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Abstract
We provide a homological construction of unitary simple modules of Cherednik and
Hecke algebras of type A via BGG resolutions, solving a conjecture of Berkesch–
Griffeth–Sam. We vastly generalize the conjecture and its solution to cyclotomic
Cherednik and Hecke algebras over arbitrary ground fields, and calculate the Betti
numbers and Castelnuovo–Mumford regularity of certain symmetric linear subspace
arrangements.

Mathematics Subject Classification 16S99 · 20C20 · 20C08 · 14N20

Introduction

In [1], Bernstein–Gelfand–Gelfand utilise resolutions of simple modules by Verma
modules to prove certain beautiful properties of finite-dimensional Lie algebras. Such
resolutions (now known as BGG resolutions) have had spectacular applications in the
study of the Laplacian on Euclidean space [19], complex representation theory and
homology of Kac–Moody algebras [28], statistical mechanics and conformal field the-
ories [27,46,47], and they provide graded free resolutions (in the sense of commutative
algebra) for determinantal varieties [20,40]. Remarkably, such resolutions have never
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been used in the study of symmetric and general linear groups in positive characteristic
— or indeed anywhere in modular representation theory!

One of themost important problems in Lie theory is to classify and construct unitary
simple representations. For Lie groups, this ongoing project draws on techniques from
Dirac cohomology [35], Kazhdan–Lusztig theory [64], and the Langlands Program
[58], and has provided profound insights into relativistic quantum mechanics [61].
The Cherednik algebra of a complex reflection group, W , is an important Lie theoretic
object which possesses hallmarks from the classical theory: a triangular decompo-
sition and a category O with a highest weight theory [29], analogues of translation
functors [42], induction and restriction functors [3] with associated Harish–Chandra
series [43], and Kazhdan–Lusztig theory [52] (for W = G(�, 1, n)). Both the unitary
representations of real reductive groups [31–33] and those of Cherednik algebras [13]
are of great importance in algebraic harmonic analysis.

Resolutions and cohomology of Cherednik algebras. For Cherednik algebras of
symmetric groups, H1/e(Sn), the simple unitary representations L(λ) of H1/e(Sn)

were classified byEtingof, Griffeth and Stoica [23] by a combinatorial condition on the
partition λ of n labeling the “highest weight" of L(λ). In the spirit of classical results
in Lie theory, Berkesch, Griffeth, and Sam subsequently conjectured that any unitary
simple L(λ) admits a BGG resolution [65, Conjecture 4.5]. The primary purpose of
this paper is to prove Berkesch–Griffeth–Sam’s conjecture and thus homologically
construct the unitary simple H1/e(Sn)-modules. To state our main result, let us recall
that the categoryO of the algebra H1/e(Sn) is a highest weight category, with simple
modules L(λ) and standard modules �(λ), see Sect. 5.8 for precise definitions. We
define a length function, � : W → N, on partitions in terms of the action of an affine
Weyl group in Subsection 2.1.

Theorem A Associated to any simple unitary H1/e(Sn)-module, L(λ), we have a com-
plex C•(λ) =⊕

λ�ν �(ν)[�(ν)] with differential given by an alternating sum over all
“one-column homomorphisms". This complex is exact except in degree zero, where
H0(C•(λ)) = L(λ).

Geometric resolutions. In contrast to classical papers onBGG resolutions and unitary
representations, which usually (but not always! [12]) employ ideas from algebraic
geometry, our methods are completely algebraic andmoreover yield several geometric
results. Namely, each standard module �(ν) is a free C[x1, . . . , xn]-module, and as
a consequence we obtain Sn-equivariant, graded free resolutions (in the sense of
commutative algebra) for the e-equals variety

Xe,1,n := Sn{(z1, . . . , zn) ∈ C
n : z1 = · · · = ze},

and for the following algebraic varieties when n = ke:

Xe,k,n := Sn{(z1, . . . , zn) ∈ C
n : zie+1 = · · · = z(i+1)e for 0 ≤ i < k}.

We hence provide, see Propositions 8.2 and 8.6, formulae for the graded Betti numbers
and calculate the Castelnuovo–Mumford regularity of these varieties – a notoriously
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difficult problem in general [16,57]. Moreover, we also provide formulae for these
invariants in the cyclotomic case, where the equalities in the equations defining the
above varieties become equalities up to multiplication by an �th root of unity. Finally,
we remark that the Cherednik algebra approach to geometric resolutions was inspired
by the Lie theoretic construction of Lascoux’s resolutions of determinantal varieties
(via parabolic BGG resolutions of unitary modules) [20,65]; it would be interesting to
find a purely geometric proof of the resolutions of our varieties by analogy with [40].

Motivation for the existence of BGG resolutions of unitary modules. Our proof of
Theorem A only makes use of the combinatorial condition on the partition λ labeling
unitary representations [23], and does not make use of the concept of unitarity itself.
Thus, although this section is not strictly necessary for the rest of the paper, we take a
moment to explain, beyond the analogy with classical Lie theory, why it is reasonable
to expect that a BGG resolution of unitary modules should exist. We remark, first, that
the concept of a BGG resolution is a highest-weight-Morita-invariant homological
construction, while the unitarity concept arises in harmonic analysis and it is not
preserved byMorita equivalence.Up to highest-weight equivalence, the categoryO for
the Cherednik algebra Ha/e(Sn) only depends on the denominator, e, of the parameter
whereas the module La/e(λ) being unitary really depends on the numerator a, with
the most general case being a = ±1. Thus, in order to connect BGG resolutions and
unitary modules in a meaningful way, we first find a representation-theoretic concept
at the level of categories and combinatorics that is equivalent to being unitary for the
parameter ±1/e.

Assuming L(λ) has full support, we can achieve this using the (quiver) Hecke
algebra. The representation theory of the algebra H1/e(Sn) is closely connected with
that of the Hecke algebra Hq(Sn) of the symmetric group at the root of unity q =
exp(2π

√−1/e); namely, there exists an exact functor K Z : O1/e(Sn) → Hq(Sn)

which preserves (simple) unitary representations. Comparing results of Stoica [54]
and Ruff [53] we can see that, for Hq(Sn) the class of unitary modules coincides
with the much-studied calibrated/completely splittable modules (those on which the
Jucys–Murphy subalgebra acts semisimply [37,49,53]) or equivalently the class of
modules which are homogenous in the KLR grading onHq(Sn). Thus, for fully sup-
ported L(λ) we replace the condition “L(λ) is unitary” with the equivalent condition
that “KZ(L(λ)) is calibrated/homogenous” and we construct a resolution of KZ(L(λ))

by cell modules of Hq(Sn), which we also call a BGG resolution. This resolution
upgrades a character formula from [53] to the categorical level. After this, we will lift
the resolution back to a BGG resolution of L(λ).

Modular BGG resolutions for symmetric groups and KLR algebras. A key ingre-
dient to our proofs is to work in the 2-categorical setting of diagrammatic Cherednik
algebras (orweighted KLR algebras) of [59]. The diagrammatic calculus is easier for
calculation and benefits from a graded structure. The diagrammatic approach allows
us to generalize the original conjecture to higher levels and arbitrary ground fields; we
prove this more general version. We recast the combinatorial condition in type A for
L(λ) to be unitary [23] as, the partitionλ lies in the fundamental alcove of the dominant
chamber in an affine type A alcove geometry. In our BGG resolution, �(ν) appears in
homological degree d if and only if ν is obtained from λ by reflecting across d walls
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(increasing the distance from the fundamental alcove by 1 at each step). This alcove
model vastly generalizes to the set of all �-partitions whose components each have at
most h columns,P�

n(h). For anymultipartition lying in the fundamental alcovewe then
construct a BGG resolution of the corresponding simple Hc(G(�, 1, n))-module. We
remark that Griffeth has obtained a combinatorial description of the �-partitions that
label unitary irreducible modules for Hc(G(�, 1, n)), [30], and it would be interesting
to compare this condition to the one arising from the alcove model.

Working with quiver Hecke algebras furthermore allows us to obtain our results
over an arbitrary field, k. The search for an effective description of the dimensions of
simple representations of symmetric groups over arbitrary fields is a centre of gravity
for much research in modular Lie theory [44,45,50]. We show that our resolutions for
unitary simples remain stable under reductionmodulo p —inotherwords the beautiful
properties of unitary modules extend beyond the confines of characteristic zero (a
necessary condition for the definition of unitary modules via bilinear forms to make
sense) to for arbitrary fields. Finally, in Theorem 7.4 and Proposition 7.2 we obtain a
simple closed form for the Mullineux involution, M, on unitary/homogenous simples
and explicitly construct this isomorphism — to our knowledge, this is the first time
such an isomorphism has been explicitly constructed (outside of the semisimple case).

This pivots the impact of our result from Cherednik algebras and geometry of
subspace arrangements, to modular representations of the symmetric group. As our
main result is the first of its kind for symmetric groups (providing a resolution of
a given homogenous simple Dn(λ) in terms of the grading-shifted Specht modules
Sn(ν) for λ � ν, see Subsection 1.2 for precise definitions) we state it now in this
simplified form. For the far more general statement concerning cyclotomic quiver
Hecke algebras, see Theorems 4.2 and 4.3.

Theorem B Let k be a field of characteristic p > 0. For Dn(λ) a homoge-
nous simple (in the KLR grading) we have an associated kSn-complex C•(λ) =⊕

λ�ν Sn(ν)〈�(ν)〉with differential given by an alternating sum over all “one-column
homomorphisms". This complex is exact except in degree zero, where

H0(C•(λ)) = Dn(λ).

Moreover, the simple kSn-module Dn(λ) has basis {cs | s ∈ Stdp(λ)} where
Stdp(λ) ⊆ Std(λ) is the set of p-restricted tableaux. The action on this basis is given
in Theorem 4.3. We have that Dn(λ)⊗ sgn ∼= Dn(λM) under the map : cs �→ csM .

We thus provide the first instances of BGG resolutions anywhere in modular rep-
resentation theory of finite and algebraic groups; in particular the first homological
construction of a family of simple modules for symmetric groups. For Hecke alge-
bras of type B, the simplest examples of our resolutions have appeared in work of
mathematical physicists concerning Virasoro and blob algebras [27,46,47] and in
Brundan–Stroppel’s founding work on categorical representation theory [11,12].

The bases of Theorem B first appeared in work of Kleshchev and Ram [37]. We
remark that our results for the Hecke algebras depend only on the quantum parameter
e ∈ N and are entirely independent of the characteristic of the underlying field (for
� = 1 we set e = p in Theorems 4.2 and 4.3 to obtain Theorem B for symmetric
groups).
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The partitions andmultipartitionswe consider (namely those lying in the fundamen-
tal alcove) have no restriction on their e-weight; calculating the composition series
of the corresponding Specht modules for symmetric groups and Hecke algebras in
positive characteristic is far beyond the current realms of conjecture (which at present
have been stretched as far as w(λ) < p3 for h = 3 by Lusztig–Williamson [44]).
Over C, calculating the composition series of these Specht modules is theoretically
possible using Kazhdan–Lusztig theory — however it quickly becomes computation-
ally impossible — we provide examples of series of Specht modules (of rank n as
n →∞) for which the length of the composition series tends to infinity. Thus Theo-
rem B provides the only contexts in which we can hope to understand unitary simple
modules (see Sect. 4).

Structure of the paper. To finish the introduction, let us discuss the structure of the
paper and of the proofs of Theorems A and B. We in fact deduce Theorem A from
Theorem B. To that end, in Sect. 1 we introduce the quiver Hecke and diagrammatic
Cherednik algebras. In Sect. 2 we recall the alcove geometric approach to these dia-
grammatic algebras, this will provide the combinatorics for proving Theorem B. In
Sect. 3 we lift this combinatorics to the level of homomorphisms between standard
modules, thus providing the skeleton of the resolutions in TheoremB;we also study the
compositions and restrictions of these homomorphisms. In Sect. 4 we prove Theorem
B, see Theorems 4.2 and 4.3.

In Sect. 5, we pivot to rational Cherednik algebras. We first translate the path model
of Sect. 2 into the language of abacus combinatorics used in formulating [65, Con-
jecture 4.5]. We then recall the connection between rational Cherednik algebras and
the diagrammatic algebras of Sect. 1; this allows us to use Theorem B to prove almost
all cases of Theorem A (see Theorem 5.24). In Sect. 6, we complete the proof of
Theorem A and we also construct BGG resolutions of certain non-unitary represen-
tations. In Sect. 7 we give a simple formula, in terms of abacus combinatorics, to
compute the Mullineux map on unitary representations. Finally, in Sect. 8 we explore
the commutative algebra consequences of Theorem A .

1 Diagrammatic algebras

1.1 Combinatorics

Fix a charge (e; κ0, . . . , κ�−1) ∈ N × Z
�. We now recall the diagrammatic Chered-

nik/weightedHecke algebras of [59] and results concerning their representation theory
from [6–8]. We define a partition, λ, of n to be a finite weakly decreasing sequence
of non-negative integers (λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + . . . , equals n.
An �-partition λ = (λ(0), . . . , λ(�−1)) of n is an �-tuple of partitions such that
|λ(0)| + · · · + |λ(�−1)| = n. We will denote the set of �-partitions of n by P�

n . Given
λ = (λ(0), λ(1), . . . , λ(�−1)) ∈P�

n , the Young diagram of λ is the set of nodes,

{(r , c, m) | 1 ≤ c ≤ λ(m)
r }.
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We refer to a node (r , c, m) as being in the r th row and cth column of the mth
component of λ. Given a box, (r , c, m), we define the content of this box to be
ct(r , c, m) = κm + c − r and we define its residue to be res(r , c, m) ≡ ct(r , c, m)

(mod e). We refer to a box of residue i ∈ Z/eZ as an i-box. We set res(λ) :=
∪(r ,c,m)∈λres(r , c, m).

Remark 1.1 Wewish to emphasise here that the notion of content is heavily dependent
on the choice of charge. Two distinct charges will often result in the same residues
and will give isomorphic Hecke algebras; however the resulting Cherednik algebras
need not be isomorphic or even Morita equivalent, see [5]. However, they are derived
equivalent, although we will not need this in this paper, [42,51].

Givenλ ∈P�
n , we let Rem(λ) (respectivelyAdd(λ)) denote the set of all removable

(respectively addable) boxes of the Young diagram of λ, i.e. those boxes (r , c, m) ∈ λ

(resp. (r , c, m) /∈ λ) so that λ \ {(r , c, m)} (resp. λ ∪ {(r , c, m)}) forms the Young
diagram of an �-partition. Given i ∈ Z/eZ, we let Remi (λ) ⊆ Rem(λ) andAddi (λ) ⊆
Add(λ) denote the subsets of boxes of residue i ∈ Z/eZ.

Each charge gives rise to a different ordering on P�
n , and hence a different Fock

space, a different Cherednik algebra, and a different weighted lens through which
to study the quiver Hecke algebra [5]. These charged ordering on P�

n are given as
follows:

Definition 1.2 Given κ ∈ Z
� such that 0 ≤ κi − κi+1 < e we write (r , c, m) �κ

(r ′, c′, m′) if res(r , c, m) = res(r ′, c′, m′) and either

(i) ct(r , c, m) < ct(r ′, c′, m′) or
(i i) ct(r , c, m) = ct(r ′, c′, m′) and m > m′

For λ,μ ∈P�
n , we write μ ≤κ λ if there is a bijective map A : [λ] → [μ] such that

either A(r , c, m) �κ (r , c, m) or A(r , c, m) = (r , c, m) for all (r , c, m) ∈ λ.

We reiterate that the orderings ≤κ and �κ are heavily dependent on κ ∈ Z
�.

Definition 1.3 Given λ ∈P�
n , we define a tableau of shape λ to be a map t : [λ] →

{1, . . . , n}. We define a standard tableau to be a tableau in which the entries increase
along the rows and columns of each component. We let Std(λ) denote the set of all
standard tableaux of shape λ ∈P�

n .

Definition 1.4 Given λ ∈ P�
n we let tλ ∈ Std(λ) be the tableau obtained by placing

the entry n in the uniqueminimal removable box (r , c, m) ∈ λ (under the≤κ ordering)
and then placing the entry n−1 in the unique minimal removable box of λ\{(r , c, m)}
and continuing in this fashion.

We again emphasise that the definition of tλ is highly dependent on the fixed choice
of charge.

Definition 1.5 For h ≥ 0 we say that κ ∈ Z
� is h-admissible if h < |κi − κ j | < e− h

for 0 ≤ i �= j < �.
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Remark 1.6 For h ≥ 0 and κ ∈ Z
� h-admissible the ordering �κ in Definition 1.2 is

a coarsening of the usual c-function ordering on the Fock spaces of Foda–Leclerc–
Okado–Thibon–Welsh [5,59]. This is the only ordering for which we have a closed
form for a labelling of the simple modules for the quiver Hecke algebra [25] (in other
words, a labelling of the component of the ŝle crystal containing the empty �-partition).
Notice that this combinatorial ordering and the algebraic structures it underlies are
completely different from the classical dominance order and the (graded) cyclotomic
q-Schur algebra [17,34,56]; see [5,59] for more details.

Given h ∈ N, we letP�
n(h) denote the subset ofP�

n consisting of those �-partitions
which have at most h columns in each component, that is

P�
n(h) = {λ = (λ(0), λ(1), . . . , λ(�−1)) | λ(m)

1 ≤ h for 0 ≤ m < �}.

Given λ ∈P�
n , we define its residue sequence, res(λ) to be the sequence obtained by

recording the residues of the boxes of λ according to the ordering ≤κ on boxes.

1.2 The quiver Hecke and Cherednik algebras

Definition 1.7 Let ε � 1
n�
. To (r , c, m) ∈ λ we associate Iκ(r ,c,m) = ct(r , c, m) −

m/� − (r + c)ε. Given λ ∈ P�
n , we let I

κ
λ denote the disjoint union over the Iκ(r ,c,m)

for (r , c, m) ∈ λ. We define a κ-diagram of type G(�, 1, n) to be a frame R× [0, 1]
with distinguished solid points on the northern and southern boundaries given by Iκμ
and Iκλ for some λ,μ ∈ P�

n and a collection of solid strands each of which starts
at a northern point and ends at a southern point. Each solid strand carries a residue,
i ∈ Z/eZ, say (and we refer to this as a solid i -strand). We further require that each
solid strand has a mapping diffeomorphically to [0, 1] via the projection to the y-axis.
Each solid strand is allowed to carry any number of dots.

We draw

(i) a “ghost i-strand” 1 unit to the right of each solid i-strand and a a “ghost dot" 1
unit to the right of each solid dot;

(i i) vertical red lines with x-coordinate κm − m/� ∈ Q each of which carries the
residue κm in Z/eZ for 1 ≤ m ≤ � which we call a red κm-strand.

Fig. 1 A κ-diagram for � = 1 and κ ∈ Z with northern and southern loading Iκω for ω = (15)
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Finally, we require that there are no triple points or tangencies involving any combi-
nation of strands, ghosts or red lines and no dots lie on crossings. We consider these
diagrams equivalent if they are related by an isotopy that avoids these tangencies,
double points and dots on crossings. See Fig. 1 for an example of a κ-diagram.

Remark 1.8 We emphasise that we have chosen ε � 1
n�

in order to guarantee that for
any two boxes (r , c, m), (r ′, c′, m′) for 1 ≤ r , r ′, c, c′ ≤ n and 0 ≤ m < � we have
that Iκ(r ,c,m) �= Iκ

(r ′,c′,m′).

Definition 1.9 We define the degree of a κ-diagram to be the integer obtained by
summing over the degrees of all the local neighbourhoods of the diagram with each
neighbourhood contributing either zero to the degree, or providing a non-zero degree
contribution to the degree as follows:

deg
i

= 2 deg
i j

= −2δi, j deg
i j

= δ j,i+1 deg
i j

= δi, j

and their mirror images.

Definition 1.10 (Definition 4.1 [59])We letAn(κ) denote the k-algebra spanned by all
κ-diagrams modulo the following local relations (here a local relation means one that
can be applied on a small region of the diagram). The product d1d2 of two diagrams
d1, d2 ∈ An(κ) is given by putting d1 on top of d2. This product is defined to be 0
unless the southern border of d1 matches the northern border of d2, in which case we
obtain a new diagram in the obvious fashion.

(A1) Any diagrammay be deformed isotopically; that is, by a continuous deformation
of the diagram which avoids tangencies, double points and dots on crossings.

(A2) Any solid dot can pass through a crossing of solid i- and j-strands for i �= j or
an arbitrary crossing involving a ghost strand. Namely:

ij

=

ij ij

=

ij

ii

=
ii

and their mirror images through reflection in the vertical axis hold.
(A3) We can pass a solid dot through a crossing of two like-labelled solid or ghost

strands at the expense of an error term:

i i

=

i i

+

i i i i

=

i i

+

i i
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Ghost dots can pass through any crossing of strands (regardless of their residue) freely.

(A4) For double-crossings of solid strands with i �= j , we have the following local
relations:

ii

=0

i j

=

ji

Performing relation (A4) implicitly involves undoing the corresponding double-
crossing of ghost strands at the same time (which we do not picture) and vice versa.

(A5) If j �= i − 1, then we can freely pass ghosts through solid strands. That is, we
have the following local relations:

ij

=

j i ji

=

i j

(A6) On the other hand, in the case where j = i − 1, we have the following local
relations:

i –1 i

=

i –1 i

−

i –1 i

i i –1

=

i i –1

−

i i –1

(A7) We can pull a solid i-strand through a (i−1)-ghost-crossing (or a ghost (i−1)-
strand through a i-solid-crossing) at the expense of an error term.

i –1i –1 i

=

i –1i –1 i

+

i –1i –1 i

ii i –1

=

ii i –1

−

ii i –1
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(A8) All other triples of solid and ghost strands satisfy the naive braid relation.
Diagrammatically, we have that

ki j

=

ki j ki j

=

ki j

ki j

=

ki j

for any i, j, k ∈ Z/eZ and their mirror images through reflection in the
vertical axis hold. Performing the leftmost relation (A8) implicitly involves
manipulating a braid of three ghost strands at the same time (which we do not
picture) and vice versa. Furthermore,

ca b

=

ca b zx y

=

zx y

and a, b, c, x, y, z ∈ Z/eZ such that δa,b−1,c = 0, δx,y+1,z = 0.
(A9) Ghost strands and ghost dotsmay pass through red strands freely. For i �= j , the

solid i-strandsmaypass through red j-strands freely. If the red and solid strands
have the same label, a dot is added to the solid strand when straightening.
Diagrammatically, we have that

i i

=

i i i j

=

i j i i

=

i i

i j

=

i j

for i �= j and their mirror images through reflection through the vertical axis
hold.

(A10) Solid crossings and dots can pass through red strands, with a correction term

k ij

=

k ij

+

k ij

δi, j,k
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(A11) Any braid involving a red strand and not of the form in (A10) can be undone
without cost. Diagrammatically, we have that

kji

=

kji kji

=

kji

kji

=

kji

jki

=

jki jki

=

jki

jki

=

jki

for any i, j, k and their mirror images through reflection in the vertical axis
hold.

(A12) Finally, any solid or ghost dot can be pulled through a red strand without cost.
Diagrammatically, we have that

kj k

=

j k j

=

k j

for any j, k and their mirror images through reflection in the vertical axis hold.
(We have not added the residues as they play no role here.)

Finally, we have the following non-local idempotent relation.

(A13) Any idempotent in which a solid strand is n units to the right of the rightmost
red-strand is referred to as unsteady and set to be equal to zero.

Given λ ∈ P�
n and i ∈ (Z/eZ)n , we have an associated weight-idempotent

1i
λ given by the diagram with northern and southern points Iˇ˘ , no crossing strands,
and northern/southern residue sequence of the diagram given by i ∈ (Z/eZ)n . If the
residue sequence is equal to that of the partition, res(λ), then we let 1λ := 1res(λ)

λ . We
define the diagrammatic Cherednik algebra or weighted KLR algebra, An(κ) to be
the algebra

An(κ) := E+An(κ)E+ where E+ =∑
λ∈P�

n
1λ.
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Definition 1.11 Letλ,μ ∈P�
n . Aλ-tableau ofweightμ is a bijectivemap T : λ→ Iκμ.

We let T(λ, μ) denote the set of all tableaux of shape λ and weight μ.
We say that a tableau T is semistandard if it satisfies the following additional

properties

(i) T(1, 1, m) < κm ,
(i i) T(r , c, m) < T(r − 1, c, m)− 1,

(i i i) T(r , c, m) < T(r , c − 1, m)+ 1.

We denote the set of all semistandard tableaux of shape λ and weightμ by SStd(λ, μ).
Given T ∈ SStd(λ, μ), we write Shape(T) = λ. We let SStd+n (λ, μ) ⊆ SStdn(λ, μ)

denote the subset of tableaux which respect residues. In other words, if T(r , c, m) =
(r ′, c′, m′) for (r , c, m) ∈ λ and (r ′, c′, m′) ∈ μ, then κm + c − r = κm′ + c′ − r ′
(mod e).

Definition 1.12 Given S a tableau of shape λ and weight μ, we let CS denote any
diagram tracing out the bijection S : [λ] → Iκμ using the minimal number of crossings.
Given S, T a pair of tableau of shape λ (and possibly distinct weights) we set CST =
CSC∗T where C∗T is the diagram obtained from CT by flipping it through the horizontal
axis.

Theorem 1.13 The R-algebra An(κ) is a quasi-hereditary graded cellular algebra
with basis

{CST | S ∈ SStd(λ, μ), T ∈ SStd(λ, ν), λ, μ, ν ∈P�
n} (1.1)

and the subalgebra An(κ) is a quasi-hereditary graded cellular algebra with basis

{CST | S ∈ SStd+(λ, μ), T ∈ SStd+(λ, ν), λ, μ, ν ∈P�
n}. (1.2)

For both algebras, the involution is given by ∗ and the ordering on P�
n(h) is that of

Definition 1.2. We denote the corresponding left An(κ)- and An(κ)- cell-modules are

�An(κ)(λ), �An(κ)(λ)

respectively. These modules have simple heads, denoted by

LAn(κ)(λ), L An(κ)(λ)

respectively. When the context is clear, we drop the subscripts on these modules.

We let A�λ
n (κ) denote the 2-sided cell-ideal

∑
λ�λ An(κ)1λ An(κ).

The standard tableaux Std(λ) form the predictable subset of semistandard tableaux
ofweightω = (1n) as follows. Letλ ∈P�

n . If s ∈ Std(λ) is such that s(rk, ck, mk) = k
for 1 ≤ k ≤ n, then we let S ∈ T(λ, ω) denote the tableau S : λ → ω determined
by S(rk, ck, mk) = Iκ(k,1,�). We have a bijective map ϕ : Std(λ) → T(λ, ω). given by
ϕ(s) = S.
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Definition 1.14 We define the Schur idempotent, Eω, and quiver Hecke algebra,
Hn(κ), as follows

Eω =
∑

i∈(Z/eZ)n

1i
ω and Hn(κ) := EωAn(κ)Eω.

Theorem 1.15 ([5]) The algebra Hn(κ) admits a graded cellular structure with respect
to the poset (P�

n ,�), the basis

{cst := Cϕ(s),ϕ(t) | λ ∈P�
n , s, t ∈ Std(λ)},

and the involution ∗. We denote the left cell-module by Sn(λ) := Eω�(λ) with basis
{cs | s ∈ Std(λ)} and let Dn(λ) denote the simple head of Sn(λ).

When proving results on homomorphisms, the algebra An(κ) is smaller thanAn(κ)

andmuch easier for computation.We shall then (trivially) inflate these results toAn(κ)

and apply the Schur functor to obtain the corresponding result for Hn(κ).

Remark 1.16 We let t be an indeterminate over Z≥0. If M = ⊕k∈ZMk is a graded
k-module, we write dimt (M) =∑

k∈Z
(dimk(Mk))tk .

Finally, we briefly recall from [6, Theorem 4.9] that for the above three algebras, there
are gradedMorita equivalences relating the subcategories ofAn(κ)-mod, An(κ)-mod,
and Hn(κ)-mod whose simple constituents are labelled byP�

n(h). In particular

HomAn(κ)(�(μ),�(λ)) ∼= HomAn(κ)(�(μ),�(λ)) ∼= HomHn(κ)(Sn(μ), Sn(λ))

(1.3)

for λ,μ ∈ P�
n(h). This allows us to focus on the algebras An(κ) where we have

the benefit of a highest weight theory which is intimately related to the underly-
ing alcove geometry and Hn(κ) where we have more easily constructible restriction
functors, which we will recall momentarily. Both isomorphisms are simply given by
idempotent truncation from An(κ). The truncation from An(κ) to Hn(κ) kills every
weight-idempotent 1i

λ for i ∈ (Z/eZ)n and ω �= λ ∈P�
n .

1.3 Induction and restriction

For r ∈ Z/eZ, we have an embedding ιrn−1 : Hn−1(κ) ↪→ Hn(κ). Given D ∈ Hn−1(κ)

the diagram ιrn−1 is obtained by adding a single solid r -strand (connecting the northern
and southern points Iκ(n,1,�)) and its ghost to the left of all strands in D.

Example 1.17 For example, the diagram in Fig. 1 is of the form ι04(D) for D ∈ H4(0).

We let ιn−1 = ∑
r∈Z/eZ

ιrn−1. We have that Hn(κ) is free as a Hn−1(κ)-module
under the identification Hn−1(κ) ∼= ιn−1(Hn−1(κ)). We let resn

n−1 : Hn(κ)-mod →
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Hn−1(κ)-mod and indn
n−1 : Hn−1(κ)-mod→ Hn(κ)-mod denote the obvious restric-

tion and induction functors. We post-compose these functors with the projection onto
a block in the standard fashion. This amounts to multiplying by an idempotent

Er
ω =

∑

i=(i1,...,in−1,r)

1i
ω

for r ∈ Z/eZ. We hence decompose these restriction/induction functors into

r -resn
n−1 = Er

ω ◦ resn
n−1 r -indn

n−1 = Er
ω ◦ indn

n−1

Finally we recall a simple case of [5, Theorem 12.1]. If λ has precisely one removable
r -box, � ∈ Remr (λ), then we set Er

ω(λ) = λ−� and we have that

Sn−1(λ−�) ∼= r -resn
n−1(Sn(λ)). (1.4)

This isomorphism is given by “ignoring the leftmost strand" as follows

CS �→ ιrn−1(CS)× CT� (1.5)

for S ∈ SStd(λ−�, (1n−1)). For more details we refer to [5, Section 12].

Remark 1.18 We note that our embeddings are “adding strands to the left" whereas
many readers are used to “adding strands to the right". This is because our algebras are
build from the natural ordering Definition1.2. By building diagrams from the opposite
order on contents, one can obtain embeddings which “add strands to the right".

Remark 1.19 The subalgebra Hn(κ) = EωAn(κ)Eω is usually defined via generators
e(i), ψr , and yr subject to certain relations (see [5, Definition 3.1] for more details).
We will make use of this classical notation by identifying the generator σ(e(i) with
1 i

w
while σ(yr e(i)) gets identified with

σ(e(i)) = 1i
ω

σ(yr e(i))

=
κ0κ�−1 κ1i1i2ir−2ir−1irir+1ir+2ir+3in

σ(ψr e(i))

=
κ0κ�−1 κ1i1i2ir−2ir−1irir+1ir+2ir+3in
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2 Alcove geometries and path-bases of diagrammatic algebras

In Subsection 2.1, we recall the alcove geometry controlling the subcategories of
representations for quiver Hecke and Cherednik algebras of interest in this paper. In
Subsection 2.2we cast the semistandard tableaux for diagrammaticCherednik algebras
in this geometry; this path-combinatorial framework will be essential for our proofs.
In Subsection 2.3 we cast the standard tableaux combinatorics of the quiver Hecke
algebra in this geometry — this allows us to define the e-restricted tableaux which we
will prove provide bases of simple Hn(κ)-modules in Sect. 4.

2.1 The alcove geometry

Fix integers h, � ∈ Z>0 and e ≥ h�. For each 1 ≤ i ≤ h and 0 ≤ m < � we let εhm+i

denote a formal symbol, and define an �h-dimensional real vector space,

Eh,� =
⊕

1≤i≤h
0≤m<�

Rεhm+i

We have an inner product 〈 , 〉 given by extending linearly the relations

〈εhm+i , εht+ j 〉 = δi, jδt,m

for all 1 ≤ i, j ≤ h and 0 ≤ m, t < �, where δi, j is the Kronecker delta. We let � and
�0 denote the root systems of type A�h−1 and Ah−1 × Ah−1 × . . . Ah−1 respectively
which consist of the roots

{εhm+i − εht+ j | 1 ≤ i, j ≤ h and 0 ≤ m, t < � with (i, m) �= ( j, t)} and
{εhm+i − εhm+ j | 1 ≤ i, j ≤ h with i �= j and 0 ≤ m < �}

respectively. We identify λ ∈P�
n(h) with a point in Eh,� via the transpose map

(λ(0), . . . , λ(�−1)) �→
∑

1≤i≤�
1≤ j≤h

(λ(m))T
i εhm+i , (2.1)

(where the T denotes the transpose partition). Given r ∈ Z and α ∈ � we let sα,re

denote the reflection which acts on Eh,� by

sα,rex = x − (〈x, α〉 − re)α.

and we let We and W0 denote the Coxeter groups generated by the reflections

S = {sα,0 | α ∈ �} ∪ {sεh−ε1,−e} S0 = {sα,0 | α ∈ �0}
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respectively. We let � : We → N denote the length function and we let ≤ denote the
Bruhat ordering for the Coxeter group We. For e ∈ Z>0 we assume that κ ∈ Z

� is
h-admissible. We shall consider a shifted action of the Weyl group W e on Eh,� by the
element

ρ :=(ρ1, ρ2, . . . , ρ�)∈Z
h�≥0, ρi :=(e − κi , e − κi − 1, . . . , e − κi − h + 1)∈Z

h≥0,

that is, given an an element w ∈ W e, we set w ·ρ x = w(x + ρ)− ρ. We let E(α, re)
denote the affine hyperplane consisting of the points

E(α, re) = {x ∈ Eh,� | sα,re · x = x}.

The connected components of Eh,� \ (∪α∈�,r∈ZE(α, re)) are called alcoves. Note
that our assumption that κ ∈ Z

�≥0 is h-admissible implies that the origin lies in an
alcove. Given a hyperplane E(α, re) we remove the hyperplane from Eh,� to obtain
two distinct subsets E

>(α, re) and E
<(α, re) where the origin � ∈ E

<(α, re). The
dominant Weyl chamber, denoted E

�
h,�, is set to be

E
�
h,� =

⋂

α∈�0

E
<(α, 0).

Definition 2.1 Let λ ∈ Eh,�. There are only finitely many hyperplanes lying between
the point λ ∈ Eh,� and the point ν ∈ Eh,�. For a root εi − ε j ∈ �, we let
�εi−ε j (λ, ν) denote the total number of these hyperplanes which are perpendicu-
lar to εi − ε j ∈ � (excluding any hyperplanes upon which λ or ν lies). We let
�(λ, ν) =∑

1≤i< j≤h� �εi−ε j (λ, ν). We let �(λ) := �(λ,�) for � the origin and refer
to �(λ) simply as the length of the point λ ∈ Eh,�.

Definition 2.2 Given n ∈ N, we define the fundamental alcove to be

F�
n(h) = {λ ∈P�

n | �(λ) = 0}.

We have that We acts on the set of all alcoves. We can uniquely write any alcove,
A, in the form A = wF�

n(h) for some coset representativew in W0\We. This provides
an important labelling for alcoves. For λ ∈ wF�

n(h), we have that �(λ) = �(w).

Proposition 2.3 Fix integers h, � ∈ Z>0 and e ≥ h� and suppose κ ∈ Z
� is h-

admissible. A necessary condition for L(λ) and L(μ) to belong to the same block is
that they belong to the same We-linkage class, that is λ ∈ We · μ. Given λ ∈ wF�

n(h)

and μ ∈ w′F�
n(h), we have that μ �κ λ if and only if w ≤ w′.

Proof A necessary condition for L(λ) and L(μ) to belong to the same block is that
res(λ) = res(μ); to see this simply note that the basis elements in equation (1.2)
respect residues. Reflection through a hyperplane E(εhm+i − εht+ j , re) corresponds
to a (residue preserving) swap of boxes between the i th column of the mth component
and the j th column of the t th component. The result follows. ��
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Definition 2.4 Given amap s : {1, . . . , n} → {1, . . . , �h}wedefinepointsS(k) ∈ Eh,�

by S(k) = ∑
1≤i≤k εs(i) for 1 ≤ k ≤ n. We define the associated path of length n in

Eh,� by

S = (S(0), S(1), S(2), . . . , S(n)),

where we fix all paths to begin at the origin, so that S(0) = � ∈ Eh,�. We let S≤k

denote the subpath of S of length k corresponding to the restriction of the map s to the
domain {1, . . . , k} ⊆ {1, . . . , n}. We let Shape(S) denote the point in Eh,� at which S
terminates.

Remark 2.5 Let S be a path which passes through a hyperplane Eα,re at point S(k)

(note that k is not necessarily unique). Let T be the path obtained from S by applying
the reflection sα,re to all the steps in S after the point S(k). In other words, T(i) = S(i)
for all 1 ≤ i ≤ k and T(i) = sα,re · S(i) for k ≤ i ≤ n. We refer to the path T as the
reflection of S in Eα,re at point S(k) and denote this by sk

α,re · S. We write S ∼ T if the
path T can be obtained from S by a series of such reflections.

Definition 2.6 Let T denote a fixed path from � to ν ∈ P�
n(h). We let Pathn(λ, T)

denote the set of paths from the origin to λ obtainable by applying repeated reflections
to T, in other words

Pathn(λ, T) = {S | S(n) = λ, S ∼ T}.

We let Path+n (λ, T) ⊆ Pathn(λ, T) denote the set of paths which at no point leave the
dominant Weyl chamber, in other words

Path+n (λ, T) = {S ∈ Pathn(λ, T) | S(k) ∈ E
�
h,� for all 1 ≤ k ≤ n}.

Definition 2.7 Given a path S = (S(0), S(1), S(2), . . . , S(n)), we define d(S(k), S(k−
1)) as follows. For α ∈ � we set dα(S(k), S(k − 1)) to be

• +1 if S(k − 1) ∈ E(α, re) and S(k) ∈ E
<(α, re);

• −1 if S(k − 1) ∈ E
>(α, re) and S(k) ∈ E(α, re);

• 0 otherwise.

We set deg(S(0)) = 0 and define

d(S(k − 1), S(k))=
∑

α∈�

dα(S(k − 1), S(k)) and deg(S)=
∑

1≤k≤n

d(S(k), S(k − 1)).

2.2 Semistandard tableaux as paths

Let e > h�. We now provide path-theoretic bases for the diagrammatic Cherednik
algebra. Let μ ∈ P�

n(h). We define the component word of μ to be the series of
�-partitions
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∅ = μ(0) +X1−−→ μ(1) +X2−−→ μ(2) +X3−−→ · · · +Xn−1−−−−→ μ(n−1) +Xn−−→ μ(n) = μ

where Xk = (rk, ck, mk) is the minimal node, with respect to ≤κ , of the partition
μ(k) ∈ P�

k (h). Using the component word of μ, we define a distinguished path Tμ

from the origin to μ as follows

Tμ = (+εX1 ,+εX2 , . . . ,+εXn ).

For λ ∈P�
n(h), we let

S = (+εY1 ,+εY2 , . . . ,+εYn ) ∈ Path(λ, Tμ).

From S, we obtain a tableau S ∈ T(λ, μ) by setting S(Xk) = IYk . We freely identify
paths and tableaux in this manner (and so we drop the overline). Under this identifi-
cation, we obtain a bijection SStd+(λ, μ) ↔ Path+(λ, Tμ) and hence we can rewrite
the basis of Theorem 1.13 in terms of paths (see [6, Theorem 5.21]) as follows. For
λ ∈P�

n(h) we have that

�(λ) = {CS | S ∈ Path+(λ, Tμ), μ ∈P�
n(h)}. (2.2)

Definition 2.8 Let λ,μ ∈ P�
n(h) and suppose that λ � μ. Then we let Tμ

λ ∈
Path(λ, Tμ) denote the unique path satisfying

deg(Tμ
λ ) = �(μ)− �(λ).

The above definition is well-defined by [6, Proposition 7.4] and these paths will be
very useful later on. Examples of this path/tableau for three distinct pairs (λ, μ) are
given in Fig. 2.

Remark 2.9 If e = h�, then all the results of this paper go through unchanged modulo
minor edits to the proofs. Annoyingly, the definition of the degree and reflections
of paths require some tinkering (akin to the case e = ∞ case covered in detail in
[6, Section 6.4]). In what follows, we only discuss the case e > h� explicitly. For
Cherednik algebras of symmetric groups, we provide an explicit and independent
proof of our main result in quantum characteristic e = h in Subsection 6.1.

2.3 Standard tableaux as paths

Given λ ∈P�
n(h), a tableau t ∈ Std(λ) is easily identified with the series of partitions

t(k) for 0 ≤ k ≤ n, which in turn determine a path inE
+
h,� via themap in Eq. (2.1). This

provides path-theoretic bases of Spechtmodules Sn(λ) forλ ∈P�
n(h).We now restrict

our attention to λ ∈ F�
n(h) ⊆ P�

n(h) and define the subset of e-restricted standard
λ-tableaux which will index the basis of the simple module Dn(λ) for λ ∈ F�

n(h).

Definition 2.10 Given λ ∈ F�
n(h), we say that s ∈ Std(λ) is e-restricted if s(k) ∈

F�
k(h) for all 1 ≤ k ≤ n. We let Stde(λ) denote the set of all e-restricted tableaux of

shape λ.
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Fig. 2 The black points label the
3-partitions of a block of
H8(0, 1, 2) with e = 4. The
origin is labelled as �. There are
three separate paths drawn on
the diagram belonging to

Path+((14 | ∅ | 14), T(18|∅|∅)),

Path+((16 | 1 | 1), T(∅|18|∅)),
and Path+((12 | 1 | 15),
T(∅|∅|18)). These are coloured
red, blue, and violet respectively.
We have labelled some of the
points in the diagram for
reference (colour figure online)

Given λ ∈ F�
n(h), we say that a node � ∈ Rem(λ) is good if λ − � ∈ F�

n−1(h)

(we remark that this is easily seen to coincide with the classical definition of a good
node). We let Fh(λ) denote the set of all good removable nodes of λ. The following
result is obvious, but will be essential for the proof of our main theorem.

Proposition 2.11 Given λ ∈ F�
n(h), we have that 〈cs, ct〉 = δs,t for s, t ∈ Stde(λ).

Furthermore,

k{cs | s ∈ Stde(λ)} ⊆ Dn(λ) and Stde(λ)↔
⊔

�∈Fh(λ)

Stde(λ−�).

Proof For λ ∈ F�
n(h), we have that s ∈ Stde(λ) if and only if s↓n−1 ∈ Stde(ν) for

some ν ∈ F�
n−1(h); the bijection follows. To see that {cs | s ∈ Stde(λ)} ⊆ Dn(λ) and

that 〈cs, ct〉 = δs,t for s, t ∈ Stde(λ), it is enough to show that

1res(s)ω Sn(ν) �= 0 implies ν � λ or ν = λ and 1res(s)ω Sn(λ) = cs (2.3)

for s ∈ Stde(λ). To see this, assume that cs for s ∈ Stde(λ) belongs to some simple
composition factor L(ν) of Sn(λ) for ν �= λ; in which case λ � ν and

1res(s)ω L(ν) ⊆ 1res(s)ω Sn(ν) �= 0

which gives us our required contradiction. Now we turn to the proof of Eq. (2.3). If
ν � λ, then ν ∈ P�

n(h). Given t ∈ Std(ν) with t(rk, ck, mk) = k, we identify t with
the path

(+εhm1+c1,+εhm2+c2 ,+ . . . ,+εhmn+cn ).
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Given t ∈ Std(ν), we have that

Path+(λ, t) = {u ∈ Std(λ) | res(u) = res(t)}.

Given any s ∈ Stde(λ), we have that s(k) ∈ F�
k(h) for all 1 ≤ k ≤ n and hence

s(k) /∈ E(α, me) for any α ∈ �, m ∈ Z. Hence

s /∈
⋃

ν∈P�
n (h)

t∈Std(ν),t �=s

Path+(λ, t) (2.4)

and the result follows. ��
Example 2.12 Let h = 1 and � = 3 and κ = (0, 1, 2) ∈ (Z/4Z)3 as in Fig. 2. The
unique λ ∈ F3

n(h) is given by λ = ((13), (13), (12))}. The tableau tλ is the unique
element of Stde(λ) and hence D8(λ) is 1-dimensional.

3 The skeleton of our BGG resolutions

In Subsection 3.1 we construct the homomorphisms between standard and Specht
modules which will provide the backbone of our BGG complexes. We then consider
how these homomorphisms compose (in terms of “diamonds” and “degenerate dia-
monds" or “strands”) and it is these in-depth diagrammatic calculations that provide
the technical crux of the paper: In Subsection 3.2 we classify the diamonds in terms of
pairs of reflections in the alcove geometry; in Subsection 3.3 we localise to consider
the μ weight-spaces of cell-modules �(λ) for μ, λ two points in a given diamond;
and finally in Subsection 3.4 we use these results to prove that, within a diamond,
composition of homomorphisms commutes (up to scalar multiplication by ±1) or is
zero (for degenerate diamonds). We refer forward to equation (4.3) and (4.4) for the
motivation for the terminology of diamonds and strands.

3.1 One column homomorphisms

Let e > h�.
Given 1 ≤ i < j ≤ h� and α, β ∈ P�

n(h), we suppose that �(α) = �(β) − 1 and
that β � α. Then there exists a unique hyperplane E(εi − ε j , μi j e) for 1 ≤ i, j ≤ h�

and μi j ∈ Z such that si− j,μi j e(α) = β. By definition, this amounts to removing a
series of nodes from the j th column of α and adding them in the i th column of α to
obtain β ∈P�

n or vice versa. By not assuming that i < j , we can use the notation

si− j,μi j e(α) = β

to always mean that β is obtained by removing a series of nodes from the j th column
of α and adding them in the i th column of β. There are two distinct cases to consider.
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The most familiar case (to many Lie theorists) is that in which �εi−ε j (α, β) = 1. In
other words μi j ∈ Z is the unique value such that

α ∈ E
>(εi − ε j , μi j e) β ∈ E

<(εi − ε j , μi j e).

We refer to such pairs (α, β) asmaximal pairs. These pairs include those related by a
reflection “through a common alcove wall". The other case (which should be familiar
to those who study blob and Virasoro algebras) is that in which

�εi−ε j (α, β) = 2�εi−ε j (α)− 1

and so E(εi − ε j , μi j e) is just one of many hyperplanes lying between α and β;
these pairs (α, β) correspond to pairs which are as far away as possible in the alcove
geometry.We refer to such pairs (α, β) asminimal pairs (and they only exist for � > 1).
We wish to distinguish between such pairs. Therefore, for a minimal (respectively
maximal) pair we set mi j := μi j (respectively Mi j := μi j ). We have that mi j ∈ {0, 1}
for any pair α, β ∈P�

n(h).

Example 3.1 Let h = 1, � = 3 and κ = (0, 1, 2) as in Fig. 2. The pair ((18 | ∅ |
∅), (12 | ∅ | 16)) is a minimal pair. There are three hyperplanes parallel to Eε1−ε3,0
separating these two points.

Remark 3.2 Note that, near the origin, it is possible that a reflection is both maximal
and minimal. For example, consider the pair (16 | ∅ | 12) and (14 | ∅ | 14) pictured
in Fig. 2.

Theorem 3.3 Let e > h� and suppose that κ ∈ Z
� is h-admissible. Let α ∈ wαF�

n(h),
β ∈ wβF�

n(h) be such that wβ ≤ wα and �(β) = �(α) − 1. Then there exists
1 ≤ i, j ≤ h� and μi j ∈ N be such that si− j,μi j e(α) = β. We have that

α \ α ∩ β = {X1, X2, . . . , Xk} and β \ α ∩ β = {Y1, Y2, . . . , Yk}

with Xa � Xa+1 (respectively Ya � Ya+1) for 1 ≤ a < k is a sequence of nodes
belonging to the j th column of α (respectively i th column of β). There is a unique
Tα

β ∈ SStd+(β, α), as follows

Tα
β(�) =

{
� if � ∈ α ∩ β

Yk if � = Xk .

We haveHomAn(κ)(�(α),�(β)) = k{ϕα
β }where ϕα

β is determined by ϕα
β (CTα ) = CTα

β
.

We define tαα∩β ∈ Std(α) and tβα∩β ∈ Std(β) to be the unique standard tableaux of
given shape determined by

tαα∩β(r , c, m) = tα∩β(r , c, m) = tβα∩β(r , c, m)
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for (r , c, m) ∈ α ∩ β. We have that φα
β (ctαα∩β

) = ctαα∩β
determines the corresponding

unique homomorphism in HomHn(κ)(Sn(α), Sn(β)). The homomorphisms ϕα
β and φα

β

are both of degree t1.

Proof For the statement for An(κ) see [6, Corollary 10.12]. By the definition of tαα∩β ,
we have that Path(λ, tαα∩β) = ∅ unless λ � α. Therefore e(tαα∩β)�(λ) = 0 unless
λ � α. Therefore ctαα∩β

∈ L(α) and thus it is enough to define a homomorphism, φα
β

say, by where it sends ctαα∩β
. Now, we have that

Cϕ(tαα∩β)CTα
β
= C

ϕ(tβα∩β)
∈ An(κ)

and so the result follows by applying the Schur idempotent. ��
Wenowconsider the restriction of one-column homomorphisms. Thiswill be useful

in our inductive proofs. Before stating the proposition, we summarise some trivial
consequences of equation (1.4) in the language of reflections. Let α ∈ wαF�

n(h), β ∈
wβF�

n(h) be such that wβ ≤ wα and �(β) = �(α)−1. Let 1 ≤ i, j ≤ h� and μi j ∈ N

be such that si− j,μi j e(α) = β. There exists a unique �α ∈ (α \ β ∩ α) ∩ Remr (α)

and �β ∈ (β \ α ∩ β) ∩ Remr (β) for some r ∈ Z/eZ. For such a pair, we have that
si− j,μi j e(α−�α) = β−�β . Moreover, we have that r -res((Sn(α))) ∼= Sn−1(α−�α)

and r -res((Sn(β))) ∼= Sn−1(β − �β) and these restricted modules are isomorphic to
each other if and only α−�α = β−�β (or equivalently α−�α ∈ E(εi −ε j , μi j e)).

Proposition 3.4 Let e > h� and suppose that κ ∈ Z
� is h-admissible. Let α ∈

wαF�
n(h), β ∈ wβF�

n(h) be such that wβ ≤ wα and �(β) = �(α) − 1. We
set 1 ≤ i �= j ≤ h� and μi j ∈ N to be such that si− j,μi j e(α) = β. Let
�α ∈ (α \ α ∩ β) ∩ Remr (α) and �β ∈ (β \ α ∩ β) ∩ Remr (β) for some r ∈ Z/eZ.

If α −�α �= β −�β , then

r−res(φα
β ) = φ

α−�α

β−�β
∈ HomHn−1(κ)(Sn−1(α −�α), Sn−1(β −�β)) (3.1)

and if α −�α = β −�β is equal to λ say, then

r−res(φα
β ) = idλ〈1〉 ∈ HomHn−1(κ)(Sn−1(λ), Sn−1(λ)〈1〉) (3.2)

where idλ is the trivial endomorphism of Sn−1(λ).

Proof We have already seen (in Theorem 3.3) that the homomorphism φα
β is simply

given by right multiplication by CTα
β
. This allows us to factorise the homomorphism

in the form

φα
β :

(
ιrn−1(CS)× CT�α

) �→
(
ιrn−1(φ

α−�α

β−�β
(CS))× CT�β

)

and, ignoring the leftmost strand (as in (1.5)), we obtain the Hn−1(κ)-module homo-
morphism φ

α−�α

β−�β
. We have that deg(T�β

) = δα−�α,β−�β
and the result follows.

��
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3.2 Diamonds formed by pairs of one-columnmorphisms

Wewish to consider all possible ways of composing a pair of such one-column homo-
morphisms.

We letα, β ∈ E
�
h,� andwewriteβ ∈ wβFh(n) andα ∈ wαFh(n). For the remainder

of this section wewill assume thatwβ ≤ wα with �(β)+2 = �(α).We have thatwα =
si1 . . . si� for some sik ∈ S for 1 ≤ k ≤ � and wβ = si1 . . . ŝi p . . . ŝiq . . . si� for some
1 ≤ p, q ≤ �, where the hat denotes a generator missing from the product. Therefore
there exist precisely two points γ ∈ wγFh(n) and δ ∈ wδFh(n) such that wβ ≤
wγ ,wδ ≤ wα and, without loss of generality, we have that wγ = si1 . . . ŝiq . . . si�

and wδ = si1 . . . ŝi p . . . si� . By assumption α, β ∈ E
�
h,�, therefore at least one of

γ or δ belongs to E
�
h,�. We say that such a quadruple (α, β, γ, δ) is a diamond if

α, β, γ, δ ∈ E
�
h,�. If (α, β, γ, δ) is not a diamond, then without loss of generality we

have that δ /∈ E
�
h,�; in which case we say that the triple (α, β, γ ) is a degenerate

diamond or a strand. When we wish to speak of both cases simultaneously, we refer
to the pair (α, β) as a (degenerate or non-degenerate) diamond pair.

The above quadruples (α, β, γ, δ) can be broken up into 6 families, for the sake
of the upcoming proofs. The first five cases of homomorphisms should be familiar
to those who have worked with Carter–Payne homomorphisms for quantum general
linear groups (for which W0 ≤ We is the maximal parabolic). The sixth case will only
occur when the parabolic W0 ≤ We is non-maximal.

The pair α and β lie inR
3.We first consider the cases in which α, β differ in precisely

three columns. In other words, α, β belong to a plane R{ε j − εi , εk − εi } for some
1 ≤ i, j, k ≤ h� and (without loss of generality) we can assume that

〈α, εi 〉 > 〈α, ε j 〉 > 〈α, εk〉. (3.3)

(1) We have β := sk−i,μki es j−i,μ j i e(α) and γ := s j−i,μ j i e(α). Without loss of
generality, there are two subcases

(a) δ := sk− j,μk j e(α) ∈ E
�
h,�;

(b) δ := sk− j,μk j e(α) /∈ E
�
h,�;

(2) We have β := sk−i,μki esk− j,μk j e(α) and γ := sk− j,μk j e(α). Without loss of
generality, there are two subcases

(a) δ := s j−i,μ j i e(α) ∈ E
�
h,�;

(b) δ := s j−i,μ j i e(α) /∈ E
�
h,�;

(3) δ := s j−i,μ j i e(α) and γ := sk−i,μki e(α) β := sk− j,μk j e(δ) = s j−i,μ j i e(γ ), all

belong to E
�
h,�;

(4) δ := sk− j,μk j e(α), and γ := sk−i,μki e(α) β := s j−i,μ j i e(δ) = sk− j,μk j e(γ ), all

belong to E
�
h,�.

These first four cases can be pictured by projecting into the plane R{ε j − εi , εk − εi }
as depicted in Fig. 3.
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Fig. 3 The cases (1b), (2b), (3) and (4) respectively. We have shaded the non-dominant region in grey.
Cases (1a) and (2a) can be pictured by removing the shading from (1b) and (2b)

The pair α and β lie in R
4. We now assume that α and β differ in four columns

(so that we cannot picture them belonging to a plane). Without loss of generality, we
assume that

〈α, εi 〉 > 〈α, ε j 〉 〈α, εk〉 > 〈α, εl〉.

This is the case in which

(5) γ := s j−i,μ j i e(α), δ := sl−k,μlk e(α), and β := sl−k,μlk e(γ ) = s j−i,μ j i e(δ) all

belong to E
�
h,�.

The pair α and β lie in R
2. Finally, we have one additional case to consider in which

α and β differ only in 2 columns. In other words α and β belong to a line R{εi − ε j }.
(6a)We have β = si− j,(1−m ji )es j−i,m ji e(α) and γ := s j−i,M ji e(α) belong toE

�
h,�

and

(i) δ := s j−i,m ji e(α) does not belong to E
�
h,�;

(i i) For � > 1 we have that δ := s j−i,m ji e(α) does belong to E
�
h,�;

(6b) For � > 1 we have that β := si− j,m ji es j−i,M ji e(α), and γ := s j−i,M ji e(α)

and δ := s j−i,m ji e(α) belong to E
�
h,� and cannot be written in the form specified

in case (6a).

In the first two cases, the lightly coloured-in region denotes the “missing" region of
(1b) and (2b). For diamonds formed entirely of maximal pairs, the pictures in Fig. 3
consists only of six e-alcoves and their walls; thus the hyperplanes pictured are the
only hyperplanes between α and β. See Fig. 2 and Eq. (3.6) for such an example. For
(degenerate) diamonds involving one or two minimal pairs, there can be many other
hyperplanes between α and β which are not pictured. See Fig. 2 and Eq. (3.5) for such
an example. The fifth case arises from a pair of orthogonal reflections and cannot be
pictured in 2-dimensional space, however it is also the easiest case and so we do not
lose much by being unable to picture it. The subcases of (6) for which � > 1 are easily
pictured and should be familiar to those who work with Virasoro and blob algebras.
See Fig. 2 and Eq. (3.4) for such an example (many further examples can be found in
[7]).
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Example 3.5 Let h = 1 and � = 3 and κ = (0, 1, 2) as in Fig. 2. The diamond
consisting of

α = (18 | ∅ | ∅) β = (12 | ∅ | 16) γ = (16 | ∅ | 12) δ = (12 | ∅ | 16).
(3.4)

is as in case (6a). The diamond consisting of the 3-partitions,

α = (∅ | 18 | ∅) β = (16 | 1 | 1) γ = (17 | ∅ | 1) δ = (∅ | 17 | 1). (3.5)

is as in case (4) and is a mixture of minimal and maximal pairs. Let

α = (∅ | ∅ | 18) β = (12 | 1 | 15) γ = (∅ | 13 | 15) δ = (12 | ∅ | 16). (3.6)

The diamond (α, β, γ, δ) is as in case (4) and consists solely of maximal pairs.

Remark 3.6 We added in (6b) the condition that it “cannot be written in the form (6a)”
in order to ensure that these cases are mutually exclusive. Without that clause, these
cases would have a non-trivial intersection for points near the origin (see Remark 3.2).
We have added this clause as these two subcases are genuinely different, see Proposi-
tion 3.9 below.

Definition 3.7 Let (α, β, γ, δ) be a diamond. We define the (α, β)-vertex to be

ξ = (α ∩ β ∩ γ ∩ δ) ∈P�
n(h).

In case (6), there exists 0 < y < e and x ≥ 0 such that 〈α− ξ, εi 〉 = xe+ y. In cases
(1), (2) and (4), we let Wξ denote the copy ofS3 generated by the reflections through
the hyperplanes E( j − i, μ j i e), E(k − j, μk j e), and E(k − i, μki e). Given s ∈ Wξ

we let

x = 〈α − ξ, εi 〉 = 〈s(α)− ξ, εs(i)〉 y = 〈α − ξ, ε j 〉 = 〈s(α)− ξ, εs( j)〉.

We let {Xs(α)
1 , Xs(α)

2 , . . . , Xs(α)
x } denote the final x nodes of the s(i)th column of s(α)

and let {Y s(α)
1 , Y s(α)

2 , . . . , Y s(α)
y } denote the final y nodes of the s( j)th column of s(α).

Remark 3.8 In cases (1), (2) and (4) we have that 0 < y < e and res(Xk) = res(Yk)

for 1 ≤ k ≤ min{x, y}.

3.3 Paths in diamonds

We shall now consider reflections of the corresponding paths in the hyperplanes
described in our 6 cases above. We remark that each of these paths passes through
each hyperplane at most once. Therefore, we simplify our notation of Remark 2.5 by
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dropping the superscript on the reflection. We now consider the (dominant) paths in
Path(β, α). In case (1a) there at two paths

Sα
β := s j−k,μk j esk−i,μki e(Tα) and Tα

β := s j−i,μ j i esk− j,μk j e(Tα)

of degrees 0 and 2 respectively, which are both dominant. Generic examples of
such paths (drawn from the point at which they meet the hyperplane E(k − j, μk j e)
onwards) are pictured below

+εi

+ε j

+εk

and are of degree 0 and 2 respectively.
In case (2a) there is a unique path

Tα
β := sk−i,μki esk− j,μk j e(Tα)

which is of degree 2 and dominant. A generic example of such a path is pictured
below.

+εi

+ε j

+εk

In each of cases (1b) and (2b) there is a single path

s j−k,μ jk esk−i,μki e(Tα) and s j−i,μ j i esk−i,μki e(Tα)

of degree 2, neither of which is dominant. These are pictured below

+εi

+ε j

+εk
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In each of cases (3) and (4) there is a unique path

Tα
β := sk− j,μk j es j−i,μ j i e(Tα) Tα

β := s j−i,μi j esk− j,μk j e(Tα)

respectively, of degree 2. Generic examples of such paths are pictured below

+εi

+ε j

+εk

In case (5), the reflections are orthogonal and there is a unique (dominant) path and
if we assume (without loss of generality) that 〈α, εi 〉 > 〈α, εk〉, then this path is given
by

Tα
β := sl−k,μlk es j−i,μ j i e(Tα)

and is of degree 2. In case (6a) we have (x − 1) distinct dominant paths of degree 0
given as follows,

Sχ =
{

si− j,(Mi j−χ−1)esi− j,(Mi j−χ)e(Tα) for mi j = 1

si− j,(Mi j+χ+1)esi− j,(Mi j+χ)e(Tα) for mi j = 0

for 1 ≤ χ < x (for x as in Definition 3.7); we also have a unique path of degree 2
given by

Tα
β = s j−i,(1−m ji )esi− j,mi j e(Tα) ∈ Path(β, Tα)

which is dominant if and only if we are in case (6a)(i i). In case (6b)we have a unique
(dominant) path

Tα
β = si− j,(2m ji−M ji )es j−i,m ji e(Tα)

of degree 2. Using Eq. (2.2), we now summarise the above as follows.

Proposition 3.9 Let (α, β) be a diamond pair. We have that

dimt (1α�(β)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 in cases (1b) and (2b)

t2 + 1 in case (1a)

t2 in cases (2a), (3), (4), (5) and (6b)

x − 1 in case (6a)(i)

t2 + x − 1 in case (6a)(i i)
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where x ∈ Z>0 is defined in Definition 3.7 and t is the grading indeterminate over
Z≥0 from Remark 1.16.

Example 3.10 In Fig. 2, we have that the tableaux

T(18|∅|∅)

(14|∅|14) = s(6)
1−3,M13

◦ s(2)
3−1,M31

(T(18|∅|∅)) T(18|∅|∅)

(14|∅|14) = s(7)
3−1,m31

◦ s(1)
1−2,M12

(T(18|∅|∅))

and T(18|∅|∅)

(14|∅|14) = s(6)
1−2,m12

◦ s(5)
3−2,m32

(T(18|∅|∅))

are as in cases (6a), (4), and (4) respectively and are all of degree t2.

3.4 Compositions of one-column homomorphisms in diamonds

We now consider the composition of the one-column homomorphisms in terms of the
path basis constructed in Proposition 3.9. Let T ∈ T(λ, μ) and T(X) = IκY ∈ Z[ε] for
X ∈ λ, Y ∈ μ; we abuse notation by writing either T(X) = Y or T(X) = IκY . From
Proposition 3.9, we deduce the immediate corollary.

Corollary 3.11 Let (α, β, γ ) be a strand (in other words, as in cases (1b), (2b) and
(6a)(i)). We have that ϕα

γ ◦ ϕ
γ
β = 0 ∈ HomAn(κ)(�(α),�(β)).

Proof Cases (1b) and (2b) are clear. Case (6a)(i) follows because the composition of
two homomorphism of degree t1 must be a vector of degree t2 and no such vector
exists (by Proposition 3.9). ��
Proposition 3.12 Let (α, β, γ, δ) be a diamond. We have that

• CTα
β
= CTα

δ
CTδ

β
in all cases, namely (1a), (2a), (3), (4), (5), (6a)(i) and (6b);

• CTα
β
= CTα

γ
CTγ

β
in the cases (2a), (3), (5).

Proof For γ ∈P�
n (similarly for δ ∈P�

n ) it is clearly enough to show that

Tα
γ T

γ
β = Tα

β ∈ T(β, α) (3.7)

on the level of bijective maps : β → α, and furthermore that if

(r , c, m) � (r ′, c′, m′) and Tγ
β (r , c, m) � Tγ

β (r ′, c′, m′) implies

Tα
γ T

γ
β (r , c, m) � Tα

γ T
γ
β (r ′, c′, m′) (3.8)

for any two nodes (r , c, m), (r ′, c′, m′) ∈ β \ ξ of the same or adjacent residue. This
is simply by the definition of the bases elements corresponding to these tableaux (and
the fact that double-crossings between strands of non-adjacent distinct residues can
be removed by relation (A5)). The cases listed in the above proposition are precisely
those for which Eqs. (3.7) and (3.8) are both true (in other words, 3.7 and 3.8 both
hold in all cases except in cases (1a), (4), and (6) for the product Tα

γ T
γ
β —which will

be discussed separately).
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We shall consider case (2), as the other cases are identical. It is clear that
S(r , c, m) = (r , c, m) if (r , c, m) ∈ ξ for Tλ

μ for λ,μ ∈ {α, β, γ, δ}. Thus it remains
to consider the restriction of these bijections to : β \ ξ → α \ ξ (via both γ \ ξ and
δ \ ξ ). We have that

Tγ
β (Xβ

p) = Y γ
p Tγ

β (Xβ
y+q) = Xγ

y+q Tγ
β (Y β

p ) = Xγ
p

Tα
γ (Y γ

p ) = Y α
p Tα

γ (Xγ
y+q) = Xα

y+q Tα
γ (Xγ

p ) = Xα
p

and

Tδ
β(Xβ

p) = X δ
p Tδ

β(Xβ
y+q) = X δ

y+q Tδ
β(Y β

p ) = Y δ
p

Tα
δ (X δ

p) = Y α
p Tα

δ (X δ
y+q) = Xα

y+q Tα
δ (Y β

p ) = Xα
p

and

Tα
β(Xβ

p) = Y α
p Tα

β(Xβ
y+q) = Xα

y+q Tα
β(Y β

p ) = Xα
p

for 1 ≤ p ≤ y and 1 ≤ q ≤ x − y. Therefore equation (3.7) holds. To see that
equation (3.8) holds, one requires the following observation

Xβ
j � Y β

j Y γ

j � Xγ

j X δ
j � Y δ

j Y α
j � Xα

j

for all 1 ≤ j ≤ y; one can apply this observation to each of the above tableaux in
turn. Thus equation (3.8) holds, as required. ��

It remains to consider the γ subcases of (1a), (4), and (6) not considered above.
In all these cases, we shall see that equation (3.7) and (3.8) fail. Thus, we must
apply some relations in order to rewrite each product-diagram in the required form.
Given (r , c, m) ∈ α, we let y(r , c, m)1α denote the diagram 1α with a dot added on
the vertical solid strand with x-coordinate given by Iκ(r ,c,m). Following [10], we set
yk = y(k, 1, �).

Proposition 3.13 Let (α, β, γ, δ) be a diamond as in case (1a). Then

CTα
γ
CTγ

β
= −y(Xα

y )1αCSα
β
= (−1)y+1CTα

β
+ A�β

n (κ). (3.9)

Proof In case (1a), we have Tα
γ ◦ Tγ

β = Sα
β ∈ T(β, α) as bijective maps. However, the

corresponding product of diagrams has a single double-crossing of non-zero degree;
this is between the strand from Xβ

y+1 on the southern edge to Xα
y+1 on the northern

edge and the strand from Y β
y on the southern edge to Xα

y on the northern edge. In

particular, res(Xβ
y+1) = res(Y β

y )− 1, and

Xβ
y+1 � Y β

y Tγ
β (Xβ

y+1)= Xγ
y+1 � Y γ

y =Tγ
β (Y β

y ) Tα
γ (Y γ

y )= Xα
y � Xα

y+1=Tα
γ (Xγ

y+1).
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For 1 ≤ p, p′ ≤ y the strand from Xβ
y+p on the southern edge to Xα

y+p on the

northern edge double-crosses with the strand from Y β

p′ on the southern edge to Xα
p′

on the northern edge; since y < e, we can remove all of the double-crossings for
(p, q) �= (1, 1) using relation (A5). We now resolve the final double crossing (for
(p, q) = (1, 1)) using relation the leftmost equality of (A6) and hence obtain

CTα
γ
CTγ

β
= y(Xα

y+1)1αCSα
β
− y(Xα

y )1αCSα
β
.

Concerning the former diagram: we pull the dot down the strand and encounter no
like-crossings on the way; hence this term is equal to zero. It remains to prove the
second equality in Eq. (3.9). We let Uy ∈ T(α, β) denote the map

Uy(r , c, m) =

⎧
⎪⎨

⎪⎩

Xα
y for (r , c, m) = Xβ

y

Y α
y for (r , c, m) = Y β

y

Sα
β(r , c, m) otherwise.

.

We claim that

y(Xα
y )1αCSα

β
= −CUy + A�β

n (κ).

To see this, pull the dot at the top of the diagram y(Xα
y )1αCSα

β
down the strand on

which it lies (from Xα
y on northern edge toY β

y on the southern edge) towards the bottom
of the diagram. By Definition 1.10, we can do this freely until we encounter a like-
crossing of the form in relation (A3). Such a crossing involves the aforementioned
strand (between points Xα

y and Y β
y on the northern and southern edges) and some

vertical strand of the same residue. Such a vertical strand either (i) corresponds to a
step of the form +εm for m /∈ {i, j, k} or (i i) is the vertical strand from Xβ

y on the
southern edge to Y α

y on the northern edge. In the former case, the resulting error term

belongs to A�β
n (κ). In the latter case, we apply relation (A3) to move the dot past the

crossing at the expense of acquiring an error term, which is equal to −CUy . Finally
(in the diagram which has a dot) we continue pulling the dot reaches the bottom of
the diagram, the resulting diagram again belongs to A�β

n (κ). Thus the only non-zero
term acquired in this process is −CUy and the claim holds. If y = 1, then Uy = Tα

β

and we are done. Suppose that y > 1. Consider

(i) the solid strand from Y β
y−1 on the southern edge to Xα

y−1 on the northern edge

(i i) the solid strand from Xβ
y−1 on the southern edge to Y α

y−1 on the northern edge

(i i i) the ghost strand from Y β
y on the southern edge to Y α

y on the northern edge.

These three strands together form a triple-crossing as on the right-hand side of the
rightmost equation in relation (A7). Applying relation (A7), we can undo the crossing
(at the expense of multiplication byminus one and an error termwith the same number
of crossings). Consider the error term:We are free to pull the ghost strand (of the strand
connecting Y β

y and Y α
y ) to the left to obtain a diagram which belongs to A�β

n (κ). That
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leaves one remaining non-zero diagram which differs from −CUy in that we have
undone the aforementioned triple-crossing; to summarise

y(Xα
y )1αCSα

β
= CUy−1 + A�β

n (κ) with Uy(r , c, m) =

⎧
⎪⎨

⎪⎩

Xα
y−1 for (r , c, m) = Xβ

y−1
Y α

y−1 for (r , c, m) = Y β
y−1

Uy(r , c, m) otherwise.

Repeat this argument until all y crossings have been resolved, the results follows. ��
Proposition 3.14 Let (α, β, γ, δ) be a diamond as in case (4). Then

CTα
γ
CTγ

β
= (−1)x CTα

β
+ A�β

n (κ).

Proof We have that

Tα
γ ◦ Tγ

β (r , c, m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xα
p = Tα

β(Y β
p ) if (r , c, m) = Xβ

p for 1 ≤ p ≤ x

Y α
p = Tα

β(Xβ
p) if (r , c, m) = Y β

p for 1 ≤ p ≤ x

Y α
q = Tα

β(Y β
q ) if (r , c, m) = Y β

q for x + 1 ≤ q ≤ y

Tα
β(r , c, m) for (r , c, m) ∈ ξ

Consider

(i) the solid strand from Y β
x on the southern edge to Xα

x on the northern edge;

(i i) the solid strand from Xβ
x on the southern edge to Y α

x on the northern edge;

(i i i) the ghost strand of the strand from Y β
x+1 on the southern edge to Y α

x+1 on the
northern edge.

These strands together form a crossing as on the right hand side of the rightmost
equation in relation (A7). Undoing this crossing we obtain an error term (correspond-
ing to the diagram on the lefthand-side of the rightmost equality in relation (A7))
which belongs to A�β

n (κ) and another (non-zero) term. One can then repeat the above
argument with the latter diagram (except replacing the subscript ‘x ′ with ‘x − 1′).
Continuing in this fashion, we obtain the required result. ��
Proposition 3.15 Let (α, β, γ, δ) be a diamond as in case (6b). Then

CTα
γ
CTγ

β
= (−1)yCTα

β
+ A�β

n (κ).

Proof We let {Xα
1 , Xα

2 , . . . , Xα
ex , Y α

1 , . . . , Y α
y } denote the final xe+ y nodes of the i th

column of α. We let {Xβ
1 , Xβ

2 , . . . , Xβ
ex } denote the final xe nodes of the j th column

of β and {Y β
1 , . . . , Y β

y } denote the final y nodes of the i th column of β. We have that

Tα
γ ◦ Tγ

β (r , c, m) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tα
β(Y β

p ) = Xα
p for (r , c, m) = Xβ

p and 1 ≤ p ≤ y

Tα
β(Xβ

p) = Y α
p for (r , c, m) = Y β

p and 1 ≤ p ≤ y

Tα
β(Xβ

q ) = Xα
q for (r , c, m) = Xβ

q and y < q ≤ ex

Tα
β(r , c, m) for (r , c, m) ∈ ξ.
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Consider

(i) the solid strand from Y β
y on the southern edge to Xα

y on the northern edge;

(i i) the solid strand from Xβ
y on the southern edge to Y α

y on the northern edge;

(i i i) the ghost of the strand from Xβ
y+1 on the southern edge to Xα

y+1 on the northern
edge.

These strands together form a crossing as on the right hand side of the latter equality
in relation (A7). Undoing this crossing we obtain an error term (corresponding to the
diagram on the lefthand-side of the latter equality in relation (A7)) which belongs to
A�β

n (κ) and another (non-zero) term. One can then repeat the above argument with
the latter diagram (except replacing the subscript ‘y′ with ‘y − 1′). Continuing in this
fashion, we obtain the required result. ��
Proposition 3.16 Let (α, β) be a diamond pair as in case (6a)(i i). Then

CTα
γ
CTγ

β
= (−1)e(x+1)+yCTα

β
+ A�β

n (κ).

Proof We first fix some notation. We denote the final e nodes at the end of the j th
column ofβ by Xβ

1 , . . . , Xβ
e .We denote the final e(x−1)+y nodes at the end of the i th

column of β by Xβ
e+1, . . . , Xβ

ex , Y β
1 , . . . , Y β

y . We let Xα
1 , Xα

2 , . . . , Xα
ex , Y α

1 , . . . , Y α
y

denote the final ex + y nodes at the end of the i th column of α. Given σ ∈ Sx we
define Uσ ∈ T(β, α) as follows,

Uσ (Xβ
ep−q) = Uσ (Xβ

eσ(p)−q) Uσ (Y β
t ) = Y α

t (3.10)

for 1 ≤ p,≤ x , 0 ≤ q < e, 0 ≤ t < y and such that Uσ (r , c, m) = (r , c, m) for
(r , c, m) ∈ ξ . We have that Tα

β = Uid for id ∈ Sx and Sχ = Uσ for σ = s1s2 . . . sχ for
1 ≤ χ < x (and so any element of SStd(β, α) can be written in the form of equation
(3.10)).

We now state a claim that will provide the crux of the proof. Set σ = s1s2 . . . sχ

for 1 ≤ χ ≤ x . Given 1 ≤ r < χ , we refer to the strand in CUσ from Xβ
e on the

southern edge to Xα
χe on the northern as the principal strand. Let Cr

Uσ
denote the

diagram obtained from CUσ by placing a dot on the principal strand at any point in the
interval (IκXα

er
, IκXα

er+1
)× [0, 1].

For σ �= s1, we claim that

Cr
Uσ
= Cr−1

Uσ
+ (−1)e+1Cr−1

Uσ ′ (3.11)

Cr
Us1
= Cr−1

Us1
+ (−1)eCUs1

(3.12)

modulo A�β
n (κ) where σ ′ = s1s2 . . . sr−1sr+1 . . . sχ . Diagrammatically, we can think

of our claim as simply a beefed-up version of relation (A3) in which we consider
crossings involving collections of strands (each of size e > 1). We let i = res(Xβ

e ).
We now prove the claim. First apply relation (A3) to pull the dot through the cross-

ing i-strands and hence obtain Cr−1
Uσ

plus another term with a minus sign. For this
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latter diagram, the ghost of the principal i-strand can be pulled to the left through the
crossing solid (i + 1)-strands as in relation (A7). We hence obtain two diagrams: one
with the same number of crossings, and one in which the crossing of (i + 1)-strands
has been undone. The former is zero modulo the stated ideal. The latter diagram now
has a crossing of two solid (i+2)-strands and a ghost (i+1)-strand as in relation (A7).
Repeating as necessary, this process terminates with a diagram (occurring with coef-
ficient (−1)e) which traces out the bijection of Uσ ′ but with many double-crossings.

• If σ = s1, then all of these double-crossings are of degree zero;
• If σ �= s1, then precisely one of these double-crossings has non-zero degree: that
between the solid strand from Xβ

e on the southern edge to Xα
re on the northern

edge and the ghost of the strand from Xβ
re−e+1 on the southern edge to Xα

χe−e+1
on the northern edge.

In the latter case, we resolve this double-crossing as in relation (A7) and obtain two
diagrams: one is of the required form and the other belongs to the stated ideal. In either
case, the claim holds. Having proven our claim, we are now ready to prove the result.
We have that

Tα
γ ◦ Tγ

β (r , c, m) =

⎧
⎪⎨

⎪⎩

Us1...sx−1(Xβ
t ) = Xα

xe−e+t for (r , c, m) = Y β
t and 1 ≤ t ≤ y

Us1...sx−1(Y
β
t ) = Y α

t for (r , c, m) = Xβ
t and 1 ≤ t ≤ y

Us1...sx−1(r , c, m) otherwise.

Therefore, using y applications of (A7) we obtain a diagramwhich traces out the same
bijection as Us1...sx−1 (modulo error terms). However the resulting diagram contains

a single degree 2 double-crossing between the solid strand from Xβ
e to Xα

ex (on the

southern and northern edges, respectively) with the ghost of the strand from Y β
1 to

Y α
1 (on the southern and northern edges, respectively). Resolving this crossing using

relation (A6), we obtain that

CTα
γ
CTγ

β
= (−1)y+1CUs1 ...sx−1 + A�β

n (κ).

We now successively apply equation (3.11) a total of x−1 times, followed by a single
application of equation (3.12). The error terms all belong to A�β

n (κ) and the result
follows. ��

Theorem 3.17 Let (α, β, γ, δ) be a diamond. We have that

ϕα
δ ◦ ϕδ

β = ϕα
β = εα,β,γ,δϕ

α
γ ◦ ϕ

γ
β where εα,β,γ,δ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)y+1 in cases (1a)

(−1)x in cases (4)
(−1)y in cases (6b)

(−1)e(x+1)+y in case (6a)(i i)

1 otherwise.

(3.13)
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Moreover the map ϕα
β is determined by ϕα

β (CTα ) = CTα
β

and dimt (HomAn(κ)(�(α),

�(β))) = t2 where t is the grading indeterminate over Z≥0 from Remark 1.16.

Proof Equation (3.13) is simply a restatement of Propositions 3.12 to 3.16; we remark
that we can ignore all mention of terms in the ideal A�β

n (κ) in Propositions 3.14 to 3.16
as all these terms are zero in �(β) (by the definition of the cell module as a quotient
by precisely this ideal). To verify that the homomorphism space is 1-dimensional, it
remains to check thatCS ∈ L(β) for S ∈ SStd+(β, α) for each S such that deg(S) = 0.
Wewill not need the dimension result inwhat follows and sowe leave this as an exercise
for the reader. ��

4 The BGG-resolutions for quiver Hecke algebras

We are now ready to prove (a stronger version of) Theorem B from the introduction
over k an arbitrary field. Given α ∈ F�

n(h), we define an associated Hn(κ)-complex
and show that this complex forms a BGG resolution of Dn(α). We simultaneously
construct bases and representing matrices for Dn(α) and completely determine its
restriction along the tower of cyclotomic quiver Hecke algebras.

Following a construction going back to work of Bernstein–Gelfand–Gelfand and
Lepowsky [1,28], we are going to define a complex of graded An(κ)-modules

· · · −→ �2
δ2−→ �1

δ1−→ �0
δ0−→ 0, (4.1)

where

�� :=
⊕

w∈P�

�(w)〈�(w)〉. (4.2)

We will refer to this as the BGG complex. For a diamond (α, β, γ, δ) we have homo-
morphisms of An(κ)-modules

�(γ )

�(δ)

�(α) �(β)

ϕα
γ

ϕα
δ

ϕ
γ
β

ϕδ
β

(4.3)

given by our one-column homomorphisms. By an easy variation on [1, Lemma 10.4]
and Theorem 3.17, it is possible to assign a sign ε(ν, μ) for each of the four homo-
morphisms ϕν

μ such that for every diamond the product of the signs associated to its
four arrows is equal to −εα,β,γ,δ . For a strand (α, β, γ ) we have homomorphisms
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�(γ )�(α) �(β).
ϕα

γ ϕ
γ
β

(4.4)

We can now define the An(κ)-differential δ� : �� → ��−1 for � ≥ 1 to be the sum
of the maps

ε(ν, μ)ϕν
μ : �(ν)〈�〉 → �(μ)〈�− 1〉

over all diamond pairs (ν, μ) with �(ν) = �. For λ ∈ F�
n(h), we set C•(λ) =⊕

�≥0 ��〈�〉 together with the differential (δ�)�≥0. We remark that each standard
module occurs with a grading shift which coincides with the homological degree in
which the module occurs within the complex. This grading shift/homological degree
is given by the length function of the indexing �-partition.

Proposition 4.1 We have that Im(δ�+1) ⊆ ker(δ�), in other words C•(λ) is a complex.

Proof This is a standard argument using Theorem 3.17 and the fact that if �(wα) =
�(wβ)+ 2 and wβ ≤ wα , then there exists precisely two points γ, δ ∈ Eh,� such that
wα ≥ wγ ,wδ ≥ wβ . ��

We now apply the Schur functor to the above to obtain a complex of modules in
the quiver Hecke algebra as follows,

C•(λ) := EωC•(λ) =
⊕

λ�μ

Sn(μ)[�(μ)] with Eωδ� = δ�.

Theorem 4.2 Let e > h�, let κ ∈ Z
� be h-admissible, let k be a field, and λ ∈ F�

n(h).
The Hn(κ)-complex C•(λ) is exact except in degree zero, where

H0(C•(λ)) = Dn(λ).

We have Dn(λ) = k{cs | s ∈ Stde(λ)} and rad(Sn(λ)) = k{cs | s ∈ Std(λ) \Stde(λ)}.
Furthermore,

resn
n−1(Dn(λ)) =

⊕

�∈Fh(λ)

Dn(λ−�).

Proof We assume, by induction, that if λ ∈ F�
n−1(h), then the complex C•(λ) forms a

BGG resolution and that {cs | s ∈ Stde(λ)} forms a basis of the simple module Dn(λ).
We now assume that λ ∈ F�

n(h) and consider the complex C•(λ). We have that

resn
n−1(C•(λ)) =

⊕

r∈Z/eZ

Er
ω(C•(λ)).

We now consider one residue at a time. As λ belongs to an alcove, we have that λ (and
any μ � λ) has either 0 or 1 removable r -boxes for each r ∈ Z/eZ. We let Er

ω(λ)
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denote the unique �-composition (respectively �-partition) which differs from λ by
removing an r -node. For each residue, there are two possible cases.

• We have that Er
ω(λ) lies on an alcove wall or Er

ω(λ) /∈P�
n . By restriction, we have

that Im(Er
ωδ�+1) ⊆ ker(Er

ωδ�) and so Er
ω(C•(λ)) forms a complex. We have that

Er
ω(λ) is fixed by reflection through some hyperplane and the �-compositions of

n which dominate λ ∈ F�
n(h) come in pairs (ν+, ν−) with ν− � ν+ and �(ν+) =

�(ν−)+ 1 and furthermore such that

Er
ω(ν+) = Er

ω(ν−) = ν ∈ S̃h� · (Er
ω(λ)).

We have that

Er
ω(Sn(ν+)) = Er

ω(Sn(ν−)) =
{
0 if either ν+ /∈P�

n or ν− /∈P�
n

Sn−1(ν) otherwise

Thus Er
ω(⊕λ�μSn(μ)〈�(μ)〉) decomposes as follows,

Er
ω(⊕λ�μSn(μ)〈�(μ)〉) =

⊕

ν�λ−�
Sn−1(ν)〈�(ν)− 1〉

⊕

ν�λ−�
Sn−1(ν)〈�(ν)〉.

(4.5)

Given ν � λ − �, the restriction of φν+
ν− ∈ HomHn(κ)(Sn(ν+), Sn(ν−)) is equal

to

idν〈1〉 ∈ HomHn−1(κ)(Sn−1(ν)〈�(ν)− 1〉, Sn−1(ν)〈�(ν)〉) (4.6)

by equation (3.2). By restriction, we have

Im(Er
ω(δ�+1)) ⊆ ker(Er

ω(δ�))

and by equation (4.6), we have that Er
ωδ�+1 =∑

�(ν)=�+1 1ν〈1〉 + . . . and so the
complex is exact. We conclude that H(Er

ω(C•(λ)) = 0.
• We have that Er

ω(λ) ∈ F�
n−1(h). We have that

Er
ωSn(μ)〈�(μ)〉 = Sn−1(μ−�)〈�(μ−�)〉

if Remr (μ) �= ∅ and is zero otherwise. In the non-zero case, this is simply because
μ − � belongs to the same alcove as μ (and therefore the lengths coincide) for
μ � λ. Now, for a pair μ,μ′ with � ∈ Remr (μ) and �′ ∈ Remr (μ

′), we
have that Er

ωφ
μ

μ′ = φ
μ−�
μ′−�′ by equation (3.1). Thus Er

ω(C•(λ)) = C•(λ − �)

and the right hand side is exact except H0(C•(λ − �)) = Dn−1(λ − �) by our
inductive assumption. Thus Er

ω(H0(C•(λ))) = H0(C•(λ − �)) = Dn−1(λ − �)

and Er
ω(Hj (C•(λ))) = 0 for all j > 0.
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Putting all of the above together, we have shown that

resn
n−1(Hj (C•(λ))) =

{⊕
�∈Fh(λ) Dn−1(λ−�) if j = 0

0 otherwise.
(4.7)

Now, since Head(Sn(λ)) = Dn(λ) �⊂ Im(δ1), we are able to conclude that

resn
n−1(Dn(λ)) ⊆

⊕

�∈Fh(λ)

Dn(λ−�). (4.8)

Conversely, we have that

|Stde(λ)| =
∑

�∈Fh(λ)

|Stde(λ−�)| (4.9)

by Proposition 2.11. By induction, the right hand side of Eq. (4.9) is equal to the
dimension of the right hand side of equation (4.8). The lefthand-side of equation (4.9)
is a lower bound for the dimension of the lefthand-side of equation (4.8). Putting these
two things together, we deduce that

resn
n−1(Dn(λ)) =

⊕

�∈Fh(λ)

Dn(λ−�) (4.10)

and furthermore, the set {cs | s ∈ Stde(λ)} does indeed form a basis of Dn(λ); to
obtain the basis of the radical, recall that etL(μ) = 0 for λ � μ and t ∈ Stde(λ).
Putting equation (4.7) and equation (4.10) together, we have that

resn
n−1(Hj (C•(λ))) =

{
resn

n−1Dn(λ) if j = 0

0 otherwise
Hj (C•(λ)) =

{
Dn(λ) if j = 0

0 otherwise

where the second equality follows because resn
n−1Dn(μ) �= 0 for any λ � μ (even

though Er
ω(Dn(μ)) = 0 is possible for a given r ∈ Z/eZ, as seen above). ��

Note that the restriction rule was used as the starting point in [37], where Kleshchev
obtains results concerning the dimensions of simple modules. Weirdly, our proof
deduces that the homology of the complex is equal to Dn(λ), that the basis Dn(λ)

is of the stated form, and the restriction of the simple module is of the stated form all
at once!

Theorem 4.3 For λ ∈ F�
n(h) the action of Hn(κ) on Dn(λ) = k{cs | s ∈ Stde(λ)} is

as follows:

yk(cs) = 0 1i
ω(cs) = δi,res(s) ψr (cs) =

{
csk↔k+1 if |res(s(r))− res(s(r + 1))| > 1

0 otherwise
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where sk↔k+1 is the tableau obtained from s by swapping the entries k and k + 1.

In particular, the subalgebra 〈yk, 1
i
ω | 1 ≤ k ≤ r , i ∈ (Z/eZ)n〉 ≤ Hn(κ) acts

semisimply on Dn(λ). The weight-spaces of Dn(λ) are all 1-dimensional and Dn(λ)

is concentrated in degree zero only. Finally, the cellular bilinear form is given by
〈cs, ct〉 = δs,t for s, t ∈ Stde(λ).

Proof The statements not relating to the action follow from Proposition 2.11 and
equation (2.4) and Theorem 4.2. The action of the idempotents is obvious. The other
zero-relations all follow because the product has non-zero degree (and the module
Dn(λ) is concentrated in degree 0). Finally, assume |res(s(r)) − res(s(r + 1))| > 1.
The strands terminating at (r , 1, �) and (r + 1, 1, �)on the northern edge either door do
not cross. In the former case,we can resolve the double crossing inψr cswithout cost by
our assumption on the residues and the result follows. The latter case is trivial. Finally,
notice that sk↔k+1 ∈ Stde(λ) under the assumption that |res(s(r))−res(s(r+1))| > 1.

��
For the sake of reference, we also note the following corollary of Theorem 4.2.

Corollary 4.4 Let e > h�, let κ ∈ Z
� be h-admissible, let k be a field, and λ ∈ F�

n(h).
The An(κ)-complex C•(λ) is exact except in degree zero, where

H0(C•(λ)) = L(λ).

Proof Under the conditions that e > h� and κ ∈ Z
� is h-admissible, the idempotent

Eω does not kill any of the simple modules L(λ) for λ ∈ P�
n(h). (See [6, Theorem

4.9] for more details.) Therefore the corresponding Serre subcategories are Morita
equivalent and the result follows. ��
Remark 4.5 Let p > 0.Combinatorially computing the composition series of Sn(λ) for
λ ∈P1

n (h) for arbitrary primes seems to be an impossible task [63]. If we assume that
p � h is suitably large then we can use Kazhdan–Lusztig theory to combinatorially
calculate dimk(Dn(λ)), this requires (as a minimum) that all partitions μ ∈ P1

n (h)

such thatμ�λ belong to the first p2-alcove [50]. This is equivalent to the requirement
that the p-weight of λ (defined in Sect. 5) is less than p. For h = 3 this combinatorics
has been conjecturally extended (in terms of billiards in an alcove geometry) to the first
p3-alcove [44]. We stress that there is no restriction on the p-weight of λ ∈ F1

n(h).
Therefore understanding the composition series of unitary Specht modules is well
beyond the current state of the art. Thus our two descriptions of the simple modules
Dn(λ) for λ ∈ F1

n(h) provide the only contexts in which these modules can currently
be hoped to be understood.

Example 4.6 ( [6, Proposition 7.6]) Let � ≥ 2, e = �+1, and κ = (0, 1, 2, . . . , �−1) ∈
(Z/eZ)�, and k be arbitrary. We have that λ := ((n), (n), . . . , (n)) ∈ F�

n�(h) and that

[Sn�((n), (n), . . . , (n)) : Dn�(ν)] = t�(ν) + . . . (4.11)

modulo terms of lower order degree. Therefore every simple module D(ν) for λ�ν ∈
P�

n�(1) appears with multiplicity at least 1. Therefore as n → ∞, the number of
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composition factors of Sn�((n), (n), . . . , (n)) tends to infinity and so is impossible
to compute. In contrast, the module Dn�(ν) is 1-dimensional and easily seen to be
spanned by ctλ for tλ as in Definition 1.4.

5 Background on the Cherednik algebras of symmetric group and the
combinatorics of unitary modules

For the remainder of the paper, we restrict our attention to the field C and rational
Cherednik algebras of type G(1, 1, n).We now discuss how the combinatorial descrip-
tion of resolutions simplifies for (diagrammatic) Cherednik algebras of symmetric
groups. In this case, we choose to emphasize the abacus presentation of partitions. We
first recall this classical combinatorial approach, then flesh out the notion of homolog-
ical degree introduced in [65] that is key to [65, Conjecture 4.5], and finally identify all
this as the level 1 case of the alcove geometry already studied in the previous sections.

5.1 The abacus of a partition

Let λ ∈ P1
n (h). Then λ can be encoded by an abacus with at least h beads, where

each bead stands for a column of λ. This is simply a sequence of spaces and beads
which records the shape of the border of λ, since knowing the border of λ is the same
as knowing λ. We form the Z-abacusAh

Z
(λ)with h beads by walking along the border

from the top right corner to the bottom left corner of the Young diagram of λ, writing
a space every time we walk down and a bead every time we walk left.

Example 5.1 The Z-abaci of (34, 1), (33, 2, 12) ∈P1
13(3)with 3 beads are as follows

• •
•

•
•

•

Fix e ≥ 2.We obtain an e-abacusAe(λ) by looping theZ-abacus around e horizon-
tal runners. This can be described as follows: subdivideAh

Z
(λ) into segments of length

e starting from the leftmost position, then rotate each segment counterclockwise by
ninety degrees so that it is vertical. The partition is nowwritten on e horizontal runners
(which we sometimes label according to residue, as in Remark 5.4). Thus the runners
of our e-abacus resemble a musical staff, and Ae(λ) resembles sheet music. Like a
staff, the runners of Ae(λ) are bounded to the left. We let them extend infinitely to
the right, because we want to think of being able to move beads in that direction by
adding boxes or e-strips at the bottom of the Young diagram of a partition. In French
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a musical score is called a partition, so we may say that our abaci are written in the
French style.

Example 5.2 We picture a 5-abacus with the residues labelled.

. . .

1
2
3
4
0

We let we(λ) denote the total number of vacant spots which have a bead to their
right and refer to this as the e-weight. If w(ρ) = 0 then we say that ρ is an e-core.
Given a partition λ, we define the e-core of λ to be the partition obtained by moving
all beads on Ae(λ) as far left as possible. We let

�(ρ,w) := {μ � |ρ| + we | e-core(μ) = ρ}

for ρ an e-core.

Example 5.3 The 4-abaci with 3 beads of (34, 1), (33, 2, 12), (3, 25) and (33, 14) ∈
P1

13(3) are as follows

We have that w4(λ) = 3 and 4-core(λ) = (1) for each of these examples.

Remark 5.4 Note that forμ ∈P1
n (h), its removable box of highest content has content

h−k, where k is the position of the first bead in theZ-abacusAh
Z
(μ). In particular, this

bead sits in runner k mod e in the e-abacusAh
e (μ). Thus, in order to make the labels of

the runners of the e-abaci in μ correspond in a nice way to the contents of addable and
removable i-boxes of the partitions, one should label the runners from bottom to top
by h−1, h−2, . . . , 1, 0, e−1, e−2, . . . , h+1, h. With this convention, removing a
box of content i mod e corresponds to moving a bead on runner i − 1 down to runner
i ; and adding a box of content i mod e corresponds to moving a bead on runner i up
to runner i − 1.
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5.2 e-unitary partitions and posets

We recall the definition of e-unitary partitions from [65] and show that these are
precisely the partitions in F1

n = ∪h≥1F1
n(h) studied in this paper.

Definition 5.5 [23,65] Fix e ≥ 2. Suppose λ has exactly h columns and form Ah
Z
(λ)

the abacus on h beads. We call λ an e-unitary partition if all the beads onAh
Z
(λ) lie in

an interval of width e. In particular,Ae(λ) has at most one bead on each runner. Given
an e-unitary partition λ, we let Poe(λ) denote the set of all the e-abaci obtained from
λ by successively moving a bead on some runner one step to the right so long as we
also move a bead on a different runner one step to the left.

Example 5.6 When e = 4, (34, 1) is a 4-unitary partition, and (33, 2, 12), (3, 25),
(33, 14) ∈ Po4(λ).

Proposition 5.7 The set F1
n = ∪h≥1F1

n(h) is precisely equal to the set of e-unitary
partitions.

Proof Suppose λ ∈ P1
n has exactly h columns and let γh, γ1 denote the positions of

the leftmost and rightmost beads on Ah
Z
(λ). Now simply note that γ1 − γh ≤ e− 1 if

and only if 〈λ+ ρ, ε1 − εh〉 < e − 1 if and only if λ ∈ F1
n(h). ��

Remark 5.8 If e = h then λ is e-unitary if and only if λ = (ek) for some k ∈ N. If λ

is an e-unitary partition, then any μ ∈ Poe(λ) is always e-restricted unless λ = (ek)

and μ = λ.

If an e-abacus Ae(μ) has at most one bead on each runner, let bi be the unique
bead on the runner labeled i if such a bead exists, and let βi ∈ Z≥0 be the horizontal
position of bi . Sometimes by abuse of notation we might just refer to βi as a bead. We
say that we shift the bead bi one unit to the left if we replace βi with βi −1. The effect
of this on the Young diagram of μ is to remove what is called an e-rimhook from the
border of μ: a connected subset R of e boxes of the Young diagram of μ such that
if b ∈ R is in row r and column c, then there is no box in the Young diagram of μ

situated in row r +1 and column c+1. Similarly, shifting bi one unit to the right adds
an e-rimhook to μ. That means precisely that shifting bi one unit to the right adds e
boxes x1, . . . , xe to μ in such a way that x1, . . . , xe form an e-rimhook in the border
of the partition μ ∪ {x1, . . . , xe}, removing which yields back μ.

Example 5.9 Let h = 3 and e = 4. We continue with the example of λ = (3, 3, 3, 1).
Shifting the bead on the top runner one unit to the left removes the green 4-rimhook
from λ yielding (3, 3, 3) as pictured below. Shifting the bead on the bottom runner
one unit to the right then adds a 4-rimhook to (3, 3, 3) yielding (3, 3, 3, 2, 1, 1).

� �
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� �

5.3 The affine and extended affine symmetric group actions

There is a natural action of the affine symmetric group S̃h on Poe(λ)when we take the
presentation of S̃h given by generators si , i ∈ Z/hZ, subject to the relations s2i = 1,
si s j = s j si if |i − j | > 1, and si si+1si = si+1si si+1 (where all subscripts are taken
mod h). Sh = 〈s1, . . . , sh−1〉 acts by permutation of the h runners containing beads,
while s0 switches the top and bottom beads in the abacus, then moves the bottom bead
one step to the right and the top bead one step to the left. From the description of
Poe(λ) in Definition 5.5, S̃h acts transitively on Poe(λ).

Example 5.10 Illustration of the action of s0:

0 1 2 3 4 5 6 7 8 9
3
2
1
0
4

s0

0 1 2 3 4 5 6 7 8 9

The extended affine symmetric group Ŝh is the semidirect product Zh
�Sh . There

is a natural action of Ŝh on the set of e-abaci with exactly one bead on a fixed subset
of h runners, and no beads on the other runners: Z

h acts as the group of horizontal
translations of the beads on their runners, and Sh as permutations of the h runners
containing the beads. This action is locally nilpotent for the subgroup Z

h
<0 consisting

of left translations of the beads. In terms of partitions, the meaning is as follows: let
ρ be an e-core of some unitary partition; equivalently, Ae(ρ) has its beads pushed all
the way to the left and they are concentrated in the leftmost column of the e-abacus.
Let Pe(ρ)h be the union of all Poe(λ), λ an e-unitary partition such that the e-core of
λ is ρ and λ has h columns. Let εi = (0, . . . , 1, . . . , 0) ∈ Z

h with the 1 in the i’th
position. Then εi acts onμ ∈ Pe(ρ)h by shifting the bead on the i’th runner containing
a bead one unit to the right; on the Young diagram of μ it adds an e-rimhook whose
arm-length is at most h − 1. Observe that Pe(ρ)h is generated by Ae(ρ) under the
action of Ŝh :

Ŝh ·Ae(ρ) = Pe(ρ)h

Pe(ρ)h is naturally identified with the monoidZ
h≥0 as a left Ŝh-module by identifying

an abacus A ∈ Pe(ρ)h with the h-tuple of its beads’ positions (β1, . . . , βh) ∈ Z
h≥0.

Note that adding or removing empty runners from the e-abacus (thus changing e while
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keeping h fixed) does not affect the action of Ŝh which acts only on the non-empty
runners.

5.4 The homological degree statistic

Let λ be an e-unitary partition. We recall the homological degree statistic on Poe(λ)

introduced by Berkesch–Griffeth–Sam.

Definition 5.11 Suppose A is an e-abacus with at most one bead on each runner. A
disorder ofA is an unordered pair {i, j} such that runners i and j both contain a bead,
satisfying βi > β j and b j is above bi . In other words, a pair of beads of A yields a
disorder if one bead is above and strictly to the left of the other bead.

Definition 5.12 [65, Definition 4.3] Let μ ∈ Poe(λ). The homological degree of μ,
written hd(μ), is the sum of the differences of all horizontal positions of beads in
Ae(μ) minus the number of disorders of Ae(μ):

hd(μ) =
∑

i, j∈Z/eZ
bi ,b j �=∅

b j is below bi

|βi − β j | − #{disorders of Ae(μ)}

Example 5.13 In Example 5.10, let ν denote the partition whose abacus is on the left,
and let μ = s0(ν) as in the picture. Then A5(ν) has 6 disorders and hd(ν) = 1+ 2+
8+1+7+6−6 = 19;A5(μ) has 1 disorder and hd(μ) = 6+5+6+1+1−1 = 18.
Observe that s0 changed the homological degree by 1.

5.5 Homological degree produced recursively by elements of ̂Se

Notice that empty runners of Ae(μ) play no role in hd(μ); if the empty runners are
removed from Ae(μ), the homological degree remains the same. For simplicity of
the formulas and exposition, we therefore work in the case that there are no empty
runners, that is, h = e columns and λ = (ek) for some k ∈ N. The empty runners can
be put back in at the end.

Our first characterization of the homological degree produces this statistic recur-
sively starting from the empty partition by applying sequences of special elements
τi ∈ Ŝe, i = e − 1, e − 2, . . . , 1, 0, in a non-increasing order with respect to i .

Definition 5.14 Let τi ∈ Ŝe be defined as follows: τi fixes the bottom i runners; on
the top e− i runners, it first cyclically rotates the beads in the topwards direction, then
shifts one space to the right the bead on the (e − i)’th runner from the top.

Each τi is the “affine generator" of the subgroup Ŝe−i of Ŝe which fixes the bottom
i runners: τi together with Se−i generates Ŝe−i [41, Section 2.1]. We are interested
in applying τi to abaci whose bottom i runners have their beads pushed all the way to
the left.
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Example 5.15 Consider the 5-abacus of (311, 23, 111). Then τ2 acts as follows:

0 1 2 3 4 5 6 7

τ2

0 1 2 3 4 5 6 7

Observe that τ2 increased the homological degree of the abacus by 2.

Suppose τ is a partition all of whose parts are of size at most e − 1, and which
may contain parts of size 0, so τ = ((e − 1)ae−1 , (e − 2)ae−2 , . . . , 1a1 , 0a0). Thus τ

fits inside an e − 1 by k box, where k is the total number of parts of τ . Now identify
τ with the element of Ŝe given by the composition of operators τ

a0
0 τ

a1
1 . . . τ

ae−1
e−1 . By

abuse of notation we will also call this element τ . The proof of the following lemma
is straightforward:

Lemma 5.16 Let τ = ((e−1)ae−1 , (e−2)ae−2 , . . . , 1a1 , 0a0) with
∑e−1

i=0 ai = k ∈ Z≥0.
Then τ(Ae(∅)) = Ae(μ) with μ ∈ Poe(ek). Any μ ∈ Poe(ek) is produced in this way
from a unique such τ , and we have:

hd(μ) =
e−1∑

i=0
iai = |τ |

Let λ be an arbitrary e-unitary partition. By removing the empty runners from the
e-abaci in Poe(λ), there is likewise a natural bijection between the partitions μ in
Poe(λ) and partitions τ which fit inside an (h − 1) by k box,

{μ ∈ Poe(λ)}
� ←− {τ ⊂ (h − 1)k},

given by �(τ) = τ(∅) (where τ on the right-hand-side is the corresponding element
of Ŝh as described above). This bijection identifies hd(μ) with |τ |.
Remark 5.17 Such a bijection turns up elsewhere in representation theory: notably,
partitions τ which fit inside an (h − 1) by k box also parametrize (1) the simple and
standard modules of a regular block Bp of parabolic category Op for gl(h − 1 + k)

with respect to the maximal parabolic gl(h − 1) × gl(k) [55]; (2) the Schubert cells
in the Grassmannian Gr(k, h − 1 + k) = Gr(h − 1, h − 1 + k). The category Bp is
equivalent to perverse sheaves on theGrassmannian [9,55], explaining the coincidence
of (1) and (2). Let L(h−1)k denote the simple module in Bp labeled by τ = (h − 1)k ,
the unique maximal element of the poset (the poset structure is given by inclusion
of Young diagrams). The bijection following Lemma 5.16 identifies the labels of the
characters of unitary L(λ) ∈ [O1/e(Sn)] and L(h−1)k ∈ [Op]. Moreover, L(h−1)k has
a BGG resolution [4] and via the bijection�we obtain a natural bijection between the
Verma modules appearing in degree i of the respective resolutions in O1/e(Sn) and
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Op. However, the categories O1/e(Sn)≤λ and Bp are not equivalent if k > 2, and as
a poset Poe(λ) has “extra edges" coming from the S̃h-action if k > 2.

5.6 Homological degree via rimhooks of minimal leg-length

Consider again the case that there is exactly one bead on every runner of the abacus.
By the definition of τi , it follows that the effect of applying τ = ((e − 1)ae−1 , (e −
2)ae−2 , . . . , 1a1 , 0a0) to the empty partition is to build a Young diagram λ by succes-
sively dropping e-rimhooks which meet the leftmost column (with leg-lengths e − 1
(ae−1 times), e − 2 (ae−2 times) and so on) Tetris-style on top of the partition con-
structed so far, then letting the boxes slide down the columns so that the result is a
partition. This can change the shape of the previous rimhooks that were added, but
not the set of their leg-lengths. Thus we obtain a second combinatorial explanation
of the homological degree: if e = h then hd(λ) is the sum of the leg-lengths of the
e-rimhooks of minimal leg-length composing λ. If e > h then hd(λ) is the sum of
the leg-lengths of the e-rimhooks of minimal leg-length composing λ minus (e− h)k,
where k = e-weight(λ). This can be restated in a uniform way by considering the
arm-lengths instead of the leg-lengths of the rimhooks: hd(μ) is equal to (h − 1)k
minus the sum of armlengths of the (minimal leg-length) rimhooks removed.

Example 5.18 Let e = h = 5 and τ = (3, 3, 1, 0). Then τ(∅) = (5, 4, 25, 1) =: λ and
hd(λ) = 7. We show the process of applying τ on abaci and partitions and the four
5-rimhooks of minimal leg-lengths 3, 3, 1, 0 which compose λ:

τ3 τ3 τ1 τ0

5.7 Homological degree is the length function.

Wenowgive a third combinatorial description of the homological degree by identifying
it with the length function on S̃h . This unifies the combinatorics of abaci with that of
alcove geometries and allows us to describe the BGG complex in type A in terms of
abaci. Let λ be a unitary partition, and suppose λ has h < e columns.
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Fig. 4 The conditions (1) and (2) on abaci in Lemma 5.19 in a picture: applying t will increase the
homological degree by 1 if and only if no bead lies in the red regions of the runners

Lemma 5.19 The following are equivalent for ν, μ ∈ Poe(λ), μ � ν:

• �(ν) = �(μ) + 1 and ν is obtained from μ by moving a column of boxes as in
Theorem 3.3;

• tμ = ν for some transposition t ∈ S̃h acting on abaci as above, subject to the
following conditions on the beads βi of Ae(μ):

(1) if t ∈ Sh and swaps runners i and j , then for each runner k between runners
i and j , βk /∈ [βi , β j ];

(2) if t is conjugate to s0 and acts nontrivially on runners i and j , runner i
below runner j , then: for each runner k below runner i , βk /∈ [βi , β j + 1]
and for each runner � above runner j , β� /∈ [βi−1, β j ].

Therefore, the homological degree statistic on Poe(λ) coincides with the length func-
tion on Poe(λ) coming from the S̃h alcove geometry.

Proof This is a translation of 1-column moves from the language of Young diagrams
into the language of abaci. A direct computation using Definition 5.12 shows that the
conditions for a transposition t to increase the homological degree by 1 are exactly
those given by (1) and (2) (Fig. 4). ��

See Fig. 5 for an example of the results of Section 5.5. and this section.

5.8 The Cherednik algebra of the symmetric group

Let Sn be the symmetric group on n elements. The group Sn acts on the algebra of
polynomials in 2n non-commuting variables C〈x1, . . . , xn, y1, . . . yn〉. Fix a number
c ∈ C. The rational Cherednik algebra Hc(Sn) is the quotient of the semidirect
product algebra C〈x1, . . . , xn, y1, . . . , yn〉� Sn by the relations

[xi , x j ] = 0, [yi , y j ] = 0, [yi , x j ] = c(i j) (i �= j), [yi , xi ] = 1− c
∑

j �=i

(i j)

where (i j) denotes the transposition inSn that switches i and j , see [21]. Hc has three
distinguished subalgebras: C[y] := C[y1, . . . , yn], C[x] := C[x1, . . . , xn], and the
group algebra CSn . The PBW theorem [21, Theorem 1.3] asserts that multiplication
gives a vector space isomorphism

C[x] ⊗ CSn ⊗ C[y] ∼=→ Hc
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Fig. 5 On the left we have the alcoves corresponding to partitions in Poe(λ) when h = 3 and e = 5. The
fundamental alcove is at the bottom and contains (35) ∈ F15(3). Each alcove contains a number indicating
the length/homological degree for a point in that alcove. The grey region denotes the non-dominant region.
The dotted lines indicate that we tile one sixth of R

2 when we let n → ∞. Crossing a wall of color i
corresponds to applying si to the partition in that alcove, with i : 0, 1, 2. On the right-hand side, we have
extracted the poset Poe(λ). The homological degree increases from the bottom (where it is zero) to the top
(where it is 6). The edges of the poset are coloured and decorated so as to facilitate comparison between
the two pictures (colour figure online)

called the triangular decomposition of Hc, by analogy with the triangular decompo-
sition of the universal enveloping algebra of a semisimple Lie algebra.

We define the category Oc(Sn) to be the full subcategory consisting of all finitely
generated Hc-modules on which y1, . . . , yn act locally nilpotently. Category Oc is
not always very interesting. By [18], see also [3, Section 3.9], Oc is semisimple (and
equivalent to the category of representations ofSn) unless c = r/e, with gcd(r; e) = 1
and 1 < e ≤ n. Equivalences of categories reduce the study ofOr/e(Sn) toO1/e(Sn),
for 1 < e ≤ n [51]. For the rest of the paper we work withO1/e(Sn), unless otherwise
explicitly stated. It will be convenient to set
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O1/e :=
⊕

n≥0
O1/e(Sn).

The category O1/e(Sn) is a highest weight category with respect to the ordering� on P1
n . The standard modules are constructed as follows. For each partition λ

of n, let Sn(λ) be the corresponding Specht module of CSn , this is an irreducible
representation. Extend the action ofSn on Sn(λ) to an action of C[y]�Sn by letting
y1, . . . , yn act by 0. The algebra C[y]� Sn is a subalgebra of H1/e and we define

�H1/e (λ) := Ind
H1/e

C[y]�Sn
Sn(λ) := H1/e ⊗C[y]�Sn Sn(λ) = C[x] ⊗ Sn(λ)

where the last equality is only as C[x]-modules and follows from the triangular decom-
position.We let L H1/e (λ) denote the unique irreducible quotient of�H1/e (λ). We often
drop the subscripts on these modules when the context is clear.

Any module M ∈ O1/e(Sn) is finitely generated over the algebra C[x] and, as
such, it has a well-defined support supp(M) ⊆ C

n = Spec(C[x]). We now explain
a way to compute the supports of simple modules in O1/e(Sn) that was obtained in
[62]. To do this, for any i = 0, . . . , "n/e#, denote by Xi the variety

Xi := Sn{(z1, . . . , zn) ∈ C
n : z1 = z2 = · · · ze, ze+1

= · · · = z2e, · · · , z(i−1)e+1 = · · · = zie}

By its definition, Xi is a Sn-stable subvariety of C
n . Note that X0 = C

n , and these
subvarieties form a chain X0 � X1 � · · · � X"n/e#. Now recall that a partition λ is
said to be e-restricted if λi − λi+1 < e for every i ≥ 0, that is, if no two consecutive
parts of λ differ by more than e− 1 parts. By the division algorithm, for any partition
λ there exist unique partitions μ, ν such that λ = eμ+ ν and ν is e-restricted. Then,
according to [62, Theorem 1.6],

supp(L1/e(λ)) = X |μ|

So, for example, L1/e(λ) has full support if and only if λ is e-restricted. On the other
hand, if e divides n, then L1/e(λ) has minimal support if and only if λ = eμ, where
μ is a partition of n/e.

The categories O1/e(Sn) come equipped with induction and restriction functors

Resn
n−1 : O1/e(Sn) � O1/e(Sn−1) : Indn

n−1

that were constructed by Bezrukavnikov and Etingof in [3]. Their definition is quite
technical and will not be needed. In fact, Bezrukavnikov and Etingof constructed
restriction functors for any parabolic subgroup of Sn , [3]. It follows from their con-
struction that M has full support if and only if it is not killed by restriction to any
parabolic subgroup. We will use this property below without further mention.

Finally, we mention the Knizhnik-Zamolodchikov functor KZ : Oc(Sn) →
Hq(Sn) -mod where q = exp(2π

√−1c) and Hq(Sn) is the finite Hecke algebra,
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defined over C, of the symmetric group Sn . This is an exact functor that identifies the
category of Hq(Sn)-modules with the quotient of Oc(Sn) by the Serre subcategory
generated by those simple modules L(λ)with proper support, see [29]. The KZ functor
is fully faithful on projective objects and, when c /∈ 1/2 + Z, it is also fully faithful
on standard objects.

5.9 Connection to diagrammatic algebra

Crucial to our arguments is the fact that the highestweight categoryO for theCherednik
algebra of Sn is Morita equivalent to one of the finite-dimensional diagrammatic
algebra from Subsection 1.2. Let e ≥ 2, so that we have the highest weight category
O1/e(Sn). Recall from Subsection 1.2 that we can form the algebra An(κ) for κ =
0 ∈ Z and e ≥ 2 which is a quasi-hereditary cellular algebra. We remark that the
choice of the integer κ ∈ Z is immaterial in level 1, however we have chosen κ = 0 in
order to match-up with the classical residue combinatorics we have been using thus
far.

The following theorem is originally due, in a slightly different form, to Rouquier,
[51]. In the version we need it, it is due toWebster [59] where the proof is a uniqueness
of faithful quasi-hereditary covers argument. A constructive proof is given byWebster
in [60, Theorem 3.15].

Theorem 5.20 The categories O1/e(Sn) and An(0) -mod are highest-weight equiva-
lent. More precisely, for every n ≥ 0 there exist an equivalence �n : O1/e(Sn) →
An(0) -mod satisfying the following properties.

(a) For every partition λ � n, �n(�H1/e (λ)) = �An(0)(λ) and �n(L H1/e (λ)) =
LAn(0)(λ).

(b) The equivalences �n intertwine the restriction functors.
(c) Up to applying the Brundan-Kleshchev isomorphism Hq(Sn) ∼= Hn(0), see

[10], the functor �n intertwines the KZ functor and the Schur functor Eω.

Remark 5.21 Webster’s theorem [59, Theorem 4.8] (see also [60, Theorem 3.15]) is
much more general and connects the algebra An(κ) for � > 1 with the category O
for the rational Cherednik algebra of the wreath product group Sn $Z/�Z. We will not
need this more general version of the theorem.

Thanks to Theorem 5.20 we can apply our results on the algebra An(0) to category
O1/e(Sn). We will exploit this in the next section to prove almost all cases of the
Berkesch–Griffeth–Sam conjecture. The general case of this conjecture will be proven
in Sect. 6 below.

5.10 Unitary modules and the BGS conjecture

For λ ∈ P1
n , fix a positive-definite, Sn-invariant Hermitian form on the irreducible

representation Sn(λ). A standard argument shows that this form can be extended to a
Hermitian form (·, ·) on the standard module �1/e(λ), which is H1/e-invariant in that
(yiv, v′) = (v, xiv

′) for every v, v′ ∈ �1/e(λ) and i = 1, . . . , n. The simple module
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L1/e(λ) is the quotient of �1/e(λ) by the radical of this form. In particular, L1/e(λ) is
equipped with a Hc-invariant, non-degenerate Hermitian form. We say that L1/e(λ) is
unitary if this form is positive-definite. Recall on the other hand that we have defined
a e-unitary partition in Definition 5.5. The connection between these two notions of
unitarity is given by the following result.

Theorem 5.22 [23] The Hermitian form on L1/e(λ) is positive-definite if and only if
λ is an e-unitary partition. Thus L1/e(λ) is unitary if and only if λ ∈ F1

n.

Applying the KZ functor to these simples, we obtain the complete set of simple
unitary modules for the Hecke algebra. We emphasise that the simples labelled by
λ = (ek) for some k ≥ 0 do not survive under the KZ functor and so there are
fewer unitary simples for the Hecke algebras. We remark that the set of simple unitary
modules for theHecke algebra coincideswith that of simple calibrated representations,
see e.g. [53].

Theorem 5.23 ( [54, Corollary 4.5]) For q = exp(2π
√−1/e), the simple Hq(n)-

module DC
n (λ) is unitary if and only if λ is e-restricted and λ ∈ F1

n.

The following result was conjectured byBerkesch–Griffeth–Sam in [65, Conjecture
4.5]. Note that it is Theorem A from the introduction.

Theorem 5.24 Let L(λ) be a unitary, simple representation of H1/e(Sn). Then, L(λ)

has a BGG resolution of the form C•(λ), where the �-th term is given by

C�(λ) =
⊕

μ∈Poe(λ)
hd(μ)=�

�(μ).

At present, we are in a position to prove Theorem 5.24 under the extra assumption
that L(λ) has full support. Note that this is equivalent to saying that λ �= (ek) for some
k ≥ 0.

Thus, assume λ has full support. Thanks to Lemma 5.19, upon applying the equiv-
alence�n from Theorem 5.20, the complexes in Theorems 5.24 and 4.2 coincide. The
result now follows from Corollary 4.4. The remaining case, when λ does not have full
support, will be dealt with in Sect. 6.1.

Remark 5.25 We remark that Theorem 5.22 is false when c = a/e with gcd(a; e) = 1
and a �= 1. For example, if e = n and λ is the trivial partition, it follows from results
of [23] that La/n(λ) is unitary if and only if a = 1. Nevertheless, one direction of
Theorem 5.22 still holds for a �= 1. Namely, it follows from [23, Theorem 5.5] that if
La/e(λ) is unitary then λ ∈ F1

n . Thus, Theorem 5.24 implies [65, Conjecture 4.5] in
full generality.

Remark 5.26 We would like to say a few words about cyclotomic rational Chered-
nik algebras. Associated to the group G(�, 1, n) there is a rational Cherednik algebra
Hc(G(�, 1, n)), where c = (c0, c1, . . . , c�−1) is now a collection of � complex num-
bers. The definition of a unitary module goes through unchanged. We let � = 2 and
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take the charge c0 = 1/e and c1 = 0 so that we are, essentially, workingwith a rational
Cherednik algebra associated to the Weyl group of type D. We have checked using
Griffeth’s classification of unitary modules [30] that if λ ∈ F2

n then L(λ) is indeed a
unitary module.

6 Berkesch–Griffeth–Sam’s conjecture and beyond

In this section we use techniques from homological algebra to complete the proof
of the conjecture of [65] that unitary H1/e(Sn)-modules have BGG resolutions with
standardmodules in a given homological degree as predicted by abacus combinatorics.
The proof in earlier sections left out exactly the case that the unitary module of the
Cherednik algebra does not lift a unitary module of the Hecke algebra via the KZ
functor; there is at most one such unitary module for a fixed n. This step of the
proof also highlights an interesting property of these resolutions: in a sense, they are
independent of the quantum characteristic e. Namely, the shape of the BGG complex
depends only on the weight k of the block and the number h of non-empty runners in
the abacus of the unitary partition for e ≥ h. Using the property of the Ringel duality
that it is a perverse equivalence, we also obtain a BGG resolution of the spherical
module L(triv) when e divides n.

6.1 Changing quantum characteristics

Having constructed a BGG resolution for any unitary module with h < e columns,
we proceed to relate these complexes to each other for various e, and to construct the
complex in the special case h = e for the unitary module L(ek). As observed in Sect.
5, the e-abacus of any unitary module which is not of the form L(ek) will contain
empty runners; removing the empty runners produces the h-abacus of a partition of
the form (hk), with h < e and k equal to the weight of the block containing λ. So
we may try using the runner removal Morita equivalences of Chuang-Miyachi which
upgrade the combinatorial operation “removing runners" to an equivalence of highest
weight categories [14]. Given an e-core partition ρ and k ∈ N, let n := |ρ| + ek and
set

�(ρ, k) := {λ | λ ∈P1
n , e−core(λ) = ρ,w(λ) = k} ⊆P1

n ,

�+h (ρ, k) := {λ ∈ �(ρ, k) | λ ∈P1
n (h)} ⊆ �(ρ, k)}

�−h (ρ, k) := {λ | λT ∈P1
n (h), e−core(λ) = ρT , w(λ) = k} ⊆ �(ρT , k).

Notice that the transpose map gives a bijection between the sets �−h (ρ, k) and
�+h (ρ, k); under this map the partial ordering on the sets is reversed. Let O1/e(ρ, k)

denote the block of category O1/e corresponding to �(ρ, k). Note that the set
�−h (ρ, k) is co-saturated in �(ρT , k) so we can consider the quotient category of
O1/e(ρ

T , k) by the Serre subcategory spanned by simples whose label does not
belong to �−h (ρ, k). We denote this quotient by O−1/e,h(ρ, k) This is a highest weight
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category, with standard objects �−h (ν) := π(�1/e(ν)), where ν ∈ �−h (ρ, k) and
π : O1/e(ρ

T , k) → O−1/e,h(ρ, k) is the quotient functor.We remark thatπ admits a left

adjoint π ! : O−1/e,h(ρ, k) → O1/e(ρ
T , k), and π !(�−(ν)) = �(ν) for ν ∈ �−h (ρ, k).

Given ν ∈ �−h (ρ, k) we set AC M
h (ν) := Ah(νT ). Let r = (r0, . . . , rh−1, rh) ∈

Z
h+1
≥0 , and construct a partition ν+ as follows. In the abacus AC M

h (ν), insert ri empty
runners between runners i − 1 and i (so r0 and rh are the number of empty runners
inserted at the top and bottom of the abacus, respectively). This creates a new e-abacus,
A, with e := h + r0 + · · · + rh runners. We denote by ν+ the unique partition such
that A = AC M

e (ν+). We let ρ = ∅
+. We have a bijection

R : �−(∅, k) → �−(ρ, k)

given by R : ν �→ ν+ and we let R−1 : ν �→ ν− denote the inverse. We are now able
to recall the main result of Chuang–Miyachi.

Theorem 6.1 ([14]) The categories O−1/h,h(∅, k) and O−1/e,h(ρ, k) are equivalent as
highest weight categories. Moreover, the equivalence

R : O−1/h,h(∅, k) → O−1/e,h(ρ, k)

sends the standard module �−h (ν) to the standard module �−h (νR).

Note, however, that we cannot apply the above theorem directly since we are
interested in the subcategories O+1/h,h(∅, k) and O+1/e,h(ρT , k) rather than the quo-

tient categoriesO−1/h,h(∅, k) andO−1/e,h(ρ, k), whereO+1/h,h(∅, k) denotes the Serre
subcategory spanned by the simples whose label belongs to �+(∅, k), and simi-
larly for O+1/e,h(ρ, k). Let us fix this. Following [29, Section 4], we note that the
rational Cherednik algebra H1/e := H1/e(Sn) has finite global dimension and
is isomorphic to its opposite algebra; an explicit isomorphism is given by w �→
w−1, x �→ x, y �→ −y. In particular, the functor RHomH1/e (•, H1/e) gives an
equivalence Db(H1/e-mod) → Db(H1/e-modopp). Let us denote by D the functor
RHomH1/e (•, H1/e)[n]. The following theorem summarizes various results of [29,
Section 4.3.2]. We denote by Db(O1/e(Sn)) the subcategory of Db(H1/e-mod) con-
sisting of complexes with homology in O1/e, and by O�

1/e the category of objects in
O1/e that admit a �-filtration.

Theorem 6.2 The functor D induces a derived equivalence D : Db(O1/e(Sn)) →
Db(O1/e(Sn)

opp) and an equivalence of exact categories D : O1/e(Sn)� →
(O1/e(Sn)�)opp. For λ � n, D(�(λ)) = �(λT ) (where both sides of the equation are
interpreted as complexes concentrated in degree 0).

By abuse of notation, we will write D : Db(O1/e) → Db(Oopp
1/e ) for

⊕
n≥0

RHomH1/e(Sn)(•, H1/e(Sn))[n]. Let us mention a property of D that will be impor-
tant later. The following is an immediate consequence of [42, Lemma 2.5] and the
definition of a perverse equivalence [42, Section 1.4].
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Lemma 6.3 For every n ≥ 0, the functor D induces a (contravariant!) abelian autoe-
quivalence of the category of minimally supported modules in category O1/e(Sn).

Let λ ∈ F1
n ⊆ P1

n (h) be such that (hk)+ = λ, where k is the e-weight of λ and

h the number of nonempty runners in Ae(λ). Define the functor R̃
−
via the following

composition

R̃
− := Dπ !R−1πD : Db(O1/e(ρ, k)) → Db(O1/h(∅, k))).

Each functor in the composition defining R̃
−
takes Vermas to Vermas, and is either

an equivalence of �-filtered categories or exact on �-filtered categories while being
an isomorphism on spaces of homomorphisms between Vermas. It follows that for

μ ∈ Poe(λ), R̃
−
�(μ) = �(μ−), and that R̃

−
takes a complex to a complex and sends

nonzero maps to nonzero maps (however, we cannot conclude from this that R̃
−
takes

a resolution to a resolution). Define C•(hk) = R̃
−
(C•(λ)). By construction, this is a

complex whose �-th term is given by

C�(h
k) =

⊕

μ∈Poe(λ)
hd(μ)=�

�(μ−) =
⊕

τ∈Poh(hk)
hd(τ )=�

�(τ)

and which has a map �(τ) → �(τ ′) whenever hd(τ ) = �, hd(τ ′) = � − 1, and
Ah(τ ) = tAh(τ ′) for some transposition t ∈ S̃h . C•(hk) is a complex that looks
identical to C•(λ) but with the partitions μ relabeled by μ−, and in particular L(hk)

is the head of C0(hk) = �(hk).
We are now ready to prove Theorem 5.24, which answers [65, Conjecture 4.5] in

the affirmative.

Proof of Theorem 5.24 We have already shown, in Sect. 5.10 the case when L(λ) has
full support. It remains to show the case when λ = (ek) for some k > 0. Thus,
let n = ke and take (ek), the unique unitary partition of n with e columns. Choose
any e′ > e and any unitary partition λ ∈ Pu

e′ with e columns and e′-weight k. Let

C•(λ) be the BGG resolution of L(λ) and apply R̃
−

to it. By the remarks above,

R̃
−
(C•(λ)) = C•(ek) is the desired complex and L(ek) is the head of C0(ek). We need

to show that C•(ek) is exact except in degree 0, where H0(C•) = L(ek).
As in the proof of the h < e case, if λ ∈ Poe(ek)\{(ek)}, then λ is e-restricted. Thus

Ei (L(λ)) �= 0 for some i ∈ Z/eZ, so if L(λ) is a composition factor of a homology
group Hj (C•) then Ei (C•)will fail to be exact. Similarly, it holds (by basic properties
of highest weight categories) that L(ek) occurs exactly once in the composition series
of all the C j , when j = 0.

Next, Ei (L(ek)) = 0 since ek has a single removable box and it is never a good
removable box. Thus, it suffices to check that Ei (C•) is exact for each i ∈ Z/eZ. This
is identical to the argument used in the first case of the proof of Theorem4.2, i.e. the
case where Ei (L(λ)) = 0. ��
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We also make the observation that resolutions of unitary modules are, in a manner
of speaking, independent of e. Let h be the number of columns of λ and let k be the
e-weight of λ.

Corollary 6.4 Let λ ∈ F1
n. The shape of the BGG complex C•(λ) depends only on

h, k ∈ N.

Proof R̃
−
identifies C•(λ) with C•(hk), thus sends a resolution of L(λ) to a resolution

of L(hk). ��

6.2 Ringel duality andmore BGG resolutions

We can also construct some new BGG resolutions as corollaries of Theorem 5.24 via
Ringel duality. These resolutions will also be used in the study subspace arrangements
in Sect. 8.1.3. The character of L(ek) = L(triv) ∈ O1/e(Sek) is dual to the character
of L(ek) in the sense that its character is obtained from that of L(ek) by taking the
transpose of each partition labelling a Verma module [22, Remark 5.1]:

L(ek) =
∑

μ∈Poe(ek)
hd(μ)=�

(−1)��(μT ).

This is every bit as much an alternating sum character formula as that of L(ek), so we
may naturally ask whether its character formula also comes from a BGG resolution.

Let C• be the BGG resolution of L(ek). We apply Ringel duality to construct a
complex, D(C•), in the principal blockO(∅, k) ⊂ O1/e(Sek). The complex D(C•) is
obtained from C• by replacing �(μ) with �(μT ) for all μ ∈ Poe(ek) and reversing
the direction of all the arrows (since D is a contravariant functor which takes Vermas
to Vermas). By [22], the alternating sum of the terms of D(C•) in the Grothendieck
group [O(∅, k)] coincides with the character of L(triv) = L(ek).

Corollary 6.5 D(C•) is a BGG resolution of L(triv) = L(ek).

Proof Aresolution is quasi-isomorphic to themodule it resolves, so in Db(O1/e(Sek)),
L(ek) is isomorphic to its resolution C•. Since the Ringel duality D is a derived
self-equivalence of Db(O1/e(Sek)) [29], this implies D(C•)  D(L(ek)) in
Db(O1/e(Sek)). We know that at the end of the complex we have: �(ek − 1, 1) →
�(ek) → 0, and so L(ek) = Head(�(ek)) must occur in the homology of D(C•).
Therefore L(ek) is a composition factor of D(L(ek)).

We claim that D(L(ek)) = L(ek). This follows from [42, Lemma 2.5] which
states that D is a perverse equivalence with respect to the filtration by dimensions of
support: in particular, D is a self-equivalence of the semi-simple subcategory spanned
by the minimal support modules L(eσ). Since D2 = I d, it follows that D must
permute the minimal support simple modules L(eσ), σ � k. We have already seen
that D(L(ek) = D(L(e(1k))) contains L(ek) = L(e(k)) as a composition factor; it
follows that D(L(ek)) = L(ek).
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To conclude, D(C•) is equivalent to L(ek) in Db(O1/e(Sek)), where L(ek) is
considered as a complex concentrated in degree 0. Hence Hi (D(C•)) = δi0L(ek), as
required. ��

Let π denote the quotient functor which kills the Serre subcategory generated by
the simple modules {L(ν) | ν has more than e rows}.
Corollary 6.6 πD(C•) is a BGG resolution of L(triv) = L(ek) in the quotient category
π(O1/e(Ske)). By adding an arbitrary configuration of a ∈ Z>0 empty runners to the
abacus, RπD(C•) is a BGG resolution of RL(triv) in Rπ(O1/e(Ske)).

Proof The quotient functor π is exact, sends �(μ) to the standard module �(μ), and
sends L(μ) to the simplemodule L(μ). The first claim then follows fromCorollary 6.5,
implying the second claim by Theorem 6.1. ��

6.3 Computation of Lie algebra and Dirac cohomology

BGG resolutions for classical and affine Lie algebras over C are closely related to the
computation of Lie algebra cohomology [4,28,39]. Recently, a version of Lie algebra
cohomology (and homology) for rational Cherednik algebras over C was constructed
in [36]; h∗ := ⊕

Cxi plays the role of the nilradical n ⊂ b ⊂ g, and the complex
reflection group W plays the role of the Cartan subalgebra.

Theorem 6.7 Let λ ∈ F1
n ⊆P1

n (h). We have that

Hi (h
∗, L(λ)) =

⊕

μ∈Poe(λ)
hd(μ)=i

Sn(μ).

Proof This follows immediately from our main theorem and [36, Proposition 6.1]. ��
Likewise, if L(λ) ∈ Oc(G(�, 1, n)) where c corresponds to the rank e and charge

s = (κ1, κ2, . . . , κ�) ∈ Z
� for the Fock space, and λ ∈ F�

n , then

Hi (h
∗, L(λ)) =

⊕

μ�λ
�(μ)=i

Sn(μ).

This also computes the Lie algebra cohomology Hi (h∗, L(λ)). Indeed, by Poincaré
duality (cf. [36, Proposition 2.7]), we get

Hi (h∗, L(λ)) = Hn−i (h
∗, L(λ))⊗∧nh,

where n := dim h. A consequence of the computation of Lie algebra cohomology
for unitary modules admitting a BGG resolution is that this immediately gives the
computation of the Dirac cohomology HD(L(λ)). This is defined as the usual Dirac
cohomology, where the Dirac operator D ∈ H1/e(Sn) ⊗ c has been constructed in
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[15]. Here c is the Clifford algebra associated to
⊕

Cxi ⊕ ⊕
Cy j with its natural

nondegenerate bilinear form (xi , y j ) = δi j . For a module M ∈ O1/e(Sn), the algebra
H1/e(Sn)⊗c acts on the space M⊗∧•h, and the Dirac cohomology is defined to be, as
usual, ker(D)/ ker(D)∩ im(D). This is a representation of W̃ , a certain double-cover
of the group W . Then, by [36, Theorem 5.1], HD(L(λ)) =⊕

μ≤λ Sn(μ)⊗ χ , where

χ is a 1-dimensional character of the double cover W̃ . We refer to [36] for details.

7 TheMullineuxmap on unitary simple modules

We first recall the Mullineux involution on the quiver Hecke algebra of the symmetric
group: Let M denote the Hn-automorphism determined by

M : e(i1, i2, . . . , in) �→ e(−i1,−i2, . . . ,−in) M : ψr �→ ψr M : yk �→ yk (7.1)

for 0 ≤ k ≤ n and 0 ≤ r < n and i = (i1, . . . , in) ∈ (Z/eZ)n , where ψr and yk are
generators of Hn as given in Remark 1.19.

Given a simple module Dn(λ), we let Dn(λ)M denote the module with the same
underlying vector space but with the multiplication defined by twisting the action
with the involution M. The relationship between these two simples was the subject of
a conjecture of Mullineux [48]. The combinatorics of this relationship is fiendishly
complicated in general and is only understood on the level of the labels of simple
modules. The purpose of this section is to examine the effect of the Mullineux map on
the simple modules Dn(λ) for λ ∈ F1

n . We show that the set of these simples is pre-
served under the Mullineux involution. Moreover, we construct an explicit Mullineux
isomorphism in terms of the bases and representing matrices of these simples given in
Theorems 4.2 and 4.3—we remark that this is the time theMullineux isomorphismhas
been explicitly constructed (outside of the trivial semisimple case). Furthermore we
shall see that the Mullineux combinatorics drastically simplifies on unitary e-regular
partitions λ and that we can easily compute M(λ) on the e-abacus of λ. We define the
unitary branching graph, Y, to have vertices on level k given by

Yk = {λ | λ is e − restricted and λ ∈ F1
k}

and edges connecting levels k and k + 1 given by

Ek,k+1 = {λ→ μ | λ ∈ Yk, μ ∈ Yk+1 and λ = μ−� for � a good node}.

Wefirst discuss how the abaci of an e-core ρ and its transpose ρt are obtained from one
another when ρ has at most e − 1 columns. Recall the basics of abaci from Sect. 5.1.
First, note that if ρ has at most h < e columns then ρt has at most e−h columns. Now,
let Ah

e (ρ) denote the e-abacus of ρ written with h beads, and perform the following
procedure on it: (1) swap the empty spots and the beads in the first column (so that the
resulting abacus has e− h beads), then (2) flip this abacus upside down. The resulting
abacus, Ae−h

e (ρt ), is the e-abacus of ρt written with e − h beads.
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Definition 7.1 Let λ ∈ Fn(h) for some 1 ≤ h < e and let ρ be the e-core of λ. Write
w(λ) = (e − h)q + r for some q ≥ 0, 0 ≤ r < e − h. Define λM to be the partition
with abacus obtained from Ae−h

e (ρt ) by moving the bottom r beads (q + 1)-units to
the right, and the top e − h − r beads q units to the right.

Proposition 7.2 If λ ∈ Yn, then λM ∈ Yn. Specifically: in the case λ = ρ, we have
ρM = ρt . Otherwise, we have λM ∈ Fn(e − h).

Proof If λ = ρ is an e-core, then w(λ) = 0 and algorithm just stops after the step
where we take the transpose of ρ. The abacus Ae−h

e (ρt ) clearly satisfies the criterion
for unitarity (Definition 5.5) since all of its beads are concentrated in the first column.
If w(λ) > 0, so λ is not an e-core, we must move the bottom-most bead of Ae−h

e (ρt )

at least one unit to the right to obtainAe−h
e (λM). This guarantees thatAe−h

e (λM) does
not start with a bead, and since Ae−h

e (λM) has e − h beads, we conclude that λM
has precisely e − h columns. Finally, by construction, λM satisfies the conditions of
Definition 5.5. ��
Example 7.3 Let e = 5, h = 2, λ = (228, 13), w(λ) = 11. We obtain λM = (319, 12)
as follows:

0 1 2 3 4 5 6

core

0 1 2

transpose

e − h beads

0 1 2

11 = 3 · 3+ 2

0 1 2 3 4

Theorem 7.4 The map M : Yk → Yk for k ≥ 0 is a well-defined graph involution.
Given

s = (λ(0) r1−→ λ(1) r2−→ . . .
rn−→ λ(n))

we let sM denote the path

sM = (λ
(0)
M

−r1−−→ λ
(1)
M

−r2−−→ . . .
−rn−−→ λ

(n)
M ).

We have that Dn(λM) ∼= (Dn(λ))M and that the isomorphism is determined by : cs �→
csM .

Proof The Mullineux involution M is characterized as the unique involution on e-
regular partitions mapping ∅ to ∅ and such that M( f̃i (λ)) = f̃−i (M(λ)) [2,26,38]. We
want to identify λM with M(λ) for all vertices λ of Y. By construction we have that
λM is also vertex of Yk whenever λ is, and that (λM)M = λ. It is clear that ∅M = ∅.
Thus if i ∈ {0, . . . , e − 1} is such that f̃i (λ) ∈ F1

n , we need to show that

(
f̃i (λ)

)

M
= f̃−i (λM).
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We remark that, if λ ∈ F1
n , then f̃i (λ) adds the leftmost addable box of content

residue i , if any. In order to keep track of the action of f̃i on abaci, we follow the
conventions of Remark 5.4, so we label the runners of an e-abacus with h beads, at
most one bead per runner, from bottom-to-top by h−1, h−2, . . . , 1, 0, e−1, . . . , h.
This is done so that the labels of the runners correspond nicely to the contents of
addable/removable boxes. Note that the labeling of runners changes in the process of
constructing λM, when Ae(ρ) with h beads is replaced by Ae(ρ

t ) with e − h beads.
The abacus Ae(λ) has a bead (resp. empty space) on runner i if and only if Ae(λM)

has an empty space (resp. bead) on runner −i − 1. Finally, observe that if the top
runner is labeled m in these conventions, that f̃m increases the weight w of a partition
by at most 1 but all f̃i , i �= m, do not increase the weight. Now set ρ̂ to be the core of
f̃i (λ). We consider two cases.

Case 1. w( f̃i (λ)) = w(λ). So either i �= h or i = h and λ is a core. In the latter
case, f̃i (λ) is also a core, and both ( f̃i (λ))M and f̃−i (λM) coincide with the transpose
of f̃i (λ). In the former case, the abaciAe(ρ) andAe(ρ̂) coincide on all runners except
those labeled by i and i − 1. Thus, Ae(ρ

t ) and Ae(ρ̂
t ) only differ on runners −i − 1

and−i :Ae(ρ̂
t ) has a bead on runner−i − 1 and an empty space on runner−i , while

the opposite is true for Ae(ρ
t ). Thus, ( f̃i (λ))M is obtained from λM by sliding the

bead on runner−i up runner−i − 1. But this is exactly how we obtain f̃−i (λM) from
λM. We are done in this case.

Case 2. w( f̃i (λ)) = w(λ) + 1. So i = h, and the abacus of f̃i (λ) is obtained
from that of λ by moving the bead on the top runner (labeled h) down to the bottom
runner (labeled h − 1) and then one unit right. Just as in the first case, the abaci
Ae(ρ

t ) and Ae(ρ̂
t ) only differ on runners −h and −h − 1. Note that these are the

top and bottom runners of the abacus, respectively. Write division with remainder
w = w(λ) = (e− h)q + r , so that λM is obtained fromAe(ρ

t ) by moving the bottom
r beads q + 1 units to the right, and the remainder e− h− r beads q units to the right.
We have a subdivision into two further cases.

Case 2.1. r < e−h−1. So w+1 = (e−h)q+ (r +1) is division with remainder,
and ( f̃i (λ))M is obtained fromAe(ρ̂

t ) by moving the bottom r+1 beads q+1 units to
the right, and the remaining beads q units to the right. Note that the beads 2, . . . , r+1
of Ae(ρ̂

t ) coincide with the beads 1, . . . , r of Ae(ρ
t ). Thus, ( f̃i (λ))M is obtained

from λM by taking the bead in the top runner, moving it down to the bottom runner
and sliding one unit to the right. This is precisely f̃−i (λM).

Case 2.2. r = e − h − 1. So w + 1 = (e − h)(q + 1). Here, ( f̃i (λ))M is obtained
from Ae(ρ̂

t ) by moving all beads q + 1 units to the right, while λM is obtained from
Ae(ρ

t ) by moving all beads q + 1 units to the right, except the one in the top runner,
that we only move q units to the right. So we see that, again, ( fi (λ))M is obtained
from λM by taking the bead in the top runner, moving it down to the bottom runner
and sliding one unit to the right. So ( f̃i (λ))M = f̃−i (λM).

This proves that the involution Y → Y given by λ �→ λM coincides with the
Mullineux involution restricted to Y. Now, the bases of Dn(λ) for λ ∈ F1

n are given by
the paths in the unitary branching graph terminating at said vertices. By Theorem 4.3
we can match up these bases through the action of the idempotents under the twisting
by the Mullineux map (see equation (7.1)). ��
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Fig. 6 A pair of tableaux
t ∈ Std7(310, 24) and
tM ∈ Std7(48, 13) indexing
basis elements swapped under
the isomorphism
D35(3

10, 24)M ∼= D35(4
8, 13)

Example 7.5 Let e = 7. We have that M(310, 24) = (48, 13). We depict these parti-
tions, and the manner in which they can constructed via adding rim 7-hooks in Figure
6. Furthermore, we provide an example of t ∈ Std7(310, 24) and tM ∈ Std7(48, 13).
Note that the map on the level of tableau preserves the rim hooks drawn in the two
diagrams!!

8 Graded free resolutions of algebraic varieties, Betti numbers, and
Castelnuovo–Mumford regularity

Wenow consider the consequences of our results for computingminimal resolutions of
linear subspace arrangements. Easy examples of ideals whose resolutions we compute
include the braid arrangements of type A and type D. Such minimal resolutions are
difficult to compute geometrically [40]. As a consequence, we prove a combinatorial
formula for the Betti numbers of the ideal of the m-equals arrangement predicted in
[65]. We also calculate the Castelnuovo–Mumford regularity for the coordinate ring
of these arrangements, a notoriously difficult problem in general (see [16,57]).

It is pointed out in [20] that BGG resolutions via parabolic Verma modules for
Lie algebras can be used to provide commutative algebra resolutions of determinantal
ideals by viewing the coordinate ring as a unitarizable highest weight module. We
employ our Cherednik algebra resolutions in an analogous fashion. The first of these
commutative algebra resolutions, given in Sect. 8.1.1, was predicted in [65] and con-
cerns the smallest ideal, Ie,1,n , of the polynomial representation (this is the vanishing
ideal of the subspace arrangement, Xe,1,n , consisting of e equal coordinates for e ≤ n).
We then provide a cyclotomic generalisation of this resolution in Sect. 8.1.2. The third
resolution, given in Sect. 8.1.3, concerns the smallest quotient, C[Xe,k,n], of the poly-
nomial representation (this is the coordinate ring of the subspace arrangement, Xe,k,n ,
consisting of k clusters of e equal coordinates for ke = n); the ideal vanishing on this



   29 Page 60 of 71 C. Bowman et al.

space was studied in [65], however since neither this ideal nor its quotient is unitary
(in general) the authors did not predict any resolution arising via Cherednik algebras.

8.1 Commutative algebra

Let us discuss the consequences that the existence of the BGG resolution has for the
study of graded modules over C[x1, . . . , xn] = C[x]. First of all, for every μ � n, the
standard module �1/e(μ) is free as a C[x]-module. So the resolution C•(λ) is, in fact,
a free resolution of L1/e(λ) when we view all involved modules as C[x]-modules.

An observation now is that every module in category O1/e(Sn) automatically
acquires a grading compatible with the usual grading on C[x], as follows. Consider
the deformed Euler element1 eu := 1

2

∑n
i=1 xi yi + yi xi ∈ H1/e. This is a grading

element of H1/e in the sense that [eu, xi ] = xi , [eu, yi ] = −yi , and [eu, w] = 0 for
w ∈ Sn . Anymodule in categoryO1/e(Sn) is now graded by generalized eigenspaces
for eu:

M =
⊕

a∈C

Ma, Ma := {m ∈ M : (eu− a)km = 0 for k � 0}.

Note that, since the grading on M was defined using an element of H1/e, every mor-
phism in category O1/e(Sn) has degree 0. In particular, this grading is different from
the grading of objects in O1/e(Sn) that has been used so far in this paper. The grad-
ing by generalized eigenspaces of eu, however, is better-suited for the purposes of
commutative algebra.

A priori, M ∈ O1/e(Sn) is only C-graded, but in our case we can do better. Since
[eu, w] = 0 for w ∈ Sn , eu may be seen as an endomorphism of the Sn-module
Sn(τ ) ∼= 1 ⊗ Sn(τ ) ⊆ C[x] ⊗ τ = �1/e(τ ). Thus, eu acts by a scalar cτ on Sn(τ ),
and by the definition of �1/e(τ ) we get that �1/e(τ )a �= 0 if and only if a = cτ + k
for some k ∈ Z≥0. Moreover,

�1/e(τ )cτ+k = C[x]k ⊗ Sn(τ )

whereC[x]k denotes the subspace of homogeneous polynomials of degree k in the vari-
ables x1, . . . , xn . We will writeC[x]⊗ Sn(λ) to refer to theC[x]-module�1/e(λ)[cλ],
where the brackets denote the usual grading shift. Thus, C[x] ⊗ Sn(λ) is Z≥0-graded,
and (C[x] ⊗ Sn(λ))k = C[x]k ⊗ Sn(λ).

Now consider the resolution of the gradedC[x]-module L1/e(λ)[cλ], where the i-th
term of the complex is given by

⊕

μ∈Poe(λ)
hd(μ)=i

(C[x] ⊗ Sn(μ))[cλ − cμ]

We remark that, since λ andμ belong to the same block of categoryO1/e(Sn), cλ−cμ

is actually an integer. Of course, this is the same as the BGG resolution C•(λ), but

1 We remark that our Euler element ‘eu’differs from the one used in [65] by the constant n(e− n+ 1)/2e.
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we write it in this way to emphasize that we are only interested in the C[x]-module
structure. By abuse of notation, we also denote this complex by C•(λ). Note that
(C[x] ⊗ Sn(μ))[cλ − cμ] = �1/e(μ)[cλ], from where it follows that all the maps in
the complex have degree 0 as maps of graded C[x]-modules. In particular, C•(λ) is a
graded-free resolution of L1/e(λ)[cλ].

The value of cλ can be expressed in terms of the content of the boxes of λ, namely

cλ = n

2
− 1

e

∑

�∈λ

column(�)− row(�)

It follows from Sect. 5.6 or from Lemma 5.19 that if hd(μ) < hd(ν) then cμ < cν .
In particular, when viewing the differential in the resolution C•(λ) as matrices with
coefficients in C[x], no nonzero entry of the differential is a degree 0 element of C[x].
It follows immediately that:

Lemma 8.1 The complex C•(λ) is a minimal graded free resolution of L1/e(λ)[cλ].
Lemma 8.1 implies a combinatorial formula for computingmany interesting invari-

ants of themodule L1/e(λ)[cλ]. In the rest of this section, if L1/e(λ) is unitarywewrite:

n := |λ|, k := e-weight(λ), h := #columns(λ)

Recalling the basics of abaci in Sect. 5.1 this means that the abacus Ae(λ) has h
nonempty runners and there are k vacant spaces in Ae(λ) with some bead to their
right.

Proposition 8.2 Suppose L1/e(λ) is unitary. Then,

(1) βi, j =
∑

μ∈Poe(λ)
cλ−cμ=− j
hd(μ)=i

dim(Sn(μ)),

(2) pdim(L1/e(λ)) = (h − 1)k,
(3) depth(L1/e(λ)) = n − (h − 1)k

where βi, j denotes the (i, j)-graded Betti number of L1/e(λ)[cλ], and pdim stands for
the projective dimension as a graded C[x]-module.

Proof Statement (1) is clear from the form of the resolution C•(λ). The maximal
homological degree of a partition in Poe(λ) is acquired by sliding all the beads to
the left and then sliding the highest bead k spaces to the right. (2) follows from here.
Finally, by the Auslander-Buchsbaum formula, (3) is equivalent to (2). ��

Another consequence of Lemma 8.1 and the fact that the function cλ is strictly
increasing on homological degrees, is the computation of the Castelnuovo-Mumford
regularity of the module L1/e(λ)[cλ]. Recall that, by definition, the regularity of a
module M is

reg(M) := max{ j : there exists i such that βi,i+ j (M) �= 0}



   29 Page 62 of 71 C. Bowman et al.

In other words, for a minimal graded-free resolution C• of M , for each i =
0, . . . , pdim(M), let ni be the maximum degree of a generator ofCi , and mi := ni− i .
Then, reg(M) = maxi {mi }. The Castelnuovo-Mumford regularity is a measure of the
computational complexity of the module M and it is, in general, incredibly difficult
to compute, cf. [16,57].

Proposition 8.3 Suppose L1/e(λ) is unitary. Let μ0 ∈ Poe(λ) be obtained by, first,
sliding all beads of Ae(λ) to the left, and then, sliding the upmost beat k spaces to the
right. Then,

reg(L1/e(λ)[cλ]) = (cμ0 − cλ)− (h − 1)k

Proof As in the paragraph above the statement of the proposition, let us denote byni the
maximum degree of a generator ofC(λ)i , and mi := ni− i . Note that ni := max{cμ−
cλ : μ ∈ Poe(λ), hd(μ) = i}. Since the c-function is increasing in homological degree,
the sequence (ni ) is increasing and therefore the sequence (mi ) is nondecreasing. So
the regularity of L1/e(λ)[cλ] is mpdim(L1/e(λ)). Since pdim(L1/e(λ)) = (h − 1)k, the
result follows. ��
Example 8.4 Consider e = 5, n = 15 and λ = (34, 2, 1). Then, pdimL1/e(λ) = 4, so
L1/e(λ) is not Cohen-Macaulay and a minimal graded-free resolution of L1/e(λ)[cλ]
is

0→ (3, 2, 110)[−9] → (3, 22, 17)[−5] → (3, 26)[−3] ⊕ (33, 16)[−3]
→ (33, 22, 12)[−1] → (34, 2, 1)

→ L1/e(λ)[cλ] → 0

where for brevity, we write μ[d] in place of (C[x] ⊗ Sn(μ))[d]. From the resolution,
we see that reg(L1/e(λ)[cλ]) = 5.

8.1.1 The e-equals ideal

We examine these results in the situation where the modules L1/e(λ) have a clear
geometric meaning. The representation theoretic import of Xe,1,n was first noticed and
explained in [65]. Resolutions of the ideals vanishing on these subspace arrangements
are given by BGG resolutions of the corresponding unitary module for H1/e(Sn).

Let n = (e−1)p+q, with 0 ≤ q < e−1. Consider the partition λ = ((e−1)p, q)

of n. Note that the e-abacus of λ has exactly one empty runner, and themodule L1/e(λ)

is unitary. In fact, it follows from [62] that L1/e(λ) is isomorphic to the socle of the
polynomial representation

�1/e(triv) ∼= C[x1, x2, . . . , xn]

which by [23, Theorem 5.10] coincides with the e-equals ideal Ie,1,n of functions
vanishing on the set

Xe,1,n := Sn{(z1, . . . , zn) ∈ C
n : z1 = · · · = ze}.
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Note that Xe,1,n is an arrangement of
(n

e

)
linear subspaces of C

n , each of dimension
n−e+1.When e = 2, X2,1,n is nothing but the braid arrangement inC

n , which consists
of the reflection hyperplanes for the action ofSn onC

n . Let us give a set of generators
for the ideal Ie,1,n , following [23,24]. Consider the partition λT = ((p+1)q , pe−1−q),
which has exactly e − 1 parts. Now consider the polynomial

pλT (x1, . . . , xn) = V (x1, . . . , xλT
1
)V (xλT

1 +1, . . . , xλT
1 +λT

2
) · · · V (xλT

1 +···+λT
e−2+1, . . . , xn)

where V (x1, . . . , xk) is the Vandermonde determinant
∏

i< j (xi − x j ). Then, the ideal
Ie,1,n is generated by the Sn images of the polynomial pλT .

Since L1/e(λ) and L1/e(triv) lie in the same block of category O1/e, the weight of
the partition λ is k = "n/e#. Thus, as was observed in [65], the projective dimension
of the algebra of functions C[Xe,1,n] = C[x1, . . . , xn]/Ie,1,n is pdim(C[Xe,1,n]) =
pdim(L1/e(λ)) + 1 = (e − 2)"n/e# + 1. Since dim(Xe,1,n) = n − e + 1, it follows
that C[Xe,1,n] is Cohen-Macaulay if and only if e = 2 or "n/e# = 1. This way, we
recover part of [22, Proposition 3.11].

Example 8.5 Consider e = 4, n = 10. The minimal submodule in �1/e(triv) is
I4,1,10, and it is isomorphic to L1/e(33, 1). Note that cλ = 23/4. The resolution
of L1/4(33, 1)[−23/4] is given by

0→ (2, 18)[−8] → (22, 16)[−6] → (25)[−3] ⊕ (32, 14)[−2]
→ (32, 2, 12)[−1] → (33, 1) → L1/4(3

3, 1)[−23/4] → 0

A resolution of the coordinate ring C[x1, . . . , x10]/I4,1,10 looks similar, but each
term is further shifted by −12 (because ctriv − cλ = −12), and the end of the
sequence is (33, 1)[−12] → (10) → C[x]/I4,1,10 → 0. Note that the regularity
of C[x1, . . . , x10]/I4,1,10 is 15.

Let us now compute the regularity of the subspace arrangement Xe,1,n .

Proposition 8.6 The regularity of the C[x]-module C[Xe,1,n] is given by

reg(C[Xe,1,n]) =
{
"n/e#(n − e + 1)− 1, if n/e ∈ Z

"n/e#(n − e + 2)− 1, else.

Proof Let us write n = (e−1)p+q = ep1+q1, with 0 ≤ q < e−1 and 0 ≤ q1 < e.
As above, let λ = ((e− 1)p, q) be the partition such that L1/e(λ) is isomorphic to the
socle of�1/e(triv). Note that the e-core of any partition in the block of triv = (n) is (q1)
and the e-weight is p1. It then follows from the rimhook description of homological
degree in Sect. 5.6 that the partition μ0 with highest homological degree in Poe(λ)

is given by adding p1 vertical strips of length e in the leftmost column to the e-core
of λ: thus μ0 = (a, 1n−a) where a = q1 if q1 > 0 and a = 1 if q1 = 0, and
hd(μ0) = (e − 2)p1. Now it follows by a direct computation that

reg(C[Xe,1,n]) = cμ0 − ctriv − (e − 2)p1 − 1 = (n − a)n

e
− (e − 2)p1 − 1
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which coincides with the formula in the statement of the proposition. ��

8.1.2 More BGG resolutions and a generalisation of the e-equals ideal.

We take �th powers and obtain a generalisation of the e-equals ideal. These subspaces
arrangements admit commutative algebra resolutions which can be constructed via
BGG-resolutions for the Cherednik algebra of G(�, 1, n) (which we also construct in
this section). Consider the ideal Ie,1,n(�) of polynomials vanishing on the set

Xe,1,n(�) := Sn{(z1, . . . , zn) ∈ C
n : z�

1 = z�
2 = · · · = z�

e}.

Note that Xe,1,n(�) is an arrangement of �e
(n

e

)
linear subspaces of C

n , each of dimen-
sion n − e + 1. When e = � = 2, X2,1,n(2) is the braid arrangement of type Dn ,
consisting of reflection hyperplanes for the reflection representation of the Weyl
group of type Dn on C

n . To give a set of generators for the ideal Ie,1,n(�), recall
from the previous subsection the partition λ = ((e − 1)p, q) and the polynomial
pλT ∈ C[x1, . . . , xn]. According to [24, Proposition 2.5], a set of generators of the
ideal Ie,1,n(�) is given by the Sn-images of pλT (x�

1, . . . , x�
n).

Our next goal is to construct a graded-free resolution of the algebra of functions
C[x1, . . . , xn]/Ie,1,n(�). In order to do this, we will use the following well-known
commutative algebra result.

Lemma 8.7 Let F1, F2, F3 be free C[x1, . . . , xn]-modules of finite rank, with bases
{v11, . . . , v1i1}, {v21, . . . , v2i2} and {v31, . . . , v3i3}, respectively. Let A : F1 → F2,
B : F2 → F3 be morphisms defined in the given bases by matrices ( fi j (x1, . . . , xn)),

(g jk(x1, . . . , xn)), respectively, and define new morphisms Ã, B̃ by the matrices
( fi j (x�

1, . . . , x�
n)), (g jk(x�

1, . . . , x�
n)), respectively. If im(A) = ker(B), then im( Ã) =

ker(B̃).

Note that, for μ ∈ P1
n , the module C[x1, . . . , xn] ⊗ Sn(μ) has a distinguished

basis indexed by Std(μ). Thus, if λ is a unitary partition, we can apply Lemma 8.7
to the complex C•(λ) (viewed as a complex of free C[x1, . . . , xn]-modules) to obtain
a complex C̃•(λ), which is exact outside of degree 0. By construction, thanks to [24,
Proposition 2.5], when λ = ((e − 1)p, q), the zeroth homology of C̃•(λ) coincides
with the ideal Ie,1,λ(�). Moreover, by multiplying the grading shifts of C•(λ) by �, this
obtains a minimal graded-free resolution of Ie,1,λ, and extending by C[x1, . . . , xn], of
the algebra of functions C[Xe,1,n(�)]. We then obtain the following result.

Proposition 8.8 The projective dimension of C[Xe,1,n(�)] coincides with that of
C[Xe,1,n], which is (e − 2)"n/e# + 1 so that, regardless of �, C[Xe,1,n(�)] is Cohen-
Macaulay if and only if e = 2 or "n/e# = 1. The regularity of C[Xe,1,n(�)] is given
by

reg(C[Xe,1,n(�)]) =
{
"n/e#(�(n − 1)− e + 2)− 1 if n/e ∈ Z

"n/e#(�n − e + 2)− 1 else
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We have obtained the complex C̃•(λ) by means of pure commutative algebra. As it
turns out, C̃•(λ) is a complex of standard modules for the rational Cherednik algebra
of the group G(�, 1, n) := Sn � (Z/�Z)n under a special class of parameters. The
group G(�, 1, n) is a complex reflection group, acting naturally onC

n , and the rational
Cherednik algebra depends on a function c̃ : S → C, where S ⊆ G(�, 1, n) is the
set of reflections and c̃(s) = c̃(wsw−1) for every s ∈ S, w ∈ G(�, 1, n). Here,
for a complex number c ∈ C, we will take any function c̃ such that c̃(s) = c, if
s ∈ G(�, 1, n) is conjugate to a reflection in Sn . Any other reflection in G(�, 1, n) is
conjugate to a nonzero element of, say, the first copy of Z/�Z, so we have �− 1 more
parameters for Hc̃(G(�, 1, n)), let us call them c1, . . . , c�−1.

The rational Cherednik algebra Hc̃(G(�, 1, n)) admits a presentation very simi-
lar to that of the rational Cherednik algebra Hc(Sn) of the symmetric group. We
will not give this presentation. Instead, we remark that Hc̃(G(�, 1, n)) is the subal-
gebra of EndC(C[x1, . . . , xn]) generated by the functions xi of multiplication by xi

(i = 1, . . . , n), the elements of G(�, 1, n) (naturally viewed as automorphisms of
C[x1, . . . , xn]) and the Dunkl–Opdam operators:

D̃i := ∂i − c
∑

j �=i

�−1∑

t=0

1

xi − ξ t x j
(1− (i j)t )−

�−1∑

k=1

2ck

(1− ξ−k)xi
(1− ξ k

i )

where ξ := exp(2π
√−1/�), ξi ∈ G(�, 1, n) is the element that acts by multiplication

by ξ on the i-th coordinate in C
n , and (i j)t ∈ G(�, 1, n) is (i j)t = ξ t

i ξ
−t
j (i j). Let us

remark that a similar presentation exists for the algebra Hc(Sn), the Dunkl operators
are now given by

Di = ∂i − c
∑

j �=i

1

xi − x j
(1− (i j)).

We will need the following result, that relates the operators Di and D̃i .

Lemma 8.9 For g ∈ C[x1, . . . , xn], denote by g̃ := g(x�
1, . . . , x�

n). Then, for any
i = 1, . . . , n:

D̃i (g̃) = �x�−1
i D̃i (g)

Proof First of all, note that g̃ is invariant under the action of (Z/�Z)n onC[x1, . . . , xn],
and so it follows that



   29 Page 66 of 71 C. Bowman et al.

D̃i (g̃) = ∂i (g̃)− c
∑

j �=i

�−1∑

t=0

g̃ − (i j)g̃

xi − ξ t x j
.

Now let h(x1, . . . , xn) ∈ C[x1, . . . , xn] be such that g − (i j)g = (xi − x j )h. Note
that it follows that g̃ − (i j)g̃ = (x�

i − x�
j )̃h, so

�−1∑

t=0

g̃ − (i j)g̃

xi − ξ t x j
=

�∑

t=0

�−1∏

k=0
k �=t

(xi − ξ k x j )̃h = �x�−1
i h̃

and the result follows. ��
The algebra Hc̃(G(�, 1, n)) still admits a triangular decomposition Hc̃(G(�, 1, n))

= C[x1, . . . , xn] ⊗ CG(�, 1, n) ⊗ C[y1, . . . , yn], where yi is the Dunkl–Opdam
operator D̃i . In particular, one can still define standard modules. For an irre-
ducible representation E of G(�, 1, n), we have the standard module �c̃(E). As a
C[x1, . . . , xn]-module, �c̃(E) = C[x1, . . . , xn] ⊗ E .

The irreducible representations, Sn(λ), of G(�, 1, n) are indexed by the set P�
n ,

and each Sn(λ) has a natural basis indexed by the set Std(λ). In particular, if λ ∈P1
n ,

we can consider the �-partition λ̃ ∈P�
n given by λ̃ = (λ,∅, . . . ,∅). The sets Std(̃λ)

and Std(λ) are obviously identified. Moreover, G(�, 1, n) admits a natural surjection
to Sn , and the irreducible representation Sn (̃λ) of G(�, 1, n) is simply given by the
Sn-irreducible Sn(λ) under this surjection.

Proposition 8.10 Let c ∈ C. Then, for any λ,μ ∈P1
n and any parameter c̃ as above,

there is a natural identification

∼ : HomHc(Sn)(�c(λ),�c(μ))
∼=−→ HomHc̃(G(�,1,n))(�c̃ (̃λ),�c̃(μ̃))

given as follows. For a standard Young tableau t ∈ Std(λ), if f ∈ HomHc(Sn)(�c(λ),

�c(μ)) is given by f (1 ⊗ t) = ∑
s∈Std(μ) fts(x1, . . . , xn) ⊗ s, then f̃ (1 ⊗ t) =

∑
s∈Std(μ) fts(x�

1, . . . , x�
n)⊗ s.

Proof We need to show, first, that f̃ |1⊗Sn (̃λ) is a map of G(�, 1, n)-representations.

This follows from the fact that, for any polynomial g ∈ C[x1, . . . , xn], g(x�
1, . . . , x�

n)

is invariant under the action of (Z/�Z)n . Now we need to show that, for any standard
Young tableau t ∈ Std(λ), f̃ (1⊗ t) is annihilated by all Dunkl operators D̃i . This is
a direct consequence of Lemma 8.9.

This shows that f �→ f̃ does define a morphism, which is clearly injective.
To show that it is bijective, let h : �c̃ (̃λ) → �c̃(μ̃) be a morphism. In partic-
ular, h|1⊗Sn (̃λ) is a map of G(�, 1, n)-modules. This implies that, if h(1 ⊗ t) =
∑

s∈Std(μ) hts(x1, . . . , xn) ⊗ s, then hts(x1, . . . , xn) ∈ C[x�
1, . . . , x�

n] for every s ∈
Std(μ). Thanks to Lemma 8.9, this implies that h = f̃ for some f : �c(λ)→ �c(μ).

��
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Remark 8.11 If c /∈ 1/2 + Z, then the existence of an isomorphism between
HomHc(Sn)(�c(λ),�c(μ)) and HomHc̃(G(�,1,n))(�c̃ (̃λ),�c̃(μ̃)) follows from [29,
Proposition 5.9].

By Proposition 8.10 and Lemma 8.7, we have that if λ is a unitary partition of n,
then the complex C̃•(λ) is actually a complex of standard modules for Hc̃(G(�, 1, n)),
which is exact outside of degree zero, and thus it is a BGG resolution of its zeroth
homology.

Remark 8.12 The zeroth homology of C̃•(λ) is not necessarily an irreducible
Hc̃(G(�, 1, n))-module. For example, if λ = ((e − 1)p, q), we have seen that
H0(C̃•(λ)) is the ideal Ie,1,n(�). When � = 2, e < n is even and the parameter
c̃ is such that c̃(s) = 0 if s is not conjugate to a reflection in Sn , then this is an
indecomposable, but not irreducible, Hc̃(G(�, 1, n))-module.

Remark 8.13 Even if the zeroth homology of C̃•(λ) is irreducible (and thus it neces-
sarily coincides with Lc̃ (̃λ)) the natural Hermitian form on Lc̃ (̃λ) does not need to
be positive-definite, even if that for Lc(λ) is. An example of this is given by taking
� = 2, odd n, e = n, λ = (e − 1, 1) and the parameter c̃ as in Remark 8.12 . In this
case, Lc̃ (̃λ) = Ie,1,n(2), which does not admit an invariant positive-definite Hermitian
form, cf. [24, Proposition 7.1]

8.1.3 The (k, e)-equals ideal

Wenowconsider the subspace arrangements of k distinct clusters of e equal parameters
for n = ke. We show that the BGG resolution of L(triv) is a minimal resolution of the
coordinate ring of this subspace arrangement and generalise this to type G(�, 1, n) as
before.

Let n = ke, as we have seen, in this casewe can give aBGG resolution of L1/e(triv).
It follows from [23, Theorem 5.10] that rad(�1/e(triv)) is the ideal Ie,k,n of functions
vanishing on

Xe,k,n := Sn{(z1, . . . , zn) ∈ C
n : z1 = · · · = ze, ze+1

= · · · = z2e, . . . , z(k−1)e+1 = · · · = zke}.

Recall that the resolution of L1/e(triv) is obtained as the Ringel dual of the resolution
of L1/e(ek). Thus, the projective dimension of the algebra of functions C[Xe,k,n] =
C[x]/Ie,k,n ∼= L1/e(triv)[ctriv] is (e − 1)k. By the Auslander–Buchsbaum formula,
the depth of C[Xe,k,n] is n − (e− 1)k = k. So C[Xe,k,n] is always Cohen-Macaulay,
and we recover a special case of [22, Proposition 3.11].

Let us now analyze the regularity of L1/e(triv)[ctriv]. By an argument similar to
the proof of Proposition 8.6, this is given by c(ke) − ctriv − (e − 1)k. By a direct
computation, this is

reg(L1/e(triv)[ctriv]) = k(n − e − k + 1)

2
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Example 8.14 Assume e = 3, n = 6. Then we have that a resolution of L(triv)[ctriv] =
C[x1, · · · , x6]/I3,2,6 is given by

0→ (23)[−6] → (3, 2, 1)[−5] → (32)[−4] ⊕ (4, 12)[−4]
→ (5, 1)[−2] → (6) → C[x]/I3,2,6 → 0

and reg(C[x]/I3,2,6) = 2.

Of course, for � ≥ 1 we also have the subspace arrangement

Xe,k,n(�) := Sn{(z1, . . . , zn) ∈ C
n : z�

1 = · · · = z�
e, z�

e+1 = · · · = z�
2e, . . . , z�

(k−1)e+1 = · · · = z�
ke}

And its defining ideal Ie,k,n(�). Since Ie,k,n is the unique maximal submodule in
�1/e(triv) and the submodules of this standard module are linearly ordered, the ideal
Ie,k,n is generated in a single degree. Thus, the exact same argument as that in the
proof of [24, Proposition 2.5], if q1(x1, . . . , xn), . . . , qt (x1, . . . , xn) are generators
of Ie,k,n of minimal degree, then q1(x�

1, . . . , x�
n), . . . , qt (x�

1, . . . , x�
n) are generators

of Ie,k,n(�). It follows that the complex C̃•(triv) is a minimal graded-free resolution
of the algebra of functions C[Xe,k,n(�)], and the variety Xe,k,n(�) is always Cohen-
Macaulay.Moreover, the regularity ofC[Xe,k,n(�)] is given by �(c(ke)−ctriv)−(e−1)k,
or more explicitly,

reg(C[Xe,k,n(�)]) = k[�(n + e − k − 1)− 2(e − 1)]
2

.

We remark that in general as Hc̃(G(�, 1, n))-modules, C[Xe,k,n(n)] does not coincide
with Lc̃(triv). For example, if � = 2, e = n is even and c̃(s) = 0 for a reflection
s not conjugate to an element of Sn , then L 1̃/e(triv) is finite-dimensional, while
C[Xe,1,n(2)] is not.
Remark 8.15 Changing theparameter of the rationalCherednik algebra to c = a/e > 0
with gcd(a; e) = 1 does not change the shape of the resolutionC•(λ), so the projective
dimension and depth of La/e(λ) are independent of a ∈ Z>0 when λ is e-unitary.
However, the value of cλ is not independent of a ∈ Z>0, and we get

βi, j (La/e(λ) = βi, j/a(L1/e(λ))

where we implicitly agree that βi, j/a = 0 if j/a /∈ Z. For any such a ∈ Z>0 the
module La/e((m − 1)p, q) can be identified with an ideal of C[x] whose vanishing
set coincides with Xe,1,n . This ideal is radical if and only if a = 1, cf. [23, Theorem
5.10]. Similar considerations apply to La/e(triv).
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