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The asymmetry of the Ge dimer in the~231! reconstruction of Ge~100! is removed upon adsorption of
deuterium D. TheR-factor analysis indicates a slight remaining asymmetry which is attributed to the coexist-
ence of bare and D-covered dimers. The Ge-Ge bond length of 2.4~2! Å in the dimer does not change within
the error limits when compared to the clean surface. The D atoms bond on top of the Ge atoms, exhibiting a
Ge-D bond length of 1.6~2! Å. @S0163-1829~96!51336-6#

Adsorption of hydrogen on the~100! surfaces of Si and
Ge is still one of the intriguing topics in surface physics,1

mainly propelled by its potential to passivate the heavily
reactive~100! surfaces. In the past years, for instance, much
attention has been drawn to hydrogen passivation during
chemical-vapor deposition and hydrogen-plasma etching,
which play a key role in the microdevice technology.2 Since
a basic understanding of these technological processes is
depply related to the structural changes induced by hydro-
gen, not only the chemisorption process itself but also its
impact on the geometric structure of the surface has become
a matter of growing interest.

The unreconstructed~100! surface of Ge~and also Si! has
two dangling orbitals per surface atoms, each of them being
filled with one electron. It is generally accepted that the
~231! reconstruction of the clean~100! surfaces is formed
by Si and Ge dimers, respectively, which reduces the number
of dangling bonds~per surface atom! from two to one.3,4

This would explain the presence of symmetric dimers. From
recent surface x-ray diffraction~SXRD! analyses,5 however,
it has been shown that the clean Ge~100!-~231! surface is
characterized by asymmetric dimers with a buckling height
of about 0.7 Å. The half-filled orbitals of dangling bonds of
a symmetric dimer rearrange themselves into one~more!
filled orbital ~this Ge atom moves outwards! and one~more!
empty orbital~the corresponding Ge atom moves inwards!,3,6

thereby further lowering the surface energy. This kind of
symmetry lowering is frequently observed in solid-state
physics, and it is referred to as Peierls distortions or Jahn-
Teller effect; the crucial point is the existence of half-filled
bands in the symmetric configuration. In addition, the dan-
gling bonds within a dimer are not independent but interact
and combine to form a weakp bond which is of paramount
importance for process of hydrogen adsorption~see the dis-
cussion below!.

Adsorption of hydrogen on the~100! surface of Si~Ge! is
to change this situation and it is believed to lift the Jahn-
Teller distortion, resulting in a symmetric dimer configura-
tion with presumably two H atoms per dimer~‘‘monohy-
dride’’: u51.0!.7 Further uptake of hydrogen is achieved by
breaking the dimers and transforming the~231! eventually

into a defective~131! ‘‘dihydride’’ surface ~u52.0!.8 The
present low-energy electron diffraction~LEED! structure
analysis for the deuterized Ge~100! surface is to supplement
this general view by crystallographic data. In this study we
have used D52H since LEED is more sensitive to the posi-
tion of D than to that of H because of the smaller thermal
movements owing to its larger mass, while H and D have
identical chemical properties.

A commercially available Ge wafer~impurity concentra-
tion ,12 ppm! was etched in fluoride acid~48% HF! and
mounted onto the sample holder. The annealing was per-
formed by radiation and resistive heating. Under ultrahigh-
vacuum conditions~,1028 Pa! the crystal was prepared by
repeated cycles of Ar1 sputtering at 500 eV. A final flash to
700 K served to reduce residual contaminations~mainly H
and OH from H2O adsorption at the surface! until Auger
measurements indicated a clean surface. To form the
Ge~100!-~231!-D phase the clean~231! surface was ex-
posed to about 450 L D2 ~1 L51.33 1026 mbar s! at room
temperature. Since dissociative adsorption of D2 on Ge~100!
is negligible, a hot~'2000 K! tungsten filament was placed
about 10 cm in front of the sample to produceatomicdeute-
rium. The doses of atomic D can therefore not be specified
but the exposure was chosen such that the half-order spots in
LEED exhibit maximum intensity. Annealing to 500 K led to
a well-ordered~231!-D structure. In a previous study9 the
optimum Ge~100!-~231!-H structure was prepared by expos-
ing 500 L H2. Accordingly, a similar value was chosen here
and controlled in a way that the quality of the~231! LEED
pattern of the clean Ge~100! surface was preserved. Higher
doses diminished the~231! intensities, most probably due to
the evolution of~133! and ~131! elements which occur at
much higher exposures.

The LEED I/V measurements were carried out at 110 K
sample temperature using a mechanically movable Faraday
cup. Five integral-order and four fractional-order~symmetry-
inequivalent! beams were recorded at energies between 30
and 220 eV~giving a cumulative energy range of 1300 eV!.
These LEED data were analyzed by using a full-dynamical
LEED program10 in combination with an automated optimi-
zation scheme11 in order to determine the best-fit configura-
tion.
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The agreement between experimental and calculated data
was quantified by the reliability factorsRP ~Ref. 12! and
RDE ~Ref. 13! which were also the functionals to be mini-
mized in the optimization scheme. In the analysis we con-
sider first ideal~231! structure models neglecting the pres-
ence of defects. When starting with the structural parameters
of the clean Ge~100!-~231! surface5~a! and ignoring the D
atoms at first, the optimization procedure arrived at a quite
poor theory-experiment agreement for the D-~231! phase as
indicated byR factors of about 0.6. The fit does not localize
the global minimum because of the inappropriate magnitude
of the dimer buckling: When reducing the dimer asymmetry
in the start model, however, the theory-experiment fit could
be markedly improved and leads to a dimer asymmetry of
0.15 Å which was also found in the refinement step including
the D atoms. This behavior is demonstrated in Fig. 1~a!
which shows theR factorRP as a function of the magnitude
of the dimer buckling. In these calculations all parameters
but the dimer buckling were refined; a variation of the buck-
ling height is therefore related to a rotation of the dimer. In
the final refinement the D atoms were included as well as the
first four layer spacings, the vertical positions of the Ge at-
oms up to the fifth layer, and lateral displacements in the first
two Ge layers that are consistent with thepmsymmetry~mir-
ror plane along the Ge dimers! of the structure. Besides the
dimer geometry, the third- and fourth-layer buckling turned
out to be the most relevant structural parameters.

In the refinement, the D adsorption site was determined to
sit above the dimer atoms; however, the present analysis can-
not discriminate whether the upper, the lower, or even both
dimer atoms are capped. More sensitive was the analysis to
the actual Ge-D bond length which in all cases turned out to
be 1.56~20! Å. Unconventional adsites for D, such as dimer
bridge, cave, and pedestal sites, have been tested as well,
leading, however, to a significant deterioration of theR fac-
tors and can therefore safely be ruled out.

The analysis indicates a residual buckling of 0.15 Å al-
though the error bars are large~10.15 Å/20.45 Å!. Because
an asymmetry of the dimers is not expected~see the discus-
sion below! we investigated also the role of possible D va-
cancies. D vacancies may exist either due to incomplete ad-
sorption or insufficient annealing. Hence there remains the
possibility that the determined asymmetry of the dimers is
the result of a coexistence of asymmetric and symmetric
dimers, where the asymmetric dimers are considered to be
free of D. There may exist larger domains with the uncov-
ered Ge~100!-~231! structure or a statistical distribution of
uncovered dimers. The former possibility is simulated by an
incoherent averaging of the intensities of both structures, the
latter corresponds to a coherent average. We investigated
both possibilities. TheR-factor plot for the coherent averag-
ing is shown in Fig. 1~b!. Here we have assumed for the
asymmetric dimer configuraiton the geometry of clean sur-
face. The results show that a fraction of 20% of uncovered
Ge dimers~statistically distributed across the surface! leads
to anR factor of 0.35 comparable to the minimum reached
with slightly asymmetric dimers and a fully covered surface.
An incoherent averaging of intensities does not improve the
experiment/theory agreement so that the presence of larger
domains of Ge dimers not being capped by D atoms is un-
likely. The comparison of LEEDI/V curves between experi-
ment and theory for the optimal structure is depicted in Fig.
2.

The structural parameters are compiled in Table I and
defined in Fig. 3. We discuss at first structural parameters
which are common to both the asymmetric and the symmet-
ric dimer model. The dimer bond length 2.41~20! Å is in
good agreement with that of the clean surface as obtained
from the SXRD study„2.46 Å @Ref. 5a#… and from calcula-
tions: 2.41 Å~Ref. 14!, 2.43–2.44 Å~Ref. 15!. Our result,
however, clearly conflicts with recent ion-scattering
measurements6 which seemed to find an increase of the
dimer width from 2.26 Å in clean Si~100!-~231! to 2.97 Å in
Si~100!-~231!-H. Such an increase is abnormally large,
hardly conceivable for a covalent bond and can clearly be
discarded by the present LEED structure analysis. Within the

FIG. 1. ~a! The reliability factorRP vs the magnitude of the
dimer buckling assuming a defect-free surface~single domain!. ~b!
RP-factor plot as function of the concentration of uncovered~buck-
led! dimers assuming the coexistence of domains with symmetric
dimers ~both dimer atoms are capped by D! and buckled dimers
~not tied up by D atoms!. For the buckled-dimer geometry, the
structural parameters were taken from a recent SXRD study~Ref.
5!.

FIG. 2. Experimental~thick lines! and calculated~thin lines!
LEED I /V curves for the best-fit model of Fig. 3.
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error bars the dimer bond is identical to the bulk bond length
~2.46 Å!. This result is consistent withab initio
calculations16 of the H/Si system which revealed only a
slight elongation of the dimer bond length of about 0.1 Å
upon hydrogen adsorption. The dimer-induced distortions in
deeper substrate layers turn out to be quite similar in both the
clean and the D-covered~231! structures in line with the
view that the lateral shifting of the topmost Ge atoms form-
ing the dimers is chiefly responsible for these distortions;
compare Table I. For the length of the Ge-D bond we ob-
tained 1.56~20! Å which is in reasonable agreement with the
corresponding values in Ge-H molecules~about 1.5 Å!.

Next, we focus on the discussion of the asymmetry of the
Ge dimers and how to resolve the ambiguity of the LEED
results. Adsorption of a single D on the Ge dimer will cer-
tainly depolarize the dimer and reduce the dimer buckling so
that a slightly asymmetric dimer would be consistent with
the assumption of a single D atom per dimer. A symmetric
dimer necessitates, however, that both Ge atoms constituting
the dimer are capped by hydrogen. There is strong evidence
from experiment and theory that hydrogen adsorption takes
place in a way that both dimer atoms are capped by D. This
has been shown directly by scanning-tunneling microscopy
~STM!,17 and more indirectly by the desorption taking place
with first-order kinetic.18 We therefore prefer the model of
symmetric dimers coexistent with statistically distributed
bare and asymmetric dimers. We note, however, that the evi-
dence for the existence of uncovered Ge dimers solely based
on the LEED analysis is weak. The minimum of theR factor
at nonvanishing buckling could well be caused by approxi-
mations in the LEED calculations which have not been con-
sidered so far or also by experimental errors. From the elec-
tronic properties of the Ge~110!-~231! surface, this pairing
of D atoms is due to an atractive interaction between un-
paired dangling bonds~p bonding! rather than by an attrac-
tion between the D atoms.17~a! Since the adsorption of a
single D on a dimer will destroy the attractivep interaction
between dangling bonds within a Ge dimer, adsorption for a
second D atom on the same dimer is energetically more fa-
vorable than occupying another dimer, even though the di-

rect interaction between neighboring D atoms might be re-
pulsive. It is believed that the presence of this dimerp
interaction controls the adsorption of D on the Ge~100! sur-
face. The assumption that the investigated surface exhibits
dimers with a single D atom therefore would hardly be rec-
onciled with the above-mentioned hydrogen-pairing model.
The coexistence of bare and D-covered Ge dimers receives
also some support from recent STM investigations.17 It has
been shown that adsorption of D at room temperature and at
low coverages results in a defective~231!-D structure with
mainly single-occupied Ge dimers. Only after annealing this
surface to about 630 K, islands of~231!-2D with two D
atoms per Ge dimer are formed along with patches of bare
~231!. Since we annealed only to 500 K, it could be possible
that the surface is left with some statistical distribution of
D-free Ge dimers.

In summary, we presented here a LEED structure analysis
of Ge~100!-~231!-D which indicates that upon D adsorption
the dimer bond length of 2.41~20! Å remains unchanged
compared to the clean surface. The still nonvanishing dimer
buckling can be attributed to the coexistence of bare~231!
and ~231!-2D patches on Ge~100!. The D-covered Ge
dimers are symmetric so that the main effect of D adsorption
on the Ge~100!-~231! surface consists in aback bendingof
the Ge dimers from 17° tilting to 0°. The D atoms bond on
top of the Ge atoms@Ge-D bond length: 1.56~20! Å#, thus
saturating the remaining dangling bonds.
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TABLE I. Comparison of structural parameters as defined in
Fig. 3 of the clean Ge~100!-~231! surface~x-ray analysis! and the
deuterized surface assuming symmetric dimers~LEED analysis!.

Ge~100!-~231! ~clean! @Ref. 5~a!# Ge~100!-~231!-D ~this work!
No. Dx ~Å! Dz ~Å! Dx ~Å! Dz ~Å!

1A 11.03~3! 10.40~10! 10.80~8! 10.24~5!

1B 20.62~7! 20.30~10! 20.80~8! 10.24~5!

2A 20.06~5! 10.20~50! 20.05~10! 10.12~5!

2B 10.34~7! 10.20~10! 10.05~10! 10.12~5!

3A 20.30~10! 20.01~5!

3B 20.10~10! 10.11~5!

4A 20.20~10! 20.03~5!

4B 20.10~10! 10.11~5!

5 20.07~1! 20.10~20! 20.03~5!

FIG. 3. Structure model and fit parameters for Ge~100!-~231!-D
as obtained from the LEEDI /V analysis. The dashed lines are the
data of Ref. 5~clean Ge surface!. The values indicated are the bond
lengths in Å between touching Ge atoms.
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