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There is growing evidence that the hydrodynamic gradient expansion is factorially divergent.
We advocate for using Dingle’s singulants as a way to gain analytic control over its large-order
behaviour for nonlinear flows. We work out the physics of singulants for longitudinal flows, where
they obey simple evolution equations which we compute in a variety of Müller-Israel-Stewart-like
models, holography and kinetic theory. These equations determine the dynamics of the large-order
behaviour of the hydrodynamic expansion, which we confirm with explicit numerical calculations.
One of our key findings is a duality between singulant dynamics and a certain linear response theory
problem. Finally, we discuss the role of singulants in optimal truncation of the hydrodynamic
gradient expansion. A by-product of our analysis is a new MIS-like model, where the qualitative
behaviour of singulants shares more similarities with holography than models considered hitherto.

I. INTRODUCTION

The past two decades have been a true golden age for
our understanding of dissipative relativistic fluids. This
surge of interest has been primarily driven by the in-
terplay between growing sophistication in hydrodynamic
modelling of the newly-discovered quark-gluon plasma at
RHIC (and later also at LHC) [1, 2] and unprecedented
progress in studying nonequilibrium phenomena with hy-
drodynamic tails at strong and weak interaction strength
using, respectively, holography and relativistic kinetic the-
ory [3, 4]. Today the domain of relativistic hydrodynamics
encompasses also time-dependent black hole phenomena
via the holographic fluid-gravity duality [5], neutron star
modelling in the context of gravitational wave physics [6–
8], as well as condensed matter phenomena [9], including
electron flow in graphene [10].

The key notion underlying relativistic hydrodynamics
is that of constitutive relations. As an effective field the-
ory of transport of conserved currents, the fundamental
object of interest is the expectation value of the energy-
momentum tensor Tµν . Hydrodynamic constitutive rela-
tions express this quantity as an infinite series in gradients:

Tµν = E UµUν + P(E) (gµν + UµUν) + Πµν , (1a)

Πµν =

∞∑

n=1

εnΠ(n)
µν , (1b)
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where E and Uµ (UµU
µ = −1) are the local energy den-

sity and the local velocity encapsulating slow degrees of
freedom and Πµν is a gradient-expanded dissipative part
of the energy-momentum tensor.

The gradient expansion (1) exists as long as the energy-
momentum tensor at the spacetime point being considered
has a single real timelike eigenvector [11]. Provided that
this condition is met, it is natural to ask whether the
gradient expansion can capture processes arbitrarily far
away from global thermal equilibrium. The answer to this
question depends crucially on whether the gradient ex-
pansion is a convergent series. If convergent, the gradient
expansion (1) can in principle provide a full description
of the underlying microscopic theory as it pertains to the
expectation value of the energy-momentum tensor. If this
were the case, there would be no obstruction in obtaining
an approximation to Tµν with an error as small as desired:
one just needs to truncate the gradient expansion at a
sufficiently high order. On the other hand, if the gradient
expansion is a divergent series, this is not possible, even
in principle. In this situation, the first step becomes that
of finding the optimal truncation order.

Results for highly-symmetric flows obtained in recent
years have provided indications that the hydrodynamic
gradient expansion has a vanishing radius of conver-
gence [12–31]. This was further corroborated in situations
with less [32] and even without any symmetry [33]. In
these highly symmetric flows [12–31], as well as in other
settings [34–36], the dominant large-order behaviour of
the series coefficients in question, J (n), takes on a factorial-
over-power form

J (n) ∼ AΓ(n+ α)

χn+α
, (2)

where χ and α are constants. This form of the expansion
coefficients J (n) at large order is motivated by the work of
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FIG. 1. Hydrodynamics (H) and linear response theory (A)
are well-known techniques to study collective states of matter.
Our paper introduces in this context a new perspective based
on singulants (χ). The main text discusses the meaning of
different overlaps between these domains represented as disks.

Dingle [37] and subsequent studies of factorially divergent
series. A key role in these considerations in played by the
parameter χ, for which Dingle introduced the term sin-
gulant. Indeed, the remaining parameters in Eq. (2) play
no role at leading order for large n. Asymptotic expan-
sions of the form (2) appear supplemented by exponential
corrections. Such generalised series (transseries) involve
intricate resurgence relations between their coefficients.

In this paper we propose to systematically apply the
idea of the singulants to the gradient expansion (1b)
regardless of the presence of any flow symmetries. This
leads to the large-order ansatz (2)

Π(n)
µν (t, ~x) ∼ Aµν(t, ~x)

Γ(n+ α(t, ~x))

χ(t, ~x)n+α(t,~x)
, (3)

with the singulant itself becoming a scalar field in space-
time (see also Refs. [38, 39]). Again, Aµν(t, ~x) and α(t, ~x)
play no role at leading order at large n. Our analysis will
focus on longitudinal flows [32, 40], where we explicitly
confirm the validity of the ansatz (3) in a number of mod-
els. We will see that, in general, there will be multiple
singulants which contribute additively to (3).

Our results indicate that singulants (χ) provide a new
perspective on collective states of matter that comple-
ments and connects in a novel way the existing paradigms
of the hydrodynamic gradient expansion (H) and the
amplitude expansion exemplified by linear response the-
ory (A). This is represented by Fig. I. In this work, we
primarily consider the region i, where the large-order be-
haviour of the gradient expansion (1) for nonlinear fluids is
governed by singulants. One of our most relevant findings
is a duality between the singulant dynamics, as computed
in region i, and a particular linear response theory prob-
lem defined in region ii. Region iii corresponds to the
realm of linearised hydrodynamics, where one considers
the gradient expansion (1) for infinitesimal fluctuations
away from global thermal equilibrium, but does not focus
on its large-order behaviour. Finally, in region iv, when

utilising the three approaches – singulants, the gradient
expansion and linear response theory – we gain complete
analytic control of the singulants. Appendix D provides
an example of such a study.

This paper is organised as follows. In Sec. II, we
introduce longitudinal flows and discuss several re-
sults pertaining the large-order behaviour of the gra-
dient expansion (1) and singulants in this context.
Then, in Sec. III, we test the general results for lon-
gitudinal flows put forward in Sec. II in a series of
phenomenological models of the Müller-Israel-Stewart
(MIS) class. These include the Baier-Romatschke-Son-
Starinets-Stephanov (BRSSS) model [41], the Heller-
Janik-Spaliński-Witaszczyk (HJSW) model [42], and a
new model we introduce for the first time in this work.
In these three models, we demonstrate that the singulant
dynamics can be mapped to a linear response theory prob-
lem that consists in computing the poles of a momentum-
dependent sound attenuation length, γs. In Sec. IV, we
explore the large-order behaviour of the gradient expan-
sion for longitudinal flows in the context of holography
and show that, if a factorial divergence is present, then
the singulant equation of motion is also determined by the
poles of γs. Sec. V discusses singulants in kinetic theory,
focusing on the gradient expansion of the distribution
function. We test our analytic predictions by explicit
numerical computations for Bjorken flow in the relaxation
time approximation (RTA). Sec. VI explores the interplay
between singulants and optimal truncation in the context
of BRSSS theory. The paper closes with a discussion of
open problems in Sec. VII.

Several computations supporting the results presented
in the main body of the paper have been relegated to
appendices. Appendix A provides the demonstration of
the general results introduced in Sec. II, while Appendix
B discusses the large-order behaviour of the gradient
expansion (1) beyond longitudinal flows in the context
of MIS-like models. Appendix C contains the detailed
computation of γs in holography. Finally, Appendix D –
which has already been alluded to before – explores the
large-order behaviour of the gradient expansion (1) in
linearised hydrodynamics.

II. SINGULANTS IN LONGITUDINAL FLOWS

In this paper we develop the paradigm put forward in
the Introduction for a particular class of fluid flows which
we refer to as longitudinal. The reason for this choice is
that, as originally shown in Ref. [32], for longitudinal flows
in MIS-like theories it is feasible to compute the gradient
expansion (1b) numerically up to an order sufficiently
large to assess its asymptotic behaviour. This computa-
tion rests on the fact that, in these theories, there exists a
simple recursion relation that allows one to determine the
n-th order contribution to the gradient expansion once
the lower-order ones are known.

A longitudinal flow in d-dimensional Minkowski space-
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time is defined by singling out one spatial direction, x, and
demanding translational invariance and isotropy in the
hyperplane spanned by the remaining spatial coordinates

x
(1)
⊥ , . . . , x

(d−2)
⊥ . This requirement implies that that the

nontrivial dynamics is confined to the plane spanned by t
and x, which we refer to as the longitudinal plane. With
these symmetry restrictions, both the fluid velocity Uµ

and any two-tensor Aµν which is symmetric, transverse
to Uµ and traceless can be parameterised in terms of a
single degree of freedom. Specifically,

Uµ∂µ = coshu ∂t + sinhu ∂x, (4a)

Aµν = (2− d)

(
ηµν + UµUν − d− 1

d− 2
PµνT

)
A?, (4b)

where PµνT is the projector into the transverse hyperplane
and u, A? depend solely on t and x. In this work, we
only consider longitudinal flows in conformal theories, in
such a way that Tµν is traceless. This entails that the
equation of state of the fluid is given by P(E) = E/(d− 1)
and that Πµν is also traceless.

In a longitudinal flow, the gradient expansion (1b) be-
comes a gradient expansion for Π?,

Π?(t, x) =

∞∑

n=1

Π
(n)
? (t, x)εn, (5)

and the asymptotic ansatz (3) reads

Π
(n)
? (t, x) ∼ A(t, x)

Γ(n+ α(t, x))

χ(t, x)n+α(t,x)
. (6)

The singulant field, χ(t, x), controls the subleading geo-
metric correction to the leading-order factorial growth of
the gradient expansion. When considering a particular
gradient expansion of the form (5) with the large-order
behaviour (6), there are different ways of extracting the
subleading geometric growth captured by χ. First, taking
into account that

|Π(n)
? |

1
n ∼ n

e|χ| , n→∞ (7)

one notes that, asymptotically, a root-test plot of gradient
expansion coefficients results in a straight line of slope
1/(e|χ|), in such a way that |χ| is fixed once this slope is
known. Second, one can consider the analytically contin-
ued Borel transform of the gradient expansion. In this
case, χ appears as a singularity in the Borel plane located
at ζ = χ, where ζ is a complex-valued variable used to
parameterise the Borel plane throughout this paper.

In this work, we explore the gradient expansion (5)
in the context of MIS-like models, holography and RTA
kinetic theory. In MIS-like theory, we work directly at the
level of Π? and the gradient expansion (5). In holography,
the gradient expansion (5) descends from the gradient
expansion of the bulk metric

gAB(X) =

∞∑

n=0

g
(n)
AB(X)εn. (8)

by holographic renormalisation, where X = (r, x)
and r parameterises the radial direction of the higher-
dimensional geometry. In kinetic theory it descends from
the gradient expansion of the distribution function

f(x, p) =

∞∑

n=0

f (n)(x, p)εn (9)

by computing its second-order moments, where p is the
momentum. Hence, in the AdS/CFT and kinetic theory
cases, the singulant field governing the large-order behav-
ior of the gradient expansion (5) follows respectively from
the singulant field governing the large-order behavior of
the gradient expansions (8)

g
(n)
AB ∼ AAB(X)

Γ(n+ α(X))

χ(x)n+α(X)
, (10)

and (9),

f (n) ∼ A(x, p)
Γ(n+ α(x, p))

χ(x, p)n+α(x,p)
. (11)

Note that, in the AdS/CFT case, we assume that the
singulant field is r-independent. We will show that this
assumption is self-consistent in the relevant section of the
paper.

Irrespectively of the particular theory being considered,
the exact Π? can be computed in terms of the energy
density E and fluid velocity U ≡ Uµ∂µ associated to a
given out-of-equilibrium state by solving a nonlinear sys-
tem of integro-partial differential equations. In MIS-like
models, this system is part of the theory definition. In
holography, it corresponds to the dynamical ones among
the Einstein’s equations. Finally, in kinetic theory, it
corresponds to the Boltzmann equation. This observation
allows one to determine the coefficients of the gradient
expansions (5), (8) and (9) by means of a recursion rela-
tion. To obtain this recursion relation, one introduces the
bookkeeping parameter ε into the equations determining
Π? by means a homogeneous rescaling of the longitudinal
plane coordinates,

t→ t

ε
, x→ x

ε
(12)

plugs in the ansatz between (5), (8), (9) appropriate for
the theory in question, and finally solves in a small-ε
expansion.

For a factorially divergent gradient expansion, these
recursion relations simplify drastically at leading order in
the limit of large n. First, they become linear. Second,
terms associated with gradients of the hydrodynamic
fields, E and U , drop out. The last observation entails
that, at leading order at large n, the recursion relations
at a given t and x only depend on the values of the
hydrodynamic fields at that point. For instance, in the
context of MIS-like models, when one introduces the large-
order ansatz (6) into the recursion relations and takes
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the n → ∞ limit, the leading-order contribution comes
exclusively from terms of the form

fµ1...µp(T,U)∂µ1 . . . ∂µpΠ
(n−p)
? , 0 ≤ p ≤ 2, (13)

where the tensor fµ1...µp only depends on the local values
of the hydrodynamic fields. Terms involving gradients of
these fields and/or nonlinear in Π? result in subleading
contributions at large n.

The singulant equation of motion follows immediately
from the fact that the factorial-over-power ansatz has
to solve the large n simplified form of the recursion re-
lations, and the observation that, at leading order at
large n, the action of the differential operator ∂µ1

. . . ∂µp
on Π

(n−p)
? , g

(n−p)
AB or f (n−p) is equivalent to the multi-

plication of the corresponding n-th order coefficient by
(−1)p∂µ1

χ . . . ∂µpχ.
One important consequence of the linearisation men-

tioned before is that the most general large-order be-
haviour of a factorially divergent gradient expansion (5)
is described by a linear combination of contributions of
the form (6),

Π
(n)
? (t, x) ∼

∑

q

Aq(t, x)
Γ(n+ αq(t, x))

χq(t, x)n+αq(t,x)
. (14)

where each χq satisfies the same equation of motion but
with different initial conditions. In this case, when consid-
ering the analytical continuation of the Borel transform,
each χq would correspond to a singularity in the Borel
plane located at ζ = χq. Note that the reality of the
gradient expansion implies that each singulant contribu-
tion is either real or appears with a complex-conjugated
partner. In the specific models where we computed the
gradient expansion numerically, we always find that these
complex-conjugated singulant pairs are present. In the
case that the singulant of smallest norm – the dominant
singulant – is a member of such a pair, a root-test plot
of the gradient expansion still shows asymptotic linear
growth of the form (7). A novelty with respect to the case
in which the dominant singulant is real is the appearance
of oscillations of frequency argχ superimposed to the
linear growth; however, these oscillations are subleading
in the n→∞ limit.

An alternative viewpoint on the singulant dynamics is
provided by the observation that, when upgrading the
perturbative series (5) to a transseries, the singulants
weight the nonperturbative transseries sectors,

Π? =

∞∑

n=1

Π
(n)
? εn +

∑

q

e−
χq
ε

∞∑

n=1

Π̃
(n)
?,q ε

n + . . . , (15)

where the ellipsis represents possible nonperturbative
transseries sectors associated to nonlinear interactions
between different singulants χq. In the holography and
kinetic theory cases, there exist transseries analogous to
Eq. (15) for gAB and f , from which Eq. (15) descends
naturally.

Building on the transseries ansatz, one can also obtain
the singulant equation of motion by i) introducing ε into
the original nonlinear system of integro-partial differential
equations that determines Π?, ii) plugging in the relevant
transseries ansatz, iii) expanding around ε = 0 and iv)

demanding that the leading-order term multiplying e−
χq
ε

vanishes. From this perspective, the singulant equation
of motion can be interpreted as the eikonal equation
coming from a WKB analysis of the equations of motion
determining Π?. One should keep in mind that, in the end,
this procedure is equivalent to taking the latter equations,
linearising them around the zeroth-order term of the
gradient expansion of relevance between (5), (8) or (9),
neglecting terms related to gradients of the hydrodynamic
fields, and finally replacing

∂µ1
. . . ∂µn → (−1)n∂µ1

χ . . . ∂µnχ. (16)

One of the main benefits of the WKB approach is that, in
the case of MIS-like models and holography, it allows one
to identify in a straightforward way a linear response the-
ory computation that leads directly to the singulant equa-
tion of motion. Indeed, the procedure described in the
previous paragraph is equivalent to taking the equations
of motion that determine Π?, setting the hydrodynamic
fields T , U to spacetime-independent constants, T0, U0,
and considering infinitesimal plane-wave fluctuations of
Π?,

δΠ? = δΠ̂?e
ikµx

µ

, (17)

at leading-order in δΠ? → 0. There exist a map involving
the identifications

T0 → T (t, x), U0 → U(t, x), ikµ → −∂µχ, (18)

that transforms the equations determining the dispersion
relation of the infinitesimal plane-wave fluctuations (17)
into the equations of motion determining the singulant
dynamics. While there exist theories in which this linear
response theory problem reduces to a quasinormal mode
computation – i.e. a computation of the poles of a re-
tarded thermal two-point function – this is not necessarily
the case. The reason is that, in a quasinormal mode com-
putation, the hydrodynamic fields T and U are treated
dynamically. These two problems are equivalent only
when the dynamics of the hydrodynamic fields decouple
from the dynamics of δΠ?.

We refer the reader to Appendix A for an in-depth
discussion of the results presented in this section. The
consequences of these results for MIS-like models, hologra-
phy and RTA kinetic theory will be respectively explored
in Secs. III, IV and V.

III. MIS-LIKE MODELS

A. Introduction

In this section, we compute the singulants contributing
to the large-order behaviour of the gradient expansion
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for longitudinal flows in a class of phenomenological mod-
els of the Müller-Israel-Stewart type (MIS-like models).
As mentioned in the Introduction, these are the BRSSS
model [41], the HJSW model [42], and the new model
introduced for the first time in this work. The ratio-
nale behind these models is embedding hydrodynamics
in a framework compatible with relativistic causality. To
achieve this, the dissipative tensor Πµν is promoted to a
set of independent dynamical degrees of freedom obeying
their own equation of motion. Whilst such models are in-
spired by hydrodynamics, it is crucial to note that unlike
hydrodynamics they are exact, in the sense that they are
not defined using a perturbative expansion in the number
of gradients.

Different models in this class are distinguished by the
different equation of motion obeyed by Πµν which we
detail case by case in the subsections that follow, however
each case obeys the same current conservation equations,
∇µTµν = 0, which for longitudinal flows are

DE +

[
dE
d− 1

− (2− d)Π?

]
(∇ · U) = 0, (19)

∇µE
d− 1

+

[
dE
d− 1

+ (2− d)Π?

]
DUµ = 0, (20)

where D = Uµ∇µ is a longitudinal derivative.

B. The BRSSS model

In the BRSSS model the exact dynamical equation
governing Πµν , when specialised to longitudinal flows, is
given by

Π? = −ησ?−τΠ
[
DΠ?+

d(∇ · U)

d−1
Π?

]
−λ1

η2
(d−3)Π2

?,

(21)
from which the series (5) can be obtained by solving the
following recursion relation,

Π
(1)
? = −ησ?, (22a)

Π
(n+1)
? = −τΠ(U · ∂)Π

(n)
? − d(∂ · U)

d−1
τΠΠ

(n)
?

− (d−3)
λ1

η2

n∑

m=1

Π
(m)
? Π

(n+1−m)
? , n > 1. (22b)

This recursion relation is solved at large orders by the
factorial-over-power ansatz (14), provided the singulant
equation is obeyed,

Dχq(t, x) =
1

τΠ(T (t, x))
. (23)

In earlier work [32] we established the factorial growth of

Π
(n)
? for general nonlinear longitudinal flows in BRSSS, by

numerically solving Eqns. (19), (20), (21) and evaluating
(22) on them. An example of this is given in the top
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FIG. 2. Singulants in the BRSSS model for a nonlinear longitu-
dinal flow. Top panel: Root-test for a numerical evaluation

of the series Π
(n)
? (black), and the slope predicted by the dom-

inant singulant at this point, χblue (blue). Middle panel:
Fitted slope of the root-test plot evolving along a fluid flow
line (black), with singulant predictions (red & blue). The
crossing corresponds to an exchange of singulant dominance.
The dashed line marks t used in the other panels. Bottom
panel: Singularities in the Borel plane ζ, indicated by Padé
poles (black), illustrating agreement with singulant values (red
& blue circles).
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panel of Fig. 2 where the n! behaviour is illustrated.1 The
presence (14) and motion (23) of the singulants governing
the large-order behaviour of such flows can be readily
confirmed for such solutions, and we now present two
such ways of doing so.

First, according to Eq. (14) the singulant field χq with
the smallest |χq| at any given spacetime point domi-
nates the large-order behaviour yielding the prediction

|Π(n)
? | 1n ∼ n

e|χq| where χq obeys Eq. (23). Solving Eq. (23)

on a given background is unique up to a choice of complex
integration constant per flow line. Two such solutions are
presented as the blue and red curves in the middle panel
of Fig. 2 alongside the black dots which correspond to

fitting a straight line to the numerical series data, |Π(n)
? | 1n ,

showing excellent agreement. Here we have chosen to de-
termine the singulant integration constants by adjusting
for the best fit on the entire flow line.

Second, the presence of χq can be seen as singulari-
ties appearing in the Borel transform of Eq. (5). This is
demonstrated in the bottom panel of Fig. 2. This is a
snapshot at a time labelled by the dashed vertical line
in the middle panel, where the blue singulant dominates.
Given the integration constants as determined in the last
paragraph, there is a precise match between χq and the
location of a singularity in the Borel plane inferred by a

Padé approximant of the Π
(n)
? series. Along a flow line

these singulants move from left-to-right in the Borel plane
according to Eq. (23) as indicated by the arrows the lower
panel. There is a time for which they are at their point
of closest approach to the origin, corresponding to the
maxima in the middle panel of Fig. 2. Similarly there
is a time for which |χred| = |χblue| corresponding to an
exchange of dominance as seen by the crossing of the red
and blue singulant trajectories in the middle panel.

C. The HJSW model

The HJSW model [42] is a generalisation of conformal
BRSSS theory such that the equation of motion for Πµν

includes second-order derivatives along the fluid velocity
U ,

((D
T

)2

+2ΩI

(D
T

)
+|Ω|2

)
Πµν=

−η|Ω|2σµν−cσ
T
D(ησµν), (24)

where Ω = ΩR + iΩI ∈ C, cσ ∈ R, and we are neglecting
possible nonlinear terms in Πµν . As the temperature

1 The initial data corresponds to a periodic overdensity in T that
locally resembles a Gaussian, see Ref. [32] for more details on
this function and the numerical method. We have set E/T 4 = 1,
η/s = 1/(4π) and τΠT = 1/4.

T is the only dimensionful scale of the theory, the shear
viscosity takes the same functional form as it did in BRSSS
theory.

The physical motivation behind the construction of
the HJSW theory was upgrading the original conformal
BRSSS theory to a model with a nonhydrodynamic sector
closer to the AdS/CFT one, in the sense of having two

nonhydrodynamic sound modes, ω
(±)
NH(k), with opposite

real parts at zero momentum. Indeed, in the HJSW

model, ω
(±)
NH(k = 0) are controlled by Ω as

ω
(±)
NH(k) = T0(±ΩR − iΩI) +O(k2). (25)

The HJSW model is causal and stable provided that
the parameters Ω, η/s and cσ are chosen appropriately;
stability, in particular, always requires a finite cσ [42].

It is immediate to compute the recursion relation

obeyed by Π
(n)
? once Eq. (24) is known. The only struc-

tural difference with respect to the BRSSS case is that,

since Eq. (24) is second-order, Π
(n)
? now depends both on

Π
(n−1)
? and Π

(n−2)
? for n > 2. In the following, we work

in d = 4. We have that

Π
(1)
? =

2

3
ηθ, (26a)

|Ω|2TΠ
(2)
? = −2ΩIDΠ

(1)
? −

8

3
ΩIθΠ

(1)
?

+
2

3
cσD(ηθ) +

8

9
cσηθ

2,

(26b)

|Ω|2T 2Π
(n)
? = −D2Π

(n−2)
? − 2ΩITDΠ

(n−1)
?

+

(
D log T − 8

3
θ

)
DΠ

(n−2)
? − 8

3
ΩITθΠ

(n−1)
?

+
4

9

(
3θD log T − 4θ2 − 3Dθ

)
Π

(n−2)
? ,

(26c)

where θ is the expansion of the flow, θ = ∇αUα. Empiri-
cally, we always find that the gradient expansion defined
by the recursion relations (26a)-(26c) is factorially diver-
gent when evaluated on any longitudinal flow. In Fig. 3,
we provide an example for initial data of the form

T (0,x) = 1 + e−
x2

2σ2 , u(0, x) = 0,

Π?(0, x) = ∂tΠ?(0, x) = 0,
(27)

with σ = 1. We have chosen E/T 4 = 1, η/s = 1/(4π),
ΩR = 2, ΩI = 4, and cσ = π. The root test applied to
the gradient expansion associated to these initial data at
x = 0 and t = 0.5 is represented in the upper panel. The
asymptotic behaviour at large n is clearly linear, implying
that the gradient expansion is factorially divergent. On
the lower panel, we represent the singularities of the
Padé approximant to the Borel transform of the gradient
expansion as black dots. There are several well-defined
lines of pole condensation, grouped in complex conjugated
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pairs. The poles from which these lines emanate are
candidate singulants, and have been highlighted as stars.
The singulants with the smallest norm correspond to the
cyan stars.

0 50 100 150 200 250 300

n

0

5

10

15

20

25

30

e|Π
(n

)
?
|1 n

−2 0 2 4 6 8 10 12

Re ζ

−15

−10

−5

0

5

10

15

Im
ζ

χ1

χ2

χ3

χ4

χ5

χ6

FIG. 3. Upper panel: Large-order behaviour of the gradient
expansion at x = 0, t = 0.5 for initial data of the form (27) as
quantified by a root-test plot. The factorial growth is manifest.
Bottom panel: Singularities of the Padé approximant of the
Borel transform of the gradient expansion at x = 0, t = 0.5.
The points at which a line of pole accumulation starts are
singulants and have been highlighted as stars. Cyan, orange,
red, green, purple and brown stars correspond to candidate
singulant pairs χ1, . . . , χ6 of progressively increasing norm.

According to the general results presented in Sec. II,
the singulant equation of motion is determined by the
first three terms in Eq. (26c). One finds that

Dχ = (ΩI ± iΩR)T. (28)

Hence, just as it happened in the conformal BRSSS model,

the singulant trajectory is determined by ω
(±)
NH(k = 0)

evaluated at the local temperature. Eq. (28) implies that,
when one moves along a particular flow line, the trajecto-
ries described by the singulants are inclined lines in the
Borel plane, with slopes of magnitude |ΩR/ΩI |. This is in
stark contrast with the BRSSS case, where the singulant
trajectories were given by horizontal lines.
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FIG. 4. Comparison between the time evolution of the three
singulants of smallest norm as determined numerically (open
circles) and the prediction (29) (solid lines). The matching
has been performed at t = 0.5. The colour coding of the lines
coincides with the colour coding of the stars in the bottom
panel of Fig. 3. Upper panel: real parts. Lower panel:
imaginary parts.

Let us select the flow line passing through x = 0 at t = 0,
which corresponds to the t-axis in the longitudinal plane.
In Fig. 4, we plot the real and imaginary parts of the three
singulants of smallest norm as a function of time along
this particular flow line. We have selected the singulants
with positive imaginary part. These singulants, which
have been computed by means of a Padé approximant to
the Borel transform of the gradient expansion, have to be
compared with the prediction of equation Eq. (28),

χ(t, 0) = χ(t = 0, 0) + (ΩI ± iΩR)

∫ t

0

dt′T (t′, 0). (29)

Since we cannot determine independently the initial values
of the singulants, we have chosen to match the prediction
(29) to the numerical results at t = 0.5. The final outcome
of our analysis is that, for every singulant under consider-
ation, the prediction of Eq. (29), which is represented as
a solid line, does an excellent job in describing the time
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evolution of the singulants we have computed numerically.

D. A new model closer to holography

1. Physical motivation

The analysis performed so far in the BRSSS and HJSW
models revealed that the large-order behaviour of the
gradient expansion is related to the sound channel nonhy-
drodynamic mode frequencies evaluated at k = 0 through
the singulant equation of motion. Schematically,

Dχ(t, x) = iωNH(k = 0)
∣∣∣
T=T (t,x)

. (30)

This is not a coincidence. As we have mentioned in
Sec. II, both the singulant equation of motion (30) as well
as the equation that determines the mode frequencies
are obtained through a linearisation procedure and, in
the BRSSS and the HJSW models, the former equation
can always be mapped onto the latter one evaluated at
zero momentum. This rests crucially on the fact that
the equation of motion for Πµν only involves comoving
derivatives along a flow line. In light of this, one should
not expect the relation between the singulant equation of
motion and the sound channel nonhydrodynamic modes
evaluated at zero momentum to hold when the equation
of motion for Πµν features derivatives along directions
orthogonal to U .

As we will see later in Sec. IV, there is strong evidence
that holography does not display the structure indicated
in Eq. (30): derivatives in directions orthogonal to U
appear in the singulant equation of motion. Motivated by
this, we introduce a new MIS-like model that also displays
this feature. We achieve this by extending Eq. (24) to
include derivatives along spacelike directions orthogonal
to U .

2. Description of the model

We work in d = 4. Our new model is defined by the
following the equation dictating the spacetime evolution
of Πµν ,

((D
T

)2

− cL
T 2
L+ 2ΩI

(D
T

)
+ |Ω|2

)
Πµν =

− η|Ω|2σµν − cσ
T
D(ησµν), (31)

where the new term LΠµν corresponds to the symmetric,
transverse and traceless part of (∆ρσDρDσ)Πµν ,

1

2

[
∆α
µ∆β

ν + ∆α
ν∆β

µ −
2

3
∆µν∆αβ

]
(∆ρσDρDσ)Παβ . (32)

Note that, in principle, adding this term is only allowed by
hyperbolicity once we go beyond the first-order equation of

motion obeyed by Πµν in BRSSS theory. In this work, we
will not establish that the initial value problem associated
to the conservation equation and Eq. (31) is well-posed
at the fully nonlinear level. Despite this, we emphasise
that i) there exist a parametric regime for η/s, cL, cσ
and Ω such that infinitesimal fluctuations are causal and
stable2 and ii) when performing numerical simulations of
the nonlinear problem within such parametric regime, we
have seen no issues arise.

We would like to conclude our presentation by clarifying
that Eq. (31) is not the most general equation of motion for
Πµν featuring second-order derivatives that one can write
down. For instance, the term D〈µDαΠαν〉 can certainly
be incorporated into the left-hand-side. Since Eq. (31)
already serves the purpose we outlined, the question of
finding out what the most general version of this model
is will not concern us here, although it might be relevant
for the phenomenological modelling of scenarios like [43],
where MIS/BRSSS approaches are known to fail.

3. The gradient expansion

In model (31), the recursion relations obeyed by Π
(n)
?

are related to the HJSW ones in a straightforward manner.

To wit, Π
(1)
? and Π

(2)
? obey the HJSW recursion relations

while, for n > 2, one has that

|Ω|2T 2Π
(n)
? = [HJSW]− 7cL(UαUβ∇αZβ)(Zµ∇µ)Π

(n−2)
?

+ cL(Zµ∇µ)2Π
(n−2)
? + 2cL

(
1

3
θ2 + 3(UαUβ∇αZβ)2

−2Zµ∇µ(UαUβ∇αZβ)
)

Π
(n−2)
? , (33)

where [HJSW] represents the right-hand-side of Eq. (26c)
and Z = Zµ∂µ is a longitudinal unit-normalised vector
field orthogonal to U = Uµ∂µ.

As in the BRSSS and HJSW cases, in this model we also
find that the gradient expansion is factorially divergent for
all our choices of parameters, initial data and spacetime
point. To characterise the large-order behaviour of the
gradient expansion, we turn now to the question of the
singulant trajectory.

4. The singulant trajectory

According to the factorial-over-power ansatz and
Eq. (33), the singulant equation of motion in the new
model is

U(χ)2−cLZ(χ)2−2ΩITU(χ)+|Ω|2T 2=0. (34)

2 In particular, it is possible to have causal and stable sound modes
for cσ = 0, unlike in the HJSW model.
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where U(χ) = Uµ∂µχ and Z(χ) = Zµ∂µχ. This equation
features derivatives along Z and, as a consequence, U(χ)
stops being related to the nonhydrodynamic sound modes
at zero spatial momentum.

We now turn to verifying that Eq. (34) governs sin-
gulant motion in our numerical examples. In order to
solve Eq. (34) it is no longer enough to specify integra-
tion constants per flow line, due to the appearance of
derivatives transverse to the flow line, Z(χ). This term
did not appear in the BRSSS and HJSW models. Now
singulant initial data must be specified for some portion
of a Cauchy surface, preventing us from testing Eq. (34)
by fitting one or two complex numbers. To sidestep this
issue, we attempt to extract Z(χ)2, U(χ), U(χ)2 for the
dominant singulant and test that Eq. (34) holds as an
algebraic relation at each spacetime point. To extract
Z(χ)2, U(χ), U(χ)2 we utilise the following relations,

U(χ) ∼
U
(

Π
(n−1)
?

)

Π
(n)
?

, U(χ)2 ∼
U2
(

Π
(n−2)
?

)

Π
(n)
?

, (35)

and similarly for Z(χ)2 as n→∞, and confirm Eq. (34) in
Fig. 5, up to some scatter associated with this numerical
procedure. Note that in this figure the new term Z(χ)2

makes a contribution of similar magnitude as those of
U(χ), U(χ)2.
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FIG. 5. Numerical confirmation of the singulant equation of
motion (34) along a flow line in the model Eq. (31). This model
is distinguished from BRSSS and HJSW by the appearance
of transverse derivatives in the singulant equation (controlled
by cL), a feature it shares with holography and our main
motivation for studying it. The values of Z(χ)2, U(χ), U(χ)2

are extracted from the large-order behaviour of Π
(n)
? and its

derivatives, as described in the text. Here the black disks are
rendered partially transparent to convey their density.

5. The singulant trajectory and linear response theory

Despite the fact that the singulant trajectory is not
controlled by the nonhydrodynamic sound modes at zero
momentum, the lesson that the singulant equation of
motion can be understood in terms of a linear response
theory problem stands. Let us set the hydrodynamic
fields to their values at thermal equilibrium in the rest
frame of the fluid,

T → T0, Uµ∂µ → ∂t, (36)

and consider infinitesimal fluctuations of Π?, δΠ?, around
this static state. At leading order, one finds that δΠ?

satisfies

(
∂2
t − cL∂2

x + 2ΩIT0∂t + |Ω|2T 2
0

)
δΠ? = 0. (37)

For a plane-wave fluctuation of the form

δΠ?(t, x) = ˆδΠ?e
−i(ωt−kx), (38)

Eq. (37) reduces to a second-order polynomial equation
for ω,

− ω2 + cLk
2 − 2iΩIT0ω + |Ω|2T 2

0 = 0, (39)

and the map

ω → −iU(χ), k → ±iZ(χ), T0 → T (40)

transforms Eq. (39) into the singulant equation of mo-
tion (34).

The above analysis is nothing but a particular illustra-
tion of the general results from Sec. II. A crucial observa-
tion that has to be emphasised is that, just as we foresaw
at the end of that section, the roots of Eq. (39), which
determine the singulant trajectory, do not correspond to
the sound channel nonhydrodynamic modes when the mo-
mentum is finite. The latter (including the hydrodynamic
modes) are given by the roots of the following fourth-order
polynomial in ω,

(
−ω2 − 2iT0ΩIω + cLk

2 + T 2
0 |Ω|2

)(
ω2 − 1

3
k2

)

+
4

3

η

s

(
T0|Ω|2 − icσω

)
iωk2 = 0,

(41)

and only include the roots of Eq. (39) when k = 0.
Despite the fact that they do not correspond to non-

hydrodynamic modes, the roots of Eq. (39) still allow for
a physical interpretation. This physical interpretation
follows from the observation that, due to rotational invari-
ance, the sound channel dispersion relation is constrained
to take the form [44]

ω2 + iωk2γs(ω, k
2) + k2H(ω, k2) = 0, (42)

where γs is a momentum-dependent sound attenuation
length. Indeed, the sound channel dispersion relation
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(41) can be put in the form (42) with the identifications
H(ω, k2) = 1

3 and

γs(ω, k
2) =

4
3
η
s

(
T0|Ω|2 − icσω

)

−ω2 − 2iT0ΩIω + cLk2 + T 2
0 |Ω|2

. (43)

It is immediate to see that the roots of Eq. (39) correspond
precisely to the poles of γs. It is important to keep in
mind that, for a general CFT in the linear response regime,
γs can be defined without resorting to Eq. (42) by the
relation

δΠ̂?(ω, k) =
2

3
E0γs(ω, k)ikδû(ω, k), (44)

where E0 is the equilibrium energy density and δû repre-
sents an infinitesimal fluctuation of the fluid velocity in
the sound channel,

Uµ∂µ = ∂t + δûe−iωt+ikx∂x, |δû| � 1. (45)

With the definition (44), the equation that the sound
channel modes have to obey always takes the form (42)
with H = −1/3.

We conclude our analysis with two comments. The first
and most important one is that the connection between
the singulant equation of motion and the poles of γs
implied by the map (40) is not restricted to the case
at hand: it applies to the BRSSS and HJSW models
as well. However, in the BRSSS and HJSW cases, the
poles of γs are independent of the spatial momentum k.
In this situation, these poles have to coincide with the
sound channel nonhydrodynamic modes evaluated at zero
momentum. This observation is in agreement with our
analysis of the singulant equation of motion in the BRSSS
and HJSW theories.

The second comment is that, when one restricts to
Bjorken flow, the singulant equation of motion is always
insensitive to the difference between the nonhydrody-
namic sound modes and the poles of γs. The reason is
that for Bjorken flow χ is a function of the proper time
τ =
√
t2 − x2 alone. This implies that Z(χ) = 0 and, ac-

cording to the map (40), that the relevant poles of γs are
the ones with k = 0, which agree with the zero-momentum
sound channel nonhydrodynamic modes.

IV. HOLOGRAPHY

A. Introduction

In this section, we examine the large-order behaviour
of the gradient expansion for a longitudinal flow in the
context of holography.3 We do not attempt to perform

3 See Refs. [44–59] for related work in the context of the gradient
expansion in linearised holography.

the numerical computation of the gradient expansion
evaluated on a particular state. Rather, we take advantage
of the asymptotic ansatz (14) to prove that a large-order
factorial growth is allowed. We remind the reader that
finding out that the asymptotic ansatz (14) is consistent
in holography does not imply that the gradient expansion
is necessarily factorially divergent; rather, this observation
just demonstrates that such large-order behaviour is, in
principle, possible.

Our study builds on previous developments in the
AdS/CFT context. The first one is the original con-
struction of fluid/gravity duality [60], which we employ to
build the gradient-expanded constitutive relations at the
fully nonlinear level. The second one is the analysis of the
exact constitutive relations of the microscopic CFT in the
linear response regime [61, 62]. The bridge between both
approaches is the linearisation enacted by the asymptotic
ansatz (14).

The key result that we show in this section is as fol-
lows. If a large-order factorial growth is present, then the
singulant equation of motion in holography is given by
the poles of the momentum-dependent sound attenuation
length, γs, under a map analogous to that which we saw
in the MIS-like models (40).

B. Longitudinal flows in holography

To construct the geometry dual to a longitudinal flow,
we follow Ref. [63] and put forward the following metric
ansatz,

ds2=−2Uµ(x)dxµ(dr+Vν(r, x)dxν)

+Gµν(r, x)dxµdxν ,
(46)

where xµ represents the boundary coordinates, Uµ as
elsewhere in the text is the unit-normalised fluid velocity
and Gµν is transverse, GµνUν = 0.

It is convenient to employ a curvilinear coordinate
system to describe the longitudinal flow. We focus on lon-
gitudinal flows in four-dimensional Minkowski spacetime.
We take our boundary coordinates to be

xµ = (τ, σ, x
(1)
⊥ , x

(2)
⊥ ), (47)

where τ and σ are, respectively, a timelike and a spacelike
coordinate that parameterise the longitudinal plane. We
choose this curvilinear coordinate system in such a way
that the boundary metric is diagonal,

dh2 = −e2a(τ,σ)dτ2 + e2b(τ,σ)dσ2 + d~x2
⊥, (48)

and the fluid velocity reads

Uµ∂µ = e−a(τ,σ)∂τ . (49)

The orthonormal longitudinal vector field Z is thus given
by

Zµ∂µ = e−b(τ,σ)∂σ. (50)
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Imposing flatness of the boundary metric (48) leads to
an equation linking a and b. Finally, to comply with the
symmetry restrictions of the flow, we take

Vµdxµ = Vτdτ + Vσdσ, (51a)

Gµνdxµdxν = Σ2e−2Bdσ2 + Σ2eBd~x2
⊥, (51b)

where Vτ , Vσ, Σ and B are functions of τ , σ and r. The
transversality condition GµνUν = 0 is automatically satis-
fied since Gττ = 0.

The energy-momentum tensor of the dual CFT is dic-
tated by the holographic dictionary [64]. A straightfor-
ward computation shows that4

〈Tµν〉 = tµν , (52)

where the only nonzero components of tµν are given by

tττ =
3

2
eaVτ,2, tτσ = eaVσ,2,

tσσ = e2b

(
−2B4 +

1

2
e−aVτ,2 + Φ

)
, (53)

t
x

(i)
⊥ x

(i)
⊥

= B4 +
1

2
e−aVτ,2 −

1

2
Φ,

and we have defined

Φ=
4

3
Σ3

0e
−bU(b)+

2

3
Σ2

0e
− 2b

3 U(b)2

+
4

9
Σ0e

− b3U(b)3+
5

81
U(b)4.

(54)

In these expressions, subscript n denotes the coefficient
of r−n in the near-boundary (large-r) expansion of that
quantity.

To conclude our analysis, we impose the Landau frame
condition by demanding that the fluid velocity U = e−a∂τ
is the only timelike eigenvector of Tµν . This can only be
achieved provided that

Vσ,2 = 0. (55)

Once that the Landau frame condition (55) is imposed,
the eigenvalues of Tµν are in one-to-one correspondence
with its diagonal components. One has that the energy
density E , the longitudinal pressure P‖ and the transverse
pressure P⊥ are given by

E =
3

2
e−aVτ,2,

P‖ = −2B4 +
1

3
E + Φ,

P⊥ = B4 +
1

3
E − 1

2
Φ.

(56)

4 We work with the normalisation L = 4πG = 1.

Hence, Π? = B4 − 1
2Φ. This relation can be simplified

further by recalling that the metric ansatz (46) is invariant
under

r → r + f(x), Vµ(r, x)→ Vµ(r + f, x)− ∂µf,
Gµν(r, x)→ Gµν(r + f, x), (57)

and that, in the r →∞ limit,

Σ(r, x) = r + Σ0(x) + . . . , (58)

implying that Σ0(x) can be tuned to any desired value by
a suitable choice of f(x). In our case, the gauge choice

Σ0 = −1

6
e
b
3U(b), (59)

sets Φ = 0 and implies that Π? can be directly identified
with B4,

Π? = B4. (60)

The existence of this relation is one of the main advantages
of our metric ansatz and coordinate choice, as it implies
that the gradient expansion of Π? can be obtained from
the near-boundary behaviour of the gradient expansion
of B in a straightforward manner.

C. The gradient expansion

In order to construct the gradient expansion of Π?

we follow the strategy we described in Sec. II. As it is
standard in fluid/gravity duality, the first step is decom-
posing the Einstein equations into dynamical equations
and constraint equations. The dynamical equations can
be employed to express Πµν as a functional of E and U ;
they can be interpreted as the AdS/CFT counterpart of
the equation of motion for Πµν in MIS-like theories. In
our case, the dynamical equations are

Err, Erσ, Eσσ, Ex(1)
⊥ x

(1)
⊥
. (61)

On the other hand, the constraint equations enforce the
conservation of the energy-momentum tensor of the dual
CFT.

Once the dynamical equations have been identified,
we take the metric (46) and introduce the bookkeeping
parameter ε by means of a homogeneous rescaling of the
boundary coordinates,

τ → τ

ε
, σ → σ

ε
, ~x⊥ →

~x⊥
ε

r → r. (62)

Then, we express Vτ , Vσ, Σ and B as asymptotic series
in ε,

Vτ =

∞∑

n=0

V (n)
τ εn, Vσ =

∞∑

n=0

V (n)
σ εn,

Σ =

∞∑

n=0

Σ(n)εn, B =

∞∑

n=0

B(n)εn,

(63)
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insert them into the dynamical Einstein equations, and
demand that they are a solution order-by-order in an
expansion around ε = 0. This procedure transforms the

dynamical equations into recursion relations for V
(n)
τ ,

V
(n)
σ , Σ(n) and B(n). The zeroth-order solution reads

V (0)
τ = −1

2
ea
(
r2 − r4

h

r2

)
, V (0)

σ = 0,

Σ(0) = e
1
3 br, B(0) = −2

3
b,

(64)

where we taken into account that the bulk spacetime is
asymptotically AdS with boundary metric (48). Note
that a, b and rh are functions of τ and σ only.

The gradient expansion of Π? can be obtained from
(63) through the relation (60), provided that appropriate
boundary conditions are satisfied by the n-th order solu-
tion. These boundary conditions are divided into two sets,
infrared and ultraviolet, depending on whether they are
imposed at the event horizon of the zeroth-order solution
(64), located at r = rh, or at the asymptotic boundary,
located at r =∞. Our infrared boundary conditions are

regularity of V
(n)
τ , V

(n)
σ , Σ(n) and B(n) at r = rh. Since

we are working in Eddington–Finkelstein coordinates, de-
manding regularity of our metric functions at r = rh
corresponds to imposing infalling boundary conditions.
As for the ultraviolet boundary conditions,

1. We demand that the metric is asymptotically AdS5.
Since this boundary condition has already been fully
taken into account by the zeroth-order solution (64),
it follows that

lim
r→∞

{
V

(n)
τ

r2
,
V

(n)
σ

r2
,

Σ(n)

r
,B(n)

}
= 0, (65)

for n ≥ 1. We note that, when imposing Eq. (65),
the dynamical Einstein equations imply that, in

the r → ∞ limit, V
(n)
σ = O(r−2) for n > 2 and

B(n) = O(r−4) for n > 0. This observation will be
important later.

2. We require that the Landau frame condition (55)
is obeyed at every order in the gradient expansion.
This requires that

V
(n)
σ,2 = 0, (66)

for n ≥ 0. When combined with the last observation
performed in point 1. above, Eq. (66) implies that

V
(n)
σ = O(r−3) as r →∞ for n > 2.

3. We demand that the energy density as computed
from the zeroth-order solution, 3

4r
4
h, agrees with

the actual energy density of the system, E . This
requires that

V
(n)
τ,2 = 0, (67)

for n ≥ 1. rh is thus related to the local temperature
T as πT = rh.

4. We enforce the condition (59). Since this relation
is first order in gradients, we must impose it at the
level of Σ(1). This implies that

Σ
(n)
0 = 0, (68)

for n 6= 1.

D. The large-order behaviour of the gradient
expansion

In order to assess the large-order behaviour of the
gradient expansion (63), we assume that the singulant
fields corresponding to Vτ , Vσ, Σ and B are equal and,
subsequently, find that this assumption is self-consistent.
Hence, we take

V (n)
τ (r, τ, σ) ∼

∑

q

V̄τ,q(r, τ, σ)
Γ(n+ αq(r, τ, σ))

χq(τ, σ)n+αq(r,τ,σ)
, (69)

with analogous expressions holding for Vσ, Σ and B. In
the end, this restriction is equivalent to the assumption
that the gradient expansion of the full spacetime metric
(8) takes the asymptotic form (10).

To simplify the subsequent argument we introduce Ψ,
which stands for any of the functions Vτ , Vσ, Σ and B. Ac-
cording to the general analysis presented in Appendix A –
and whose most important take-home points were men-
tioned in Sec. II – the terms in the dynamical equations
that set the singulant equation of motion are of the form

∂pr∂µ1
. . . ∂µmΨ, (70)

where p, m are non-negative integers. Since the dynamical
equations are second order in spacetime derivatives, one
has that p+m ≤ 2. Furthermore, it is very important to
stress that, due to the functional form of the dynamical
equations, the large-order ansatz (10) implies that χ is
independent of the radial coordinate r.

Let us discuss Err first. One finds that, at leading-order
in n as n→∞,

∂2
r Σ̄ = 0. (71)

This relation, when combined with the boundary condi-
tions spelled out before, entails that

Σ̄ = 0. (72)

Taking into account this fact, the remaining dynamical
equations imply that, at leading-order in n as n→∞,

∂2
r V̄σ +

∂rV̄σ
r
− 4V̄σ

r2
+ 2ebZ(χ)∂rB̄ = 0, (73a)

∂2
r B̄+

(
1

r
+

4r

f (0)
−2U(χ)

f (0)

)
∂rB̄

−
(

3U(χ)

rf (0)
+
Z(χ)2

3r2f (0)

)
B̄−2e−bZ(χ)

3r2f (0)
∂rV̄σ

−2e−bZ(χ)

3r3f (0)
V̄σ = 0,

(73b)
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∂2
r V̄τ+

4∂rV̄τ
r

+
2V̄τ
r2
−2ea−bZ(χ)

3r2
∂rV̄σ

−2ea−bZ(χ)

3r3
V̄σ−

eaZ(χ)2

3r2
B̄ = 0,

(73c)

where f (0) = r2 − r4
hr
−2. Note that V̄τ decouples from

V̄σ and B̄.
Let us assume that the singulant field χ is known at

the τ = 0 slice. In order to integrate the singulant motion,
we need to find ∂τχ. This can be achieved by solving
the eigenvalue problem for ∂τχ posed by Eqns. (73a)-
(73b) with boundary conditions given by Eqns. (65)-(66).
We note that the singulant dynamics is ultralocal in the
boundary coordinates: to compute ∂τχ at a given space-
time point, the inputs that we need are the values of ∂σχ
and a, b and rh – or, equivalently, the energy density and
velocity of the fluid – at the point. This ultralocality is
in line with the general results discussed in Sec. II. Fur-
thermore, in the next subsection, we also confirm that
the eigenvalue problem spelled out above has a natural
counterpart in linear response.

E. The singulant equation of motion and linear
response theory

In Refs. [61, 62] it was shown that, in the linear re-
sponse regime, it is possible to find the exact constitutive
relations that express the dissipative tensor as a func-
tional of the hydrodynamic fields in the Landau frame.
Consider infinitesimal fluctuations of the hydrodynamic
fields and Πµν around a reference thermal state of energy
density E0 and fluid velocity U0 = ∂t. These infinitesimal
fluctuations, which we denote as δE , δ~u and δΠµν , are
defined as

E = E0 + δE , U = ∂t + δ~u · ~∂,
Πµνdx

µdxν = δΠijdx
idxj ,

(74)

where

δE
E0
, |δu|, δΠij

E0
� 1, (75)

and we have enforced the Landau frame condition. Latin
indices range from one to three and refer to spatial direc-
tions of the boundary.

The main result of Refs. [61, 62] is obtaining the con-
stitutive relations that express δΠij as a functional of δE
and δui in closed form. In momentum space,

δΠ̂ij = −η(ω, k2)σ̂ij − ξ(ω, k2)π̂ij , (76)

where δΠ̂ij is the Fourier transform of δΠij ,

σ̂ij =
i

2

(
kiδûj + kjδûi −

2

3
δijklδû

l

)
, (77a)

π̂ij = −i
(
kikj −

1

3
δijklk

l

)
kmδû

m, (77b)

and η(ω, k2), ξ(ω, k2) are momentum-dependent trans-
port coefficients. As explained in Refs. [61, 62], these
momentum-dependent transport coefficients are computed
by solving a system of four coupled radial ODEs in a black
brane background.

For a sound wave δ~u is parallel to ~k and one can employ
rotational invariance to set δûi = δû δi,1, ki = k δi,1 with
no loss of generality. This implies that π̂ij = − 1

2k
2σ̂ij

and hence

δΠ̂? = δΠ̂33 =
1

3

(
η − k2ξ

)
ikδû. (78)

Recalling the general definition of γs given in Eq. (44),
we have that

2E0γs = η − k2ξ. (79)

Eq. (79) shows that γs is a linear combination of the dy-
namical transport coefficients η and ξ originally defined in
Refs. [61, 62], and indicates that the method put forward
there can be straightforwardly modified to compute γs
directly. Both this computation and the results it leads to
are described in detail in Appendix C. For our purposes
here, it suffices to mention that:

1. For fixed k ∈ R, γs is a mereomorphic function
of ω ∈ C, with an infinite number of simple poles,

Ω
(±)
q (k), symmetric around the imaginary ω-axis,

Ω
(+)
q (k) = −Ω

(−)
q (k)∗. The imaginary part of

Ω
(±)
q (k) is always negative.

2. These simple poles can be computed by solving the
following eigenvalue problem,

P ′′ +
P ′

r
− 4P

r2
− 2ikQ′ = 0, (80a)

Q′′ +
f + 4r2 − 2irΩp

rf
Q′ +

k2 − 9iΩpr

3r2f
Q

+
2ik

3r2f
P ′ +

2ik

3r3f
P = 0,

(80b)

where f = r2 − µ4r−2. The boundary conditions
to be imposed on P and Q are regularity at the
black brane horizon located at r = µ and the near-
boundary behaviour P = O(r−3), Q = O(r−4) as
r →∞.

The two observations above are sufficient to state the
main result of this section: if the gradient expansion grows
factorially and the singulant field is independent of the
metric component under consideration, then the singulant
equation of motion is determined by the poles of γs, just
as it was the case in the model discussed in Sec. III D.
This fact follows immediately from the realisation that
the map

P → ±e−bV̄σ, Q→ B̄, µ→ rh,

Ωp → −iU(χ), k → ±iZ(χ),
(81)
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transforms Eqns. (80a)-(80b) into Eqns. (73a)-(73b) and
that the infrared and ultraviolet boundary conditions

obeyed by P , Q and V
(n)
σ , B(n) are the same for n >

2. The existence of this map conforms to the general
expectations put forward in Appendix A and summarised
in Sec. II.

V. KINETIC THEORY

In kinetic theory, we take a factorial ansatz for the
distribution function itself, and derive constraints on the
singulant from the Boltzmann equation. We cross check
our results in RTA kinetic theory for Bjorken flow, where
we can compute precise numerical solutions. We also
reanalyze the 1/w expansion in this new perspective,
extending results from previous work on the large-order
behaviour of moments [16, 18, 27].

A. Singulants of the distribution function

The Boltzmann equation is

εpµ∂µf(x, p) = C[f ], (82)

which together with the ansatz (9) implies that f (n) is of
order n in gradients of f (0). With the factorial-over-power
ansatz (11) the resulting linearisation implies that up to
subleading corrections in 1/n,

(−pµ∂µχ(x, p))
A(x, p)

χn+α(x, p)
= C

[
A

χn+α

]
, (83)

where C is the linearised collision operator

C =
δC[f ]

δf

∣∣∣∣
f=f(0)

. (84)

Differently from the other theories, the factor A/χn does
not cancel out, so the large order equation seems to depend
explicitly on n.

Let us sidestep the issue of defining what A/χn con-
verges to. In the limit, we see that the action of C must
be identical to the action of −pµ∂µχ(x, p). The latter
does not couple different values of p. Thus, the equation
of motion for the singulant can be determined by find-
ing those distribution functions where C effectively acts
diagonally in p.

This is automatically fulfilled in RTA, where

C =
pµUµ

τrel(x, p)
, (85)

leading to

pµ (∂µχ(x, p) + Uµ/τrel) = 0. (86)

We can write the solution as

χ = −
∫

Uµ

τrel
dxµ + χfs, (87)

where χfs is any solution to the free streaming Boltzmann
equation.

B. Moments

Consider some moment, whose n-th term arises from
the n-th term of the distribution function as

Iµ1...µj
n =

∫

p

f (n)pµ1 . . . pµj . (88)

With the singulant ansatz for f (n) this is

Iµ1...µj
n =

∫

p

Γ(n+ α)

χ(x, p)n+α
A(x, p)pµ1 . . . pµj . (89)

To evaluate this in the limit when n→∞, we can try a
saddle point integration. Then the leading contributions
come from those points ps where ∇p lnχ(x, p)|p=ps = 0.
This heuristic argument suggests that the large-order
behaviour of the moment is governed by the saddle point
singulant χs(x) ≡ χ(x, ps). This implies that

Iµ1...µj
n ∼

∑

saddles

As(x)
Γ(n+ αs(x))

χs(x)n+αs(x)
pµ1
s . . . pµjs , (90)

where αs = α(x, ps)− j/2. As gets contributions from A,
the Hessian of χ and the measure [65].

We also note with this argument, the tensor structure
is not sensitive to n, which is consistent with the general
ansatz in Eq. (3).

C. Gradient expansion in Bjorken flow

We now consider Bjorken flow in RTA kinetic theory,
where the singulant equation of motion can be verified
using the results of [27]. With a relaxation time τrel = γ/T
the Boltzmann equation is

ε
γ

T
∂τf(τ, v, pT ) = feq − f, (91)

where pT is the magnitude of the transverse momentum,

v = tPL − zE and feq = exp

(
−
√

v2

(τT )2 +
p2
T

T 2

)
. There is

a simple recursion relation for f (n)

f (0) = feq, (92a)

f (n+1) = − γ
T
∂τf

(n), (92b)

and the singulant satisfies

∂τχ(τ, v, pT ) =
1

τrel
, (93)

which is just Eq. (87) specialised to this model.
Eq. (91) can be integrated to give an equation for the

temperature T (τ) [66, 67], which can be used to get precise
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FIG. 6. Singulants in the gradient expansion in RTA kinetic
theory in Bjorken flow. Top panel: Borel plane at τ ≈ .6
for three values of the momentum (v, pT ). One singulant
seems to be approximately momentum independent, and is
the dominant one. Another depends on their ratio. Bottom
panel: Test of the singulant equation of motion. χ can be
measured numerically at each point in time by calculating the
gradient expansion. Alternatively, we can take the dominant
singulant from the top panel and evolve it by Eq. (93). The
figure shows that these procedures agree.

numerical solutions. Together with the recursion relation
this allows access to large orders of f (n).

In Fig. 6, we verify that the singulant equation of motion
is satisfied, and that there are momentum-dependent
singulants.

D. The 1/w expansion revisited

Another expansion, used in previous works [18, 27], is
to expand the pressure anisotropy

A ≡ PT − PL
P

(94)

in inverse powers of the variable w ≡ τT . The essential
difference between these expansion is that the latter one
uses the conservation equations to remove all appearances
of ∂τT , see Ref. [32] for details.

It is convenient to change variables to

p1 ≡
v2

w2
(95a)

p2 ≡
p2
T

T 2
, (95b)

and we now expand as

f =

∞∑

n=0

f̃n(p1, p2)

wn
, (96)

with f̃0 = e−
√
p1+p2 . Here tildes denote series coefficients

in the 1/w expansion. The pressure anisotropy is also
expanded as

A(w) =

∞∑

n=1

ãn
wn

. (97)

The Boltzmann equation leads to the following recursion
relation for the expansion coefficients

f̃n+1

γ
=

2

3
nf̃n +

4

3
p1∂p2

f̃n −
2

3
p2∂p2

f̃n

+
1

18

n∑

k=0

ãn−k(kf̃k + 2p1∂p1 f̃k + 2p2∂p2 f̃k). (98)

This recursion can be used to calculate several hundred
orders of f̃n and ãn analytically. The ãn coefficients were
observed to diverge factorially in Ref. [18]. Numerical

studies of these series show that the coefficients f̃n(p1, p2)
diverge factorially, with a slope that depends on the values
of p1 and p2. We are therefore lead to the ansatz

f̃n =
Γ(n+ α)

χ(p1, p2)n+α
A(p1, p2), (99)

with a momentum-dependent singulant. The recursion
relation implies that χ satisfies

3

2γ
= χ− 2p1∂p1

χ+ p2∂p2
χ, (100)

where the terms involving the coefficients of the pressure
anisotropy have dropped out. This equation has the
solutions

χ(p1, p2) =
3

2γ
+
√
p1G (p2

√
p1) , (101)

where G is an arbitrary function. G is in principle de-
termined by matching a sum of singulants to the zeroth
order of the perturbative series, but we do not know how
to do this in practice. However, even without knowing
the function G, the values of χ(p1, p2) on a curve where
p2
√
p1 is constant can be calculated from any other. We

verified this using the explicit large-order computation,
see Fig. 7.
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FIG. 7. Borel plane for the distribution function in RTA kinetic
theory in Bjorken flow, for the 1/w-expansion. According to
Eq. (101), the value of the singulant χ(p1, p2) can be predicted
along a certain trajectory in the space of (p1, p2). We verify
this by calculating the singulants for two points on such a
curve. These singulants are shown in the Borel plane and
the two sets of parameters correspond to the blue and green
points in the figure. From the singulant revealed by one set,
we predict the location for the other parameters and confirm
this prediction using the explicit large-order computation.

For the pressure anisotropy, let us apply the saddle
point argument from above. Eq. (100) immediately im-
plies that χ∗ = 3

2γ at a saddle point. Thus, even though G

is unknown, and therefore the saddle points p∗ cannot be
determined, the value of the singulant at the saddle point
is uniquely fixed. However, it is also known that there are
contributions with a nonzero imaginary part [18], which
do not correspond to physical excitations. We do not
know why they do not show up in this analysis, but a
possibility is that they come from endpoint contributions
of the saddle point integral.

VI. THE OPTIMAL TRUNCATION OF THE
GRADIENT EXPANSION

Having established that the gradient expansion (5) is
factorially divergent in MIS-like theories, the natural
question that arises is what its practical usefulness is.
There are two different ways in which one can employ
a factorially divergent gradient expansion: a fixed-order
truncation or an optimal truncation. In this section, we
explore the second option.

The optimal truncation of the gradient expansion at a
given spacetime point is the partial sum

S(nopt)(t, x) =

nopt∑

n=1

Π
(n)
? (t, x) (102)

closest to the actual value of Π?(t, x). Note that, due
to this definition, the order of optimal truncation nopt is
expected to be spacetime-dependent.

Our main objective in this section is to put forward a
criterion for estimating nopt that relies exclusively on the

gradient expansion itself. Our choice is the following. Let
|χd(t, x)| correspond to the absolute value of the dominant
singulant at a given spacetime point. We propose to
estimate the order of optimal truncation at that spacetime
point by the relation

nopt,est(t, x) = [|χd(t, x)|], (103)

where the brackets instruct us to take the integer part of
the quantity they enclose.

To explore the consequences of Eq. (103), let us consider
the case in which the large-order behaviour of the gradient
expansion is of the form (6) and that |χd| � 1. In this

situation, it is immediate to demonstrate that Π
(nopt,est)
?

is the smallest coefficient of the gradient expansion,

|Π(nopt,est)
? (t, x)| < |Π(n)

? (t, x)| ∀n 6= nopt,est, (104)

and, furthermore, that this smallest coefficient is expo-
nentially suppressed in |χd|,

|Π(nopt,est)
? | ∼

√
2πP |χd|−

1
2 e−|χd|. (105)

The standard expectation is that S(nopt,est) provides a
representation of the actual Π? which is accurate up to
such exponentially small term,

|Π? − S(nopt,est)| = O
(
e−|χd|

)
, |χd| � 1. (106)

In the case that the dominant singulant is not real but
rather corresponds to a complex conjugated pair, the

norm of Π
(n)
? displays additional oscillations at large n

with frequency argχ,

|Π(n)
? | ∼ 2|P | cos((n+α) argχ− argP )

Γ(n+ α)

|χ|n+α
, (107)

where we assumed that α is real. In this situation, the
definition (103) singles out the gradient expansion coef-
ficient for which the envelope of these oscillations is the
smallest.

To test our estimate, we consider the following initial
data in BRSSS theory,

T (0, x) = 2− tanh(x)2, u(0, x) = Π?(0, x) = 0, (108)

which correspond to an initial overdensity in the local

temperature such that |T (0,0)−T (0,∞)|
T (0,∞) = 1. We have set

E/T 4 = 1, η/s = 1/(4π) and τΠT = (2− log 2)/(2π). We
evaluate the gradient expansion along the flow line passing
through x = 0 at t = 0. Our results will be parameterised
in terms of the dimensionless variable

ξ(t) =

∫ t

0

dt′

τΠ(T (t′, 0))
. (109)

In the upper panel of Fig. 8, we represent the time evo-
lution of the dominant singulant and the corresponding
nopt,est as we move along this flow line. This dominant
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FIG. 8. Upper panel: Evolution of the norm of the dominant
singulant |χd| as a function of ξ along the flow line located at
x = 0 for initial data (108). A real singulant, whose trajectory
is denoted by the solid blue line, dominates at early times.
At late times, a complex-conjugated singulant pair, whose
trajectory corresponds to the solid red line, takes over. The
discontinuous solid black line corresponds to nopt,est, as given
by Eq. (103). Middle panel: Coefficients of the gradient
expansion at three selected times. The ones associated to the
corresponding nopt,est have been highlighted in red. Lower
panel: Absolute error of the optimal truncation (black crosses)
and the truncation at order nopt,est (red dots). Crucially, the
latter error provides an upper bound for the former that
displays the same time-dependence. The dashed (dotted)
black line represents the absolute error of the first (second)
order truncation.

singulant has been extracted with the help of the method
put forward in our analysis of the BRSSS model in Sec. III.
The reader can find where the gradient expansion coef-

ficient Π
(nopt,est)
? picked by our procedure sits at three

different times in the middle panel of Fig. 8.
Finally, in the bottom panel of Fig. 8 we plot the time

evolution of the error of our estimate for optimal trunca-
tion

|Π? − S(nopt,est)| (110)

and compare it with the error of the actual optimal trun-
cation as originally defined. The latter is always upper
bounded by the former and, furthermore, both errors
decrease exponentially as ξ grows. For reference, we also
include the absolute errors incurred by the first and second
order truncations of the gradient expansion.

VII. OUTLOOK

We have established that there exists a deep connec-
tion between far-from-equilibrium nonlinear relativistic
hydrodynamics and linear response around global thermal
equilibrium. This connection is manifest in the large-order
behaviour of the hydrodynamic gradient expansion and
is naturally encoded in singulants. We have outlined
the principles governing singulant dynamics in longitu-
dinal flows for MIS-like models, holography and kinetic
theory, and checked their validity by explicit numerical
computations in a number of cases.

Our work opens new research directions which come
with new technical and conceptual challenges to be ad-
dressed. On the technical front, it would be interesting to
solve for nonlinear longitudinal flows as an initial value
problem in holography and RTA kinetic theory and con-
firm the predicted behaviour of singulants by analysing
the gradient expansion at large order (just as we have
done here for MIS-like models). On the conceptual front,
we singled out four questions that we believe are of par-
ticular importance and discuss them in the subsections
below.

A. Singulants and initial conditions

While we have succeeded in determining the time evo-
lution of individual singulants, we have not discussed
how the number of singulants and their initial values are
related to the initial out-of-equilibrium state under con-
sideration. The complete answer to this problem remains
unknown to us; we have however made partial progress
on this front by working in the linear response regime. In
this case, the problem of finding initial conditions for the
singulant fields can be solved, and we refer the reader to
Appendix D for a worked-out example in BRSSS theory.

Revisiting this question for nonlinear flows is of funda-
mental importance in order to understand how to promote
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the gradient expansion (1) to a full-fledged transseries
representation of the energy-momentum tensor. If there
were a method to extract the values of the singulant fields
at t = 0 from the initial data, then the singulant equa-
tion of motion would allow us to determine the dominant
singulant at any given point without having to compute
the gradient expansion itself. In the light of the results
presented in Sec. VI, the natural expectation that arises
is that full knowledge of the spacetime profile of the domi-
nant singulant would allow us to single out the spacetime
region where relativistic hydrodynamics, when truncated
at low order, will not be applicable – for instance, because
|χd| ∼ 1 and no optimal truncation even exists.

B. Singulants beyond longitudinal flows

Another important question we have not discussed up
to this point is whether the results presented in this work
generalise beyond longitudinal flows. The main simplifica-
tion brought by restricting ourselves to this class of fluid
flows was that Πµν could be described in terms of a single
scalar field, Π?. We have seen that a longitudinal flow is
nothing but a nonlinear sound wave. Due to this, and the
linearisation entailed by the asymptotic ansatz (14), the
singulant equation of motion was determined by a linear
response theory problem formulated in the sound channel.
In the absence of symmetry constraints, a d-dimensional
conformal energy-momentum tensor is associated with a
Πµν that encompasses d(d−1)/2−1 degrees of freedom. It
is natural to wonder whether, in this completely general

situation, the leading large-order behaviour of Π
(n)
µν can

be expressed as a linear superposition of contributions
defined in independent channels5

Π(n)
µν ∼

∑

c

Γ(n+ α)

χn+α
c

Ac,µν , (111)

and, furthermore, if these conjectured channels can be
put into one-to-one correspondence with the tensor, vec-
tor and scalar channels that arise when decomposing an
infinitesimal fluctuation of the energy-momentum tensor
around thermal equilibrium.

In Appendix B we provide the first steps to address
this question in the context of MIS-like theories. The
analysis presented there shows that, for a decomposition
along the lines of Eq. (111) to be possible, one would
need to work with a basis for the tangent space at a
given point that depends explicitly on the singulant fields
themselves. A fully fledged numerical analysis beyond the
realm of longitudinal flows in these models along the lines
of Ref. [32] is required to find out whether this conclusion
is correct. This computation will be numerically more

5 We omit the sum over independent singulant contributions within
a given channel for presentational simplicity.

costly than the longitudinal flow one, but we expect it to
be feasible.

Finally, we would like to point out that, when it comes
to this issue, kinetic theory stands aside the other models
we have considered. In the kinetic theory case, we know
that the large-order behaviour of the gradient expansion
of the distribution function does not decompose into chan-
nels. It would be interesting to understand whether, in
spite of this, computing the second-order moments to get
the energy-momentum tensor leads naturally to a channel
decomposition.

C. Singulants in other gradient expansions

Finally, we would like to point out that Eq. (1b), while
defining classical relativistic hydrodynamics as an effective
field theory, is not the only gradient expansion one can
work with. Our analysis of the 1/w-expansion in RTA
kinetic theory already illustrates that singulants provide
novel insights beyond the realm of the gradient expansion
(1b), and we expect this observation to completely general.

To further illustrate this point, let us stay within the
realm of longitudinal flows and considered a scenario in
which, besides Π?, both E and U are gradient-expanded

E =

∞∑

n=0

E̊(n)εn, U =

∞∑

n=0

Ů (n)εn,

Π? =

∞∑

n=1

Π̊
(n)
? εn,

(112)

with the conservation equation ∇µTµν = 0 being solved
in a small-ε expansion. In this alternative gradient ex-
pansion, E̊(0) and Ů (0) represent the solution of ideal
hydrodynamics associated with the initial spatial profiles
of the energy density and the velocity field, while higher-
order terms encode dissipative corrections to the ideal
solution which vanish at t = 0. We refer to the gradient
expansion (112) as the ideal expansion. In the context
of Bjorken flow, the ideal expansion is precisely the ex-
pansion in inverse powers of the proper time τ , and the
1/w-expansion arises as resummation of it.

Let us assume that the large-order behaviour of E̊(n),

Ů (n) and Π̊
(n)
? are governed by a common singulant field.

The general rules we put forward in Appendix A entail
that the singulant equation of motion is connected to a
linear response theory problem through the map (A22).
In this regard, the fundamental differences between the
gradient expansions (1) and (112) are two-fold. First,
the role that the microscopic E and U had in the map
associated to the gradient expansion (1) is taken over

by E̊(0) and Ů (0) when the ideal expansion is considered.
Second, the particular linear response theory problem
associated to the ideal expansion is different from the one
relevant for the gradient expansion (1): rather than being
determined by the poles of γs, the singulant equation of
motion in the ideal expansion is set by the sound channel
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modes. The reason is that, to compute the ideal expansion,
the conservation equation is also gradient expanded.

Another expansion to which one can apply some of
the techniques developed in this work is the Cauchy data
expansion. In this case one employs the conservation equa-
tions to systematically replace longitudinal derivatives in
the constitutive relations by transverse ones. The Cauchy
data expansion is known up to third-order in gradients
at the fully nonlinear level [68, 69], and its large-order
behaviour was analyzed in Ref. [33] for conformal fluids in
the context of linearised hydrodynamics, where it only in-
volves spatial derivatives – hence our nomenclature. The
aforementioned replacement, while inconsequential from
the effective field theory perspective, makes a difference
when the constitutive relations are evaluated on a fluid
flow. Given the results of Ref. [33], we expect the Cauchy
data expansion to be factorially divergent at the nonlin-
ear level, and it would be interesting to explore in detail
the link between singulant dynamics and linear response
theory in this case.

Finally, we want to mention that our general expecta-
tion is that different frame choices, i.e., different choices of
collective fields, would result in singulants with different
dynamics. This should not come as a surprise, given the
previous discussion on the ideal expansion. In fact, as the
causal completions of relativistic hydrodynamics recently
put forward by Bemfica, Disconzi, Noronha [70] and Kov-
tun [71] (BDNK) illustrate, there exist phenomenological
models for which even the very existence of the gradient
expansion (1) is contingent on the choice of collective
fields. To make meaningful comparisons between gradi-
ent expansions across different models, one has to keep
the choice of collective fields invariant. In this regard, it
might be worthwhile to perform a field redefinition in the
BDNK theories (or the theory put forward in Ref. [72]) to
put their gradient-expanded constitutive relations in the
Landau frame and check whether the singulant dynamics
in longitudinal flows is still controlled by the poles of γs.

D. Singulants as transients

Time development of singulants is also interesting from
the point of view of their detectability as transients. In the
case of the 1/w-expansion in Bjorken flow, see section V D,
the hydrodynamic series is the same for all nonequilibrium
states. Therefore, when subtracting two different solu-
tions for A(w) the hydrodynamic sector of the transseries,
cancels completely, leaving singulant physics visible to
the naked eye [73]. It is important to emphasise is that
this is an artifact of the high symmetry of Bjorken flow.
For two different states undergoing longitudinal flow such
an exact cancellation would not occur. For generic flows,
singulants could instead be isolated by comparison with
truncated or resummed gradient expansion, since they
are defined with respect to a specific gradient expansion
in the sense of Sec. VII C and their equations of motion
are directly tied to this choice. Since it is possible to re-

late different gradient expansions (for example, by using
the conservation of Tµν to replace all time derivatives
in (1) order-by-order, which leads to the Cauchy data
expansion), it would be very interesting to understand
how the whole transseries (including different notions of
transients) map to one another.
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Appendix A: General results on the singulant
equation of motion

1. Linearisation of the constitutive relations: a
gradient expansion approach

In this section we show how the constitutive relations
become effectively linear when using the factorial-over
power-ansatz in the large-order limit.

Consider a factorially growing series

f =

∞∑

k=0

f(n)ε
n =

∞∑

k=0

Γ(n+ α)

χn+α(x)
εn, (A1a)

where for simplicity we suppress the x-dependence of both
A and α. To leading order in large n, it is straightforward
to show that the following relations hold

(fk)(n) ∼ kfk−1
(0) f(n) (A2)

(εk∂α1 · · · ∂αkf)(n) ∼ f(n)(−1)k∂α1χ · · · ∂αkχ, (A3)

where the (n) instructs us to take the n-th order coefficient
of the expansion in ε of the function.

These relations have consequences for the gradient ex-
panded constitutive relations. We take the ansatz for Πµν

as

Πµν =

∞∑

n=1

εnΠµν
(n), Πµν

(n) =
Γ(n+ α(x))

χ(x)n+α(x)
Aµν(x), (A4)
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and assume that the equation of motion for Πµν takes
the form

0 = Fµν [Παβ , T, Uα, ∂γΠαβ , ∂αT, . . . ], (A5)

where Fµν can be expanded in gradients as

Fµν =
∑

n

εnFµν(n). (A6)

In the large-order limit, due to the relations above, only
certain terms will contribute to Fµν(n).

Since the gradient expansion for Πµν starts at order ε,
Eq. (A1a) implies that terms which are nonlinear in Πµν

are suppressed at large n. The same holds for terms where
Πµν is multiplied with gradients of the hydrodynamic
fields T and Uµ.

However, terms which consist solely of gradients of the
latter fields, such as ∂nT , present a problem. If they
scale as Γ(n), they should be included, otherwise not. We
assume here that these terms do not contribute, which
is the case in e.g. MIS-like models, where the gradient
expansion is truncated at some order in those gradients.

With this assumption, only terms of the form
fµναβ,α1...αk

(T,Uγ)εk∂α1 . . . ∂αkΠαβ contribute. We then
have

0 = Fµν(n) =

( ∞∑

k=0

fµναβ,α1...αk
(T,Uγ)εk∂α1 . . . ∂αkΠαβ

)

(n)

∼ Παβ
(n)

∞∑

k=0

(−1)|k|fµναβ,α1...αk
(T,Uγ)∂α1χ · · · ∂αkχ

= Παβ
(n)f

µν
αβ (T,Uγ , ∂γχ). (A7)

2. Linearisation of the constitutive relations: a
transseries approach

Let us assume that the equations of motion that deter-
mine Π∗ in the model under consideration take the form
of nonlinear PDE system for N fields

ϕ = {ϕ1, . . . ϕN}, (A8)

that depend on variables XA. Let us divide the vari-
ables XA into Minkowski space coordinates, xµ, and
additional coordinates, ξa. In the MIS-like models dis-
cussed in Sec. III, the latter variables are absent while, in
holography, there is only one additional coordinate that
parameterises the radial direction. We define

Φ = {ϕ, ∂aϕ, ∂a∂bϕ, . . .}, (A9)

and

Ψ = {Φ, ∂µΦ, ∂µ∂νΦ, . . .}. (A10)

Finally, we assume that the nonlinear PDE system takes
the form

L(Ψ,α, ∂µα, . . .) = 0, (A11)

where we have allowed for the existence of M background
fields α = {α1, . . . , αM} that depend on the Minkowski
coordinates alone.

Let us introduce the formal parameter ε by performing
the rescaling

xµ → xµ

ε
, ξa → ξa, (A12)

and assume that, in terms of ε, the fields ϕ can be written
as a transseries in ε,

ϕi = ϕ
{0}
i +

∑

q

e−
χq
ε εγqϕ

{1,q}
i + . . . (A13)

where . . . denotes higher-order transseries sectors. ϕ
{0}
i ,

ϕ
{1,q}
i are formal power series in ε,

ϕ
{0}
i =

∞∑

n=0

ϕ
{0}
i (n)ε

n, ϕ
{1,q}
i =

∞∑

n=0

ϕ
{1,q}
i (n) ε

n, (A14)

and we assume that χq only depend on the Minkowski co-
ordinates. Under these circumstances, the transseries
ansatz (A13) translates directly into an analogous
transseries ansatz for Φi ∈ Φ. Note that α are back-
ground fields for which no transseries representation is
provided.

Let us perform the rescaling (A12) at the level of the
equation of motion (A11). We get that

L(Φ, ε∂µΦ, . . . ,α, ε∂µα, . . .) = 0. (A15)

The coefficients ϕ
{0}
i (n),ϕ

{1,q}
i (n) , . . . are fixed by the require-

ment that the transseries ansatze (A13) solve (A15) order-
by-order in ε in a ε→ 0 expansion. One finds the formal
expansion

L(Φ, ε∂µΦ, . . . ,α, ε∂µα, . . .) = L|0 +
δL
δΦi

∣∣∣
0
(Φi − Φ

{0}
i (0))+

δL
δ(∂µ1

. . . ∂µn)Φi

∣∣∣
0
εn∂µ1

. . . ∂µnΦi+

δL
δ(∂µ1 . . . ∂µn)αi

∣∣∣
0
εn∂µ1 . . . ∂µnαi + . . .

(A16)

where the Einstein summation convention has been in-
voked. The vertical bar with the ‘0’ subscript means
that the expression to its left is to be evaluated at

(Φ
{0}
0 , 0, . . . , 0,α, 0, . . . , 0), where Φ

{0}
0 = {Φ{0}i (0)}. Fi-

nally, the term ‘. . .’ denotes higher-order contributions
that play no role in the subsequent analysis.

Our focus is on coefficient of e−
χq
ε in expression (A16).

There most crucial property that we need to take into
account is that

εn∂µ1
. . . ∂µn

[
e−

χq
ε εγq

(
Φ
{1,q}
i (0) +O(ε)

)]
=

(−1)n(∂µ1
χq) . . . (∂µnχq)

[
e−

χq
ε εγq

(
Φ
{1,q}
i (0) +O(ε)

)]
.

(A17)
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Hence, according to (A17), the first and last terms explic-
itly displayed in equation (A16) make no contribution at
leading order in ε, while from the second and third ones
we get our final result

δL
δΦi

∣∣∣
0

+
δL

δ(∂µ1
. . . ∂µn)Φi

∣∣∣
0
(−1)n(∂µ1χq) . . . (∂µnχq) = 0,

(A18)
which is nothing but the singulant equation of motion.

With the hindsight provided by equation (A18), let us
elaborate further on the meaning of expression (A16).
In order to obtain (A16), we treated every term in
Φ, ε∂µΦ, . . ., ε∂µα, . . . vanishing as ε → 0 as infinitesi-
mal, without taking into account how fast this vanishing
happens. Hence, there are terms explicitly kept in expres-
sion (A16) which are subleading with respect to omitted
terms represented by ‘. . .’. Despite this, it is immediate
to see that, since we focus solely on the coefficient mul-

tiplying εγqe−
χq
ε , accounting for the correct hierarchy of

the terms appearing in (A16) is inconsequential for us.
For instance, the possible second-order terms contribute

a coefficient multiplying εγqe−
χq
ε that:

• for (Φi − Φ
{0}
i (0))(Φj − Φ

{0}
j (0)) and (Φi −

Φ
{0}
i (0))ε

n∂µ1 . . . ∂µnΦj is at least O(ε),

• for εn+m(∂µ1
. . . ∂µnΦi)(∂ν1

. . . ∂νmΦj) is at least

O(εmin(n,m)),

• for (Φi − Φ
{0}
i (0))ε

n∂µ1 . . . ∂µnαj and

εn+m(∂µ1 . . . ∂µmΦi)(∂ν1 . . . ∂νnαj) is at least
O(εn).

Hence, the second-order terms contribute a coefficient
that it at least O(ε) and, as a consequence, do not alter
equation (A18).

3. The singulant equation of motion and linear
response theory

The singulant equation of motion (A18) is isomorphic
to the result of the following procedure. First, we consider
infinitesimal plane-wave fluctuations of Φi around a xµ-
independent reference state Φi,0,

Φi = Φi,0 + λ δΦi, δΦi = δΦ̂ie
ikµx

µ

, λ→ 0, (A19)

with kµ = (−ω,~k). Second, we take the background fields
to be xµ-independent, αi,0 ∈ R. Finally, we assume that
Φ0 and α0 are such that L(Φ0, . . . ,α0, . . .) = 0.

To find the equation of motion for the fluctuations, we
expand in λ,

L =λ

[
δL
δΦi

∣∣∣
0
δΦi+

δL
δ(∂µ1 . . . ∂µnΦi)

∣∣∣
0
∂µ1

. . . ∂µnδΦi

]

+O(λ2).

Taking into account that, for δΦi = δΦ̂ie
ikµx

µ

,

∂µ1
. . . ∂µnδΦi = (ikµ1

) . . . (ikµn)δΦi, (A20)

we get

δL
δΦi

∣∣∣
0

+
δL

δ(∂µ1 . . . ∂µnΦi)

∣∣∣
0
(ikµ1

) . . . (ikµn) = 0. (A21)

Equations (A18) and (A21) are mapped into one another
by

− ∂µχq ↔ ikµ, Φ
{0}
i (0) ↔ Φi,0, αi ↔ αi,0. (A22)

This is the map we referred to for the first time in Sec. II.

Appendix B: Decomposing the large-order
behaviour of the gradient expansion into channels

In this Appendix, we discuss whether the large-order
behaviour of Πµν allows for a channel decomposition
in a general conformal fluid. For simplicity, we restrict
our discussion to the case of MIS-like models where the
equation of motion for Πµν is at most second-order in
spacetime derivatives.

According to the analysis presented in Appendix A, the
building blocks we have at our disposal to construct the
singulant equation of motion in this case are

• Tensors: Aµν .

• Vectors: kµ⊥ ≡ ∆µν∂νχ.

• Scalars: T , U(χ), k⊥ · k⊥.

Note that each building block is a field in spacetime. The
most general singulant equation of motion one can write
with these ingredients is

c(T,U(χ), k⊥ · k⊥)Aµν+f

[
1

2
(Aµαk⊥αk

ν
⊥+µ↔ ν)

− 1

d−1
∆µν(Aαβk⊥,αk⊥,β)

]
=0, (B1)

where, with no loss of generality, we have taken the coef-
ficient f to be a positive real number, and

c(T,U(χ), k⊥ · k⊥) = c0,0T
2 + c1,0TU(χ)

+ c2,0U(χ)2 + c0,2(k⊥ · k⊥). (B2)

The coefficients ci,j and f define the MIS-like theory
being considered; for instance, in the models explored in
this work, f = 0. On the other hand, the T -dependent
functions multiplying ci,j are fixed by dimensional analysis
due to conformal invariance.

Let us define d−2 vector fields Zi such that

Zi · U = Zi · k⊥ = 0, Zi · Zj = δij . (B3)
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At a given spacetime point, we decompose Aµν as

Aµν = AµνTT +AµνTL +AµνLL, (B4)

with

AµνLL = aLL

(
kµ⊥k

ν
⊥ −

1

d− 1
∆µνk2

⊥

)
, (B5a)

AµνTL =

d−2∑

i=1

a
(i)
TL

kµ⊥Z
ν
i + kν⊥Z

µ
i

2
, (B5b)

AµνTT =
∑

j≤i
a

(i,j)
TT Zµi Z

ν
j , (B5c)

where the matrix a
(i,j)
TT is symmetric in i, j and has van-

ishing trace. Note that AµLLµ = AµTLµ = AµTTµ = 0. Our

decomposition parameterises the d(d− 1)/2−1 indepen-
dent degrees of freedom that in principle comprise Aµν

as αLL, α
(i)
TL and α

(i,j)
TT .

If we introduce the decomposition (B4) into the ansatz
for the singulant equation of motion (B1), we get that

cAµνTT+

(
c+

1

2
fk2
⊥

)
AµνTL+

(
c+

d−2

d−1
fk2
⊥

)
AµνLL=0.

(B6)
At the spacetime point under consideration, it seems
consistent to have a large-order behaviour of the form6

Πµν ∼
∑

c=LL,LT,TT

Aµνc
Γ(n+ αc)

χn+αc
c

, (B7)

provided that

c(T,Uµ∂µχTT ,∆
µν∂µχTT∂νχTT ) = 0, (B8a)

c(T,Uµ∂µχTL,∆
µν∂µχTL∂νχTL)

+
f

2
∆µν∂µχTL∂νχTL = 0, (B8b)

c(T,Uµ∂µχLL,∆
µν∂µχLL∂νχLL)

+
(d−2)f

d−1
∆µν∂µχLL∂νχLL = 0. (B8c)

The nontrivial question is whether the decomposition
(B7), which we argued is valid at a given spacetime point,
is self-consistent across the whole spacetime. This issue
has to be decided by the constraints placed upon Aµν

by the subleading terms in the large n expansion of the
recursion relations. Hopefully, our Aµν decomposition

6 We omit the sum over independent singulant contributions within
each channel.

will be compatible with these constraints, provided that

αLL, α
(i)
TL and α

(i,j)
TT obey a particular equation of motion

that allows us to fix them.
There seems to be a natural map to linear response

theory, where the LL channel corresponds to sound and
the TL channel to shear; in this case, it should be the case
that ATT = 0, since hydrodynamics does not capture the
tensor channel.

Appendix C: The computation of γs in holography

1. The gravity dual of a sound wave

In this Appendix, we explain how to compute γs in
holography by adapting the approach of Refs. [61, 62].
Our goal is constructing the five-dimensional geometry
dual to a sound wave of infinitesimal amplitude propa-
gating on a background thermal state. Since this sound
wave is a longitudinal flow, we take the metric ansatz (46)
and write

Uµdx
µ = −dt+ λ δu dx, (C1a)

Vµdxµ =

(
−1

2
f(r) + λ δVt

)
dt+ λ δVxdx, (C1b)

Gµνdxµdxν = r2(dx2+d~x2
⊥)

+ λr2

[
2

(
−δB+

δΣ

r

)
dx2+

(
δB+2

δΣ

r

)
d~x2
⊥

]
,

(C1c)

where f = r2 − µ4r−2 is the blackening factor of the
background black brane. We parameterise the longitu-
dinal plane with Minkowski coordinates t and x. The
fluctuations δVt, δVx, δΣ and δB are functions of r, t and
x, while λ is a bookkeeping parameter that reminds us
that these fluctuations are infinitesimally small.

Due to the translational invariance of the background
black brane, it is convenient to work in momentum-space.
Hence, we take

δVt(r, t, x) = δV̂t(r, ω, k)e−iωt+ikx, (C2)

and similarly for δVx, δΣ and δB.
With our choices, the Einstein’s equations read

Eµν = E(0)
µν + λe−iωt+ikxδÊµν (C3)

at leading order in λ. As dynamical equations, we take
the following linear combinations of δÊµν ,

D1 = δÊrr, (C4a)

D2 = 2δÊrx, (C4b)

D3 =
2

3r2f
(δÊxx − δÊyy), (C4c)
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D4 = − 1

3r2
(δÊxx + 2δÊyy + δÊrt). (C4d)

D1 is simply

∂2
rδΣ̂ = 0, (C5)

implying that

δΣ̂ = A1r +A2. (C6)

The requirement that the boundary metric is the
Minkowski metric entails that A1 = 0. Furthermore,
it is always possible to shift A2 by the coordinate change
r → r+ λΨe−iωt+ikx. Therefore, A2 can always be set to
zero and, as a consequence, we take δΣ̂ = 0 with no loss
of generality. Once the latter condition is imposed, the
remaining dynamical equations read

δV̂ ′′x +
δV̂ ′x
r
− 4δV̂x

r2
− 2ikδB̂′ − 3iωδû

r
= 0, (C7a)

δB̂′′+
f+4r2 − 2iωr

rf
δB̂′+

k2−9iωr

3r2f
δB̂

+
2ik

3r2f
δV̂ ′x+

2ik

3r3f
δV̂ ′x+

f−4r2 + 2iωr

3r3f
ikδû = 0,

(C7b)

δV̂ ′′t +
1+4r2

r3
δV̂ ′t+

2(1+r2)

r4
δV̂t+

ik(1+4r2)

6r4
δV̂ ′x

+
2ik(1+r2)

3r5
δV̂x+

k2(1+r2)

3r4
δB̂

−r(1+4r2)(2r−iω)+(1−2r2)f

6r5
ikδû = 0.

(C7c)

Note that δV̂t decouples from δV̂x and δB̂. According to
the dynamical equations, the asymptotic series expansion
of the metric is

δV̂t =
1

3
ikδûr − ωkδû

3
+ δV̂t,2r

−2 + . . . , (C8a)

δV̂x = −1

2
δûr2− iωδûr+

k2δû

3
+ δṼx,2r

−2 + . . . , (C8b)

δB̂ = −2

3
ikδûr−1 + δB̂4r

−4 + . . . (C8c)

where we have chosen the boundary conditions at r =∞
in such a way that the bulk spacetime is asymptoti-
cally AdS. From these asymptotic series expansions, holo-
graphic renormalisation gives a dual stress-energy tensor

of the form Tµν = T
(0)
µν + λδT̂µνe

−iωt+ikx, with

T (0)
µν = diag

(
3

4
,

1

4
,

1

4
,

1

4

)
µ4, (C9)

and

δT̂tt =
3

2
δV̂t,2, (C10a)

δT̂tx = δV̂x,2 −
1

2
µ4δû, (C10b)

δT̂xx = −2δB̂4 +
1

2
δV̂t,2, (C10c)

δT̂yy = δT̂zz = δB̂4 +
1

2
δV̂t,2, (C10d)

with the remaining components vanishing. The Landau
frame condition demands that, up to O(λ), the fluid veloc-
ity Uµ = (1, λδûe−iωt+ikx, 0, 0) is a timelike eigenvector
of Tµν . This condition can only be satisfied provided that

δV̂x,2 = −1

2
µ4δû. (C11)

Once that the relation above has been imposed, we can
finally identify

E0 =
3

4
µ4, δÊ =

3

2
δV̂t,2, δΠ̂? = δB̂4. (C12)

Recalling Eq. (44), we observe that γs can be obtained

directly from the near-boundary series expansion of δB̂.
The poles of γs play a central role in the analysis pre-

sented in Sec. IV. To compute them, we plug the ansatz

δV̂x =
P

ω − Ωp(k)
, δB̂ =

Q

ω − Ωp(k)
, (C13)

into Eqns. (C7a)-(C7b) and expand around ω =
Ωp(k). The leading-order result corresponds precisely
to Eqns. (80a)-(80b) in the main text. These equations,
on the other hand, are nothing but Eqns. (C7a)-(C7b)

with δû = 0 after the identification Ωp → ω, Q → δB̂

and P → δV̂x. This is physically consistent: at a pole of
γs, Eq. (44) predicts that Π̂? can be finite even if δû = 0.
Taking into account the asymptotic series expansions
(C8b)-(C8c) and the Landau frame condition (C11), one
recovers the near-boundary behaviour quoted in the main
text: P = O(r−3) and Q = O(r−4) as r →∞.

2. Numerical results

To compute γs, we need to solve the coupled ODEs
(C7a)-(C7b). We proceed as follows. First, we take into
account the r → ∞ series expansions (C8b)-(C8c) and
perform the field redefinitions,

δV̂x(r)=−r
2

2
δû−iωrδû+

k2

3
δû− µ4

2r2
δû−a(r)

r3
δû,

(C14a)

δB̂(r) = −2ik

3r
δû+

ikµ4b(r)

2r4
δû, (C14b)
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where the Landau frame condition (C11) has been im-
posed. Note that, according to Eq. (C12) and the defini-
tion (44),

γs = b(r =∞). (C15)

The field redefinition (C14) transforms equations (C7a)-
(C7b) into

u2a′′ + 7ua′ + 5a+ k2ub′ + 4k2b = 0, (C16a)

3u(1− u4)b′′ + (15− 27u4 + 6iωu)b′

+ (k2u− 48u3 + 15iω)b+ 4u2a′ + 8ua = −4,
(C16b)

where we have set µ = 1 and traded the radial coordinate
r by

u =
1

r
. (C17)

In Eqns. (C16), the primes denotes derivatives with re-
spect to u. The reader should keep in mind that, due to
the choice µ = 1, ω and k are measured in units of πT .

To solve (C16), we resort to pseudospectral methods.
We introduce a Chebyshev–Gauss–Lobatto grid in the
variable u, transforming the two coupled ODEs (C16)
into a single algebraic equation. There are no bound-
ary conditions to be imposed on a(u) and b(u) on the
discretisation grid, neither at the asymptotic boundary,
located at u = 0, nor at the black hole horizon, located
at u = 1. The reason is that the correct u→ 0 behaviour
has been already taken into account by the field redefi-
nitions (C14), while the requirement of a(u) and b(u) to
be regular at u = 1 is automatically incorporated by our
choice of spectral decomposition.

Once the numerical solution corresponding to a given
pair (ω, k) is known, we can read the corresponding γs by
employing the relation (C15). In Fig. 9, we plot γs for
ω, k ∈ R. Due to the symmetry of equations (C16) under
k → −k, we restrict ourselves to k ≥ 0. We see that,
for a given k, the real part of γs is even in ω, while the
imaginary part is odd. We refer the reader to Refs. [61, 62]
for a discussion of earlier numerical results on η and ξ –
linked to γs by Eq. (79) – for real ω and k.

The relation between the singulant trajectory and the
poles of γs we uncovered in Sec. IV entails that our main
interest does not lie in the behaviour of γs for real wave-
vectors, but on its singularities in the complex ω-plane.

We start by demonstrating that γs is not an entire
function of ω at fixed k. To this aim, in the top panel of
Fig. 10 we represent the (logarithm of) the norm of γs as
a function of ω ∈ C for k = 0. Our results show that γs,
while being analytic in the upper-half complex ω-plane,
has poles in the lower one. At zero spatial momentum,
these poles coincide with the nonhydrodynamic sound
channel quasinormal modes.

The poles Ω
(±)
p describe trajectories in the complex

ω-plane as k varies. While, for a given k, Ω
(±)
p could
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FIG. 9. Real (upper panel) and imaginary (bottom panel)
parts of γs, for ω ∈ [10, 10] and k ∈ [0, 10]. ω and k are
measured in units of πT = 1. These numerical results have
been obtained from a collocation grid of 60 points, with ω and
k forming a square lattice of spacing 0.125.

be found from Eqns. (C16) by means of a binary search
algorithm that minimises − log(|γs|), it is more efficient to
compute them through Eqns. (80a)-(80b). To solve these
equations numerically, we perform the field redefinitions

P (r) =
a(r)

r3
, Q(r) =

µ4

2r4
ikb(r), (C18)

which ultimately transform them into Eqns. (C16) with
vanishing source terms on the right-hand-side. The pseu-
dospectral discretisation proceeds in the same way as
described before, resulting in a generalised algebraic eigen-

value problem whose solution returns Ω
(±)
p . In the bottom

panel of Fig. 10, we plot the trajectories followed by the
three lowest-lying poles in the complex ω-plane. At large

k, we always find that Re Ω
(±)
p → ±k, while Im Ω

(±)
p

approaches zero, in such a way that Ω
(±)
p approach the

real ω-axis from below.
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FIG. 10. Upper panel: log(|γs|) as a function of ω for k = 0.
The function γs has been obtained using a collocation grid of
60 points, with the real and imaginary parts of the frequency
forming a square lattice of spacing 0.125. Bottom panel:

Trajectories described by Ω
(±)
1 (orange), Ω

(±)
2 (red) and Ω

(±)
3

(brown) in the complex ω-plane as k is increased from 0 to
50 in units of 0.5. The poles at k = 0 are represented by the
black stars. We have employed a collocation grid of 80 points
in order to get these results.

Appendix D: Mapping initial data to singulants: an
explicit example

In this Appendix, we illustrate how the singulant field
can be completely determined in the linear response
regime. For definiteness, we focus on conformal BRSSS
theory, which has been discussed at the fully nonlinear
level in Sec. III.

To access the linear response regime, we place ourselves
in the fluid rest frame, write

T (t, x) = T0 + λ δT (t, x), (D1a)

u(t, x) = λ δu(t, x), (D1b)

Π?(t, x) = λ δΠ?(t, x), (D1c)

and take the λ → 0 limit. At leading order in λ, the
recursion relations simplify to

δΠ
(1)
? =

2

3
η(T0)∂xδu, δΠ

(n+1)
? =−τΠ(T0)∂tδΠ

(n)
? . (D2)

The equations of motion for BRSSS theory in the linear
response regime can be solved in closed-form by working
in momentum space. One finds that

δu(t, x) =

∫

R
dk eikx

∑

q=+,−,NH
δuq(k)e−iωq(k)t (D3)

where ± and NH refer respectively to the contributions of
the two hydrodynamic modes and the nonhydrodynamic
one. δuH,+(k), δuH,−(k) and δuNH(k) can be expressed
in terms of the Fourier transforms of the initial data,
δT (0, x), δu(0, x) and δΠ?(0, x). Expressions analogous
to (D3) hold for δT and δΠ? as well.

Given the form of the linearised recursion relations, it is
immediate to see that contributions of individual modes
decouple. Focusing on the q-th contribution one finds
that, in Fourier space,

δΠ
(1)
? (k) =

2

3
η(T0)ikδuq(k), (D4a)

δΠ
(n+1)
? (k) = iτΠ(T0)ωq(k)δΠ

(n)
? (k). (D4b)

The recursion relations above are immediately solved by

δΠ
(n)
? (k) =

2

3
η(T0)inτΠ(T0)n−1ωq(k)n−1kδuq(k). (D5)

Let us assume that the analytical continuation of the
Borel transform of the gradient expansion,

δΠ
(B)
? (t, x; ε) =

∞∑

n=1

δΠ
(n)
? (t, x)

n!
εn, (D6)

has a well-defined Fourier transform, δΠ
(B)
? (t, k; ε). Then,

we can employ (D5) to compute the contribution of the

q-th mode to δΠ
(B)
? (t, k; ε), δΠ

(B)
?,q (t, k; ε), with the final

result that

δΠ
(B)
?,q (t, k; ε) =

2η(T0)(eiετΠ(T0)ωq(k)−1)

3τΠ(T0)ωq(k)
kδuq(k). (D7)

Our main working hypothesis is that, when the Fourier
integral

∫

R
dk eikx

∑

q=+,−,NH
δΠ

(B)
?,q (t, k; ε)e−iωq(k)t (D8)

ceases to exist for a particular ε, the original analytically

continued Borel transform δΠ
(B)
? (t, z; ε) becomes singu-

lar. Hence, it is natural to identify the ε’s at which this
phenomenon takes place with the singulants controlling
the large-order behaviour of the gradient expansion.

In the light of expressions (D7) and (D8), the conver-
gence of the Fourier integral (D8) depends on two inputs:
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FIG. 11. For α = 1, η
s

= 1
4π

and τΠ,0 = 2−log 2
2π

, comparison
between the analytic prediction (D17) and a numerical com-
putation of the singulants χ+ (upper panel) and χ− (bottom
panel). Filled (open) circles and blue (red) curves correspond,
respectively, to the real (imaginary) part of the singulants
computed numerically and the prediction (D17).

• The large-k behaviour of the initial data, which
determines the large-k behaviour of δuq(k).

• The large-k behaviour of the mode frequencies.

Regarding the latter, it is straightforward to show that,
as k →∞,

ω+(k) = cUV k + . . . , (D9a)

ω+(k) = −cUV k + . . . , (D9b)

ωNH(k) = −i T0

4ηs + τΠ,0
+ . . . , (D9c)

with asymptotic group velocity

cUV =

√
4ηs + τΠ,0

3τΠ,0
. (D10)

Hence, for initial data which decay faster than any power-
law as k → ∞, any divergence of the Fourier integral
(D8) has to be traced back to the contributions of the
hydrodynamic modes, ω±(k).

For definiteness, let us consider initial data such that

δu(0, x) = δΠ?(0, x) = 0 (D11)

It follows that

δu+(k)=
(iT0+τΠ,0ω+(k))kδT (0, k)

T0τΠ,0(ω+(k)−ω−(k))(ω+(k)−ωNH(k))
, (D12)

δu−(k)=
(iT0+τΠ,0ω−(k))kδT (0, k)

T0τΠ,0(ω−(k)−ω+(k))(ω−(k)−ωNH(k))
, (D13)

δuNH(k)=
(iT0+τΠ,0ωNH(k))kδT (0, k)

T0τΠ,0(ωNH(k)−ω+(k))(ωNH(k)−ω−(k))
, (D14)

where δT (0, k) is the Fourier transform of the temperature
fluctuation at t = 0.

We will take a Lorentzian as initial data for δT ,

δT (0, x) =
α

π(x2 + α2)
, δT (0, k) =

1

2π
e−α|k|. (D15)

The reason is that, for these initial data, a numerical
computation shows that the gradient expansion in the
linear response regime diverges as n!. In the light of
(D7), the Fourier integral (D8) ceases to be well-defined
whenever the argument of

exp(i(ετΠ(T0)− t)ωq(k) + ikx− α|k|) (D16)

vanishes as |k| → ∞ along the real axis. Recalling the
large-k behaviour of the hydrodynamic mode frequencies
given in Eq. (D9), we find that this vanishing happens
precisely when ε = χ+, χ−, χ?+, χ

?
−, with

χ± =
T0t

τΠ,0
± T0x

τΠ,0cUV
+ i

αT0

τΠ,0cUV
. (D17)

Expression (D17) teaches us two important lessons:

• The time-derivative of the singulants behaves as the
factorial-over-power ansatz predicts, ∂tχ± = 1

τΠ(T0) .

• The singulants at t = 0 depend on x, the initial
data (through α) and the large-k behaviour of the
hydrodynamic mode frequencies (through cUV ).

In Fig. 11, we test the prediction (D17) against the re-
sults of an explicit computation of the singulants, finding
perfect agreement. We have computed the gradient ex-
pansion by evaluating numerically the inverse Fourier

transform of δΠ
(n)
? (k), and extracted the singulants from

the poles of the Padé approximant of the Borel transform.
We conclude by pointing out that the argument pre-

sented here can be straightforwardly generalised to find
analytic expressions for the singulants associated with
initial data of the form (D15) in the other MIS-like models
we have considered in this work. We have checked that,
for these models, these analytic expressions are also com-
patible with the results of the corresponding numerical
computation.
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Gapless and gapped holographic phonons, JHEP 01
(2020) 058 [arXiv:1910.11330].

[48] N. Abbasi and S. Tahery, Complexified quasinormal
modes and the pole-skipping in a holographic system at
finite chemical potential, JHEP 10 (2020) 076
[arXiv:2007.10024].

[49] A. Jansen and C. Pantelidou, Quasinormal modes in
charged fluids at complex momentum, JHEP 10 (2020)
121 [arXiv:2007.14418].

[50] D. Arean, R. A. Davison, B. Goutéraux and K. Suzuki,
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