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Abstract
The short-range nature of the repulsive Weeks–Chandler–Anderson (WCA) potential can
create free particles/rattlers in a condensed system. The presence of rattlers complicates the
analysis of the energy landscape due to extra zero-frequency normal modes. By employing a
long-range Gaussian tail modification, we remove the rattlers without changing the structure
and the dynamics of the system, and successfully describe the potential energy landscape in
terms of minima and transition states. This coarse-grained description of the landscape and the
dynamical properties of the modified potential exhibit characteristic signatures of
glass-forming liquids. However, we show that despite having qualitatively similar behaviour,
the modified WCA potential is less frustrated compared to its attractive counterpart.

Keywords: energy landscape, supercooled liquid, glass, structure dynamics, dis-connectivity
graph

(Some figures may appear in colour only in the online journal)

1. Introduction

If crystallisation is avoided, liquids enter into a supercooled
state upon fast cooling. The atomic structure of the metastable
supercooled state remains almost unaffected while cooling,
however, the dynamics differ quite significantly. There are dif-
ferent approaches to understand the origin of the sharp rise of
viscosity and relaxation time on cooling [1]: one is based an on
kinetic arrest [2], while complementary approaches consider
the underlying potential energy landscape (PEL) [3–6].

The dynamical properties (X) usually follow Arrhenius
behaviour with X ∝ exp(±E/T) for a constant activation
energy, E at high temperature. On cooling, the relationship
deviates from Arrhenius behaviour and the enhanced growth

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

of dynamical properties commonly fits reasonably well to a
Vogel–Fulcher–Tammann (VFT) equation [7–9], where X ∝
exp(±E/(T − TVFT)), with TVFT the singularity temperature.
The dynamical growth can also be fitted to other forms with-
out singularities [10, 11]. For some liquids, commonly referred
to as ‘strong’, the Arrhenius behaviour holds down to low
temperature. In contrast, liquids with super-Arrhenius growth
are classified as ‘fragile’ [12, 13]. The strong liquids include
network glass formers, such as silica and germanium oxides,
while the fragile liquids include binary Lennard–Jones (BLJ)
mixtures and a variety of molecular glasses, such as orthoter-
phenyl [14–18].

In the context of glasses, the PEL was probably first con-
sidered by Goldstein [19] in terms of multiple local minima
connected by transition states. As shown in previous stud-
ies, the dynamical arrest at lower temperatures is attributed
to neighbourhood cage formation. Rabani et al measured the
cage-rattling timescale, and the cage-breaking timescale has
been directly connected to super-Arrhenius behaviour [20].
While caged, the system is trapped in local minima with a
lower escape probability to cross a relatively high barrier cor-

1361-648X/21/034004+7$33.00 1 © 2021 The Author(s). Published by IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-648X/ac2f6d
https://orcid.org/0000-0002-0518-609X
https://orcid.org/0000-0002-3555-6645
mailto:banerjeea@mpip-mainz.mpg.de
mailto:dw34@cam.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ac2f6d&domain=pdf&date_stamp=2021-11-2
https://creativecommons.org/licenses/by/4.0/


J. Phys.: Condens. Matter 34 (2022) 034004 A Banerjee and D J Wales

responding to cage-breaking, producing a longer timescale
for relaxation. Heuer et al defined metabasins as a super-
structure in the PEL, which are related to the slow dynamics
[6, 21]. de Souza et al numerically connected the productive
cage breaking rearrangements to transport properties [22].

In liquid state theory, the structure-dynamics relationship
is well-established [23] and the repulsive part of the poten-
tial is often connected to the structure of the liquid [24]. The
Weeks–Chandler–Andersen (WCA) potential was derived to
compare the repulsive part of the Lennard–Jones (LJ) potential
to a hard-sphere system, while the attractive part was con-
sidered as a perturbation [25]. The WCA potential is known
to reproduce the structural properties of the LJ potential to
some extent while the dynamical properties vary quite signifi-
cantly [26–28]. Some of microscopic theories fail to predict
the structure-dynamics relationship [29, 30], while a recent
theory predicts the correct dynamical temperature [31]. Empir-
ical relationships such as the Rosenfeld relation [32] hold at
the high temperature limit, while the Adam–Gibbs relation
[33] describes the behaviour quite well in the low temperature
limit for the WCA system [18, 28]. More recently, a careful
finite size analysis predicted long-range structure formation in
LJ system compared to its repulsive counterpart [34]. How-
ever, a clear basis for the structure-dynamics relationship is
still missing. As the WCA potential consists of only the repul-
sive part, it imitates the hard-sphere system and is widely used
in molecular dynamics (MD) studies due to the continuity of
the potential. In many systems, including colloids [35, 36], the
WCA potential is often used to investigate distinct crystalline
structures.

In this work, we aim to characterize the PEL for the repul-
sive WCA system of a dense liquid. Due to the short-range
nature of the WCA potential, the system can include rattlers,
which contribute extra zero-frequency modes in the density
of states, and complicate a description in terms of the sta-
tionary points. To address this issue we modify the potential
with the addition of a Gaussian tail, and show that we can
avoid the numerical problems, while the structure and dynam-
ics remain almost unaltered by the tail correction. We find
that the time-dependent diffusivity follows similar behaviour
to other glass-forming liquids. Finally, we visualise the PEL,
which exhibits multiple competing minima, and compare it
with the LJ counterpart.

The paper is organized as follows: the computational details
are given in section 2 where we describe the tail correction.
In section 3 we present our results. Section 4 contains the
conclusions.

2. Computational details

2.1. The potential modification

We performed MD simulations of a 256 particle binary mixture
of 204 A and 52 B atoms, interacting according to the repulsive
counterpart WCA of the LJ potential in a periodically repeated
cell [25, 37]. The interatomic pair potential between species α

and β, with α, β = A, B, UWCA
αβ (r;σαβ , εαβ) is described by a

shifted and truncated LJ potential:

UWCA
αβ (r;σαβ , εαβ)

=

⎧⎪⎨⎪⎩
ULJ

αβ(r;σαβ , εαβ) − ULJ
αβ(rc

αβ ;σαβ , εαβ), r � rc
αβ ,

0, r > rc
αβ ,

(1)

where ULJ
αβ(r;σαβ , εαβ) = 4εαβ[(σαβ/r)12 − (σαβ/r)6] and rc

αβ

is equal to the position of the minimum in ULJ
αβ for the WCA

counterpart. Length, temperature and time are given in units
of σAA, εAA/kB and √(mAσ

2
AA/εAA), respectively. Here we

have simulated the Kob–Andersen model [37] with interac-
tion parameters σAA = 1.0, σAB = 0.8, σBB = 0.88, εAA = 1,
εAB = 1.5, εBB = 0.5, mA = mB = 1.0. We performed MD sim-
ulations in the canonical ensemble (NVT) at densities ρ = 1.4
for the WCA potential.

Due to the shorter-range cutoff of the original WCA poten-
tial, we observed that some of the configurations were not
converged properly during minimisation. This convergence
problem has been reported earlier for polydisperse WCA sys-
tems [38]. The existence of rattlers creates ambiguity in the
coarse-grained description of the landscape based on minima
and transition states. In order to tackle this numerical problem,
we modified the WCA potential by adding a Gaussian tail
modification up to a longer cutoff r2 (figure 1). We make sure
the potential and its derivative are zero at the longer cutoff. The
modified WCA (mWCA) potential with tail correction Ucorr is
written as,

Umod
αβ (r)

=

⎧⎪⎨
⎪⎩

UWCA
αβ (r;σαβ , εαβ) + Ucorr

αβ (rc
αβ ;σαβ , εαβ), r < rc

αβ ,

Ucorr
αβ (r;σαβ , εαβ), rc

αβ � r � r2,

(2)

where the tail corrected potential term is,

Ucorr
αβ (r;σαβ , εαβ) = Δεαβ exp

(
−

(r − rc
αβ)2

2σ2
αβ

)
+ A0 + A1(r − rc

αβ)2 (3)

with A0, A1 constants. We evaluate the constants by setting
the potential and its first derivative to zero at the long cutoff,
so that Ucorr

αβ (r2;σαβ , εαβ) = 0 and ∂Ucorr
αβ (r2;σαβ , εαβ)/∂r = 0.

The partial derivative is given by

∂Ucorr
αβ (r;σαβ , εαβ)

∂r
= Δεαβ exp

(
−

(r − rc
αβ)2

2σ2
αβ

)

×
−2(r − rc

αβ)

2σ2
αβ

+ 2A1(r − rc
αβ).
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Figure 1. The modified WCA (mWCA) potential, Umod(r), as given
by equation (2). In the inset we magnify the tail corrected part of the
potential. The yellow line corresponds to the Gaussian tail
correction as given in equation (3).

On simplification at r = r2 we obtain

A1 =
Δεαβ
2σ2

αβ

exp

(
−

(r2 − rc
αβ)2

2σ2
αβ

)
.

Using this A1 value we obtain

A0 = −Δεαβ exp

(
−

(r2 − rc
αβ)2

2σ2
αβ

)

−
Δεαβ(r2 − rc

αβ)2

2σ2
αβ

exp

(
−

(r − rc
αβ)2

2σ2
αβ

)

A0 = −Δεαβ exp

(
−

(r2 − rc
αβ)2

2σ2
αβ

)[
1 +

(r2 − rc
αβ)2

2σ2
αβ

]
.

We denote the mWCA potential Umod
αβ (r) as mWCA and

simulated the system with this potential for further analysis.
We have chosen r2 = 2σAA, and Δεαβ = εαβ to remove the
zero frequency modes.

2.2. Potential energy landscapes

The PEL was explored using geometry optimization to char-
acterize local minima and the pathways that connect them. We
quenched the MD trajectory at each step using the L-BFGS
method [39] until the root-mean-square gradient fell below
10−6 reduced units, and connected the successive quenched
minima in the trajectory using the doubly-nudged [40, 41]
elastic band [42–45] method for double-ended searches to
locate transition state candidates, which were refined using
hybrid eigenvector-following [40, 46, 47]. The connectivity
was then established by calculating approximate steepest-
descent paths for each transition state. Additional candidates
for connection attempts were then chosen using the missing
connection algorithm [48], until the endpoints were success-
fully linked. This approach is implemented in the OPTIM pro-
gram [49], which finds the pathways between two successive
quenched minima. The pathways can consist of a single tran-
sition state or a series of transition states and intervening min-
ima. Hence it is essential to refine transition state candidates

and establish the connectivity following the initial DNEB cal-
culation [50]. Once we have the database of minima and transi-
tion states, we visualise the connectivity of the landscape using
disconnectivity graph analysis [51, 52]. The complex topol-
ogy of the higher dimensional landscape can be visualised
using these tree graphs, where the vertical axis corresponds
to increasing energy. Disconnectivity graphs can display all
the minima, and faithfully represent the lowest barriers sepa-
rating them. This approach is implemented in the open source
disconnectionDPS program [53].

3. Result

3.1. Structure and dynamics of the modified potential

We analyse the structure and dynamics of the tail modified
potential by calculating the radial distribution function and dif-
fusion coefficient. In figures 2(a) and (b) we plot the radial dis-
tribution function of the original WCA potential at a high and
a low temperature, and compare them with the corresponding
tail-mWCA potential. We observe that the radial distribution
function remains similar at high temperature. However, the BB
part of the radial distribution function slightly differs at low
temperatures. B particles, which are smaller in size, behave as
rattlers at low densities, due to a shorter interaction range. The
tail modification provides a weak but longer interaction contri-
bution, thus it affects mostly the smaller size particles, which
have relatively shorter interaction range cutoff in the original
potential.

The diffusion coefficient, D, is calculated using the Einstein
relationship in the ergodic limit as,

D = lim
t→∞

1
6t
〈Δri(t)

2〉, (4)

where, 〈·〉 denotes the ensemble average over atoms i.
We observe that the dynamics with and without the tail
correction remain very similar throughout the temperature
range of interest. A slight deviation is observed in the low-
temperature regime. The presence of a longer cutoff may
increase the number of nearest-neighbours and, as a result,
the peak height for the B-type particles increases slightly
and their diffusivity is reduced compared to the original
potential. However, overall, the results show that the tail
modification is a weak perturbation, so that we effectively
retain a system with similar thermodynamic and dynamical
properties.

The vibrational density of states of the quenched configu-
rations was calculated as

P(ω) =
1

3N − 3

∑
l

〈δ(ω − ωl)〉 , (5)

where ωl is the angular frequency of mode l in reduced units.
In figure 3 we show that although the zero frequency modes
disappear with the tail modification, the overall density profile
does not change significantly. The zero-frequency modes cor-
respond to regions of the PEL where one or more particles have
no interaction with the others, and so the energy is invariant

3
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Figure 2. The partial radial distribution function for original WCA and tail modified (mWCA) at (a) high temperature (T = 3.00), and (b)
low temperature (T = 1.00). (c) The diffusivity calculated using equation (4) for both systems. The results show that the structure and
dynamics remain mostly unaltered by the tail modification. At low temperature, a small increase of the peak height in the radial distribution
function of the B–B particles and a slight slow down of the diffusivity are observed.

Figure 3. The density of states P(ω) in reduced units for original
WCA and tail modified (mWCA) potentials. The zero frequency
modes disappear with the tail correction. However, the overall
density profiles are practically the same.

with respect to infinitesimal displacements in the correspond-
ing degrees of freedom. Addition of a long-range Gaussian tail
restores some small interactions for these particles, so that the
zero-frequency modes are removed, which solves the numeri-
cal problems. We can now calculate the transition states effec-
tively between the minimized configurations, as described in
section 2. Note that one can perform instantaneous normal
mode analysis without quenching the system, where a large
fraction of modes often have imaginary frequencies [54]. In
our case, we perform the normal mode analysis for the local
minima, which have only positive vibrational frequencies by
construction.

3.2. Diffusion analysis

In this section, we report some other dynamical proper-
ties commonly observed for glassy systems, such as the
time-dependent diffusivity. The nonergodic diffusion constant,
D(τ), is calculated over shorter, nonergodic time intervals, τ
[10, 55], and we consider the average value over an ergodic

trajectory. The true diffusion coefficient D is recovered when
the interval τ is large enough. If the total trajectory is divided
into m shorter time intervals, τ , then we define the diffusion
constant for time scale τ [10, 55] as

D(τ ) ≡ lim
t→∞

1
6t
〈Δri(t, τ )2〉, (6)

where the mean squared displacement Δri(t, τ )2 =∑m
j=1Δri( j)2 with mτ = t, and the displacement of particle i

in time interval j is Δri( j) = ri( jτ ) − ri( jτ − τ ).
We find that the diffusivity follows Arrhenius behaviour

down to much lower temperature when we consider shorter
time windows. At high temperatures, the shorter time win-
dows are a reasonably good approximation to the true diffu-
sivity. However, at low temperatures the deviation is consid-
erable. The short time windows significantly overestimate the
diffusivity due to the neglect of correlated motions [10, 55,
56]. As expected, local ergodicity only emerges over a longer
timescale for the low-temperature range. However, as in pre-
vious work [10, 55, 56], a mean-field like diffusion coefficient
D∗

corr(τ ) can be obtained from combining a correction factor
with the short time diffusion coefficient. The correction factor
is given by

〈Δr2
i (t, τ )〉 ≈

m∑
j=1

〈Δri( j)2〉(1 + 2〈cos θ j, j+1〉),

D∗
corr(τ ) = D(τ )(1 + 2〈cos θ j, j+1〉).

θ j, j+1 is the angle between the displacement vectors for atom
i in intervals j and j + 1. Here we assume the displacement
for every atom in every interval has the same magnitude,
thus D∗

corr(τ ) provides a mean-field type description. Similar
to other systems considered in previous work, the correction
term becomes more negative on lowering the temperature. In
figure 4(b), we plot D∗

corr(τ ) and find that it gives a reasonable
description of the true diffusion, even for small time inter-
vals. This result is consistent with our earlier analysis of time-
dependent diffusivity for the original WCA system [56] and
for other glass forming liquids [10, 16, 17, 55].

4
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Figure 4. (a) The time dependent diffusion coefficients D(τ) and (b) the mean-field type approximation D∗
corr(τ ) for the mWCA system with

a range of time windows τ = 50, 100, 200, 500, 1000, 5000 MD steps and time step dt = 0.005 in reduced units. We observe at τ = 5000
that D(τ ) has converged to the true diffusion constant calculated using equation (4). At high temperatures D(τ ) is a reasonable estimate, but
at lower temperature with shorter time windows it gives an overestimate.

3.3. Energy landscapes

We follow the protocol described in section 2 to visualize
the PEL of the WCA system. We used the quenched trajec-
tory from the MD simulation at a temperature T = 0.95. The
coordinates were saved every ten MD steps with each time
step 0.001 in reduced units. Since we follow the MD tra-
jectory, the order in which the minima of the PEL are vis-
ited by the system during the time evolution is maintained.
In figure 5, we plot the disconnectivity graph for the WCA
system with the tail modification. The landscape is highly
frustrated [22] with multiple minima and transition states and
a wide range of energy values. We did not observe crys-
tallisation, or any low energy crystalline minima, in these
calculations.

WCA systems at low densities are prone to crystallise
[34, 58]. It would be interesting in future work to study lower
densities with the modified potential in order to include the
crystalline state in the disconnectivity graph.

The degree of ‘frustration’ in the PEL can be quantified
by a metric that describes the existence of competing low-
lying minima and their separation in terms of energy bar-
riers [57]. Usually, glass formers exhibit higher frustration
and structure-seeker systems, such as magic number clus-
ters, have lower frustration. More recently, the fragile BLJ
systems were compared with a strong liquid SiO2. Despite
exhibiting similar disconnectivity graphs, the frustration met-
ric had a lower value for the latter system [17]. The land-
scape entropy [59–61], calculated from the potential energy
density of minima, has also been used to compare systems
with different degrees of fragility [28]. The rate at which
the landscape entropy decreases with temperature, some-
times termed ‘thermodynamic fragility’, is higher for LJ
systems compared to the WCA counterpart [28, 62]. The
frustration metric used in the present study is a comple-
mentary measure designed to quantify the mutual accessi-
bility by explicit consideration of the barriers between local
minima [57].

Figure 5. Disconnectivity graph for the mWCA system with the tail
correction at ρ = 1.4.

To classify the systems, de Souza et al described a
renormalised frustration index f̃ (T) [57] after removing the
temperature dependence of the lowest minimum. They
observed that f̃ (T) < 1 for the structure-seekers, whereas the
frustrated landscapes, including BLJ, have 1 > f̃ (T) > 50. It
is apparent that the mWCA system has a multifunnel structure,
as expected for a glassy system. In figure 6 we show that the
barrier crossing ability decreases upon lowering the tempera-
ture. However, when compared with BLJ systems, we observe

5
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Figure 6. The renormalised frustration index for BLJ [57] and
mWCA system.

that the values are lower throughout the temperature range,
and the system is less frustrated, indicating a more uniform
organised landscape of smaller metabasins.

4. Conclusion

The WCA potential was first introduced by shifting the
attractive LJ potential at the cutoff of the energy minimum
[25]. The short range and continuous nature of this repul-
sive potential make it popular for computer simulation studies,
including colloids [36], polymers with excluded volume inter-
actions [63], and glassy systems [28, 56]. We found, however,
that the short range nature of the potential leads to rattlers
in the system, which contribute extra zero frequency modes
to the density of states, complicating analysis of the energy
landscape. To circumvent this problem, we add a Gaussian
tail to the original WCA potential that is long enough to
remove the free particles, but at the same time weak enough
to retain the structure and dynamics of the original WCA
system. As a consequence, we observed that the extra zero
frequency modes are successfully removed, while the over-
all behaviour of interest is conserved. The system with a
mWCA potential exhibits characteristic behaviour of glass
forming liquids, such as super-Arrhenius diffusivity reduction,
frustrated energy landscapes, higher frustration index, etc. It
exhibits somewhat lower frustration compared to its attractive
counterpart. As for BLJ systems, we find that diffusion con-
stants calculated over short time intervals exhibit Arrhenius
behaviour, but the true super-Arrhenius temperature depen-
dence can be recovered using a correction term that describes
the correlation between displacements in neighbouring time
windows. This correlation factor is negative, and the magni-
tude increases with decreasing temperature, producing super-
Arrhenius behaviour.

Identification of crystalline states for the mWCA poten-
tial at lower densities, and exploring the energy landscape, are
interesting areas to be investigated in the future.
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