pr0 by numerically solving

�∂ĤEOB

∂pr

�
0

¼ ½_rð0Þ þ _rð1Þ�0; ð16Þ

where _rð0Þ is the 2PN-order expression for _r at zeroth order
in the RR effects (see Eq. (C5), while _rð1Þ is the first-order
term in the RR part of _r, for which we use the quasicircular
expression derived in Ref. [145]

_rð1Þ ¼ −
Φqc

E

ω

∂2ĤEOB=∂r∂pϕ

∂2ĤEOB=∂r2 ; ð17Þ

being Φqc
E the quasicircular energy flux given in Eq. (4).

Finally, the initial value pr0 is converted into the tortoise-
coordinate conjugate momentum pr�0, using the relations
in Sec. II A, so that together with r0 and pϕ0, it can be
introduced in Eqs. (2) to evolve the EOB equations of
motion.
It is worthwhile to compare our initial orbital eccentricity

eIC0 , with the eccentricity measured directly from the orbital
frequency, eωorb

, and the eccentricity computed from the
frequency of the (2, 2) mode, eω22

, by using the following
eccentricity estimator [105,148]

eω ¼ ω1=2
p − ω1=2

a

ω1=2
p þ ω1=2

a

; ð18Þ

where ωa and ωp correspond to the frequency, either the
orbital or (2, 2)-mode frequency, at apastron and periastron,
respectively.
Starting at periastron (ζ ¼ 0), we produce a sample of

5 × 105 points randomly distributed in the parameter space
q ∈ ½1; 20�, χ1;2 ∈ ½−0.9; 0.9� and eIC0 ∈ ½0.01; 0.3�, and
compute the relative difference between e0IC and e0ω22

or
e0ωorb

. In the upper panel of Fig. 1, we show the relative
difference between eIC0 and e0ω22

for some nonspinning
configurations with mass ratios q ¼ f1; 4; 8; 10; 15; 20g.
For the same cases we show in the inset of Fig. 1 the
relative difference between e0IC and e0ωorb

. We observe that
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the relative difference for e0ω22
is ∼24%, while for e0ωorb

is
significantly lower ∼6%. Moreover, the dependence on
mass ratio is smaller than 1%, in relative difference, with
the exception of the lower eccentricity cases where the
measurement of the eccentricity has also a larger error,
which we estimate to be ∼3%. We also note that with
increasing values of e0IC the relative differences decrease,
especially for the eccentricity measured from the orbital
frequency.
In the lower panel of Fig. 1, we fix the mass ratio q ¼ 2,

and vary the spin values χ1¼χ2¼f−0.8;−0.5;0;0.5;0.8g
for the same range of initial eccentricities as in the upper
panel. The results show that the relative error between e0ω22

and e0IC is ∼22 − 25% when varying the spin values. These

variations are quite similar to the results obtained when
varying the mass ratios. The relative error between e0ωorb

and
e0IC is ∼5 − 8%, which is also very close in magnitude to
the nonspinning case. However, in the lower panel of
Fig. 1, one can appreciate that the relative errors vary more
with spins than with mass ratio, specifically for positive
spins the relative errors with respect to e0ω22

are 1 − 2%

larger than for negative spins, while the relative errors for
e0ωorb

follow the inverse dependence with spins.
When considering the larger dataset of 5 × 105 configu-

rations, we find that the relative error between eIC0 and e0ω22

has an average of ∼30% error, with the largest difference of
40% for low eccentricities, where the errors in measuring
the eccentricity are also larger due to the difficulties in
determining the maxima and minima. For the relative error
between eIC0 and e0ωorb

, the average value is ∼6%, reaching
up to ∼14% for low values of the eccentricities. The results
show a better agreement between e0IC and e0ωorb

than between
e0IC and e0ω22

. The relation between these different defini-
tions of eccentricity can be derived using PN theory, and it
will be presented in future work [149].
We note that the results reported in Fig. 1 quantify

differences between the eccentricity specified in the
SEOBNRv4EHM model and two other possible definitions
of the eccentricity. We remark that even though there is no
unique definition of the eccentricity, this kind of quanti-
tative analysis will be required in future parameter-estima-
tion analysis of eccentric GW sources with the LIGO, Virgo
and KAGRA detectors in order to reliably compare the
results among different eccentric waveform models.
Finally,we have also implemented hyperbolic-orbit initial

conditions for the SEOBNRv4EHM model. The hyperbolic
initial conditions are specified by the initial energy E0 and
angularmomentumpϕ0 at infinity, which in practicewe take
at an initial orbital separation r0 ¼ 104M. We fix a value of
the angular momentumpϕ0, and choose a value of the initial
energy E0=M. The choice of E0=M is typically done
between the energy with zero radial momentum Emin ¼
HEOBðr0; pϕ0; pr�0 ¼ 0Þ and the energy at the last stable
circular orbit (LSO) Emax ¼ HEOBðrLSO; pϕ

LSO; pLSO
r� Þ

[150–152]. Then, we solve the following equation for pr�0,

E0 ≡HEOBðr0; pϕ0; pr�0Þ: ð19Þ

This procedure to set the initial conditions for hyperbolic
orbits is very similar to the one used in the literature
[150,151], although we note that others are possible, for
instance, one could express the initial conditions in terms of
the initial velocity and impact parameter [153–155]. In
Fig. 2, we show the trajectory of a dynamical capture, as
well as, the real part of the different multipoles in the
SEOBNRv4EHM model. Although the model is able to
reproduce the behavior of dynamical captures and hyper-
bolic encounters, we focus in this paper on the eccentric

FIG. 1. Top panel: relative difference between the initial
eccentricity from the initial conditions of SEOBNRv4EHM, e0IC,
and the initial eccentricity computed from the frequency of the (2,
2) mode, e0ω22

, of SEOBNRv4EHM as a function of e0IC in the range
[0.02, 0.3] for nonspinning configurations with mass ratios
q ¼ f1; 4; 8; 10; 15; 20g. Lower panel: same quantity as in the
upper panel for a configuration with fixed mass ratio q ¼ 2, same
range of e0IC, and distinct equal-spin values χ1 ¼ χ2 ¼
f−0.8;−0.5; 0; 0.5; 0.8g. The insets of both panels show the
relative difference between e0IC and the eccentricity measured
from the orbital frequency of SEOBNRv4EHM e0ωorb

, for the same
configurations as in the larger panels.
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bound orbit case, and leave a thorough and quantitative
analysis of the hyperbolic orbits, including comparison to
NR results to the future.

III. PERFORMANCE OF THE MULTIPOLAR
ECCENTRIC EFFECTIVE-ONE-BODY

WAVEFORM MODEL

In this section, we first assess the accuracy of the
multipolar eccentric waveform model SEOBNRv4EHM
against the quasicircular and eccentric NR waveforms at
our disposal, using the faithfulness function, which is a
metric introduced to quantify the closeness of two wave-
forms. Then, we explore the robustness and validity of the
SEOBNRv4EHM model in the region of parameter space
where we do not yet have NR waveforms. Finally, we
evaluate the unfaithfulness between IMR eccentric wave-
forms and quasicircular ones to estimate in which part of
the parameter space and for which values of the eccentricity
we expect large biases in recovering the source’s properties
if quasicircular orbit waveforms were used.

A. Faithfulness function

The GW signal emitted by an eccentric aligned-spin
BBH system depends on 13 parameters. In Sec. II C, we
have introduced the 6 intrinsic parameters describing the

source properties of such a system. There are 7 additional
parameters which relate the source and detector frames,
notably the angular position of the line of sight measured in
the source frame (ι, φ0), the sky location of the source in the
detector frame ðθ;ϕÞ, the polarization angle ψ , the lumi-
nosity distance of the source DL and the time of arrival tc.
The signal measured by the detector takes the form:

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðι;φ0; DL;Θ; tc; tÞ
þ F×ðθ;ϕ;ψÞh×ðι;φ0; DL;Θ; tc; tÞ; ð20Þ

where Θ ¼ fm1;2; χ1;2; e; ζg, and Fþðθ;ϕ;ψÞ and
F×ðθ;ϕ;ψÞ are the antenna-pattern functions [156,157].
Equation (20) can be written in terms of an effective
polarization angle κðθ;ϕ;ψÞ as

hðtÞ ¼ Aðθ;ϕÞ½hþ cos κ þ hþ sin κ�; ð21Þ

where the definition of Aðθ;ϕÞ can be found in
Refs. [134,137], and we have removed the dependences
of κ, hþ and h× to ease the notation. The GW polarizations
can be decomposed as

hþ − ih× ¼
X∞
l¼2

Xm¼þl

m¼−l
−2Ylmðφ; ιÞhlmðΘ; tÞ; ð22Þ

FIG. 2. Waveform characteristics for a mass ratio q ¼ 1.5 nonspinning configuration with initial parameters r0 ¼ 104M, pϕ0 ¼ 3.97
and E0=M ¼ 1.012. Top row: from left to right, the two first panels show the real part of the 22-mode waveform in time domain, the first
plot displays the full domain of the waveform while the second one zooms in into the merger part. The third panel displays the trajectory
rðφÞ in polar coordinates. Each circle corresponds to a constant value of the orbital separation, which is marked on the figure. Bottom
row: from left to right, the real part of the (2, 1), (3, 3), (4, 4), (5, 5) modes in time domain zooming in close to the merger and ringdown
regions.
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where hlmðΘ; tÞ represents the gravitational waveform
modes, and Y−2

lmðφ; ιÞ are the -2 spin-weighted spherical
harmonics.
We introduce the inner product between two waveforms

h1 and h2 [156,157] as

hh1jh2i ¼ 4ℜ
Z

fmax

fmin

ĥ1ðfÞĥ�2ðfÞ
SnðfÞ

df; ð23Þ

where the star denotes complex conjugate, the hat the
Fourier transform, and SnðfÞ is the one-sided power-
spectral density (PSD) of the detector noise. In this work
we use the Advanced LIGO’s zero-detuned high-power
design sensitivity curve [158]. When both waveforms are in
band, we use fmin ¼ 10 Hz and fmax ¼ 2048 Hz, as the
lower and upper bounds of the integral. For NR waveforms
where this is not the case, we set fmin ¼ 1.05fstart, where
fstart is the starting frequency of the NR waveform.
The agreement between two waveforms—for example,

the signal, hs, and the template, ht, observed by a detector,

can be assessed by computing the faithfulness function
[134,137],

F ðMs; ιs;φ0s;κsÞ¼ max
tc;φ0t;κt

� hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p

����
ιs¼ιt

Θsðts¼t0s Þ¼Θtðtt¼t0t Þ

�
:

ð24Þ

In Eq. (24) the inclination angle of the signal and the
template are set to be the same, while the coalescence
time, azimuthal angle and effective polarization angle of
the template ðt0t ;φ0t

; κtÞ, are adjusted to maximize the
faithfulness of the template. This is a typical choice made
when comparing waveforms with higher-order modes
[134,137,159]. It is convenient to introduce the sky-and-
polarization averaged faithfulness to reduce the dimen-
sionality of the faithfulness function and express it in a
more compact form [134,137],

F̄ ðMsÞ¼
1

8π2

Z
1

−1
dðcos ιsÞ

Z
2π

0

dφ0s

Z
2π

0

dκsF ðMs; ιs;φ0s;κsÞ: ð25Þ

Another useful metric to assess the closeness between waveforms is the signal-to-noise (SNR)-weighted faithfulness [137]

F̄ SNRðMsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
−1 dðcos ιsÞ

R
2π
0 dκs

R
2π
0 dφ0sF 3ðMs; ιs;φ0s; κsÞSNR3ðιs;φ0s; κsÞR

1
−1 dðcos ιsÞ

R
2π
0 dκs

R
2π
0 dφ0sSNR3ðιs;φ0s; κsÞ

3

s
; ð26Þ

where the SNR is defined as

SNRðιs;φ0s;θs;ϕs;κs;DLs;Θs; tcsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhs;hsÞ

p
: ð27Þ

In Eq. (26) the weighting by the SNR takes into account
the dependence on the phase and effective polarization of
the signal at a fixed distance. Finally, we introduce the
unfaithfulness or mismatch as

M̄ ¼ 1 − F̄ : ð28Þ

B. Comparison against quasicircular
numerical-relativity waveforms

We begin by assessing the accuracy of the
SEOBNRv4EHM waveform model in the zero eccentricity
limit, focusing on the unfaithfulness against the set of
quasicircular NR waveforms used to calibrate and validate
the SEOBNRv4HM model. The public NR waveforms are
available in the SXSwaveform catalog [141] produced with
the spectral Einstein code (SPEC) [160]. The parameters of
the public and nonpublic 141 NR waveforms are listed in
the Appendix F of Ref. [134].

In order to simplify our analysis, we restrict first to the
ð2; j2jÞ-modes waveforms, and then include higher order
modes. For the dominant ð2; j2jÞ-modes the faithfulness
can be simplified with respect to Eq. (24) as the inclination
angle of the signal is not usually considered due to the
angular dependence of the −2Y2�2 harmonics, and the fact
that κ, ι and φ are degenerate [161]. Therefore, the
faithfulness function for the quasicircular ð2; j2jÞ-modes
waveforms can be expressed as

F 22ðMs;φ0sÞ ¼max
tc;φ0t

� hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p

����
Θsðts¼t0s Þ¼Θtðtt¼t0t Þ

�
:

ð29Þ
In practice, we remove the dependence of the faithfulness
on the azimuthal angle of the signal by evaluating Eq. (29)
in a grid of 8 values for φ0s ∈ ½0; 2π�, and averaging
the result to obtain F̄ 22. The optimization over the
coalescence time of the signal is efficiently computed by
applying an inverse Fourier transform [162] and we
analytically optimize over the coalescence phase of the
template [161]. From Eq. (29) one can define the mismatch
or unfaithfulness as,
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M̄22 ¼ 1 − F̄ 22: ð30Þ

The condition Θsðts ¼ t0sÞ ¼ Θtðtt ¼ t0tÞ in Eq. (29)
enforces that the intrinsic parameters of both the template
and the signal are the same at the start of the waveform
t ¼ t0. This implies that the component masses m1;2, or
equivalently the mass ratio q ¼ m1=m2 ≥ 1 and the total
mass M ¼ m1 þm2, and the dimensionless spins χ1;2 of
the signal and the template are identical at t0 [137].
For the calculation of the unfaithfulness we consider a

total-mass range of 20 M⊙ ≤ M ≤ 200 M⊙. We show in
Fig. 3 the 22-mode unfaithfulness maximized over the total-
mass range for the SEOBNRv4 and SEOBNRv4E models.
We remind the reader that the SEOBNRv4 model was
calibrated requiring an unfaithfulness for the 22-mode
against the 141 NR waveforms of at most of 1%. It is
interesting to note that the SEOBNRv4E eccentric model
achieves a similar accuracy, with the median of the distri-
bution slightly larger than the one of the SEOBNRv4model.
This is due to the fact that the SEOBNRv4E model contains
eccentric corrections, which were not available when cali-
brating the SEOBNRv4 model to NR in the quasicircu-
lar limit.
The higher order multipoles included in SEOBNRv4EHM

are the same as in SEOBNRv4HM (i.e., ðl; jmjÞ ¼
fð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg). When computing the
unfaithfulness of the models with higher modes against
NR, we include in the NR waveforms all the modes with
l ≤ 5 as done in Ref. [134]. To ease the visualization of the
results, we compute the SNR-weighted mismatches defined
in Eq. (26), and average over the signal inclination,

azimuthal and effective polarization angles. In practice,
the average is performed over three different inclination
angles of the signal ιs ¼ f0; π=3; π=2g, and for each
inclination angle we make a grid of 8 × 8 for
κs;φ0s ∈ ½0; 2π�. In Fig. 4, we show the SNR-weighted
mismatches for the SEOBNRv4HM and SEOBNRv4EHM
models against the quasicircular NR waveforms at our
disposal. Again, we note that the mismatches of the
SEOBNRv4EHM model are very similar to the ones of
the SEOBNRv4HM model. There are a few cases at high
total masses for which both models have unfaithfulness
above 1%, but not larger than 1.5%, as reported also in
Ref. [134]. This indicates that the higher-order modes in the
eccentric model have a comparable accuracy to the ones of
the underlying quasicircular model in the zero eccentric-
ity limit.

C. Comparison against eccentric
numerical-relativity waveforms

The calculation of the unfaithfulness assumes that the
intrinsic parameters of both template and signal are
identical at the start of the evolution, that is we use the
condition Θsðts ¼ t0sÞ ¼ Θtðtt ¼ t0tÞ in Eq. (24). In the
eccentric case, this would imply that the mass ratio, q, total
mass, M, dimensionless spins, χ1;2, eccentricity, e and
relativistic anomaly, ζ, of both the signal and the template
are the same at the start of the waveform. While the spins
and mass parameters are uniquely fixed in the nonprecess-
ing spinning case, the eccentricity and relativistic anomaly
cannot be uniquely identified with respect to the NR
waveforms. Consequently, when comparing a waveform

FIG. 3. Distribution of the maximum unfaithfulness of
SEOBNRv4 (orange) [132] and the new SEOBNRv4E (blue)
against the public 141 quasicircular NR simulations of Ref. [132].
The total mass range considered is 20 M⊙ ≤ M ≤ 200 M⊙. The
calculations are done with the Advanced LIGO’s zero-detuned
high-power design sensitivity curve [158]. The vertical dashed
orange (blue) lines correspond to the median values of the
SEOBNRv4 (SEOBNRv4E) distributions.

FIG. 4. SNR-weighted unfaithfulness, as defined in Eq. (28), as
a function of the total mass, in the range 20 M⊙ ≤ M ≤ 200 M⊙,
between the SEOBNRv4HM (pink) and SEOBNRv4EHM (green)
models and the SXS quasicircular NR waveforms used in
Ref. [134]. The calculations are done with the Advanced LIGO’s
zero-detuned high-power design-sensitivity curve [158], which is
an estimate for the upcoming O4 run. The horizontal black
dashed line indicates the 1% unfaithfulness value.

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORMS FOR … PHYS. REV. D 105, 044035 (2022)

044035-9



model against eccentric NR waveforms,3 an optimization
over the initial eccentricity and relativistic anomaly has to
be performed to take into account the different definition of
eccentricity between the model and the NR waveforms.
In the case of the SEOBNRv4EHM model, to reduce the

dimensionality of the parameter space, we use the initial
conditions for eccentric orbits starting at periastron (ζ ¼ 0),
and we compute the eccentric EOB waveforms by speci-
fying the initial eccentricity, e0, and starting frequency, ω0.
Thus, when computing the faithfulness of the model against
eccentric NR waveforms we have to maximize over e0 and
ω0. Furthermore, here we compute the unfaithfulness using
also another publicly available eccentric EOB model,
TEOBResumSE4 [121,123,124,127], for which we also
specify initial conditions at periastron, and optimize over
the initial eccentricity and starting frequency of the model.
We note that although the TEOBResumSE can include
higher-order modes, we use here only the ð2; j2jÞ-modes, as
we have found that in the presence of eccentricity some of
the higher-order modes develop unphysical behaviors close
to merger and ringdown. These features are likely due the
treatment of the NQC corrections in the eccentric case, as
already reported in Ref. [124].
First, we focus on the ð2; j2jÞ-modes only waveforms.

We define the eccentric faithfulness function as follows,

F ecc
22 ðMs;φ0sÞ

¼ max
t0t ;φ0t;e0;ω0

� hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p

����
Θsðts¼t0s Þ¼Θtðtt¼t0t Þ

�
: ð31Þ

For completeness, we introduce here also the unfaithfulness
function as

M̄ecc
22 ¼ 1 − F̄ ecc

22 : ð32Þ

From Eq. (31) one observes that in the eccentric case two
additional numerical optimizations have to be performed,
as compared to the quasicircular case [see Eq. (29)]. The
main difficulty of estimating such optimal values arises
from the fact that the two additional optimizations cannot
be easily performed with standard optimization algorithms,
as the unfaithfulness has a highly oscillatory behavior as a
function of these parameters. This can be observed in Fig. 5
where we show the unfaithfulness of the SEOBNRv4E
waveform against the SXS:BBH:1355 waveform as

function of the starting frequency. In Fig. 5, the mismatch
is computed for a total mass of 20 M⊙ and at fixed initial
eccentricity e0 ¼ 0.09 for the SEOBNRv4E model. The
high number of local maxima and minima in the unfaithful-
ness function makes standard optimization algorithms quite
inefficient, and it increases substantially the computational
cost of such procedure.
In order to overcome this problem, different eccentric

EOBmodels use different approaches to estimate the optimal
values for e0 and ω0. In the case of the SEOBNREHM model
[119,120,122] (not to be confused with our SEOBNRv4EHM
model here), the starting frequency is set to the frequency
when the eccentricity is estimated from the NR waveforms,
and then the initial eccentricity is varied to get the best match
against the NR waveforms. While for the TEOBResumSE
model, the eccentricity and starting frequency are varied
manually to get the lowest unfaithfulness against NR [123].
Here, we develop an automatic procedure to perform the

two optimizations over e0 and ω0. The procedure is as
follows:
(1) Fix the total mass to the lower bound of the total

mass range used, that is 20 M⊙. In this way, we
ensure that more inspiral part of the NR waveform is
in the frequency band of the mismatch calculation.

(2) Create a grid in eccentricity of Ne values around
the value of the eccentricity as measured from the
NR orbital frequency using Eq. (18), eNRωorb

, such
that e0 ∈ ½eNRωorb

− δe; eNRωorb
þ δe�. The value of δe

determines the eccentricity interval. In the case
eNRωorb

− δe < 0, we take the lower bound to be zero.
(3) For each value of the eccentricity, generate a grid of

Nω values of starting frequency. The upper bound is
determined by the frequency at which the EOB

FIG. 5. Unfaithfulness of the SEOBNRv4E waveform model
against the SXS:BBH:1355 waveform at a fixed initial eccen-
tricity, e0 ¼ 0.09, as a function of the starting frequency of the
model Mω0. The unfaithfulness is computed at a fixed total
mass of 20 M⊙, maximizing over the coalescence time, t0t , and
azimuthal angle, φ0t

, of the model.

3Except in the case of the eccentric NR surrogate model [106],
which is constructed with the same definitions of eccentricity and
mean anomaly used to measure these parameters from NR
waveforms.

4In this work, we use the eccentric branch of the
public bitbucket repository https://bitbucket.org/eob_ihes/
teobresums with the git hash 39e6d7723dacb23220f
f5372e29756e5f94cb004, which is the latest at the time
of this publication.
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waveform equals the length l of the eccentric NR
waveform, ωlNR¼lEOB

0 , while the lower bound is
determined by a chosen δω. Thus, the frequency
grid is ω0 ∈ ½ωlNR¼lEOB

0 − δω;ωlNR¼lEOB
0 �.

(4) For each point in the grid, compute the unfaithful-
ness optimizing over the time shift and phase offset
of the template as in Eq. (29).

(5) Store the values ðeopt0 ;ωopt
0 Þwhich provide the lowest

unfaithfulness.
(6) In order to reduce the computational cost, we use the

optimal values, ðeopt0 ;ωopt
0 Þ at 20 M⊙ for the whole

mass range.
For the results in this paper we choose Ne ¼ 200,

Nf ¼ 500, an eccentricity interval, δe ¼ 0.1, and a starting
frequency interval of δf ¼ 10 Hz at 20 M⊙, which trans-
lates into δω ¼ 0.006.
The above optimization procedure is tested by comput-

ing the unfaithfulness against the eccentric NR waveforms

publicly available in the SXS catalog [107,141]. In
Table I we summarize the main properties of the NR
simulations used in this work, the optimal values of initial
eccentricity and starting frequency of the SEOBNRv4E and
TEOBResumSEmodels, and the maximum value over total
mass range of the unfaithfulness of the models against the
NR simulations. We note that there is a particular simu-
lation SXS:BBH:1169 for which the optimization pro-
cedure leads to zero initial eccentricity for TEOBResumSE.
This is a NR simulation with very low eccentricity for
which the quasicircular waveform has already a very low
mismatch of 0.78%. The reported value of the unfaithful-
ness of TEOBResumSE for this case in Table I is slightly
lower than that reported in Refs. [123,124]. We have
checked modifications of the grid parameters in the
eccentricity and starting frequency grids for the optimiza-
tion procedure, particularly increasing the resolution up to
Ne ¼ 300 and Nf ¼ 1000, but this optimal eccentricity

TABLE I. Summary of the eccentric NR simulations used in this work [107,141]. Each simulation is specified by the mass ratio
q ¼ m1=m2 ≥ 1, z-component of the dimensionless spin vectors, χ1;2, the NR orbital frequency ωorb;p, the eccentricity measured from
the NR orbital frequency eωorb;p

, the (2, 2)-mode frequency ω22;p, and the eccentricity measured from the (2, 2)-mode frequency eω22;p
, all

evaluated at first periastron passage. For each simulation we report also the optimal values of the starting orbital frequency and
eccentricity at periastron, (ωp, eωp

), for the SEOBNRv4E and TEOBResumSE waveform models, as well as the maximum mismatch
over the total mass range using such optimal values against the NR waveforms.

Numerical-relativity simulations SEOBNRv4E TEOBResumSE

ID q χ1 χ2 ωorb;p eωorb;p
ω22;p eω22;p

ωp eωp
1 − F̄max½%� ωp eωp

1 − F̄max½%�
SXS:BBH:0089 1 −0.5 0.0 0.0128 0.06 0.025 0.048 0.0123 0.064 0.15 0.0111 0.064 0.64
SXS:BBH:0321 1 0.33 −0.44 0.0204 0.06 0.04 0.05 0.0196 0.07 0.22 0.0176 0.067 0.67
SXS:BBH:0322 1 0.33 −0.44 0.0223 0.075 0.0434 0.061 0.0224 0.086 0.35 0.0198 0.085 0.63
SXS:BBH:0323 1 0.33 −0.44 0.0235 0.126 0.045 0.102 0.0226 0.143 0.24 0.022 0.143 0.72
SXS:BBH:0324 1 0.33 −0.44 0.0303 0.246 0.0554 0.172 0.0299 0.297 0.3 0.0287 0.286 0.8
SXS:BBH:1136 1 −0.75 −0.75 0.0244 0.09 0.0475 0.076 0.0231 0.113 0.31 0.0209 0.113 0.24
SXS:BBH:1149 3 0.7 0.6 0.0197 0.048 0.0385 0.037 0.0189 0.045 0.3 0.0164 0.046 0.27
SXS:BBH:1169 3 −0.7 −0.6 0.0156 0.045 0.0306 0.037 0.016 0.046 0.39 0.0115 0.0 0.79
SXS:BBH:1355 1 0.0 0.0 0.0216 0.073 0.0421 0.059 0.0208 0.086 0.23 0.0189 0.07 0.79
SXS:BBH:1356 1 0.0 0.0 0.0182 0.127 0.0347 0.1 0.0179 0.145 0.24 0.0172 0.145 0.66
SXS:BBH:1357 1 0.0 0.0 0.0238 0.139 0.0453 0.112 0.0231 0.162 0.24 0.0224 0.159 0.74
SXS:BBH:1358 1 0.0 0.0 0.0243 0.137 0.0464 0.111 0.0237 0.164 0.14 0.0226 0.148 0.74
SXS:BBH:1359 1 0.0 0.0 0.0247 0.136 0.0472 0.111 0.0238 0.158 0.17 0.0234 0.162 0.69
SXS:BBH:1360 1 0.0 0.0 0.0278 0.192 0.0522 0.156 0.0272 0.232 0.2 0.0259 0.218 0.78
SXS:BBH:1361 1 0.0 0.0 0.028 0.194 0.0528 0.162 0.0277 0.239 0.24 0.0262 0.221 0.7
SXS:BBH:1362 1 0.0 0.0 0.0319 0.255 0.0584 0.193 0.0313 0.308 0.4 0.0305 0.309 0.73
SXS:BBH:1363 1 0.0 0.0 0.0321 0.257 0.0596 0.221 0.0313 0.304 0.48 0.0305 0.307 0.74
SXS:BBH:1364 2 0.0 0.0 0.0215 0.059 0.0421 0.048 0.0203 0.059 0.49 0.0185 0.066 0.46
SXS:BBH:1365 2 0.0 0.0 0.0215 0.083 0.0418 0.067 0.021 0.101 0.25 0.0191 0.101 0.29
SXS:BBH:1366 2 0.0 0.0 0.0239 0.134 0.0456 0.111 0.0233 0.158 0.2 0.0226 0.152 0.29
SXS:BBH:1367 2 0.0 0.0 0.0251 0.125 0.048 0.102 0.028 0.126 0.5 0.0264 0.113 0.92
SXS:BBH:1368 2 0.0 0.0 0.0244 0.132 0.0466 0.107 0.0236 0.151 0.32 0.0233 0.157 0.33
SXS:BBH:1369 2 0.0 0.0 0.0309 0.257 0.0573 0.191 0.0305 0.304 0.35 0.0299 0.308 0.39
SXS:BBH:1370 2 0.0 0.0 0.0315 0.25 0.0585 0.144 0.0312 0.301 0.31 0.0301 0.296 0.45
SXS:BBH:1371 3 0.0 0.0 0.0213 0.078 0.0414 0.063 0.0191 0.101 0.16 0.0191 0.093 0.15
SXS:BBH:1372 3 0.0 0.0 0.0237 0.13 0.0454 0.107 0.0233 0.153 0.19 0.0228 0.153 0.26
SXS:BBH:1373 3 0.0 0.0 0.0239 0.129 0.0458 0.104 0.0234 0.151 0.29 0.0229 0.149 0.21
SXS:BBH:1374 3 0.0 0.0 0.0306 0.248 0.0562 0.206 0.0304 0.294 0.33 0.0296 0.293 0.31
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value of zero still remains unchanged. While it is possible
that further increasing the resolution could lead to a slightly
lower unfaithfulness, it also significantly increases the
computational cost and therefore we opt to use the already
calculated value. We also note that for this particular case
(which has low eccentricity and high spins) the optimiza-
tion procedure may be affected by the slight discontinuity
of the TEOBResumSE model for small eccentricities as
already noted in Ref. [72].
The unfaithfulness of the SEOBNRv4E and

TEOBResumSE models against the dataset of eccentric
NR waveforms described in Table I are shown in the upper
panel of Fig. 6. We note that the unfaithfulness curves are
always below 1% for the whole dataset and total mass

ranges. These results also indicate that the approximation in
step 6) of using the same optimal values for ðeopt0 ;ωopt

0 Þ
for the whole total mass range is reasonable, as the
unfaithfulness does not significantly increase with the
total mass range. The bulk of the unfaithfulness curves
for the SEOBNRv4E model is below the ones of the
TEOBResumSE model for the NR dataset considered here.
We note that the values of the unfaithfulness for the
TEOBResumSE model reported here are similar to the
ones in Ref. [123]. However, in a recent publication
[124,127], lower unfaithfulnesses are reported for the
TEOBResumSE model, driven by recalibrating it to qua-
sicircular NR waveforms, and by better computing the
Fourier transform of the time-domain waveforms, as
remarked in Ref. [124,127]. (This improved model is
not public.) As a consequence of those improvements,
the main bulk of the unfaithfulness curves is closer to 10−3

values, and thus, at a similar level as the SEOBNRv4E
model in Fig. 6. We remark that in order to better assess the
accuracy of both models, comparisons against larger data-
sets of eccentric NR simulations are required. Eventually,
Bayesian inference analyses will be needed to assess biases
in the recovered parameters.
The calculation of the unfaithfulness including higher

order modes requires three numerical optimizations (initial
eccentricity, starting frequency and azimuthal angle of the
template) and an analytical optimization over the effective
polarization angle for each single point in the sky of the
signal. Consequently, computing SNR-weighted unfaith-
fulness averaged over the sky-positions, orientations and
inclinations of the signal becomes computationally pro-
hibitive. In order to reduce the computational cost, we
assume that the optimal values for the initial eccentricity
and starting frequency of the SEOBNRv4EHM model are
the same as the ones obtained for the SEOBNRv4E model,
ðeopt0 ;ωopt

0 Þ, and we compute the unfaithfulness as in the
quasicircular case, numerically optimizing over the azimu-
thal angle of the template, and analytically over the
effective polarization angle of the template.
We apply this approximation and compute the unfaith-

fulness between the SEOBNRv4EHM waveforms and the
eccentric NR waveforms, which include all the modes with
l ≤ 5. We show the results in the lower panel of Fig. 6. We
can observe that the curves of the SNR-weighted unfaith-
fulness for the multipolar model are always below 1%. This
indicates that the approximation of using the optimal values
of ðeopt0 ;ωopt

0 Þ obtained from the unfaithfulness of the
SEOBNRv4E model is a good approximation. When
comparing the unfaithfulness of the SEOBNRv4EHMmodel
against the SEOB model developed in Ref. [122]
(SEOBNREHM), we find that the unfaithfulness of
SEOBNRv4EHM are always smaller than 1%, which is
not the case for the SEOBNREHM model, which presents
some cases with unfaithfulness as large as 2% [122]. We
also note that the unfaithfulness for the SEOBNRv4EHM

FIG. 6. Upper panel: unfaithfulness of the SEOBNRv4E and
TEOBResumSE models against the 28 eccentric public SXS
simulations listed in Table I. The calculations are performed
optimizing over the initial eccentricity and starting frequency at
periastron. Lower panel: unfaithfulness of SEOBNRv4EHM
model against the same NR waveforms as in the upper panel,
but including all modes with l ≤ 5 in the NR waveforms. The
calculations are performed using the optimal values of eccen-
tricity and starting frequency obtained from the unfaithfulness
computed with SEOBNRv4E. The horizontal dashed lines in both
panels indicate the 1% value of unfaithfulness.
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model is overall larger than that for the SEOBNRv4E
model, this may indicate that the higher-order modes in
the multipolar model are not as accurately modeled as the
dominant (2, 2) mode. However, we remark that the
procedure to compute the unfaithfulness for the model
with higher-order modes is suboptimal as the values of
ðeopt0 ;ωopt

0 Þ are obtained from the SEOBNRv4E model, thus
the unfaithfulness results for SEOBNRv4EHM are a
conservative estimate. Furthermore, some higher-order
modes in the dataset of the eccentric NR waveforms are
affected by numerical noise, which may also affect the
unfaithfulness values. This can also be seen in Fig. 7 where
the different multipoles of the SEOBNRv4EHM waveform
model for the optimal values of ðeopt0 ;ωopt

0 Þ, and of the NR
waveform SXS:BBH:1364 are shown. We note that the
higher-order modes of the model have very good agreement

with respect to NR, and that the early inspiral of the NR
(5, 5)-mode is dominated by numerical noise. Thus, larger
datasets of more accurate eccentric NR waveforms are
required in order to better assess and improve the accuracy
of multipolar eccentric EOB waveform models.

D. Robustness of the model across parameter space

Having assessed the accuracy of the model against the
NR waveforms at our disposal, we now explore the region
of validity of the SEOBNRv4EHM waveform model and
identify the regions of parameter space where the model
can be robustly generated.
One important property of a waveform model is its

smoothness under small perturbations of the intrinsic
parameters. In order to test this property, we compute
the unfaithfulness between the SEOBNRv4E waveforms

FIG. 7. From top to bottom, real part of the (2, 2),(2, 1), (3, 3), (4, 4) and (5, 5) modes in the time domain. The black curve corresponds
to the NR simulation SXS:BBH:1369, which has mass ratio q ¼ 2, zero spins, and eccentricity eωorb;p

¼ 0.257, while the green curve
corresponds to the SEOBNRv4EHM model for the values of eccentricity and starting frequency that lead to the lowest unfaithfulness for
the (2, 2) mode.
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perturbing the eccentricity parameter by δe ¼ 10−7.
We perform this test using the pycbc_faithsim func-
tion in the PyCBC software [163] and employ for 106

waveforms randomly distributed in the following parameter
space: χ1;2 ∈ ½−0.99; 0.99�, q ∈ ½1; 20�, M ∈ ½10; 100�M⊙,
e0 ∈ ½0; 0.3�. We choose 19 Hz for the starting frequency of
the waveforms, and 20 Hz for the overlap calculations. We
find that only a few cases have unfaithfulness above 10−8,
with the maximum mismatch being 0.3% and the median
mismatch being 0, indicating that the waveform model
behaves smoothly under changes of the eccentricity parameter.
As an example, we show in Fig. 8 the amplitude and

frequency of the multipoles in the SEOBNRv4EHM model
(i.e., ðl; mÞ ¼ fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg modes),
as function of time and aligned at the merger time, for
different values of the mass ratio, for a configuration with
initial eccentricity e0 ¼ 0.25, spins ðχ1; χ2Þ ¼ ð0.5;−0.75Þ,
starting frequency 20 Hz and with total mass 60 M⊙. As
can be seen, the modes of the SEOBNRv4EHM model have
a smooth behavior in amplitude and frequency under
variation of the mass ratio q ¼ 1 − 20. We note that,
during the inspiral, in the equal-mass case, the amplitude

of the odd-m modes (except the (2, 1) mode) is very small
compared to the unequal-mass configurations. The same
behavior is present in the amplitudes of the quasicircular
orbit SEOBNRv4HMmodel. As discussed in Ref. [134] (see
Fig. 2 and text around), this is due to the fact that this binary
configuration has a relatively large asymmetric-spin param-
eter χA ¼ ðχ1 − χ2Þ=2 ¼ 0.5, for which, in the equal-mass
(or nearly equal-mass) case the odd-m modes (except the
(2, 1)-mode) have very small amplitude during the inspiral,
as predicted by PN theory.
We find that the orbit averaging procedure that we apply

to the NQC function works quite well from large negative
spins to mild positive spins, but binary’s configurations
with large-positive spins and small initial separation (or
large dimensionless orbital frequency) can challenge this
procedure due to the last periastron passage occurring very
close to merger (see the Appendix B). This can cause
oscillations in the dynamical quantities in the late inspiral.
In order to test the smoothness of the waveform model in
the large-spin region, we compute the unfaithfulness
between two waveforms varying the spins in the region
χ1;2 ∈ ½0.8; 0.99� for 100 mass ratios q ∈ ½1; 50�. For each

FIG. 8. From top to bottom amplitudes (left panels) and frequencies (right panels) of the (2, 2), (2, 1), (3, 3), (4, 4) and (5, 5) modes of
SEOBNRv4EHM versus time, aligned at merger, for a configuration with initial eccentricity e0 ¼ 0.25, spins ðχ1; χ2Þ ¼ ð0.5;−0.75Þ,
starting frequency 20 Hz and total mass 60 M⊙, for a mass ratio range q ∈ ½1; 20�.
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mass ratio, we compute the unfaithfulness between a
waveform with χ1 ¼ χ2 ¼ 0.8, initial eccentricity 0.3 at
starting frequency of 20 Hz and total mass 100 M⊙ and
waveforms with the same parameters but varying both
χ1;2 ∈ ½0.8; 0.99�. This choice of total mass, starting fre-
quency and eccentricity implies smaller initial separations
of r=M ∼ 11, and thus corresponds to a challenging case
for the quasicircular assumption of the merger-ringdown
signal. The results from such a test show an oscillatory
unfaithfulness surface across parameter space without
sharp features. We also observe that for χ1;2 ≳ 0.9 − 0.95
the frequency of the (2, 2)-mode can have small spurious
oscillations, thus, the model should be used with caution in
this region of parameter space. Nevertheless, the model
does not show prominent features in the waveform, and
therefore, we recommend that it is used up to spins 0.99,
eccentricity 0.3 and initial frequency up to 20 Hz. We plan
to improve the model in the transition from plunge to
merger for large spins, as soon as we will have access to NR
eccentric waveforms with large spins.
We note that whereas we have probed the validity of the

model through comparisons to the public SXS eccentric
waveforms and internal consistency tests mostly for mass
ratios q ∈ ½1; 20� and eccentricities e ∈ ½0; 0.3� at 20 Hz,
we can also generate SEOBNRv4EHM waveforms at higher
eccentricities and mass ratios, as illustrated in Fig. 9, where

we show the plus polarization hþ for a nonspinning BBH
with mass-ratio 2 and different initial eccentricities
e0 ¼ ½0; 0.3; 0.5; 0.8�. These configurations are produced
with a starting frequency of 20 Hz defined at periastron, so
that, at that time, there are no frequencies in the inspiral
higher than the starting frequency. In fact, we have checked
that the model can be robustly generated at higher eccen-
tricities by producing a large set of (106) waveforms
randomly distributed in mass ratios q ∈ ½1; 50�, spins
χ1;2 ∈ ½−0.99; 0.99�, initial eccentricity e0 ∈ ½0.3; 0.9� at
a starting frequency of 20 Hz for binaries with total mass
80 M⊙. In the generation of such dataset we do not find any
waveform generation failure. However, lacking NR wave-
forms to compare against, we are not able to assess the
accuracy and robustness of the model in this much larger
region of the parameter space, so we recommend to use the
model with caution for e0 > 0.3.
Finally, we note that the region of parameter space with

eccentricity up to 0.3 at 20 Hz is is of significant
astrophysical interest. In fact, it is expected that most of
the GW events detected with ground-based detectors, such
as LIGO, Virgo and KAGRA, have small eccentricities
≲0.1 [34,35,50,61], which are typically defined at 10 Hz.
The studies discussed in this section provide just a glance

of all the internal checks performed to validate and imple-
ment the SEOBNRv4EHM waveform model in LALSuite
[164], so that it is available to the large GW community as a
tool to carry out inference studies of GW signals.

E. Unfaithfulness between eccentric
and quasicircular waveforms

The impact of eccentricity in GW data analysis—for
example Bayesian inference or GW searches—has been
investigated in the literature [66–73,165–169], but it is
mostly restricted to inspiral-only eccentric waveforms.
Here, we start to extend these studies to IMR eccentric
waveforms, exploring the region of parameter space in
which we expect biases in estimating the source’s proper-
ties if quasicircular-orbit waveforms were employed.
Using the SEOBNRv4EHMmodel, we compute the SNR-

weighted unfaithfulness, averaged over the effective polari-
zation angle and azimuthal angle of the signal, for an
inclination angle of the source ιs ¼ π=3 [Eq. (26)], against
the quasicircular SEOBNRv4HM model in the following
parameter space: q ∈ ½1; 20�, χ1;2 ∈ ½−0.95; 0.95�, and
e0 ∈ ½0; 0.3�. As an example, we consider a total mass
of 70 M⊙ and starting frequency of 20 Hz. We fix the initial
conditions at periastron ðζ0 ¼ 0Þ to reduce the dimension-
ality of the parameter space, and we set the starting
frequency of the SEOBNRv4HM waveform, so that the
length of the quasicircular waveform is the same as the
eccentric one produced with SEOBNRv4EHM.
The unfaithfulness results are shown in Fig. 10. As

expected, we observe that the unfaithfulness becomes
increasingly large with eccentricity. We also appreciate a

FIG. 9. Plus gravitational polarization versus time for a q ¼ 2
nonspinning configuration computed with SEOBNRv4EHM for
four different initial eccentricities e0 ¼ ½0; 0.3; 0.5; 0.8�, and total
mass M ¼ 100 M⊙. All the configurations have a starting
frequency of 20 Hz at periastron. We note that for e0 ¼ 0.8
the waveform reproduces the burstlike features produced at the
periastron passages.
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dependence of the results on the mass ratio and the
effective-spin parameter. In the latter case, we observe that
the unfaithfulness can be as large as ∼70% for large
negative spins, while for positive spins the largest values
occur at χeff ∼ 0.95. The unfaithfulness also shows a
dependence on the mass ratio, with values up to ∼70%
for q ∼ 20, while for comparable masses the unfaithfulness
can be as large as 30%.
We note that large values of the unfaithfulness can imply

large biases in source’s parameters, if the quasicircular
modelswere employed in inference studies against eccentric
GW signals. Moreover, large unfaithfulness can also lead to
a loss in SNR, which can make the GW modeled searches
suboptimal [165,166]. The weighting of the unfaithfulness
by the SNR (seeEq. (26), provides a conservative estimate of
the upper limit of the fraction of detection volume lost.
However, the unfaithfulness results presented here cannot be
translated into an estimate of the sensitivity of a matched-
filter search pipeline. This is because in a matched-filter
search, the signal is compared against templates with
different intrinsic parameters [162,170–172], which is not

the case of our unfaithfulness study, wherewe have fixed the
intrinsic parameters of the signal and the template to be the
same. More comprehensive studies with GW signals that
cover a large portion of the parameter space should be
pursued in the future to assess the sensitivity of modeled
searches to eccentric signals fromBBHswith nonprecessing
spins, and quantify the biases in the estimation of the
parameters if quasicircular–orbit models were employed.

IV. CONCLUSIONS

Working within the EOB framework, we have developed
the multipolar eccentric waveform model SEOBNRv4EHM
for BBHs with nonprecessing spins and multipoles
ðl; jmjÞ ¼ fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg. The eccen-
tric waveform model is built upon the multipolar quasi-
circular SEOBNRv4HM model [132,134]. The inspiral
waveform model SEOBNRv4EHM includes recently com-
puted eccentric corrections up to the 2PN order [126],
including the spin-orbit and spin-spin interactions, in the
factorized GW modes. By contrast the merger and ring-
down description of the SEOBNRv4EHM model is not
modified with respect to the one in the quasicircular orbit
case. Thus, we assume that the binary circularizes by the
time it merges, and this is in agreement with NR simu-
lations for mild eccentricities [107,173].
We have generalized the eccentric initial conditions

introduced in Ref. [126] to include two eccentric param-
eters, the initial eccentricity e0, and the initial relativistic
anomaly ζ0. Both parameters are specified at a certain
starting frequency ω0 along the elliptical orbit. We note that
when the binary starts its evolution at periastron or
apastron, one only needs to specify ðe0;ω0Þ, and this is
the choice made in other eccentric EOB waveform models
in the literature [121–124,127]. The relativistic anomaly is
degenerate with variations of the initial orbital frequency
ω0 at fixed e0. This fact is used to reduce the dimensionality
of the parameter space when comparing EOB and NR
waveforms in Sec. III C. For applications like Bayesian-
inference studies, having generic initial conditions becomes
essential as the parameters of a binary system are inferred at
a fixed reference frequency [64]. Thus, for parameter-
estimation studies, the starting frequency would be fixed,
and the degeneracy between ω0 and ζ0 can no longer be
used to accurately sample the eccentric parameter space.
We have also implemented the initial conditions for

hyperbolic encounters and dynamical-capture systems,
expressing them in terms of the initial angular momentum
and energy at infinity [150]. As an example we have shown
that the SEOBNRv4EHM model can qualitatively reproduce
the behavior of dynamical captures. We leave to the future a
quantitative and detailed study of the accuracy of the model
for hyperbolic encounters, including comparisons with NR
simulations of unbound systems.
Regarding the accuracy of our model, in the quasicircular

limit we have found that the unfaithfulness between the

FIG. 10. SNR-weighted unfaithfulness, MSNR ¼ 1 − F SNR,
averaged over the effective polarization angle and azimuthal
angle of the signal for an inclination angle of the signal ιs ¼ π=3
as described in Eq. (26), between SEOBNRv4EHM and
SEOBNRv4HM in the parameter space: q ∈ ½1; 20�, χ1;2 ∈
½−0.95; 0.95�, and e0 ∈ ½0; 0.3�. The total mass considered here
is 70 M⊙, and the starting frequency is 20 Hz. The calculations
are done with the Advanced LIGO’s zero-detuned high-power
design sensitivity curve [158]. In the upper panel, we show the
effective spin parameter, χeff , defined in Eq. (B3), as a function of
SNR-weighted unfaithfulness. In the lower panel, we show the
same quantity as in the upper one, but using mass ratio, q,
in the y-axis. The color bar indicates the value of the initial
eccentricity, e0.
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(2, 2)-mode only model, SEOBNRv4E, and the publicly
available NR waveforms used to construct and validate the
underlying quasicircular waveform model, SEOBNRv4
[132], is always smaller than 1%. When we include the
higher order multipoles, ðl; jmjÞ ¼ fð2; 1Þ; ð3; 3Þ; ð4; 4Þ;
ð5; 5Þg, the unfaithfulness averaged over sky positions,
orientations and inclinations between SEOBNRv4EHM
and the same NR dataset used to validate SEOBNRv4HM,
is overall below 1%, with few configurations above that
threshold, but below 1.5%, as in the case of SEOBNRv4HM
[134]. Thus, the multipolar eccentric model has an accuracy
comparable to the underlying quasicircular model in the zero
eccentricity limit.
To asses the accuracy of the model in the eccentric case,

we have developed a maximization procedure of the
unfaithfulness to estimate the optimal values of eccentricity
and starting frequency. For the (2, 2)-mode waveforms, we
have found that the unfaithfulness of the SEOBNRv4E
model against the eccentric NR waveforms at our disposal,
which have eccentricity ≲0.3, is always smaller than 1%.
We have also used another eccentric EOB waveform model
TEOBResumSE to compute the unfaithfulness against
eccentric NR waveforms, and we have found that the
unfaithfulness is also always < 1%. Overall we find that
the unfaithfulness of SEOBNRv4E model is smaller than
the public version of the TEOBResumSEmodel, at the time
of this publication, for the NR dataset at our disposal. We
note that in order to set more stringent constraints on the
accuracy of both models, comparisons against larger data-
sets of eccentric NR simulations are required.
Considering that the accuracy of the SEOBNRv4EHM

model against NR simulations can currently be investigated
only up to eccentricity 0.3, we have assessed the smoothness
and robustness of the SEOBNRv4EHM model in the param-
eter space χ1;2 ∈ ½0.; 0.99�, q ∈ ½1; 50� and e ¼∈ ½0; 0.3�.
We have found that some configurations when the spins are
large and positive, notably in the range χ1;2 ∈ ½0.95; 0.99�,
lead to spurious oscillations in the amplitude and frequency
close to merger. This is due to the suboptimal procedure
used by the SEOBNRv4EHM model to transit from the late
inspiral to the merger and ringdown. Furthermore, the
SEOBNRv4EHM can begenerated also for eccentricity larger
than 0.3, however we caution its use for large eccentricities,
especially beyond the inspiral phase, since the model has
been built under the assumption that the binary circularizes.
We emphasize that current GW detectors, such as LIGO,
Virgo and KAGRA will be able to detect eccentric GW
events with mild eccentricities [34,35]. Thus, having a
waveform model that can grasp the main characteristic of
eccentric signals up to eccentricity 0.3 is valuable—for
example the SEOBNRv4EHM model could be employed to
search for eccentric signals in the LIGO and Virgo data and
to infer the properties of the eccentric sources.
We remark that in this first eccentric EOBNR model, we

have only included the eccentric corrections up to 2PN

order derived in Ref. [126] to the factorized GW modes,
while we have kept the conservative and dissipative
dynamics the same as in the quasicircular SEOBNRv4HM
model. Preliminary comparisons with a larger set of NR
simulations are indicating that better accuracy can be
achieved when including the eccentric corrections [126]
also in the RR forces. These improvements will be included
in the next generation of the EOBNR waveform models
currently under construction, that is the SEOBNRv5model.
We leave to the near future the development of a

reduced-order-model (ROM) [174,175] version of the
SEOBNRv4EHM model, so that it can efficiently be used
for inference studies on current GW catalogs and future
observations with the LIGO, Virgo and KAGRA detectors.
We also plan to extend the SEOBNRv4EHM model to
precessing binaries, including the eccentric corrections to
the waveform modes of the quasicircular spin-precessing
SEOBNRv4PHM model [130,135,137].
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APPENDIX A: ECCENTRIC CORRECTIONS
TO THE WAVEFORM MODES

In this Appendix, we list the eccentric corrections to the
waveform modes obtained in Ref. [126]. These corrections
are written in terms of the dynamical quantities r; pr and
_pr. To ease the notation, we define

v _ϕ ≡ ð _prr2 þ 1Þ1=6ffiffiffi
r

p ; ðA1Þ

which is ð _ϕÞ1=3 at leading PN order for generic orbits, and it
reduces to vω ≡ ω1=3 in the circular-orbit limit. We also
define the antisymmetric mass ratio δ≡ ðm1 −m2Þ=M and
the spin combinations

χS ¼
1

2
ðχ1 þ χ2Þ; χA ¼ 1

2
ðχ1 − χ2Þ: ðA2Þ

We expand the eccentric part of the leading-order tail
term, Tecc

lm , in Eq. (6), in powers of the eccentricity up to
Oðe6Þ, and express it in terms of the dynamical quantities
pr and _pr as described in Ref. [126] using the Keplerian
parametrization. For the fð2; 2Þ; ð2; 1Þ; ð3; 3Þg modes, we
obtain through 2PN order
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Tecc
33 ¼ −

π

81c4r

�
ð90r3=2 _pr þ 180iprÞ þ ð−11r7=2 _p2
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þ
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þ 590461ir2p5

r

58320

�

þ
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For the eccentric term fecclm in Eq. (6), and the modes fð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð4; 4Þ; ð5; 5Þg, we obtain

fecc22 ¼
1−rp2

rþr3v6_ϕ−2rv2_ϕ
2rv2_ϕ

þirv _ϕprþ
1

84c2r5v8_ϕ
f−14ðνþ1Þþir2v3_ϕpr½14ðνþ1Þþr3v6_ϕð−101νþð41ν−37Þr3v6_ϕ−209Þ�

þr2p4
r ½ð29−10νÞr3v6_ϕ−7ðν−3Þ�þr3v6_ϕ½63νþr2v4_ϕð−110νþð31ν−8Þr4v8_ϕþð30ν−59Þrv2_ϕþ172Þ−91�

þp2
rr½21νþ3r3v6_ϕð3νþ7ðνþ1Þr3v6_ϕþ62Þ−7�þir3v3_ϕp

3
r ½ð41ν−37Þr3v6_ϕ−7ðν−3Þ�g

þ 1

6048c4r9v14_ϕ
f3ið103ν2−700νþ127Þr14v27_ϕ prþ6r12v24_ϕ ½318−4νð96νþ265Þþð40ν2þ20ν−71Þrp2

r �

þ6ir11v21_ϕ pr½80þ1531ν−640ν2þð349−143ν2−724νÞrp2
r �þ24ð55ν−86Þr8v16_ϕ ½1−νþðνþ1Þrp2

r �
þ6r9v18_ϕ ½−616þ955ν−409ν2þð17ν2þ193ν−340Þr2p4

r−ð1181ν2þ1277νþ279Þrp2
r �

−105ir2v3_ϕpr½ðν−3Þrp2
r−2ðνþ1Þ�2þ24ð55ν−86Þr5v10_ϕ ½ðν−3Þrp2

r−2ðνþ1Þ�
þir8v15_ϕ pr½13νð3598−517νÞ−3ð389ν2þ748ν−571Þr2p4

rþ12ð281ν2−349νþ803Þrp2
r−9221�

þ6ir5v9_ϕpr½50ν2−872νþð22ν2þ55ν−216Þr2p4
r−ð69ν2þ674νþ953Þrp2
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r �
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rþð−294ν2þ380ν−1963Þr2p4
r−2ð205ν2þ2604νþ93Þrp2

rþ26�
−168ðrp2

r−1Þ½ðν−3Þrp2
r−2ðνþ1Þ�2þ6ð103ν2−43ν−8Þr15v30_ϕ þ24ðνþ1Þð55ν−86Þr11v22_ϕ g

þ 1

6c3r4v5_ϕ
fχS½2−νþið5ν−8Þr2v3_ϕprþðν−2Þrp2

rþr3v6_ϕð9ν−8ðν−1Þrv2_ϕ−10Þ�

−2δχA½−1þ4ir2v3_ϕprþrp2
rþr3v6_ϕð5−4rv2_ϕÞ�g

þ 1

6c4r6v8_ϕ
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r−ð1−2νÞ2r2p4
r

þ6iprðð1−2νÞ2r5v9_ϕ−ðν−1Þνr2v3_ϕÞþ3ðr3v6_ϕ−1Þðð4ν2−4ν−1Þr3v6_ϕ−2ðν−1ÞνÞ�

þχ2Að4ν−1Þr½−6ir4v9_ϕprþp2
rð5r3v6_ϕ−1Þþir2v3_ϕp

3
rþrp4

rþ3r2v6_ϕðr3v6_ϕ−1Þ�gþO
�
1

c5

�
; ðA6Þ

fecc21 ¼
1−r2v4_ϕ
r2v4_ϕ

−
1

42c2r6v10_ϕ
f28ðνþ1Þþ3ið12ν−83Þr5v9_ϕprþr3v6_ϕð82−52νþð19νþ106Þrp2

rÞ−14ðν−3Þrp2
rþ2ð12ν−55Þr6v12_ϕ g

þ 1

4cδr4v7_ϕ
½χAð6r4v8_ϕ−6Þþ6δðr4v8_ϕ−1ÞχS�þ

1

336c3δr8v13_ϕ
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þ30ð121ν−35Þr6v12_ϕ þ84ðνþ1Þr4v8_ϕþ2ð1085−1889νÞr3v6_ϕ�−2δχS½−294ðνþ1Þþ36ið2νþ49Þr5v9_ϕpr

þ3p2
rð7ðνþ1Þr8v14_ϕ þ7ðν−3Þr5v8_ϕ−ð69νþ203Þr4v6_ϕþ49ðν−3ÞrÞþ21ðνþ1Þr10v20_ϕ þ2ð79νþ427Þr8v16_ϕ

−21ðν−1Þr7v14_ϕ þ15ð35−33νÞr6v12_ϕ −42ðνþ1Þr4v8_ϕþð673ν−1085Þr3v6_ϕ�gþO
�
1
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�
; ðA7Þ

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORMS FOR … PHYS. REV. D 105, 044035 (2022)

044035-19



fecc33 ¼ 2

9rv3_ϕ
½3ir3v6_ϕpr − 3r2v3_ϕp

2
r − irp3

r þ 2ipr þ r4v9_ϕ − rv3_ϕ�

þ 1

162c2r5v9_ϕ
f−36ðν − 2Þr6v9_ϕp4

r þ 6r5v9_ϕp
2
r ½18ν − ðν − 11Þr3v6_ϕ þ 57�

þ 6irp3
r ½6ðν − 1Þ þ r3v6_ϕð−4νþ 2ð5ν − 1Þr3v6_ϕ þ 35Þ�

þ 3r4v9_ϕ½56νþ r3v6_ϕð42νþ 2ð5ν − 1Þr3v6_ϕ − 39Þ þ 27ð7 − 4νÞrv2_ϕ − 148�
þ ipr½r3v6_ϕð100νþ 9r3v6_ϕð−23νþ ð7ν − 5Þr3v6_ϕ − 29Þ − 218Þ − 36ðνþ 1Þ� − 3ir2p5

r ½3ðν − 3Þ þ ðν − 11Þr3v6_ϕ�g

×
1

18c3δr4v6_ϕ
fχA½2iprð−16νþ ð101ν − 24Þr3v6_ϕ þ 4Þ þ 2ð6 − 25νÞr2v3_ϕp2

r

þ 4ið4ν − 1Þrp3
r − 4ð5ν − 1Þrv3_ϕðr3v6_ϕ − 1Þ�

þ 2δχS½iprð−2νþ ð17ν − 24Þr3v6_ϕ þ 4Þ þ 2ð3 − 2νÞr2v3_ϕp2
r þ iðν − 2Þrp3

r − ð3ν − 2Þrv3_ϕðr3v6_ϕ − 1Þ�g

þO
�
1

c4

�
; ðA8Þ

fecc44 ¼ 1

64r2v4_ϕ
f7þ r½24ir4v9_ϕpr þ 3r2v6_ϕð17− 12rp2

rÞ− 6irv3_ϕprð4rp2
r − 9Þ þ 6p2

rðrp2
r − 3Þ þ 6r5v12_ϕ − 64rv4_ϕ�g

þ 1

42240ð3ν− 1Þc2r6v10_ϕ
f−3r9v18_ϕ ½60νð889− 636νÞ þ 20ðνð321ν− 926Þ þ 238Þrp2

r − 10481�

þ 120ið267ν2 − 278νþ 49Þr11v21_ϕ pr þ 6ir8v15_ϕ pr½8033− 5νð4551νþ 3622Þ þ 1320ðνþ 1Þð3ν− 1Þrp2
r �

þ r6v12_ϕ ½−780νð234ν− 289Þ− 60ð519ν2 − 794νþ 172Þr2p4
r þ 6ð10νð2265νþ 1882Þ− 9847Þrp2

r − 46063�
− 6ir5v9_ϕpr½5νð12748− 2727νÞ þ 20ð69ν2 − 410νþ 115Þr2p4

r þ ð10277− 5νð525νþ 5294ÞÞrp2
r − 20789�

þ 20r3v6_ϕ½3315ν2 − 2644ν− 3ð15ν2 þ 238ν− 74Þr3p6
r þ 3ð339ν2 − 1274νþ 422Þr2p4

r

− 2ð1797ν2 − 4910νþ 1510Þrp2
r þ 553�

− 330ið3ν− 1Þr2v3_ϕprð4rp2
r − 9Þ½ðν− 3Þrp2

r − 2ðνþ 1Þ� þ 220ð3ν− 1Þ½6rðrp2
r − 3Þp2

r þ 7�½ðν− 3Þrp2
r − 2ðνþ 1Þ�

þ 60ð183ν2 − 106νþ 8Þr12v24_ϕ g þO
�
1

c3

�
; ðA9Þ

fecc55 ¼ 1

625r2v5_ϕ
f120ir6v12_ϕ pr þ 3r4v9_ϕð143 − 80rp2

rÞ − 48ir3v6_ϕprð5rp2
r − 13Þ þ 4rv3_ϕð30r2p4

r − 99rp2
r þ 43Þ

þ 24r7v15_ϕ − 625r2v5_ϕ þ 2ipr½12rðrp2
r − 4Þp2

r þ 41�g þO
�
1

c

�
: ðA10Þ

For binaries of equal masses (δ ¼ 0; ν ¼ 1=4), the leading-PN order of the odd-m modes is proportional to δ, which
cancels with the denominator of χA=δ in the above expressions for the (2, 1) and (3, 3) modes, leading to

fecc;δ¼0
21 ¼ 3χA

2cv7_ϕ

�
v8_ϕ −

1

r4

�
þ χA
224c3r8v13_ϕ

½rp2
rð35r7v14_ϕ − 77r4v8_ϕ − 953r3v6_ϕ − 539Þ

þ 1936ir5v9_ϕpr þ 35r10v20_ϕ þ 1226r8v16_ϕ þ 21r7v14_ϕ þ 95r6v12_ϕ − 70r4v8_ϕ − 817r3v6_ϕ − 490�; ðA11Þ

fecc;δ¼0
33 ¼ χA

36c3r3v3_ϕ
½2 − rð−5irv3_ϕpr þ p2

r þ 2r2v6_ϕÞ�: ðA12Þ
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Since the eccentric correction to the (5, 5)-mode does not
depend on spin at this order, it goes to zero for equal
masses.

APPENDIX B: IMPLEMENTATION OF THE
ORBIT AVERAGING PROCEDURE

In this Appendix, we describe in detail the orbit
averaging procedure that we have applied in Sec. II B to
the instantaneous NQC functions of the waveform.
According to Eq. (9), to orbit average a dynamical quantity

we need to define the times, ti, which identify successive
orbits in the evolution. In our implementation, we use the
local maxima and employ a simple algorithm that compares
each element of the time serieswith the two closest neighbors.
However, these values may strongly depend on the specified
time step, thus, in order to reduce such dependencewe further
compute the parabola passing through these three points
fðti−1; Xi−1Þ; ðti; XiÞ; ðtiþ1; Xiþ1Þg, and obtain its maxima
analytically,

fðtÞ ¼ at2 þ btþ c; tmax ¼ −b=2a;

Δ ¼ ðti − tiþ1Þðti − ti−1Þðtiþ1 − ti−1Þ

a ¼ 1

Δ
½Xi−1ðti − tiþ1Þ þ Xiðtiþ1 − ti−1Þ

þ Xiþ1ð−ti þ ti−1ÞÞ�;

b ¼ 1

Δ
½Xi−1ð−t2i þ t2iþ1Þ þ Xiþ1ðt2i − t2i−1Þ

þ Xið−t2iþ1 þ t2i−1Þ�;

c ¼ 1

Δ
½ðXi−1ðti − tiþ1Þtitiþ1 þ Xiðtiþ1 − ti−1Þti−1tiþ1

þ Xiþ1titi−1ð−ti þ ti−1ÞÞ�; ðB1Þ

where tmax is the solution of dfðtÞ=dt ¼ 0. The found
maxima, and their corresponding times, fti; Xig, are then
used in Eq. (9) to compute the orbit-average quantity X̄i, and
the intermediate times, t̄i ¼ ðtiþ1 þ tiÞ=2 [103], are associ-
ated to each X̄i.
As our dynamical quantity, we use pr� , but when the

eccentricity e0 < 0.1, we switch to _pr�, because we find
that we can reliably extract the maxima in this quantity even
for very small eccentricities (e0 < 0.01). This is due to the
fact that the time derivative enhances the effects of the
eccentric oscillations.
The orbit averaging procedure also requires the introduc-

tion of boundary conditions at the start and at the end of the
inspiral.5 At the start of the inspiral, we simply use the time of
the first maximum, tfirst-max. The impact of this choice is

negligible because at this point of the evolution the orbit-
average NQC function is quite smooth. Meanwhile, at the
end of the inspiral, we need to reproduce the plunging
behavior of the dynamical quantities r;ω; pr� to accurately
compute theNQC function, as done in the quasicircular case.
To achieve this goal, we impose that from a certain time,
taverage-end, the orbit-average dynamical quantities follow the
nonorbit–average dynamics. In Fig. 11, we show how the

FIG. 11. Time evolution of the orbital frequency ω (upper
panel), and the radial momentum pr� (lower panel), for a
configuration with q ¼ 3, χ1 ¼ 0.5, χ2 ¼ 0.25. For this configu-
ration, we show the quasicircular dynamical quantities (red solid
line), the eccentric quantities with initial eccentricity e0 ¼ 0.3
(solid green line) and the orbit-average curves (blue dashed line).
The black dots, on the left of the orange vertical line, represent the
ft̄i; X̄ig points used to construct the orbit-average curve, the
orange vertical line represents the time taverage-end ¼ −30M from
which the instantaneous quantities are used to construct the orbit-
average curve, and the gray vertical line corresponds to time at
which the inspiral ends, that is tinspiral-end. The green dots, on the
right of the vertical orange line, corresponds to values of the
instantaneous eccentric quantities, which are used together with
the black dots to generate the interpolated function representing
the orbit-average curve. The insets in both panels zoom into the
last 1000M of evolution to better show the behavior of the orbit-
average curves at the end of the inspiral.

5Once an orbit-average quantity, fhtii; hXiig, has been com-
puted, it is interpolated using cubic splines GSL routine
[176] so that it can be evaluated onto the time grid with a
sampling rate corresponding to the one specified by the user.
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orbit-average ω and pr� are constructed from the instanta-
neous eccentric dynamics for a particular eccentric configu-
ration, q ¼ 3; χ1 ¼ 0.5; χ2 ¼ 0.25; e0 ¼ 0.3. Additionally,
the evolution of the quasicircular quantities is included in
Fig. 11, showing that the orbit-average curves for ω and pr�
agree remarkably well with the ones corresponding to the
quasicircular evolution.
In Fig. 11, the orange vertical line corresponds to

taverage-end, from which the values of the instantaneous,
eccentric dynamical variables (green dots on the right of the
orange vertical line) are attached, and together with the
orbit-average values (black dots on the left of the orange
vertical line) form the orbit-average curve, which is then
interpolated. Thus, between the time of the last found
maximum, tlast- max (the closest black dot to the orange
vertical line), and the value of taverage-end there are no points
to use. If the distance between tlast- max and taverage-end is too
large, one can get unphysical oscillations coming from
interpolation artefacts due to a too large interpolated
interval without points. By contrast if taverage-end is very
close to tlast- max one could introduce residual oscillations
due to eccentricity, or spurious oscillations due to the
artefacts of the interpolation method, as at plunge the
change of behavior of the dynamical quantities, espe-
cially pr�, challenges the interpolation procedure.
Furthermore, we note that the position of tlast- max depends
substantially on the spins of the binary. For instance,
for high-negative spins tlast- max typically occurs far
from the merger (tωpeak − tlast- max ≳ 100M), while for
high-positive spins tlast−min can be very close to merger
tωpeak − tlast- max ≲ 50M. We use the following phenomeno-
logical prescription for the dependence of taverage-end with
spins,

taverage-endχ ðtaverage-endj ; χlow; χhigh; βχ ; χeffÞ
¼ taverage-end0 × ½1 − wðβχ ; χlow; χeffÞ�
þ taverage-end1 × ½1 − wðβχ ; χhigh; χeffÞ�
þ taverage-end2 × wðβχ ; χhigh; χeffÞ; ðB2Þ

where the function w is the sigmoid defined in Eq. (8), and,
the effective spin parameter is defined as,

χeff ¼
m1χ1 þm2χ2

M
: ðB3Þ

In Eq. (B2) the indices takes the values j ¼ 0, 1, 2, while
βχ ¼ 50, fχlow; χhighg ¼ f−0.5; 0.95g and ðtaverage-end0 ;

taverage-end1 ; taverage-end2 Þ ¼ ð60M; 30M; 20MÞ. In Fig. 12 the
dependence of tχaverage-end on the effective spin parameter is

illustrated. The values of the parameters ftaverage-end0 ;
taverage-end1 ; taverage-end2 ; χlow; χhighg are chosen after evaluating
the model in a grid of points in parameter space q¼½1−20�,

χeff ¼ ½−0.99; 0.99�, e ¼ ½0; 0.3� with tappend ¼ ½10; 100�,
and imposing that the frequency of the (2, 2)-mode does not
have oscillations above 20% with respect to the (2, 2)-mode
frequency of the quasicircular SEOBNRv4model in the last
100M prior to the peak of the (2, 2)-mode amplitude. We
note that the current prescription for the taverage-end param-
eter is independent of the mass ratio, because we find that
the spin effects are dominant for the mass ratios we
consider here.
We note that the orbit averaging procedure fails when

eccentricity goes to zero due to the absence of maxima in
the orbital quantities, as they become nonoscillatory
functions. Hence, in order to have a smooth transition to
the quasicircular limit, we need a new metric to measure the
distance between the time of the last found maxima,
tlast- max, and the time corresponding to taverage-endχ . This is
due to the fact that the smaller the eccentricity, the earlier
tlast- max occurs in the inspiral, and thus, the larger the region
without points over which the orbit-average quantities
would be interpolated. In practice, we find that one can
use the time at which the inspiral ends,6 tinspiral-end (dashed
gray vertical line in Fig. 11), instead of taverage-endχ , because
for low eccentricities a difference of ∼30–100M has
negligible impact in the orbit averaging procedure.
Hence, we impose that taverage-end depends on

Δt ¼ tinspiral-end − tlast-max; ðB4Þ

such that the final expression for the taverage-end reads as
follows,

FIG. 12. Dependence of the taverage-endχ parameter defined in
Eq. (B3) on the effective spin parameter. The green (blue) dashed
vertical line corresponds to χlow ¼ −0.5 (χhigh ¼ 0.95) values

used to construct taverage-endχ .

6We refer to the last point of the evolution of the equations of
motion given by Eqs. (2).
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taverage-endðΔt; χeffÞ ¼ taverage-endχ ðχeffÞ × ½1 − wðβt;Δt0;ΔtÞ�
þ αt × wðβt;Δt0;ΔtÞ × Δt; ðB5Þ

where βt ¼ 0.1,Δt0 ¼ 350M and αt ¼ 0.75. This choice of
parameters ensures that taverage-end increases as the time at
which the lastmaximum is found occurs at earlier times in the
inspiral for low-initial eccentricities, thus smoothly increas-
ing the region inwhich the instantaneous variables are used to
construct the orbit-average quantities. These values were set
after testing and evaluating more than 104 waveforms
for initial eccentricities e < 0.1 in the parameter space
q ¼ ½1; 20�, χeff ¼ ½−0.9; 0.9�. Finally, we only consider
the orbit averaging procedure when at least three maxima
are found during the inspiral, otherwise we use the instanta-
neous dynamics to construct the NQC function in Eq. (7).

APPENDIX C: PN EXPRESSIONS FOR
DYNAMICAL QUANTITIES IN THE
KEPLERIAN PARAMETRIZATION

In this Appendix, we provide the expressions of the
dynamical quantities pr; _pr, and _r in the Keplerian para-
metrization. They are needed for calculating the initial
conditions for eccentric orbits, as discussed in Sec. II C.
In the Keplerian parametrization we have:

r ¼ 1

upð1þ e cos ζÞ ; ðC1Þ

where up is the inverse semilatus rectum and ζ is the
relativistic anomaly. Inverting the Hamiltonian at periastron
and apastron, r� ¼ ½upð1� eÞ�−1, and solving for the
energy E and up through to 2PN order, we obtain

E ¼ e2 − 1

2p2
ϕ

þ 1− e2

8c2p4
ϕ

½e2ðν− 7Þ − ν− 9� þ e2 − 1

16c4p6
ϕ

½e4ðν2 − 7νþ 33Þ− 2e2ðν2 þ 9ν− 71Þ þ ðν− 7Þνþ 81�

þ 1− e4

c3p5
ϕ

½2δχA − ðν− 2ÞχS� þ
1− e2

2c4L6
fχ2S½e2ð−8ν2 þ 8ν− 3Þ − 1� þ χ2Að3e2 þ 1Þð4ν− 1Þ þ 2δχAχS½e2ð4ν− 3Þ− 1�g;

up ¼ 1

p2
ϕ

þ e2 þ 3

c2p4
ϕ

þ e2 þ 3

c4p6
ϕ

ð2e2 − νþ 6Þ þ e2 þ 3

c3p5
ϕ

½−2δχA þ ðν− 2ÞχS�

þ 2

c4p6
ϕ

fχ2S½e2ð3ν2 − 3νþ 1Þ þ ν2 − νþ 1�− χ2Aðe2 þ 1Þð4ν− 1Þ− δχAχS½e2ð3ν− 2Þ þ ν− 2�g: ðC2Þ

Inverting the Hamiltonian to obtain prðE; pϕ; rÞ, then substituting Eqs. (C1) and (C2), yields prðpϕ; e; ζÞ, which is given
by the 2PN expansion

pr ¼
e sinζ
pϕ

þ e sinζ
c2p3

ϕ

ðe2þ ecosζþ 2Þþ e2 sinζðe− cosζÞ½−2δχAþðν−2ÞχS�
c3p4

ϕ

þ e sinζ
4c4p5

ϕ

f8e4þ e2ð43− 10νÞ− 12νþ 22

þ½8e3þ eð12− 20νÞ�cosζþ e2ð3−6νÞcosð2ζÞþ χ2A½e2ð8ν− 2Þcosð2ζÞþ e2ð4− 16νÞþ eð48ν− 12Þcosζþ 24ν− 6�
þ χ2S½−2e2ð1− 2νÞ2 cosð2ζÞþ e2ð8ðν− 1Þνþ 4Þþ eð−40ðν− 1Þν− 12Þcosζ− 6ð1− 2νÞ2�
− δχAχS½e2ð4− 8νÞcosð2ζÞþ 8e2ðν− 1Þþ eð24− 40νÞcosζ− 24νþ 12�g: ðC3Þ

Substituting r and pr from Eqs. (C1) and (C3) into _pr ¼ −∂ĤEOB=∂r, and expanding yields

_pr¼
ecosζðecosζþ1Þ2

p4
ϕ

−
eðecosζþ1Þ2½ðe2ðν−5Þ−ν−7Þcosζþeðcosð2ζÞþ3Þ�

2c2p6
ϕ

þeðecosζþ1Þ2½−2δχAþðν−2ÞχS�
2c3p7

ϕ

½6ðe2þ1Þcosζ−eð3cosð2ζÞþ1Þ�

þeðecosζþ1Þ2
8c4p8

ϕ

f2e½ðe2ðν−7Þ−7ν−41Þcosð2ζÞþ3e2ðν−7Þ−6eνcosð3ζÞþ11ν−59�

þ½e4ð3ν2−17νþ55Þ−6e2ðν2þ3ν−39Þþ3ν2−νþ95�cosζg

þeðecosζþ1Þ2
4c4p8

ϕ

f2δχAχS½ðe2ð19−26νÞþ12νÞcosðζÞþ3e2ð2ν−1Þcosð3ζÞþ2eð11ν−7Þcosð2ζÞþ2eðν−1Þ�

þχ2S½ðe2ð52ν2−52νþ19Þ−24ðν−1ÞνÞcosðζÞ−eð3eð1−2νÞ2cosð3ζÞþ2ð22ν2−22νþ7Þcosð2ζÞþ4ν2−4νþ2Þ�
þχ2Aeð4ν−1Þ½−19ecosζþ3ecosð3ζÞþ14cosð2ζÞþ2�g: ðC4Þ

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORMS FOR … PHYS. REV. D 105, 044035 (2022)

044035-23



Similarly, for _r ¼ ∂ĤEOB=∂pr, we obtain

_r ¼ e sin ζ
pϕ

þ e sin ζ
2c2p3

ϕ

½e2ð−ðν − 1ÞÞ − 6e cos ζ þ ν − 3� þ e2 sin ζðcos ζ − eÞ
c3p4

ϕ

½2δχA þ ð2 − νÞχS�

þ e
8c4p5

ϕ

f2eð3e2ðν − 3Þ þ 11ν − 29Þ sinð2ζÞ þ 3e2ð2νþ 1Þ sinð3ζÞ

þ ½e4ð3ðν − 3Þνþ 7Þ þ e2ð−6ν2 þ 4νþ 25Þ þ 3ν2 þ 27ν − 81� sin ζg
þ e
2c4p5

ϕ

fχ2A sin ζð4ν − 1Þ½−3e2 þ 2e cos ζ þ 1� þ χ2S sin ζ½e2ð8ν2 − 8νþ 3Þ − 2eð2ν2 − 2νþ 1Þ cos ζ − ð1 − 2νÞ2�

þ 2δχAχS sin ζ½e2ð3 − 4νÞ þ 2eðν − 1Þ cos ζ þ 2ν − 1�g: ðC5Þ

[1] H. A. Bethe and G. E. Brown, Evolution of binary compact
objects which merge, Astrophys. J. 506, 780 (1998).

[2] K. Belczynski, V. Kalogera, and T. Bulik, A comprehen-
sive study of binary compact objects as gravitational wave
sources: Evolutionary channels, rates, and physical proper-
ties, Astrophys. J. 572, 407 (2002).

[3] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti,
T. Bulik, I. Mandel, and R. O’Shaughnessy, Double
compact objects II: Cosmological merger rates, Astrophys.
J. 779, 72 (2013).

[4] K. Belczynski, A. Buonanno, M. Cantiello, C. L. Fryer,
D. E. Holz, I. Mandel, M. C. Miller, and M. Walczak, The
formation and gravitational-wave detection of massive
stellar black-hole binaries, Astrophys. J. 789, 120 (2014).

[5] N. Mennekens and D. Vanbeveren, Massive double com-
pact object mergers: Gravitational wave sources and
r-process element production sites, Astron. Astrophys.
564, A134 (2014).

[6] M. Spera, M. Mapelli, and A. Bressan, The mass spectrum
of compact remnants from the parsec stellar evolution
tracks, Mon. Not. R. Astron. Soc. 451, 4086 (2015).

[7] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy,
The first gravitational-wave source from the isolated evo-
lution of two 40–100Msun stars, Nature (London) 534, 512
(2016).

[8] J. J. Eldridge and E. R. Stanway, BPASS predictions for
binary black-hole mergers, Mon. Not. R. Astron. Soc. 462,
3302 (2016).

[9] P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris,
and T. J. Moriya, A new route towards merging massive
black holes, Astron. Astrophys. 588, A50 (2016).

[10] M. Mapelli, N. Giacobbo, E. Ripamonti, and M. Spera,
The cosmic merger rate of stellar black hole binaries from
the Illustris simulation, Mon. Not. R. Astron. Soc. 472,
2422 (2017).

[11] M. Mapelli and N. Giacobbo, The cosmic merger rate of
neutron stars and black holes, Mon. Not. R. Astron. Soc.
479, 4391 (2018).

[12] S. Stevenson, A. Vigna-Gómez, I. Mandel, J. W. Barrett,
C. J. Neijssel, D. Perkins, and S. E. de Mink, Formation of

the first three gravitational-wave observations through
isolated binary evolution, Nat. Commun. 8, 14906 (2017).

[13] N. Giacobbo and M. Mapelli, The progenitors of compact-
object binaries: Impact ofmetallicity, common envelope and
natal kicks, Mon. Not. R. Astron. Soc. 480, 2011 (2018).

[14] M. U. Kruckow, T. M. Tauris, N. Langer, M. Kramer, and
R. G. Izzard, Progenitors of gravitational wave mergers:
Binary evolution with the stellar grid-based code Com-
BinE, Mon. Not. R. Astron. Soc. 481, 1908 (2018).

[15] P. C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[16] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quant. Grav. 32, 115012 (2015).

[17] F. Acernese et al. (VIRGO Collaboration), Advanced
Virgo: A second-generation interferometric gravitational
wave detector, Classical Quant. Grav. 32, 024001 (2015).

[18] T. Akutsu et al. (KAGRA Collaboration), KAGRA: 2.5
generation interferometric gravitational wave detector,
Nat. Astron. 3, 35 (2019).

[19] S. F. P. Zwart and S. McMillan, Black hole mergers in the
universe, Astrophys. J. Lett. 528, L17 (2000).

[20] M. C. Miller and D. P. Hamilton, Production of intermedi-
ate-mass black holes in globular clusters, Mon. Not. R.
Astron. Soc. 330, 232 (2002).

[21] M. C. Miller and D. P. Hamilton, Four-body effects in
globular cluster black hole coalescence, Astrophys. J. 576,
894 (2002).

[22] K. Gultekin, M. C. Miller, and D. P. Hamilton, Growth
of intermediate–mass black holes in globular clusters,
Astrophys. J. 616, 221 (2004).

[23] K. Gultekin, M. C. Miller, and D. P. Hamilton, Three-body
dynamics with gravitational wave emission, Astrophys. J.
640, 156 (2006).

[24] R. M. O’Leary, F. A. Rasio, J. M. Fregeau, N. Ivanova, and
R. W. O’Shaughnessy, Binary mergers and growth of black
holes in dense star clusters, Astrophys. J. 637, 937 (2006).

[25] A. Sadowski, K. Belczynski, T. Bulik, N. Ivanova, F. A.
Rasio, and R.W. O’Shaughnessy, The total merger rate of
compact object binaries in the local Universe, Astrophys. J.
676, 1162 (2008).

RAMOS-BUADES, BUONANNO, KHALIL, and OSSOKINE PHYS. REV. D 105, 044035 (2022)

044035-24

https://doi.org/10.1086/306265
https://doi.org/10.1086/340304
https://doi.org/10.1088/0004-637X/779/1/72
https://doi.org/10.1088/0004-637X/779/1/72
https://doi.org/10.1088/0004-637X/789/2/120
https://doi.org/10.1051/0004-6361/201322198
https://doi.org/10.1051/0004-6361/201322198
https://doi.org/10.1093/mnras/stv1161
https://doi.org/10.1038/nature18322
https://doi.org/10.1038/nature18322
https://doi.org/10.1093/mnras/stw1772
https://doi.org/10.1093/mnras/stw1772
https://doi.org/10.1051/0004-6361/201628133
https://doi.org/10.1093/mnras/stx2123
https://doi.org/10.1093/mnras/stx2123
https://doi.org/10.1093/mnras/sty1613
https://doi.org/10.1093/mnras/sty1613
https://doi.org/10.1038/ncomms14906
https://doi.org/10.1093/mnras/sty1999
https://doi.org/10.1093/mnras/sty2190
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1038/s41550-018-0658-y
https://doi.org/10.1086/312422
https://doi.org/10.1046/j.1365-8711.2002.05112.x
https://doi.org/10.1046/j.1365-8711.2002.05112.x
https://doi.org/10.1086/341788
https://doi.org/10.1086/341788
https://doi.org/10.1086/424809
https://doi.org/10.1086/499917
https://doi.org/10.1086/499917
https://doi.org/10.1086/498446
https://doi.org/10.1086/528932
https://doi.org/10.1086/528932


[26] J. M. B. Downing, M. J. Benacquista, M. Giersz, and R.
Spurzem, Compact binaries in star clusters–i. Black hole
binaries inside globular clusters, Mon. Not. R. Astron. Soc.
407, 1946 (2010).

[27] J. M. B. Downing, M. J. Benacquista, M. Giersz, and R.
Spurzem, Compact binaries in star clusters–ii. Escapers
and detection rates, Mon. Not. R. Astron. Soc. 416, 133
(2011).

[28] J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, The
formation of eccentric compact binary inspirals and the
role of gravitational wave emission in binary-single stellar
encounters, Astrophys. J. 784, 71 (2014).

[29] C. L. Rodriguez, M. Morscher, B. Pattabiraman, S.
Chatterjee, C.-J. Haster, and F. A. Rasio, Binary Black
Hole Mergers from Globular Clusters: Implications for
Advanced LIGO, Phys. Rev. Lett. 115, 051101 (2015);
Erratum, Phys. Rev. Lett. 116, 029901 (2016).

[30] A. Askar, M. Szkudlarek, D. Gondek-Rosińska, M. Giersz,
and T. Bulik, MOCCA-SURVEY Database–I. Coalescing
binary black holes originating from globular clusters, Mon.
Not. R. Astron. Soc. 464, L36 (2017).

[31] C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Binary
black hole mergers from globular clusters: Masses, merger
rates, and the impact of stellar evolution, Phys. Rev. D 93,
084029 (2016).

[32] C. L. Rodriguez, C.-J. Haster, S. Chatterjee, V. Kalogera,
and F. A. Rasio, Dynamical formation of the GW150914
binary black hole, Astrophys. J. Lett. 824, L8 (2016).

[33] J. Samsing and E. Ramirez-Ruiz, On the assembly rate of
highly eccentric binary black hole mergers, Astrophys. J.
Lett. 840, L14 (2017).

[34] J. Samsing, Eccentric black hole mergers forming in
globular clusters, Phys. Rev. D 97, 103014 (2018).

[35] C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, and F. A.
Rasio, Post-Newtonian Dynamics in Dense Star Clusters:
Highly-Eccentric, Highly-Spinning, and Repeated Binary
Black Hole Mergers, Phys. Rev. Lett. 120, 151101 (2018).

[36] C. L. Rodriguez and A. Loeb, Redshift Evolution of
the Black Hole Merger Rate from Globular Clusters,
Astrophys. J. Lett. 866, L5 (2018).

[37] G. Fragione and B. Kocsis, Black Hole Mergers from an
Evolving Population of Globular Clusters, Phys. Rev. Lett.
121, 161103 (2018).

[38] M. Zevin, J. Samsing, C. Rodriguez, C.-J. Haster, and E.
Ramirez-Ruiz, Eccentric black hole mergers in dense star
clusters: The role of binary–binary encounters, Astrophys.
J. 871, 91 (2019).

[39] L. Gondán and B. Kocsis, High eccentricities and high
masses characterize gravitational-wave captures in galactic
nuclei as seen by Earth-based detectors, Mon. Not. R.
Astron. Soc. 506, 1665 (2021).

[40] R. M. O’Leary, B. Kocsis, and A. Loeb, Gravitational
waves from scattering of stellar-mass black holes in
galactic nuclei, Mon. Not. R. Astron. Soc. 395, 2127
(2009).

[41] F. Antonini and H. B. Perets, Secular evolution of compact
binaries near massive black holes: Gravitational wave
sources and other exotica, Astrophys. J. 757, 27 (2012).

[42] D. Tsang, Shattering flares during close encounters of
neutron stars, Astrophys. J. 777, 103 (2013).

[43] F. Antonini and F. A. Rasio, Merging black hole binaries in
galactic nuclei: Implications for Advanced-LIGO detec-
tions, Astrophys. J. 831, 187 (2016).

[44] C. Petrovich and F. Antonini, Greatly enhanced merger
rates of compact-object binaries in non-spherical nuclear
star clusters, Astrophys. J. 846, 146 (2017).

[45] N. C. Stone, B. D. Metzger, and Z. Haiman, Assisted
inspirals of stellar mass black holes embedded in AGN
discs: Solving the “final AU problem”, Mon. Not. R.
Astron. Soc. 464, 946 (2017).

[46] N. C. Stone, A. H. W. Küpper, and J. P. Ostriker, Formation
of massive black holes in galactic nuclei: Runaway tidal
encounters, Mon. Not. R. Astron. Soc. 467, 4180 (2017).

[47] A. Rasskazov and B. Kocsis, The rate of stellar mass black
hole scattering in galactic nuclei, Astrophys. J. 881, 20
(2019).

[48] Y. Kozai, Secular perturbations of asteroids with high
inclination and eccentricity, Astron. J. 67, 591 (1962).

[49] M. L. Lidov, The evolution of orbits of artificial satellites
of planets under the action of gravitational perturbations of
external bodies, AIAA J. 9, 719 (1962).

[50] L. Wen, On the eccentricity distribution of coalescing
black hole binaries driven by the Kozai mechanism in
globular clusters, Astrophys. J. 598, 419 (2003).

[51] J. H. VanLandingham, M. C. Miller, D. P. Hamilton, and
D. C. Richardson, The role of the Kozai–Lidov mechanism
in black hole binary mergers in galactic centers, Astrophys.
J. 828, 77 (2016).

[52] C. L. Rodriguez, M. Zevin, C. Pankow, V. Kalogera, and
F. A. Rasio, Illuminating black hole binary formation
channels with spins in Advanced LIGO, Astrophys. J.
Lett. 832, L2 (2016).

[53] F. Antonini, S. Toonen, and A. S. Hamers, Binary black
hole mergers from field triples: Properties, rates and the
impact of stellar evolution, Astrophys. J. 841, 77 (2017).

[54] G. Fragione and O. Bromberg, Eccentric binary black hole
mergers in globular clusters hosting intermediate-mass
black holes, Mon. Not. R. Astron. Soc. 488, 4370 (2019).

[55] G. Fragione, E. Grishin, N. W. C. Leigh, H. B. Perets, and
R. Perna, Black hole and neutron star mergers in galactic
nuclei, Mon. Not. R. Astron. Soc. 488, 47 (2019).

[56] G. Fragione and B. Kocsis, Black hole mergers from
quadruples, Mon. Not. R. Astron. Soc. 486, 4781 (2019).

[57] I. Mandel and R. O’Shaughnessy, Compact binary coa-
lescences in the band of ground-based gravitational-wave
detectors, Classical Quant. Grav. 27, 114007 (2010).

[58] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophysical implications of the binary black-hole
merger GW150914, Astrophys. J. Lett. 818, L22 (2016).

[59] W.M. Farr, S. Stevenson, M. C. Miller, I. Mandel, B. Farr,
and A. Vecchio, Distinguishing spin-aligned and isotropic
black hole populations with gravitational waves, Nature
(London) 548, 426 (2017).

[60] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Binary black hole population properties inferred
from the first and second observing runs of Advanced
LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24
(2019).

[61] M. Zevin, I. M. Romero-Shaw, K. Kremer, E. Thrane, and
P. D. Lasky, Implications of eccentric observations on

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORMS FOR … PHYS. REV. D 105, 044035 (2022)

044035-25

https://doi.org/10.1111/j.1365-2966.2010.17040.x
https://doi.org/10.1111/j.1365-2966.2010.17040.x
https://doi.org/10.1111/j.1365-2966.2011.19023.x
https://doi.org/10.1111/j.1365-2966.2011.19023.x
https://doi.org/10.1088/0004-637X/784/1/71
https://doi.org/10.1103/PhysRevLett.115.051101
https://doi.org/10.1103/PhysRevLett.116.029901
https://doi.org/10.1093/mnrasl/slw177
https://doi.org/10.1093/mnrasl/slw177
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.3847/2041-8205/824/1/L8
https://doi.org/10.3847/2041-8213/aa6f0b
https://doi.org/10.3847/2041-8213/aa6f0b
https://doi.org/10.1103/PhysRevD.97.103014
https://doi.org/10.1103/PhysRevLett.120.151101
https://doi.org/10.3847/2041-8213/aae377
https://doi.org/10.1103/PhysRevLett.121.161103
https://doi.org/10.1103/PhysRevLett.121.161103
https://doi.org/10.3847/1538-4357/aaf6ec
https://doi.org/10.3847/1538-4357/aaf6ec
https://doi.org/10.1093/mnras/stab1722
https://doi.org/10.1093/mnras/stab1722
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1111/j.1365-2966.2009.14653.x
https://doi.org/10.1088/0004-637X/757/1/27
https://doi.org/10.1088/0004-637X/777/2/103
https://doi.org/10.3847/0004-637X/831/2/187
https://doi.org/10.3847/1538-4357/aa8628
https://doi.org/10.1093/mnras/stw2260
https://doi.org/10.1093/mnras/stw2260
https://doi.org/10.1093/mnras/stx097
https://doi.org/10.3847/1538-4357/ab2c74
https://doi.org/10.3847/1538-4357/ab2c74
https://doi.org/10.1086/108790
https://doi.org/10.1016/0032-0633(62)90129-0
https://doi.org/10.1086/378794
https://doi.org/10.3847/0004-637X/828/2/77
https://doi.org/10.3847/0004-637X/828/2/77
https://doi.org/10.3847/2041-8205/832/1/L2
https://doi.org/10.3847/2041-8205/832/1/L2
https://doi.org/10.3847/1538-4357/aa6f5e
https://doi.org/10.1093/mnras/stz2024
https://doi.org/10.1093/mnras/stz1651
https://doi.org/10.1093/mnras/stz1175
https://doi.org/10.1088/0264-9381/27/11/114007
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.1038/nature23453
https://doi.org/10.1038/nature23453
https://doi.org/10.3847/2041-8213/ab3800
https://doi.org/10.3847/2041-8213/ab3800


binary black hole formation channels, Astrophys. J. Lett.
921, L43 (2021).

[62] LIGO Scientific, Virgo, and KAGRA Collaborations, The
population of merging compact binaries inferred using
gravitational waves through GWTC-3, arXiv:2111.03634.

[63] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo
during the First and Second Observing Runs, Phys. Rev. X
9, 031040 (2019).

[64] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-2: Compact Binary Coalescences Observed
by LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[65] R. Abbott et al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part of the
third observing run, arXiv:2111.03606.

[66] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Search for eccentric binary black hole mergers with
Advanced LIGO and Advanced Virgo during their first and
second observing runs, Astrophys. J. 883, 149 (2019).

[67] I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Searching
for eccentricity: Signatures of dynamical formation in the
first gravitational-wave transient catalogue of LIGO and
Virgo, Mon. Not. R. Astron. Soc. 490, 5210 (2019).

[68] A. H. Nitz, A. Lenon, and D. A. Brown, Search for eccentric
binary neutron star mergers in the first and second observing
runs of Advanced LIGO, Astrophys. J. 890, 1 (2020).

[69] I. M. Romero-Shaw, P. D. Lasky, E. Thrane, and J. C.
Bustillo, GW190521: Orbital eccentricity and signatures of
dynamical formation in a binary black hole merger signal,
Astrophys. J. Lett. 903, L5 (2020).

[70] V. Gayathri, J. Healy, J. Lange, B. O’Brien, M. Szcze-
panczyk, I. Bartos, M. Campanelli, S. Klimenko, C.
Lousto, and R. O’Shaughnessy, GW190521 as a highly
eccentric black hole merger, arXiv:2009.05461.

[71] M. Favata, C. Kim, K. G. Arun, J. C. Kim, and H.W. Lee,
Constraining the orbital eccentricity of inspiralling
compact binary systems with Advanced LIGO, arXiv:
2108.05861 [Phys. Rev. D (to be published)].

[72] E. O’Shea and P. Kumar, Correlations in parameter
estimation of low-mass eccentric binaries: GW151226 &
GW170608, arXiv:2107.07981.

[73] I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, Signs of
eccentricity in two gravitational-wave signals may indicate
a sub-population of dynamically assembled binary black
holes, Astrophys. J. Lett. 921, L31 (2021).

[74] M. Punturo et al., The Einstein Telescope: A third-
generation gravitational wave observatory, Classical
Quant. Grav. 27, 194002 (2010).

[75] B. P. Abbott et al. (LIGO Scientific Collaboration), Ex-
ploring the sensitivity of next generation gravitational
wave detectors, Classical Quant. Grav. 34, 044001 (2017).

[76] D. Reitze et al., The US Program in ground-based
gravitational wave science: Contribution from the LIGO
Laboratory, Bull. Am. Astron. Soc. 51, 141 (2019).

[77] D. Reitze et al., Cosmic explorer: The U.S. contribution to
gravitational-wave astronomy beyond LIGO, Bull. Am.
Astron. Soc. 51, 035 (2019).

[78] P. Amaro-Seoane et al., Laser interferometer space an-
tenna, arXiv:1702.00786.

[79] J. Luo et al. (TianQin Collaboration), TianQin: A space-
borne gravitational wave detector, Classical Quant. Grav.
33, 035010 (2016).

[80] A. Sesana, Self consistent model for the evolution of
eccentric massive black hole binaries in stellar environ-
ments: Implications for gravitational wave observations,
Astrophys. J. 719, 851 (2010).

[81] K. Breivik, C. L. Rodriguez, S. L. Larson, V. Kalogera, and
F. A. Rasio, Distinguishing between formation channels
for binary black holes with LISA, Astrophys. J. Lett. 830,
L18 (2016).

[82] J. Samsing and D. J. D’Orazio, Black hole mergers from
globular clusters observable by LISA I: Eccentric sources
originating from relativistic N-body dynamics, Mon. Not.
R. Astron. Soc. 481, 5445 (2018).

[83] V. Cardoso, C. F. B. Macedo, and R. Vicente, Eccentricity
evolution of compact binaries and applications to gravi-
tational-wave physics, Phys. Rev. D 103, 023015 (2021).

[84] A. Gopakumar and B. R. Iyer, Gravitational waves from
inspiralling compact binaries: Angular momentum flux,
evolution of the orbital elements and the wave form to
the second post-Newtonian order, Phys. Rev. D 56, 7708
(1997).

[85] A. Gopakumar and B. R. Iyer, Second post-Newtonian
gravitational wave polarizations for compact binaries in
elliptical orbits, Phys. Rev. D 65, 084011 (2002).

[86] T. Damour, A. Gopakumar, and B. R. Iyer, Phasing of
gravitational waves from inspiralling eccentric binaries,
Phys. Rev. D 70, 064028 (2004).

[87] C. Konigsdorffer and A. Gopakumar, Phasing of gravita-
tional waves from inspiralling eccentric binaries at the
third-and-a-half post-Newtonian order, Phys. Rev. D 73,
124012 (2006).

[88] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Tail effects in the 3PN gravitational wave energy flux of
compact binaries in quasielliptical orbits, Phys. Rev. D 77,
064034 (2008).

[89] K. G. Arun, L. Blanchet, B. R. Iyer, and M. S. S. Qusailah,
Inspiralling compact binaries in quasielliptical orbits: The
complete 3PN energy flux, Phys. Rev. D 77, 064035 (2008).

[90] K. G. Arun, L. Blanchet, B. R. Iyer, and S. Sinha, Third
post-Newtonian angular momentum flux and the secular
evolution of orbital elements for inspiralling compact
binaries in quasi-elliptical orbits, Phys. Rev. D 80, 124018
(2009).

[91] R.-M. Memmesheimer, A. Gopakumar, and G. Schaefer,
Third post-Newtonian accurate generalized quasi-Kepler-
ian parametrization for compact binaries in eccentric
orbits, Phys. Rev. D 70, 104011 (2004).

[92] N. Yunes, K. G. Arun, E. Berti, and C. M. Will, Post-
circular expansion of eccentric binary inspirals: Fourier-
domain waveforms in the stationary phase approximation,
Phys. Rev. D 80, 084001 (2009); Erratum, Phys. Rev. D
89, 109901 (2014).

[93] E. A.Huerta, P. Kumar, S. T.McWilliams, R.O’Shaughnessy,
and N. Yunes, Accurate and efficient waveforms for
compact binaries on eccentric orbits, Phys. Rev. D 90, 084016
(2014).

RAMOS-BUADES, BUONANNO, KHALIL, and OSSOKINE PHYS. REV. D 105, 044035 (2022)

044035-26

https://doi.org/10.3847/2041-8213/ac32dc
https://doi.org/10.3847/2041-8213/ac32dc
https://arXiv.org/abs/2111.03634
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://doi.org/10.3847/1538-4357/ab3c2d
https://doi.org/10.1093/mnras/stz2996
https://doi.org/10.3847/1538-4357/ab6611
https://doi.org/10.3847/2041-8213/abbe26
https://arXiv.org/abs/2009.05461
https://arXiv.org/abs/2108.05861
https://arXiv.org/abs/2108.05861
https://arXiv.org/abs/2107.07981
https://doi.org/10.3847/2041-8213/ac3138
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/1361-6382/aa51f4
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0004-637X/719/1/851
https://doi.org/10.3847/2041-8205/830/1/L18
https://doi.org/10.3847/2041-8205/830/1/L18
https://doi.org/10.1093/mnras/sty2334
https://doi.org/10.1093/mnras/sty2334
https://doi.org/10.1103/PhysRevD.103.023015
https://doi.org/10.1103/PhysRevD.56.7708
https://doi.org/10.1103/PhysRevD.56.7708
https://doi.org/10.1103/PhysRevD.65.084011
https://doi.org/10.1103/PhysRevD.70.064028
https://doi.org/10.1103/PhysRevD.73.124012
https://doi.org/10.1103/PhysRevD.73.124012
https://doi.org/10.1103/PhysRevD.77.064034
https://doi.org/10.1103/PhysRevD.77.064034
https://doi.org/10.1103/PhysRevD.77.064035
https://doi.org/10.1103/PhysRevD.80.124018
https://doi.org/10.1103/PhysRevD.80.124018
https://doi.org/10.1103/PhysRevD.70.104011
https://doi.org/10.1103/PhysRevD.80.084001
https://doi.org/10.1103/PhysRevD.89.109901
https://doi.org/10.1103/PhysRevD.89.109901
https://doi.org/10.1103/PhysRevD.90.084016
https://doi.org/10.1103/PhysRevD.90.084016


[94] C. K. Mishra, K. G. Arun, and B. R. Iyer, Third post-
Newtonian gravitational waveforms for compact binary
systems in general orbits: Instantaneous terms, Phys. Rev.
D 91, 084040 (2015).

[95] N. Loutrel and N. Yunes, Eccentric gravitational wave
bursts in the post-Newtonian formalism, Classical Quant.
Grav. 34, 135011 (2017).

[96] A. Klein, Y. Boetzel, A. Gopakumar, P. Jetzer, and L.
de Vittori, Fourier domain gravitational waveforms for
precessing eccentric binaries, Phys. Rev. D 98, 104043
(2018).

[97] B. Moore, T. Robson, N. Loutrel, and N. Yunes, Towards a
Fourier domain waveform for non-spinning binaries with
arbitrary eccentricity, Classical Quant. Grav. 35, 235006
(2018).

[98] B. Moore and N. Yunes, A 3PN Fourier domain waveform
for non-spinning binaries with moderate eccentricity,
Classical Quant. Grav. 36, 185003 (2019).

[99] S. Tanay, A. Klein, E. Berti, and A. Nishizawa, Con-
vergence of Fourier-domain templates for inspiraling
eccentric compact binaries, Phys. Rev. D 100, 064006
(2019).

[100] S. Tiwari and A. Gopakumar, Combining post-circular
and Padé approximations to compute Fourier domain
templates for eccentric inspirals, Phys. Rev. D 102, 084042
(2020).

[101] I. Hinder, F. Herrmann, P. Laguna, and D. Shoemaker,
Comparisons of eccentric binary black hole simulations
with post-Newtonian models, Phys. Rev. D 82, 024033
(2010).

[102] E. A. Huerta et al., Physics of eccentric binary black hole
mergers: A numerical relativity perspective, Phys. Rev. D
100, 064003 (2019).

[103] A. G. M. Lewis, A. Zimmerman, and H. P. Pfeiffer,
Fundamental frequencies and resonances from eccentric
and precessing binary black hole inspirals, Classical
Quant. Grav. 34, 124001 (2017).

[104] S. Habib and E. A. Huerta, Characterization of numerical
relativity waveforms of eccentric binary black hole merg-
ers, Phys. Rev. D 100, 044016 (2019).

[105] A. Ramos-Buades, S. Husa, G. Pratten, H. Estellés, C.
García-Quirós, M. Mateu-Lucena, M. Colleoni, and R.
Jaume, First survey of spinning eccentric black hole
mergers: Numerical relativity simulations, hybrid wave-
forms, and parameter estimation, Phys. Rev. D 101,
083015 (2020).

[106] T. Islam, V. Varma, J. Lodman, S. E. Field, G. Khanna,
M. A. Scheel, H. P. Pfeiffer, D. Gerosa, and L. E. Kidder,
Eccentric binary black hole surrogate models for the
gravitational waveform and remnant properties: Compa-
rable mass, nonspinning case, Phys. Rev. D 103, 064022
(2021).

[107] I. Hinder, L. E. Kidder, and H. P. Pfeiffer, Eccentric binary
black hole inspiral-merger-ringdown gravitational wave-
form model from numerical relativity and post-Newtonian
theory, Phys. Rev. D 98, 044015 (2018).

[108] E. A. Huerta et al., Eccentric, nonspinning, inspiral,
Gaussian-process merger approximant for the detection
and characterization of eccentric binary black hole merg-
ers, Phys. Rev. D 97, 024031 (2018).

[109] Y. Setyawati and F. Ohme, Adding eccentricity to quasi-
circular binary-black-hole waveform models, Phys. Rev. D
103, 124011 (2021).

[110] R. Gold, S. Bernuzzi, M. Thierfelder, B. Brugmann, and F.
Pretorius, Eccentric binary neutron star mergers, Phys.
Rev. D 86, 121501 (2012).

[111] W. E. East, F. Pretorius, and B. C. Stephens, Eccentric
black hole-neutron star mergers: Effects of black hole spin
and equation of state, Phys. Rev. D 85, 124009 (2012).

[112] H. Yang, W. E. East, V. Paschalidis, F. Pretorius, and
R. F. P. Mendes, Evolution of highly eccentric binary
neutron stars including tidal effects, Phys. Rev. D 98,
044007 (2018).

[113] C. Chirenti, R. Gold, and M. C. Miller, Gravitational waves
from f-modes excited by the inspiral of highly eccentric
neutron star binaries, Astrophys. J. 837, 67 (2017).

[114] J. Samsing, M. MacLeod, and E. Ramirez-Ruiz, Formation
of tidal captures and gravitational wave inspirals in binary-
single interactions, Astrophys. J. 846, 36 (2017).

[115] H. Yang, Inspiralling eccentric binary neutron stars:
Orbital motion and tidal resonance, Phys. Rev. D 100,
064023 (2019).

[116] A. Buonanno and T. Damour, Effective one-body approach
to general relativistic two-body dynamics, Phys. Rev. D
59, 084006 (1999).

[117] A. Buonanno and T. Damour, Transition from inspiral to
plunge in binary black hole coalescences, Phys. Rev. D 62,
064015 (2000).

[118] T. Hinderer and S. Babak, Foundations of an effective-one-
body model for coalescing binaries on eccentric orbits,
Phys. Rev. D 96, 104048 (2017).

[119] Z. Cao and W.-B. Han, Waveform model for an eccentric
binaryblackhole basedon the effective-one-body-numerical-
relativity formalism, Phys. Rev. D 96, 044028 (2017).

[120] X. Liu, Z. Cao, and L. Shao, Validating the effective-one-
body numerical-relativity waveform models for spin-
aligned binary black holes along eccentric orbits, Phys.
Rev. D 101, 044049 (2020).

[121] D. Chiaramello and A. Nagar, Faithful analytical effective-
one-body waveform model for spin-aligned, moderately
eccentric, coalescing black hole binaries, Phys. Rev. D
101, 101501 (2020).

[122] X. Liu, Z. Cao, and Z.-H. Zhu, A higher-multipole
gravitational waveform model for an eccentric binary
black holes based on the effective-one-body-numerical-
relativity formalism, arXiv:2102.08614.

[123] A. Nagar, A. Bonino, and P. Rettegno, Effective one-body
multipolar waveform model for spin-aligned, quasicircu-
lar, eccentric, hyperbolic black hole binaries, Phys. Rev. D
103, 104021 (2021).

[124] A. Nagar and P. Rettegno, Next generation: Impact of high-
order analytical information on effective one body wave-
form models for noncircularized, spin-aligned black hole
binaries, Phys. Rev. D 104, 104004 (2021).

[125] S. Albanesi, A. Nagar, and S. Bernuzzi, Effective one-body
model for extreme-mass-ratio spinning binaries on eccen-
tric equatorial orbits: Testing radiation reaction and wave-
form, Phys. Rev. D 104, 024067 (2021).

[126] M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines,
Radiation-reaction force and multipolar waveforms for

EFFECTIVE-ONE-BODY MULTIPOLAR WAVEFORMS FOR … PHYS. REV. D 105, 044035 (2022)

044035-27

https://doi.org/10.1103/PhysRevD.91.084040
https://doi.org/10.1103/PhysRevD.91.084040
https://doi.org/10.1088/1361-6382/aa7449
https://doi.org/10.1088/1361-6382/aa7449
https://doi.org/10.1103/PhysRevD.98.104043
https://doi.org/10.1103/PhysRevD.98.104043
https://doi.org/10.1088/1361-6382/aaea00
https://doi.org/10.1088/1361-6382/aaea00
https://doi.org/10.1088/1361-6382/ab3778
https://doi.org/10.1103/PhysRevD.100.064006
https://doi.org/10.1103/PhysRevD.100.064006
https://doi.org/10.1103/PhysRevD.102.084042
https://doi.org/10.1103/PhysRevD.102.084042
https://doi.org/10.1103/PhysRevD.82.024033
https://doi.org/10.1103/PhysRevD.82.024033
https://doi.org/10.1103/PhysRevD.100.064003
https://doi.org/10.1103/PhysRevD.100.064003
https://doi.org/10.1088/1361-6382/aa66f4
https://doi.org/10.1088/1361-6382/aa66f4
https://doi.org/10.1103/PhysRevD.100.044016
https://doi.org/10.1103/PhysRevD.101.083015
https://doi.org/10.1103/PhysRevD.101.083015
https://doi.org/10.1103/PhysRevD.103.064022
https://doi.org/10.1103/PhysRevD.103.064022
https://doi.org/10.1103/PhysRevD.98.044015
https://doi.org/10.1103/PhysRevD.97.024031
https://doi.org/10.1103/PhysRevD.103.124011
https://doi.org/10.1103/PhysRevD.103.124011
https://doi.org/10.1103/PhysRevD.86.121501
https://doi.org/10.1103/PhysRevD.86.121501
https://doi.org/10.1103/PhysRevD.85.124009
https://doi.org/10.1103/PhysRevD.98.044007
https://doi.org/10.1103/PhysRevD.98.044007
https://doi.org/10.3847/1538-4357/aa5ebb
https://doi.org/10.3847/1538-4357/aa7e32
https://doi.org/10.1103/PhysRevD.100.064023
https://doi.org/10.1103/PhysRevD.100.064023
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.62.064015
https://doi.org/10.1103/PhysRevD.96.104048
https://doi.org/10.1103/PhysRevD.96.044028
https://doi.org/10.1103/PhysRevD.101.044049
https://doi.org/10.1103/PhysRevD.101.044049
https://doi.org/10.1103/PhysRevD.101.101501
https://doi.org/10.1103/PhysRevD.101.101501
https://arXiv.org/abs/2102.08614
https://doi.org/10.1103/PhysRevD.103.104021
https://doi.org/10.1103/PhysRevD.103.104021
https://doi.org/10.1103/PhysRevD.104.104004
https://doi.org/10.1103/PhysRevD.104.024067


eccentric, spin-aligned binaries in the effective-one-body
formalism, Phys. Rev. D 104, 024046 (2021).

[127] A. Placidi, S. Albanesi, A. Nagar, M. Orselli, S. Bernuzzi,
and G. Grignani, Exploiting Newton-factorized, 2PN-
accurate, waveform multipoles in effective-one-body
models for spin-aligned noncircularized binaries, arXiv:
2112.05448.

[128] T. Damour, B. R. Iyer, and A. Nagar, Improved resumma-
tion of post-Newtonian multipolar waveforms from
circularized compact binaries, Phys. Rev. D 79, 064004
(2009).

[129] Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi,
Post-Newtonian factorized multipolar waveforms for spin-
ning, non-precessing black-hole binaries, Phys. Rev. D 83,
064003 (2011); Erratum, Phys. Rev. D 87, 109901 (2013).

[130] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
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