
Enseign.Math. (2) 67 (2021), 331–367
DOI 10.4171/LEM/1011

©2021 Fondation L’Enseignement Mathématique
Published by EMS Press

Equivariant discretizations of diffusions,
random walks, and harmonic functions

Werner Ballmann and Panagiotis Polymerakis

Abstract. For covering spaces and properly discontinuous actions with compatible diffusion
processes, we discuss Lyons–Sullivan discretizations of the processes and the associated function
theory.

Mathematics Subject Classification (2020). 53C99, 58J65, 60G50.

Keywords. Diffusion operator, random walk, Martin boundary, Poisson boundary, harmonic
function, covering projection, properly discontinuous action, discretization.

1. Introduction

We are interested in spaces of bounded or positive �-harmonic functions on Rieman-
nian manifolds and, more generally, spaces of bounded or positive harmonic functions
of diffusion operators. Our work is motivated by the articles [24] of Sullivan and [20]
of Lyons and Sullivan.

To a sufficiently large discrete subset X in a connected Riemannian manifoldM ,
Lyons and Sullivan associate a family of probability measures � D .�y/y2M on X
which has a number of important properties. Among others, Lyons and Sullivan show
that

h.y/ D �y.h/ WD
X
x2X

�y.x/h.x/(1.1)

for all bounded harmonic functions h onM and y 2M . Furthermore, the support of
each of the measures �y is all of X . We call � the family of Lyons–Sullivan measures
or, as a shorthand, LS-measures. They depend on the choice of data, which we call
LS-data, and these exist if X is �-recurrent in the terminology of Lyons and Sullivan.
We use the same concept, but in the context of diffusion operators and in the form used
in [5] and develop and extend results from [15,19, 20] and [5] in different directions.
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LetM be a connected manifold and L be an elliptic diffusion operator onM that
is symmetric on C1c .M/ with respect to a smooth volume element (see Section 2.1).
We say that a smooth function h onM is L-harmonic if Lh D 0.

Let .Dt /t�0 be the diffusion process on M with generator L (see Section 2.1).
We say that M is L-complete, L-recurrent, or L-transient if .Dt / is stochastically
complete, recurrent, or transient, respectively. Note thatM is either L-recurrent or
L-transient and that L-recurrence implies L-completeness.

Example 1.2. IfM is compact, thenM is L-recurrent.

In what follows, we state our main results in the case of a covering � WM ! N ,
with group � of covering transformations, where the operator L onM is the pull back
of a diffusion operator L0 on N . We have similar results in the case of a countable
group, also denoted by � , acting properly discontinuously and L-equivariantly onM .
In our final section, we also discuss related results for random walks, that is, Markov
chains on countable sets.

In the literature, the case of normal Riemannian coverings (with L;L0 the Lapla-
cian) is usually considered. Recall that � is a normal covering if and only if � acts
transitively on the fibers of � .

We fix a fiber X of � . Then X is �-recurrent in the sense of Lyons and Sullivan
exactly in the case where N is L0-recurrent, and the latter is assumed throughout the
following. By Example 1.2, the assumption is satisfied whenever the base manifold N
is compact.

We let � D .�y/y2M be the LS-probability measures on X associated to a choice
of LS-data for X . We say that a function h on X is �-harmonic if it satisfies (1.1) for
all y 2 X .

1.1. Main results in the cocompact case. We let HC.M;L/ and HC.X; �/ be the
cones of positive L-harmonic functions on M and positive �-harmonic functions
on X , respectively. Constant functions onM and X are L-harmonic and �-harmonic,
respectively. If M is L-recurrent, then any positive L-harmonic function on M is
constant. Similarly, if the �-random walk on X is recurrent, then any positive �-
harmonic function on X is constant.

Theorem A. Suppose that N is compact and that X is endowed with the family � of
LS-measures associated to appropriate LS-data. Then
(1) for any h 2 HC.M;L/, the restriction hjX of h to X belongs to HC.X;�/. More

precisely, h.y/ D �y.h/ for all y 2M ;
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(2) the restriction map

HC.M;L/! HC.X; �/; h 7! hjX ;

is a �-equivariant isomorphism of cones.

The meaning of the attribute ‘appropriate’ (here and below) will be specified
in Section 4. We show in Lemma 4.4 that appropriate LS-data always exist.

In the case of the Laplacian and with a different choice of LS-data, Theorem A.1 is
due to Lyons and Sullivan [20, Theorem 6]. Theorem A.2 is new even for the Laplacian
and is a consequence of the identification of the minimal parts of Martin boundaries
in Theorem B. Note that, in [5], positive L-harmonic functions onM that are swept
by F (see (3.5) for this terminology) could be handled. But in our approach, we can
discuss all positive L-harmonic functions, since they can be expressed as integrals of
so-called minimal ones. This is where Theorem B comes into play.

Using that our choice of LS-data leads to symmetric random walks on X and that
positive harmonic functions of irreducible symmetric randomwalks on nilpotent groups
are constant, Theorem A implies [20, Theorem 1] which asserts, in the case where � is
a normal Riemannian covering with compact base, that any positive harmonic function
onM is constant if the group of covering transformations of � is nilpotent.

In the case whereM isL-transient, theMartin boundary @LM andMartin compact-
ification M.M;L/ DM [ @LM ofM are defined (see Section 2.2 below). Similarly,
if the �-random walk on X is transient, we have the Martin boundary @�X and Martin
compactification M.X;�/D X [ @�X ofX . The minimal parts @min

L M and @min
� X of

the Martin boundaries consist of minimal positive L-harmonic and minimal positive �-
harmonic functions, respectively. Hereminimal refers to the property that these positive
L-harmonic respectively �-harmonic functions dominate only multiples of themselves
and do not dominate any other positive L-harmonic respectively �-harmonic function.
The following result is new even in the case of the Laplacian.

Theorem B. Suppose thatN is compact, thatM isL-transient, and thatX is endowed
with the family � of LS-measures associated to appropriate LS-data. Then
(1) the �-random walk on X is transient and the inclusion X ! M extends to a

�-equivariant homeomorphism

@min
� X ! @min

L M I

(2) @min
L M D @LM if and only if @min

� X D @�X .

Theorem B follows from Theorem 3.31, in which we prove corresponding state-
ments in a more general situation. The key point is that we can compare sequences of
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Martin kernels K.:; yn/, associated to L respectively � and converging to minimal
positive L-harmonic respectively �-harmonic functions in the corresponding Martin
boundaries, because of the cocompactness of the covering and the proportionality of
the associated Green functions (established in Theorem 3.29).

1.2. Main results in the recurrent case. In contrast to the cocompact case, our
arguments and results in this subsection are mostly straightforward extensions of cor-
responding arguments and results in the literature, where the case of the Laplacian
and normal Riemannian coverings is usually considered. Nevertheless, there are differ-
ences and twists in the setup and argumentation which may make our exposition more
accessible.

We denote by H1.M; L/ and H1.X; �/ the spaces of bounded L-harmonic
functions on M and bounded �-harmonic functions on X , respectively. Note that
H1.M;L/ respectivelyH1.X; �/ consist of the constant functions wheneverM is
L-recurrent or the �-random walk on X is recurrent.

Theorem C. Suppose that N is L0-recurrent and that X is endowed with the family
� of LS-measures associated to appropriate LS-data. Then
(1) for any h 2 H1.M;L/, the restriction hjX of h to X belongs to H1.X; �/;
(2) for any h 2 HC.M;L/, either h is �-harmonic or strictly �-superharmonic on

X . More precisely, either h.y/ D �y.h/ for all y 2M or h.y/ > �y.h/ for all
y 2M ;

(3) the restriction map

H1.M;L/! H1.X; �/; h 7! hjX ;

is a �-equivariant isomorphism of vector spaces;
(4) M is L-transient if and only if the �-random walk on X is transient.

In the case of the Laplacian, (1) is part of [20, Theorem 5], (2) is [5, Theorem 1.10],
(3) follows from [5, Theorem 1.11] and (with other assumptions on the LS-data)
from [15, Theorem 1], and (4) is part of [5, Theorem 2.7]. In our arguments, we
follow [5].

Lyons and Sullivan also discretize random Brownian paths in M to �-random
sequences in X , see [20, Section 8]. In the proof of [15, Theorem 1], their procedure
was analyzed by Kaimanovich and applied (in [15, Remark 1]) to Poisson boundaries
(see Section 2.3 below).

Theorem D. Suppose that N is L0-recurrent and that X is endowed with the family
� of LS-measures associated to appropriate LS-data. Then
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(1) LS-path discretization induces a �-equivariant isomorphism

P .M;L/! P .X; �/

of Poisson boundaries;
(2) the inclusion X !M extends to a �-equivariant convex homeomorphism

M.X; �/!M.M;L/ \ NX;

where NX denotes the closure of X in M.M;L/.

In the case of the Laplacian, (1) follows from [15, Theorem 1 and Remark 1] and (2)
from [5, Theorem 2.8]. In our proofs, we follow arguments in [5, 15, 20].

1.3. Main results for normal coverings. The following is an extension of [20, Theo-
rem, p. 307], where the case of the Laplacian is considered. Our proof is considerably
shorter than the one in [20], but we pay for this by using LS-discretization.

Theorem E. Suppose that � is normal and thatN is L0-recurrent. Let h be a minimal
positive L-harmonic function onM . Then either h is constant or there is a 
 2 � such
that 
�h=h is unbounded.

Using their discretization of Brownian motion, Lyons and Sullivan showed that, in
the case of a normal Riemannian covering � WM !N , any bounded harmonic function
onM is constant if N is recurrent and � is !-hypercentral [20, Theorem 2] (where
! denotes the first infinite ordinal). This was generalized by Lin and Zaidenberg to
FC-hypercentral groups [19, Corollary 2.6] (see Section 2.4). More generally, they
showed that bounded harmonic functions onM are invariant under the FC-hypercenter
of � if N is recurrent [19, Corollary 2.5].

Theorem F. If � is normal and N is L0-recurrent, then any bounded L-harmonic
function on M is invariant under the FC-hypercenter of � . In particular, if � is
FC-hypercentral, then any bounded L-harmonic function onM is constant.

Whereas Lin and Zaidenberg use the Stone–Čech compactification of � in their
proof, we rely on LS-discretization. Nevertheless, our argumentation here draws heavily
from [19] and the earlier [18].

The following result corresponds to [20, Theorem 30], except that the assumption
on recurrence is not needed there (and used here for convenience only).

TheoremG. If� is normal andN isL0-recurrent, then there is a�-invariant bounded
projectionL1.M/!H1.M;L/. In particular, if all boundedL-harmonic functions
onM are constant, then � is amenable.
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It seems that the proof in [20] extends to the situation considered here. However,
we remain in our setup and invoke LS-discretization.

1.4. Themotivating example (after Sullivan [24]. LetM be a connected Riemannian
manifold and set

(1.3) �0 D �0.M/ D inf R.f /;

where f runs through all non-vanishing smooth functions onM with compact support
and R.f / denotes the Rayleigh quotient of f . Recall that �0 is equal to the bottom of
the spectrum of the Friedrichs extension of the (geometer’s) Laplacian � ofM , con-
sidered as an unbounded symmetric operator on the space L2.M/ of square-integrable
functions on M with domain C1c .M/, the space of smooth functions on M with
compact support.

It is well known that �0 is the supremum over all � 2 R such that there is a
positive �-harmonic function f WM ! R (see, e.g., [8, Theorem 7], [13, Theorem 1],
or [24, Theorem 2.1]). It is crucial that these �-harmonic functions are not required to
be square-integrable. In fact, by the above, �0 is exactly the border between positive
and L2-spectrum ofM .

Remark 1.4. If the right action of �1.N; q/ on X D ��1.q/ is amenable, then
�0.M/ D �0.N /; see [6]. If the right action of �1.N; q/ on X is not amenable and
�0.N / does not belong to the essential spectrum ofN , then �0.M/ > �0.N /; see [23].

Let p D p.t; x; y/ be the kernel of the minimal heat semigroup onM . Recall that
p.t; x; y/ > 0 for all t > 0 and x; y 2M . Say that � 2 R belongs to Green’s region
ofM if

(1.5)
Z 1
0

e�tp.t; x; y/ dt <1

for some – and then any – pair of points x ¤ y inM . By [24, Theorem 2.6], Green’s
region of M is either .�1; �0/ or .�1; �0�. In the first case, M is said to be �0-
recurrent, in the second �0-transient. By [24, Theorem 2.7], if M is �0-recurrent,
then positive �0-harmonic functions are constant multiples of one another. By [24,
Theorem 2.8], ifM has a square integrable �0-harmonic function, then the space of
square integrable �0-harmonic functions on M is generated by a square integrable
positive �0-harmonic function andM is �0-recurrent. In the �0-recurrent case, the
associated �0-random motion with transition densities e�0tp.t; x; y/'.y/='.x/ with
respect to the Riemannian volume element ofM , where ' is a positive �0-harmonic
function onM , does not depend on the choice of ' (by what was said above) and is
recurrent, by [24, Theorem 2.10]).
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In the case �0D 0, we also speak of harmonic functions and of recurrent or transient
manifolds. In this case, the associated process is standard Brownian motion onM .

Example 1.6. IfM is compact or, more generally, complete and of finite volume, then
�0 D 0, and constant functions are �0-harmonic and square-integrable.

Example 1.7 (Sullivan [24, Theorem 2.21]). LetM D �nHm be a complete hyper-
bolic manifold and suppose thatM is geometrically finite, that is, the action of � on
Hm admits a fundamental domain with finitely many and totally geodesic sides. Then

�0 D

´
.m � 1/2=4 if d � .m � 1/=2,
d.m � 1 � d/ if d � .m � 1/=2,

where d D d.�/ denotes the Hausdorff dimension of the limit set of � . If d �
.m � 1/=2, thenM is �0-recurrent. If d > .m � 1/=2, thenM has square-integrable
positive �0-harmonic functions. (See also [24, Theorem 2.17 and Corollary 2.18].)

Let � WM !N be a Riemannian covering of connected Riemannian manifolds with
group � of covering transformations andX be the fiber of � over some chosen point in
N . Let�0D �0.N /, and assume thatN is�0-recurrent. Let ' be the lift of a positive�0-
harmonic function fromN toM and dv be the Riemannian volume element ofM . Then
multiplication m' by ' gives a unitary transformation L2.M; '2dv/! L2.M; dv/
which intertwines the diffusion operator L D Lf D ��f C 2hr ln ';rf i with the
operator ��C �0; see the computation in the beginning of [24, Section 8] (compare
also with Section 2.1 below). The associated diffusion process has transition densities
e�0tp.t; x; y/='.x/'.y/ with respect to the volume element '2dv. Therefore, since
N is �0-recurrent, X is �-recurrent in the sense of Lyons and Sullivan. Hence the
above results apply if N is compact (then �0 D 0) or �0-recurrent, respectively.

1.5. Discussion. An important consequence of our results is that, under specific
conditions, problems about L-harmonic functions onM , minimal Martin boundaries
@min
L M , and Poisson boundariesP .M;L/ are equivalent to problems about�-harmonic
functions on X , minimal Martin boundaries @min

� X , and Poisson boundaries P .X;�/.
The most basic problems in this direction are the triviality of the Poisson and Martin
boundaries, that is, the property thatM does not carry non-constant bounded or positive
L-harmonic functions, and correspondingly for random walks. These properties are
referred to as the Liouville and strong Liouville property, respectively.

Let � WM ! N be a normal Riemannian covering of connected manifolds with
group � of covering transformations. Lyons and Sullivan showed that � is amenable if
M has the Liouville property, that is, if P .M;�/ is trivial. The converse does not hold.
In fact, Lyons and Sullivan gave examples of Riemannian coversM of closed surfaces
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N , where � is two-step solvable and P .M;�/ is nontrivial [20, pp. 299–300]. In the
same direction, Erschler showed that P .M;�/ is nontrivial if N is closed and � is a
Baumslag group Bd with d � 3 [12, Theorem 5.2], a two-step solvable and finitely
presentable group. In her proof, Erschler uses the isomorphism P .M;�/ Š P .X;�/,
where X is a fibre of � and � an associated family of Lyons-Sullivan measures on X .
Note also that, since Bd is finitely presentable, N can be chosen to have fundamental
group � D Bd andM to be the universal covering space of N .

At this point, it is not clear whether there are any nontrivial conditions on � which
are equivalent to the Liouville property of M if N is closed or recurrent. As for
sufficient conditions, Lyons and Sullivan proved that P .M;�/ is trivial in the case
where N is recurrent and � is !-hypercentral [20, Theorem 2]. This was extended
by Lin and Zaidenberg to the case where � is FC-hypercentral [19, Corollary 2.6].
Kaimanovich showed by analytic methods thatP .M;�/ is trivial ifN is closed and� is
polycyclic or of subexponential growth [14, Theorem 8 and Corollary 1]. All the above
results can also be shown for elliptic diffusion operators by using the isomorphisms
H1.M; L/ Š H1.X; �/ and between P .M; �/ Š P .X; �/, respectively. In the
present article, (the second part of) Theorem F is an example where this strategy applies.
Another one is the consequence of Theorem G thatM admits positive �0.N /-harmonic
functions which are not �-invariant, provided that N is �0-recurrent and � is not
amenable. In the context of the Liouville property, the entropy criterion of Kaimanovich
and Vershik for random walks on groups is also of interest [16, Theorem 1.1].

The strong Liouville property, that is, the triviality of @min
� M , was obtained by

a direct argument by Lyons and Sullivan in the case where N is closed and � is
nilpotent [20, Theorem 1]. As we mentioned further up, the extension of this result
to elliptic diffusion operators is also an immediate consequence of the isomorphism
HC.M;L/ŠHC.X;�/ and the corresponding result for nilpotent groups (see [9,21]
and also Corollary 6.16). Lyons and Sullivan point out the example of a rank two
Abelian covering space of the two-sphere with four points removed which admits
non-constant positive harmonic functions, thus showing that the assumption that N
is closed is essential. This example was generalized and systematized by Epstein to
Abelian covers of surfaces of finite type [11, Theorem 3].

For the case where N is closed, Lyons and Sullivan posed the problem whether
� has subexponential growth if and only ifM has the strong Liouville property [20,
p. 305]. Bougerol and Elie obtained the converse direction of this under the assumption
that � is linear [7, Theorem 1.6] and also [3, Theorem 1.1]. Recently, the second author
of this article proved the converse direction in full generality [22].

By the well known theorem of Anderson and Schoen, @�M is naturally isomorphic
to the sphere at infinity and @min

� M D @�M ifM is a complete and simply connected
Riemannian manifold with pinched negative sectional curvature [1, 2, 17]. In the case
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where M is the universal covering space of a closed rank one manifold N of non-
positive curvature, the Poisson boundary P .M; �/ is naturally isomorphic to the
sphere at infinity ofM , using again the isomorphism between P .M;�/ and P .X;�/,
where X is a fibre of � WM ! N and � an associated family of Lyons–Sullivan
measures on X [4]. However, the relation between the Martin boundary @�M and the
sphere at infinity is unclear. One hope in this direction, nurtured by the isomorphism
@min
� M D @min

� X , is that the latter might be more accessible than @min
� M .

1.6. Structure of the article. Besides other preliminaries, Section 2 contains short
descriptions of Martin and Poisson boundaries. In Section 3, we describe the LS-
discretization procedure and its properties. Much of this is a translation of known results
about the Laplacian and Brownian motion. However, Theorem 3.31 and Corollary 3.32
about Martin boundaries and positive harmonic functions are also new for the Laplacian
and Brownian motion. In Section 4, we apply the results of Section 3 to covering
projections and prove TheoremsA–D. The general Theorem 4.2 and Corollary 4.3 about
diffusions on covering spaces might be useful in other contexts. In Section 5, we get
analogs of Theorems A–D and extensions of Theorem E–G for properly discontinuous
group actions. In Section 6, we obtain analogs of Theorems A–G for random walks,
that is, Markov chains on countable sets.

2. Preliminaries

2.1. Diffusion operators and processes. LetM be a connected manifold and L be
an elliptic diffusion operator onM , in coordinates ofM written as

Lf D
1

2

X
ij

aij
@2f

@xi@xj
C

X
k

bk
@f

@xk
;(2.1)

where the matrix .aij / is symmetric and positive definite. A function h onM is said
to be L-harmonic if Lh D 0.

The inverse of the coefficient matrix .aij / is the fundamental matrix of a well
defined Riemannian metric onM , the Riemannian metric associated toL. Its Laplacian
� has twice the principal symbol of �L, and hence LC 1

2
� is of first order. Since L

and � vanish on constant functions, LC 1
2
� is a vector field.

We assume that L is symmetric on C1c .M/ with respect to a smooth volume
element onM , that is, a measure onM of the form '2dv, where ' is a positive smooth
function onM and dv the volume element of the Riemannian metric onM associated
to L. The symmetry of L then implies that

Lf D �
1

2
�f C hr ln ';rf i:(2.2)
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Conversely, any operator of this from is an elliptic diffusion operator onM which is
symmetric on C1c .M/ with respect to the volume element '2dv.

Because of (2.2), the diffusion process .Dt / associated to L is Brownian motion
with drift r ln '. We assume throughout that .Dt / has infinite life time since this is a
consequence of the assumptions in our applications, namely the existence of recurrent
subsets. We will encounter different models of .Dt /, but usually we view it as defined
on the space � of continuous paths !WR�0 !M withDt .!/ D !.t/ and associated
family of probability measures .Px/x2M on�. We have PxŒ!.0/D x�D 1. Moreover,
the distribution of Px at time t > 0 has a smooth density pt;x D pt .x; y/ with respect
to '2dv which is symmetric in x; y. For a measure � onM , we set

(2.3) P� D

Z
M

�.dx/Px :

Recall that .Dt / is a strong Markov process and that, for any f 2 C1c .M/,

f ıDt � f ıD0 �

Z t

0

�
.Lf / ıDs

�
ds(2.4)

is a martingale.

2.2. Martin boundary. The Martin boundary is defined when the diffusion process
is transient, that is, when its Green function G.x; y/ <1 for all x ¤ y inM . Recall
that G.:; y/ is an L-superharmonic function which is L-harmonic onM n ¹yº. Fix
x0 2M and define the Martin kernel functions K.:; y/ by

K.x; y/ D
G.x; y/

G.x0; y/
:(2.5)

A sequence .yn/ in M is said to converge to a Martin boundary point � of M if
d.x0; yn/ ! 1 and if K.:; yn/ converges (pointwise) to a harmonic function on
M . The limit function is then denoted by K.:; �/ and is identified with �, and the
space of limit functions is denoted by @LM . The Martin compactification M.M;L/D

M [ @LM , where points y 2M are identified with the Martin kernel K.:; y/. Then
M.M;L/ together with pointwise convergence is a compact Hausdorff space withM
homeomorphically embedded.

Note that K.:; �/ is positive with K.x0; �/ D 1. Any minimal positive harmonic
function is a Martin boundary point. Moreover, for any positive L-harmonic function
h onM with h.x0/ D 1, there is a unique probability measure � on the minimal part
@min
L M of the Martin boundary @LM , the part of @LM consisting of minimal positive
L-harmonic functions, such that

h.x/ D

Z
@min

L
M

K.x; �/�.d�/:(2.6)
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We will also need Martin boundaries @�X of random walks on countable sets X with
family � D .�x/x2X of transition probabilities. The definition and discussion of these
is analogous to the above.

2.3. Poisson boundary. Consider a random walk on a countable set X with family
� D .�x/x2X of transition probabilities and path space � D XN0 . Assume that the
random walk is irreducible, that is, for all x; y in X , there exist x1; : : : ; xk in X such
that

�x.x1/�x1
.x2/ : : : �xk�1

.xk/�xk
.y/ > 0:(2.7)

For k � 2, define a family �k D .�kx/x2X of probability measures onX recursively by

�kx.y/ D
X
z2X

�x.z/�
k�1
z .y/;(2.8)

where �1 D � (and �0 D ı D .ıx/x2X , the family of Dirac measures on X). Irre-
ducibility is then equivalent to the property that, for all x; y 2 X ,

�kx.y/ > 0(2.9)

for some k � 1.
Endow X with the discrete topology and let B� be the �-algebra of Borel sets

of �. For x 2 X , let Px be the probability measure on .�;B�/ with

PxŒ!.0/ D x0; !.k1/ 2 A1; : : : ; !.kn/ 2 An�

D ıx.x0/
X
x12A1

�k1
x0
.x1/

X
x22A2

�k2�k1
x1

.x2/ � � �
X
xn2An

�kn�kn�1
xn�1

.xn/

for all integers 0 < k1 < k2 < � � � < kn and subsets A1; : : : ; An of X . Let F be the
extension of B� by subsets N of � which are null sets with respect to all Px . Then
the measures Px extend naturally to .�;F /.

We say that !1; !2 2 � are stationary equivalent if there are k1; k2 2 N such that
!1.k1 C k/ D !2.k2 C k/ for all k 2 N. We say that a measurable subset A of � is
stationary mod zero if there are sets N� � A and NC � � n A, which are null sets
with respect to all Px , such that .A nN�/[NC is the union of stationary equivalence
classes. The set � of measurable subsets of � which are stationary mod zero is a
�-subalgebra of F . By the irreducibility of the random walk, all the measures Px
are equivalent on � . We call � together with � and the restrictions of the measures
Px to � a Poisson boundary of the Markov chain. More generally, if � W .�; �/!
.P ; T / is a surjection and P is equipped with the measures �x D ��Px , then we
call .P ; T ; .�x/x2X / a Poisson boundary of the Markov chain if ��WL1.P ; T /!
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L1.�;�/ is an isomorphism. (In other words, given the other conditions, ��WT ! �

is an isomorphism modulo sets of measure zero.)
A bounded function f WX ! R is called �-harmonic if

f .x/ D
X
y2X

�x.y/f .y/(2.10)

for all x 2 X . For any such function f , the family .f ıXk/k2N0
is a bounded martin-

gale, where Xk.!/ D !k . Therefore, for each x 2 X ,

f1.!/ D lim
k!1

f
�
Xk.!/

�
exists for Px-almost every ! 2 �. If the limit exists for !, then also for any !0 which
is stationary equivalent to !, and then f1.!/ D f1.!0/. Hence the limit function
f1 is �-measurable. Since all Px are equivalent on � , f1 is uniquely defined as an
element of L1.�; �/. Moreover, since .f ıXk/k2N0

is a bounded martingale,

f .x/ D

Z
�

f1.!/Px.d!/:

More generally, for any Poisson boundary as above, we get

f .x/ D

Z
P

'.�/�x.d�/(2.11)

where ' D f1 ı � . Conversely, any f defined in this way is a bounded �-harmonic
function on X . The above formula is similar to the Poisson formula (2.6), except that
here the measures are given, whereas there the kernel functions are given.

2.4. FC-hypercenters and FC-hypercentral groups. For any group � , let FC.�/
be the union of all elements of � whose conjugacy classes are finite, the FC-center of
� , a normal subgroup of � containing the center of � . The upper FC-central series of
normal subgroups �˛ of � is defined by

�0 D ¹eº;

�˛=�ˇ D FC.�=�ˇ / if ˛ D ˇ C 1,(2.12)

�˛ D
[
ˇ<˛

�ˇ if ˛ is a limit ordinal;

where ˛ runs over all ordinals. The series of �˛ stabilizes eventually, that is, there
is a first ordinal ˛ with �˛ D �ˇ DW �lim for all ˇ � ˛, and �lim is called the FC-
hypercenter of � . We say that � is FC-˛-hypercentral if � D �˛. Replacing the FC
centers by centers, we get the corresponding and more common notions of upper
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central series, hypercenter, and ˛-hypercentral. Clearly, ˛-hypercentral groups are
FC-˛-hypercentral. If the specific ˛ is irrelevant, we also speak of FC-hypercentral or
hypercentral groups, respectively. Synonyms in the literature are FC-hypernilpotent
and hypernilpotent.

Echterhoff showed that � is FC-hypercentral if and only if it is amenable and
every prime ideal of its group C �-algebra is maximal [10], thus providing one reason
to non-experts why such groups are interesting. On the other hand, if � is finitely
generated, then � is FC-hypercentral if and only if it is virtually nilpotent.

3. Lyons–Sullivan discretization

Following earlier work of Furstenberg, Lyons and Sullivan (LS) constructed a
discretization of Brownian motion on Riemannian manifolds [20]. The LS-construction
actually applies to diffusion processes, and this is one of the objectives of this section.
Our presentation of the LS-construction is close to the one in [5], where the original
case of Brownian motion is discussed.

3.1. Balayage and L-harmonic functions. Let F � M be closed and V � M be
open. For ! 2 �, the respective hitting and exit time,

(3.1)
RF .!/ D inf¹t � 0 j !.t/ 2 F º;
SV .!/ D inf¹t � 0 j !.t/ 2M n V º;

are stopping times. For a Borel subset A �M , let

(3.2)
ˇ.�; F /.A/ D ˇF� .A/ D P�

�
!
�
RF .!/

�
2 A

�
;

".�; V /.A/ D "V� .A/ D P�
�
!
�
SV .!/

�
2 A

�
;

where ˇ stands for balayage and " for exit. In the case of Dirac measures, � D ıx ,
we use the shorthand x for ıx . If ˇ.x; F /.F / D 1 for all x 2M , then F is said to be
recurrent. This is equivalent to RF <1 almost surely with respect to each Px .

Proposition 3.3. Let F be a recurrent closed subset ofM , � a finite measure onM ,
and hWM ! R an L-harmonic function. Then we have:
(1) If h is bounded, then �.h/ D ˇ.�; F /.h/.
(2) If h is positive, then ˇ.�; F /.h/ � �.h/.

Proof. It suffices to consider the case where�D ıx . For x 2 F , we have ˇ.x;F /D ıx
and hence that ˇ.x; F /.h/ D h.x/. Let now x 2M n V and

x 2 U1 � U2 � U3 � � � �
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be a sequence of relatively compact open subsets exhausting M n F . Let �n be a
cut-off function on M with Un � ¹�n D 1º � supp �n � UnC1 and set fn D �nh.
Then fn 2 C1c .M/ and hence

Yt D fn ıXt � fn.x/ �

Z t

0

�
.Lfn/ ıXs

�
ds

is aPx-martingale, hence also Yt^�n
, where �n denotes the exit time fromUn. Since fn

and h coincide onUn and h isL-harmonic, we get that h ıXt^�n
is aPx-martingale and

also that h ıXt^�n
DExŒh ıX�n

jFt^�n
�. In particular, h.x/DExŒh ıX�n

�. Now we
have the increasing limit �n! � , in particular the convergenceX�n.!/.!/!X�.!/.!/,
where � denotes the time of hitting F . In the case where h is bounded, the dominated
convergence theorem implies that h.x/ D ExŒh ıX� �. In the case where h is positive,
the Fatou lemma gives

h.x/ D ExŒh ıX�n
� D lim inf ExŒh ıX�n

�

� ExŒlim inf.h ıX�n
/� D ExŒh ıX� �;

where we use that .h ıX�n.!//.!/! .h ıX�.!//.!/.

Corollary 3.4. If the diffusion process onM is recurrent, then positive L-harmonic
functions onM are constant.

Proof. If the diffusion process is recurrent, then any closed ball in M is recurrent.
By Proposition 3.3, a minimum of a positive harmonic function h on such a ball is a
global minimum of h, and hence h is constant, by the maximum principle.

Remark 3.5. The analogue of Corollary 3.4 also holds for random walks.

An L-harmonic function h onM is said to be swept by F if ˇ.x; F /.h/ D h.x/
for all x 2M . Then

�.h/ D ˇ.�; F /.h/:(3.6)

for all finite measures� onM . By Proposition 3.3.1, any boundedL-harmonic function
is swept by any recurrent closed subset ofM .

3.2. LS-discretization and L-harmonic functions. Let X be a discrete subset ofM .
Families .Fx/x2X of compact subsets and .Vx/x2X of relatively compact open subsets
ofM together with a constant C > 1 will be called regular Lyons–Sullivan data for X
or, for short, LS-data for X if

(D1) x 2 VFx and Fx � Vx for all x 2 X ;
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(D2) Fx \ Vy D ; for all x ¤ y in X ;

(D3) F D
S
x2X Fx is closed and recurrent;

(D4) for all x 2 X and y 2 Fx ,

1

C
<
d".y; Vx/

d".x; Vx/
< C:

We say that X is �-recurrent if it admits LS-data. Our requirements (D1) and (D2) are
more restrictive than the corresponding ones in [20] and are conform to the ones in [5].

Suppose now that we are given LS-data as above. For a finite measure � onM ,
define measures

�0 D
X
x2X

Z
Fx

ˇF� .dy/
�
"Vx
y �

1

C
"Vx
x

�
and �00 D

1

C

X
x2X

Z
Fx

ˇF� .dy/ıx(3.7)

onM with support on
S
x2X @Vx and X , respectively.

Proposition 3.8. If h is a positive L-harmonic function onM swept by F and � is a
finite measure onM , then

�.h/ D �0.h/C �00.h/ and �0.h/ �
�
1 �

1

C 2

�
�.h/:

Proof. For the first assertion, we compute

�0.h/ D
X
x2X

Z
Fx

ˇF� .dy/

�
"Vx
y .h/ �

1

C
"Vx
x .h/

�
D

X
x2X

Z
Fx

ˇF� .dy/

�
h.y/ �

1

C
h.x/

�
D

Z
F

ˇF� .dy/h.y/ � �
00.h/

D ˇF� .h/ � �
00.h/ D �.h/ � �00.h/:

Moreover, by (D4), we have

"Vx
y .h/ �

1

C
"Vx
x .h/ �

�
1 �

1

C 2

�
"Vx
y .h/

for all x 2 X and y 2 Fx . This implies the second assertion.

For y 2M , let now

(3.9) �y;0 D

´
ıy if y … X ,
".y; Vy/ if y 2 X ,
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and set recursively, for n � 1,

(3.10) �y;n D .�y;n�1/
0 and �y;n D .�y;n�1/

00:

The associated LS-measure is the probability measure

(3.11) �y D
X
n�1

�y;n

with support on X .

Proposition 3.12. The LS-measures �y have the following properties:
(1) �y is a probability measure on X such that �y.x/ > 0 for all x 2 X ;
(2) for any x 2X and diffeomorphism 
 ofM leavingL,X , and the LS-data invariant,

�
y.
x/ D �y.x/I

(3) for all x 2 X ,
�x D

Z
@Vx

"Vx
x .dy/�y I

(4) for all x 2 X and y 2 Fx different from x,

�y D
1

C
ıx C

Z
@Vx

"Vx
x .dz/

�
d".y; Vx/

d".x; Vx/
�
1

C

�
�zI

(5) for any y 2M n F and stopping time T � RF ,

�y D

Z
�Ty .dz/�z;

where �Ty denotes the distribution of Py at time T .

Proof. For the total mass of the �y;n, we have �y;0.M/ D 1 and, recursively,

�y;n.M/ �

�
1 �

1

C 2

�
�y;n�1.M/ �

�
1 �

1

C 2

�n
�y;0.M/:

Since

�y;0.M/ D �y;n.M/C
X
1�k�n

�y;k.M/;

we get that �y inherits all the mass of �y;0 eventually. This shows the first claim in (1).
The second is clear since Py Œ¹! 2 � j !.t/ 2 Fx for some t > 0º� > 0 for all x 2 X .
Assertion (2) is obvious. Assertions (3)–(5) follow immediately from the definition
of the LS-measures and the strong Markov property of the process, observing that
ˇFy D ıy in (4).
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In the case of Brownian motion, the following is Theorem 1.10 of [5] (where the
reader is referred to the discussion on [20, p. 317]).

Theorem 3.13. Let h be a positive L-harmonic function onM . Then we have:
(1) If h is swept by F , then �y.h/ D h.y/ for all y 2M .
(2) If h is not swept by F , then �y.h/ < h.y/ for all y 2M .

Proof. (1) Let y 2M . Then �y;0.h/D h.y/. With �y;0 D 0, assume by induction that

�y;n.h/C
X
1�k�n

�y;k.h/ D h.y/ with �y;n.h/ �

�
1 �

1

C 2

�n
h.y/:(3.14)

By Proposition 3.8, applied to � D �y;n, we then get

h.y/ D �y;n.h/C
X
1�k�n

�y;k.h/

D �y;nC1.h/C �y;nC1.h/C
X
1�k�n

�y;k.h/

D �y;nC1.h/C
X

1�k�nC1

�y;k.h/

with

�y;nC1.h/ �

�
1 �

1

C 2

�
�y;n.h/ �

�
1 �

1

C 2

�nC1
h.y/:

Hence (3.14) holds for all n. The asserted equality �y.h/ D h.y/ is an immediate
consequence.

(2) If h is not swept by F , there is a point z0 2M n F such that ˇ.z0; F /.h/ < h.z0/.
Then, by the strong Markov property of the process, ˇ.z; F /.h/ < h.z/ for all z in the
connected neighborhood U ofM n F containing z0. Now starting at any y 2M , the
probability of entering U at some positive time is positive.

Denote by HC.M; L/, H1.M; L/, HC.X; �/, and H1.X; �/ the spaces of
positive and boundedL-harmonic and�-harmonic functions onM andX , respectively.
Let HCF .M;L/ be the space of positive L-harmonic functions onM swept by F .

Theorem 3.15. The restriction map HCF .M;L/! HC.X;�/ is an isomorphism. In
particular, the restriction map H1.M;L/! H1.X; �/ is an isomorphism.

In the case of Brownian motion, Theorem 3.15 is Theorem 1.11 of [5]. Mutatis
mutandis, the proof in [5] carries over to our more general setting.
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3.3. LS-path discretization and Poisson boundary. Let .Fx; Vx/ be LS-data for X
and .�y/y2M be the associated family of LS-measures on X . For ! 2 �, set

(3.16) S0.!/ D

´
0 if !.0/ … X;
S
Vx

0 .!/ if !.0/ D x 2 X ,

and recursively, for n � 1,

(3.17)
Rn.!/ D inf

®
t � Sn�1.!/ j !.t/ 2 F

¯
;

Sn.!/ D inf
®
t � Rn.!/ j !.t/ … VXn.!/

¯
;

where Xn D Xn.!/ 2 X with Yn D Yn.!/ D !.Rn.!// 2 FXn.!/.
On Q� D � � Œ0; 1�N , let N0.!; ˛/ D 0 and recursively, for k � 1,

(3.18) Nk.!; ˛/ D inf
®
n > Nk�1.!; ˛/ j ˛n < �

�
Xn.!/; Yn.!/;Zn.!/

�¯
where we write ˛ D .˛1; ˛2; : : : / 2 Œ0; 1�N and Zn D Zn.!/ D !.Sn.!// and where

� D �.x; y; z/ D
1

C

d".x; Vx/

d".y; Vx/
.z/(3.19)

for x 2 X , y 2 Fx and z 2 @Vx . We also set

Tk.!; ˛/ D SNk.!;˛/.!/:(3.20)

For y 2 M , let QPy be the product measure Py ˝ �N on Q�, where � denotes the
Lebesgue measure on Œ0; 1�. Arguing as in [20, Section 8], we arrive at the following
two results.

Lemma 3.21. For y 2M , the distribution of QPy at time T1 is given byX
x2X

�y.x/"
Vx
x :

In particular, for all x 2 X , we have QPy ŒXN1
D x� D �y.x/.

Proof. View ! 2 � as having mass one initially and that it loses

�n D �
�
Xn.!/; Yn.!/;Zn.!/

�
times its remaining mass to the corresponding points x 2 X when entering their
domains Fx at the hitting times Rn.
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By the strong Markov property of the process, the distribution of Py at time S1 is
given by X

x2X

Z
Fx

ˇFy .du/"
Vx
u and

X
x2X

Z
Fx

ˇF"y .du/"
Vx
u

for y 2M nX and y 2 X , respectively, where "y stands for ".y; Vy/ in the latter case.
Now for each ! 2 �, exactly a part �.X1.!/; Y1.!/; Z1.!// of .!; ˛/ 2 Q� satisfy
N1.!; ˛/ D 1. The distribution of the part N1 D 1 of Q� at time S1 is therefore

1

C

X
x2X

Z
Fx

ˇFy .du/
d"

Vx
x

d"
Vx
u

"Vx
u D

1

C

X
x2X

ˇFy .Fx/"
Vx
x

1

C

X
x2X

Z
Fx

ˇF"y .du/
d"

Vx
x

d"
Vx
u

"Vx
u D

1

C

X
x2X

ˇF"y .Fx/"
Vx
x

9>>>>>=>>>>>;
D

X
x2X

�y;1.x/"
Vx
x

for y 2M nX and y 2 X , respectively. The distribution of the remaining partN1 > 1
of Q� at time S1 is then given by �y;1 D .�y;0/0. Using the strong Markov property, we
obtain recursively that the distribution of the parts N1 � k and N1 > k of Q� at time
Sk are given by X

x2X

X
1�j�k

�y;j .x/"
Vx
x and .�y;n/

0;

respectively.

The discussion in [20, p. 321] applies in our setup as well (see also [5, Theorem 2.3]
and [15, Proposition 4]) and gives the following result.

Theorem 3.22. The process .XNk
/k�0 is a Markov process with time homogeneous

transition probabilities �y.x/, where x 2 X and y 2M . More precisely,

QPy ŒXN1
D x1; : : : ; XNk

D xk� D �y.x1/�x1
.x2/ : : : �xk�1

.xk/:

Proof. We show that the distribution of QPy restricted to ¹XN1
D x1; : : : ; XNk

D xkº

at time Tk is given by

�y.x1/�x1
.x2/ : : : �xk�1

.xk/"
Vxk
xk

:

For k D 1, this is Lemma 3.21. Assume recursively that the assertion holds for all j �
k � 1 for some k � 2. Then the distribution of QPy of the part ¹XN1

D x1; : : : ;XNk�1
D

xk�1º of Q� at time Tn�1 is given by

�y.x1/�x1
.x2/ : : : �xk�2

.xk�1/"
Vxk�1
xk�1

:
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Now xk�1 2 X , and hence the second alternative in the definition of the LS-measures
applies. That is, .XN1

/ with initial distribution ".xk�1; Vxk�1
/ has distribution at time

T1 as given in Lemma 3.21 (with y substituted by xk�1). Now using the strong Markov
property, we arrive at the asserted equality.

Theorem 3.23. LS-path discretization induces an isomorphism

P .X; �/! P .M;L/

of Poisson boundaries.

We follow the arguments in the proof of the corresponding [15, Theorem 1].

Proof of Theorem 3.23. As in [15, Theorem 1], we decompose LS-path discretization
into the following four measure preserving maps between Markov processes,

� 3 ! �!
1

�
!
�
Rn.!/

�
; !
�
Sn.!/

��
 �
2

�
!
�
Rn.!/

�
; !
�
Sn.!/

�
; ˛n

�
�!
3

�!
3

�
!.RNk

.!//; !
�
SNk

.!/
�
; ˛Nk

�
�!
4

�
XNk.!/.!/

�
2M �XN :

Since the ˛n are i.i.d. and independent of !, the second map induces an isomorphism of
the corresponding Poisson boundaries. Thus we obtain a measurable map P .M;L/!

P .X; �/. By Theorem 3.15, the spaces of bounded harmonic functions onM and X
are isomorphic to each other under this map. Hence it is an isomorphism of Poisson
boundaries.

The difference to the argument in [15] is that we can use the isomorphism
H1.M;L/! H1.X; �/ from Theorem 3.15, whereas in [15], the aim of the proof
is to establish the latter.

3.4. Green functions and Martin boundary. For x 2 X and y 2M , we let

(3.24) g.y; x/ D ıy.x/C
X
k�1

QPy.XNk
D x/;

the Green function associated to the Markov chain .XNk
/k�1.

Proposition 3.25. For all x 2 X and y 2M n Vx , we have

g.y; x/ D
1

C

1X
nD1

�y;n.Fx/;

where �y;n denotes the distribution of Py w.r.t. !.Rn.!//, that is,

�y;n.A/ D Py
�
!
�
Rn.!/

�
2 A

�
:
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In the case of Brownian motion, Proposition 3.25 is Equation 2.5 of [5]. Mutatis
mutandis, the proof in [5] carries over to our setting.

The Green function G of the diffusion process .Dt / is given by

(3.26) G.x; y/ D

Z 1
0

p.t; x; y/ dt:

The Green function measures the average time of sojourn of a path in subsets ofM ,
that is, for any Borel set B �M , we have

(3.27)
Z
B

G.x; y/'2.y/dv.y/ D Ex
�Z 1

0

�B
�
!.t/

�
dt

�
:

Recall that G is smooth on the set of .x; y/ with x ¤ y.
More generally, for any open subset V ofM , we let GV be the Green function of

V . It is obtained by stopping the diffusion process .Dt / upon leaving V .

Proposition 3.28. For all x 2 X and y 2M n Vx , we have

G.y; x/ D

1X
nD1

Z
@Fx

GVx
.z; x/�y;n.dz/:

In the case of Brownian motion, Proposition 3.25 is Equation 2.6 of [5]. Mutatis
mutandis, the proof in [5] carries over to our setting.

Following [5], we say that LS-data .Fx; Vx/ forX are balanced if there is a constant
B such that

(D5) GVx
.z; x/ D B for all x 2 X and z 2 @Fx .

The following result extends [5, Theorem 2.7].

Theorem 3.29. If .Fx; Vx/ are balanced LS-data for X with constants B and C , then

G.y; x/ D BCg.y; x/ for all x 2 X and y 2M n Vx :

In particular, the diffusion process .Dt / is transient if and only if the �-random walk
on X is transient. In this case, �x.y/ D �y.x/ for all x; y 2 X .

Proof. The displayed formula follows immediately from Proposition 3.25 and Propo-
sition 3.28. For the assertion about the transience, we recall that .Dt / is transient if
and only if G.x; y/ <1 for some – and then all – points x ¤ y inM and that the
�-random walk on X is transient if and only if g.x; y/ <1 for some – and then all –
points x; y in X .

Since G.x; y/ D G.y; x/ for all x; y 2 X , we conclude that g.x; y/ D g.y; x/ for
all x; y 2 X . The proof of the symmetry of � is now exactly the same as in the case of
Brownian motion in [5, Theorem 2.7].
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We arrive at the extension of [5, Theorem2.8], and the proof there carries over to
our setting.

Theorem 3.30. Assume thatM isL-transient and thatX is endowed with the family �
of LS-measures associated to balanced LS-data .Fx; Vx/. Then the inclusion X !M

extends to a convex homeomorphism between @�X and @LM \ NX , where NX denotes
the closure of X in M.M;L/.

We say that X is �-uniform if there are families .Kx � Ux/x2X , where theKx are
compact and the Ux relatively compact and open, such that

(U1)
S
x2X Kx DM and the open covering ofM by the Ux is locally finite;

(U2) for all x 2 X and y 2 Kx ,

1

C
<
d".y; Ux/

d".x; Ux/
< C:

Here the constant C > 1, if it exists, is chosen to coincide with the one in (D4). Note
that the family of .Kx; Ux/ can be chosen independently of the LS-data.

Theorem 3.31. Assume that M is L-transient, that X is �-uniform, and that X is
endowed with the family � of LS-measures associated to balanced LS-data .Fx; Vx/.
Then
(1) the �-random walk on X is transient and the inclusion X ! M extends to a

homeomorphism

@min
� X ! @min

L M I

(2) @min
L M D @LM if and only if @min

� X D @�X .

Proof. Choose the origin x0 for theMartin kernels associated toL and� inX ; see (2.5).
Then they coincide on all points .y; x/ inM �X with y … Vx and x ¤ x0, by Theo-
rem 3.29.

Choose a family .Kx;Ux/x2X satisfying (U1) and (U2). Let � 2 @min
L M and denote

the associated minimal positive L-harmonic function onM by K.:; �/. Let .yn/ be
a diverging sequence inM converging to �; that is, we have K.:; yn/! K.:; �/. Let
.xn/ be a sequence in X such that yn 2 Kxn

for all n. In a first step we show that
K.:; xn/! K.:; �/.

Indeed, since the G.z; :/ are L-harmonic onM n ¹zº, the uniform Harnack con-
stants imply that, for any x 2M ,

K.x; xn/ < C
2K.x; yn/
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for all sufficiently large n. Hence, up to passing to a subsequence, the sequence of
K.:; xn/ converges to a positive L-harmonic function K.:; �/ on M with K.:; �/ �
C 2K.:; �/. Since K.:; �/ is minimal and K.x0; �/ D K.x0; �/ D 1, we conclude that
K.:; �/ D K.:; �/. Since this holds for any converging subsequence of the sequence of
K.:; xn/, we get that K.:; xn/! K.:; �/ as asserted.

In a next step, we show that K.:; �/ restricts to a minimal positive �-harmonic
function on X . By passing to a subsequence of .xn/ if necessary, we conclude first that
.K.:; xn// converges in the Martin compactification of X . Clearly, the limit is K.:; �/
and hence K.:; �/ is �-harmonic on X . From Theorem 3.13, we get that K.:; �/ is
�-harmonic onM , that is, thatK.y;�/D �y.K.:; �// for all y 2M . Suppose now that
f is a �-harmonic function on X such that f � K.:; �/ on X . Then the L-harmonic
extension h of f toM , given by h.y/ D �y.f /, satisfies

h.y/ D �y.f / � �y
�
K.:; �/

�
D K.y; �/

for all y 2 M . Since K.:; �/ is a minimal positive L-harmonic function onM , this
implies that h D cK.:; �/ onM . But then f D hjX D cK.:; �/ on X . Hence K.:; �/
is a minimal positive �-harmonic function on X . In this sense, @min

L M � @min
� X .

Conversely, the extension of a minimal positive �-harmonic function on X is a
minimal positive L-harmonic function onM , since otherwise it would be a nontrivial
integral against some measure supported on @min

L M . But then the same integral would
apply to the restriction to X , by the first part of the proof. This is a contradiction.

As for (2), suppose that @min
� X D @�X . Consider a diverging sequence of points

yn 2M such that K.:; yn/! K.:; �/ 2 @LM . Choose xn 2 X with yn 2 Kxn
. Then

the sequence of xn is diverging and, up to passing to a subsequence, we have

K.:; xn/! K.:; �/ 2 @�X D @
min
� X:

On X , we have K.:; �/ � C 2K.:; �/, and hence K.:; �/ D K.:; �/ on X since K.:; �/
is minimal and K.x0; �/ D K.x0; �/ D 1. But then K.:; �/ is minimal onM by what
we proved above, and therefore @min

L M D @LM . The proof of the other direction is
similar.

Since any positive L-harmonic function onM and positive �-harmonic function
on X can be written as an average of minimal positive L-harmonic and �-harmonic
functions, respectively, Theorem 3.31 has the following consequence.

Corollary 3.32. Assume thatM is L-transient, that X is �-uniform, and that X is
endowed with the family � of LS-measures associated to balanced LS-data .Fx; Vx/.
Then
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(1) for any h 2 HC.M;L/, the restriction hjX of h to X belongs to HC.X;�/. More
precisely, h.y/ D �y.h/ for all y 2M ;

(2) the restriction map

HC.M;L/! HC.X; �/; h 7! hjX ;

is an isomorphism of cones.

4. Diffusion processes and covering projections

Let � WM ! N be a covering of connected manifolds with group � of covering
transformations. We do not assume that � is normal, that is, that the action of � is
transitive on the fibers of � . Let L0 be an elliptic diffusion operator on N and L be
the pull back of L0 toM . Let .Et /t�0 be the diffusion process on N associated to L0.
For simplicity we assume here that .Et / has infinite life time. Then we may view .Et /
as the evaluation at time t � 0 on the space �N of continuous paths !WR�0 ! N

together with a family of probability measures .Qy/y2N on�N which are determined
by their distributionsQy Œ!.t/ 2 A�, A 2 B.N /, at times t � 0, where B.N / denotes
the � -algebra of Borel sets in N .

By the path lifting property of � , the map

H W
®
.x; !/ 2M ��N j �.x/ D !.0/

¯
! �M ; H.x; !/ D !x;(4.1)

where !x denotes the continuous lift of ! toM starting at x, is a homeomorphism with
respect to the compact-open topologies. In what follows, we identify �M accordingly.
EvaluationDt at time t � 0 on �M is then given byDt .x; !/ D !x.t/.

Theorem 4.2. For x 2M with �.x/ D y, define the probability measure Px on �M
by

PxŒA� D Qy
�
¹! j .x; !/ 2 Aº

�
; A 2 B.�M /:

Then .Dt /t�0 together with the probability measures .Px/x2M is the diffusion process
onM with generator L on C1c .M/.

Proof. Let V � N be a relatively compact and connected open domain with smooth
boundary such that a neighborhood V 0 of NV is evenly covered by � , and let U 0 be a
sheet of � over V 0. Then � WU 0 ! V 0 is a diffeomorphism with ��L0 D L. Hence
the diffusion processes associated to L on U D ��1.V / \ U 0 and L0 on V , started
at any x 2 U respectively y D �.x/ 2 V , correspond to each other until exiting U
respectively V . By the strong Markov property of diffusion processes, this implies
that .Dt / is the diffusion associated to L.
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Corollary 4.3. For all x 2M with �.x/ D y, we have

Qy Œ!.t/ 2 A� D PxŒ!.t/ 2 �
�1.A/�; A 2 B.N /:

In particular, if the distributions ofD and E are given by densities p D p.t; x; u/ on
M and q D q.t; y; v/ on N with respect to associated smooth volume elements onM
and N , then

q.t; y; v/ D
X

u2��1.v/

p.t; x; u/:

From now on, we assume that N is L0-recurrent, that is, that the diffusion process
onN associated toL0 is recurrent. We choose z0 2N and letX D ��1.z0/, a discrete
subset ofM .

(C) We let F0 � V0 be connected neighborhoods of z0 in N such that F0 is compact,
V0 is open and relatively compact, and V0 is evenly covered by � . For x 2 X , we
let Fx � Vx be the connected components of F D ��1.F0/ and V D ��1.V0/
containing x.

Any such family .Fx; Vx/x2X , is �-equivariant, that is, 
Fx D F
x and 
Vx D V
x
for all 
 in the group � of covering transformations of � .

Lemma 4.4. If N is L0-recurrent, then
(1) any family .Fx; Vx/ satisfying (C) constitutes LS-data for X , and the associated

LS-measures are �-equivariant;
(2) X admits balanced LS-data satisfying (C).
Moreover, if N is compact, then X is �-uniform.

Proof. (1) Since N is connected and L0-recurrent, the diffusion process on N asso-
ciated to L0 started at any point of N will hit F0 with probability one. Hence its lift
started at any point ofM will hit the preimage F of F0 with probability one. Therefore
F is recurrent. The existence of a uniform Harnack constant is clear.

(2) Let V0 be a connected and relatively compact open neighborhood of z0 in N which
is evenly covered by � . Let GV0

be the Green function of V0 for the operator L0. Then
GV0

.z0; :/ vanishes on the boundary of V0 and GV0
.z0; z/ tends to infinity as z 2 V0

tends to z0. Moreover, under � ,GV0
corresponds to the Green functionsGVx

of the Vx .
Since V0 is evenly covered, we have Vx \ Vy D ; for all x ¤ y in X . Hence for any
constant B > 0, the connected components Fx of ¹GVx

� Bº containing x together
with the Vx are balanced LS-data that satisfy (C).

It remains to prove the last assertion. Now the Riemannian metric on N associated
to L0 is complete sinceM is compact. Its pull back toM is the Riemannian metric on
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M associated toL. For x 2X , letKx be the closed ball of radius diamM around x and
Ux the open ball of radius diamM C 1. Since the curvature ofM is uniformly bounded,
the pairs .Kx;Ux/ have a uniformHarnack constant as required; see [8, Theorem 6].

Proof of Theorems A–D in the introduction. Theorem A and Theorem B are immedi-
ate consequences of Theorem 3.31 and Corollary 3.32, using that X is �-uniform and
choosing balanced LS-data satisfying (C) (using Lemma 4.4.2).

For the first three assertions of Theorem C, we need LS-data satisfying (C), not
necessarily balanced. With such data, Assertion (1) is a consequence of Theorem 3.15,
using that bounded harmonic functions are swept by F (Proposition 3.3). Assertion (2)
follows from Theorem 3.13 and Assertion (3) from the second assertion in Theo-
rem 3.15. Assertion (4) follows from Theorem 3.29, where we now choose balanced
LS-data satisfying (C) (using Lemma 4.4.2).

Assertion (1) of Theorem D follows from Theorem 3.23 with any choice of LS-data
satisfying (C). Assertion (2) is a consequence of Theorem 3.30, where we choose
balanced LS-data satisfying (C) (using Lemma 4.4.2).

5. Diffusion processes and properly discontinuous actions

In the case of a covering � WM ! N considered in Section 4, the group � of cov-
ering transformations acts properly discontinuously and freely onM and the diffusion
operator L onM is the pull back of a diffusion operator on N . The action of � on
the fibers of � is transitive if the covering is normal. We consider now the case of
a properly discontinuous action of a group � on M , extending the case of normal
coverings. As before, we let L be a diffusion operator onM which is symmetric with
respect to a volume element '2dv, where ' is a positive smooth function onM and dv
the volume element of the Riemannian metric onM associated to L. We assume that
L and ' are �-invariant. Without loss of generality, we also assume that the action of
� onM is effective.

We say thatM is L-recurrent mod � if the stochastic process on �nM induced by
the L-diffusion onM is recurrent. Clearly, L-recurrence mod � is equivalent to the
property that any �-invariant neighborhood of any orbit �x, x 2M , is recurrent with
respect to the L-diffusion.

We assume from now on now thatM is L-recurrent mod � . We let x0 2M be a
point with trivial isotropy group and X D �x0 be its �-orbit.

(A) We let F0 � V0 be connected neighborhoods of x0 such that F0 is compact, V0 is
open and relatively compact, and 
F0 \ V0 D ; for all 
 2 � not equal to e. For
x D 
x0, we let Fx D 
F0 and Vx D 
V0.
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Except for Assertion (3), which is an immediate consequence of Proposition 3.12,
the proof of the following lemma is very similar to the proof of Lemma 4.4 and will
therefore be omitted.

Lemma 5.1. IfM is L-recurrent mod � , then
(1) any family .Fx; Vx/ satisfying (A) constitutes LS-data for X , and the associated

LS-measures are �-equivariant;
(2) X admits balanced LS-data satisfying (A);
(3) under the identification X Š �x0 via the orbit map, the measures �x correspond

to the left translates of a probability measure � on � with supp � D � .
Moreover, if the action of � onM is uniform, then X is �-uniform.

The proofs of the next assertions are very similar to the ones of Theorems A–D at
the end of Section 4 and will therefore be omitted.

Theorem A0–D0. The assertions of Theorems A and B hold if �nM is compact, the
assertions of Theorems C and D ifM is L-recurrent mod � .

We now come to the extensions of Theorems E, F, and G.

Theorem E0. If M is L-recurrent mod � and h is a minimal positive L-harmonic
function onM , then h is constant or 
�h=h is unbounded for some 
 2 � .

Proof. If there is a constant b.
/ such that 
�h=h � b.
/, then 
�h=h D c.
/ for
some constant c.
/. Hence, if there is no 
 2 � such that 
�h=h is unbounded, there is
a map cW�!RC such that 
�h=hD c.
/ for all 
 2 � . Clearly, c is a homomorphism.

We let x0 2 M be a point with trivial isotropy group and normalize h so that
h.x0/ D 1. Then h.
x0/ D c.
/ for all 
 2 � .

We may assume thatM is L-transient and choose balanced LS-data satisfying (A).
Then the LS-measures on X D �x0 are symmetric. Setting �.
/ D �x0

.
x0/, we
obtain a symmetric probability measure � on � .

Since ker c contains all elements of � of order two, we can write � n ker c D
B [ B�1 as a disjoint union. Using that hjX is �-superharmonic, by Theorem 3.13,
and that c is a homomorphism, we get that

0 D c.1/ � 1

� �.c/ � 1

D

X

2�

�.
/
�
c.
/ � 1

�
D

X

2B

�
�.
/c.
/C �.
�1/c.
�1/ � 2

�
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D

X

2B

�.
/
�
c.
/C c.
/�1 � 2

�
� 0

and hence that c D 1. Therefore h is constant on X D �x0. It now follows from Theo-
rem 3.13 that h attains a minimum along X . But then h is constant, by the maximum
principle.

Theorem F0. IfM is L-recurrent mod � , then any bounded L-harmonic function on
M is invariant under the FC-hypercenter of � . In particular, if � is FC-hypercentral,
then any bounded L-harmonic function onM is constant.

Proof. Choose X D �x0 as above and LS-data satisfying (A). Then X and the associ-
ated family� of LS-measures are �-invariant. Let h be a boundedL-harmonic function
onM . Then hjX is �-harmonic and therefore invariant under the FC-hypercenter of
� , by Theorem F00. But then h is also invariant under the FC-hypercenter of � , by
Theorem C0 (3). If � is FC-hypercentral, then h is constant, again by Theorem F00 and
Theorem C0 (3).

Theorem G0. IfM is L-recurrent mod � , then there is a �-invariant bounded projec-
tion L1.M/! H1.M;L/. In particular, if all bounded L-harmonic functions on
M are constant, then � is amenable.

Proof. For f 2 L1.M/, let f 0 D A. Nf jX /, where AWL1.X/! H1.X; �/ is the
projection from TheoremG00, where Nf .x/DExŒf ıX1�. Then f 0 is the restriction of a
unique bounded L-harmonic functionHf onM , andH is the required projection.

6. Random walks and harmonic functions

In what follows, we consider random walks, that is, Markov chains on countable
sets. Let � be a random walk on Y , given by a family .�y/y2Y of probability measures
on Y . We let .Py/y2Y be the associated family of probability measures on the sample
space � D Y N0 . We say that � is symmetric if

(6.1) �y.z/ D �z.y/ for all y; z 2 Y .

We say that � is irreducible if, for all y; z 2 Y , there exist y1; : : : ; yk 2 Y such that

(6.2) �y.y1/�y1
.y2/ : : : �yk�1

.yk/�yk
.z/ > 0:

For k � 2, we define a family �k D .�ky /y2Y of probability measures on Y by

(6.3) �ky .z/ D
X
x2Y

�y.x/�
k�1
x .z/;
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where �1 D �. Irreducibility is then equivalent to the property that, for all y; z 2 Y ,

(6.4) �ky .z/ > 0 for some k � 1.

If � is symmetric, then also �k , for any k � 2.
We assume that a countable group � acts on Y and that � is �-invariant, that is,

that we have

(6.5) �
y.
z/ D �y.z/

for all y; z 2 Y and 
 2 � . Then the �k are also �-invariant.
For X � Y and ! 2 Y N0 , we let RX .!/ D inf¹k � 1 j !k 2 Xº. We say that X

is �-recurrent if Py ŒRX .!/ <1� D 1 for any y 2 Y . Then the family � D .�y/y2Y
of hitting probabilities,

(6.6) �y.x/ D Py
�
!
�
RX .!/

�
D x

�
D

X
i�0

X
y1;:::;yi2Y nX

�y.y1/�y1
.y2/ : : : �yi

.x/;

where y 2 Y and x 2 X , are probability measures on X and define a random walk
with sample space � D Y �XN . By the definition of �, we have

(6.7) �y.x/ D �y.x/C
X

z2Y nX

�y.z/�z.x/

for all y 2 Y and x 2 X . By the �-recurrence of X , the space of sequences in Y N0

which have infinitely many of its members in X has full Py-measure for all y 2 Y ,
and the subsequences consisting of the corresponding starting members and members
belonging to X will be called the X -subsequences.

Proposition 6.8. Let X � Y be a �-invariant �-recurrent subset. Then the family �
of hitting probabilities has the following properties:
(1) � is �-invariant.
(2) � is symmetric on X if � is symmetric.
(3) The Green functions g of � and G of � satisfy

g.y; x/ D G.y; x/ for all y 2 Y and x 2 X .

In particular, the �-random walk on X is transient if and only if the �-random
walk on Y is transient.



W. Ballmann and P. Polymerakis 360

Proof. (1) is clear, and (2) follows immediately from (6.6). As for (3), we have

G.y; x/ D ıy.x/C
X
i�1

Py Œ!i D x�

D ıy.x/C
X
i�0

X
y1;:::;yi2Y

�y.y1/�y1
.y2/ : : : �yi

.x/

D ıy.x/C
X
j�0

X
x1;:::;xj2X

�y.x1/�x1
.x2/ : : : �xj

.x/

D g.y; x/;

where we use (6.6) to pass from the second to the third line.

We say that the action of � on Y is cofinite if �nY is finite. We say that Y is
�-recurrent mod � if the orbits of � in Y are �-recurrent.

Recall that a function h on X is �-harmonic if it satisfies (1.1) for all y 2 X .
Similarly, a function h on Y is �-harmonic if it satisfies (1.1) for all y 2 Y , where Y is
substituted for X and � for �. If h is �-harmonic, then h is �k-harmonic for all k � 1,
and similarly for �-harmonic functions.

TheoremA00–D00. Substituting Y forM and � forL and lettingX be an orbit of� in Y ,
the assertions of Theorems A and B hold if �nY is finite, the assertions of Theorems C
and D if Y is �-recurrent mod � . Here LS-path discretization in Theorem C.1 has to
be replaced by passage to X -subsequences.

Proof. Given a �-harmonic function h on X , we want to show that it is the restriction
of a �-harmonic function on Y . To that end, we extend h to Y by setting

h.y/ D
X
x2X

�y.x/h.x/:(6.9)

Since h is �-harmonic on X , the extension agrees with the original h on X . However,
we have to verify that h is well defined on Y nX , that is, that the sum on the right hand
side is finite for all y 2 Y nX . Since �y is a probability measure on X for all y 2 Y ,
this is clear if h is bounded.

Lemma 6.10. For any y 2 Y , there exist y0 2 X and a constant c > 0 such that

�y.x/ � c�y0
.x/ for all x 2 X .

Proof. We can assume y 2 Y nX . By the irreducibility of �, there exist i � 0, y0 2 X ,
and y1; : : : ; yi 2 Y nX such that �y0

.y1/ � � � �yi
.y/ > 0. Using (6.7), we get

�yi
.y/�y.x/ �

X
z2Y nX

�yi
.z/�z.x/ D �yi

.x/ � �yi
.x/ � �yi

.x/
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for all x 2 X . Hence �y.x/ � �yi
.x/=�yi

.y/. Recursively, we get that

�y.x/ �
1

�yi
.y/ � � � �y0

.y1/
�y0

.x/(6.11)

for all x 2 X .

We continue with the proof of the theorem. ThereforeX
z2Y

�y.z/h.z/ D
X

x2X:z2Y

�y.z/�z.x/h.x/

D

X
x;z2X

�y.z/�z.x/h.x/C
X
x2X

.�y.x/ � �y.x//h.x/

D

X
x2X

�y.x/h.x/ D h.y/;

and hence the extension (6.9) of h is �-harmonic on Y .
Suppose first that �nY is finite, and fix a finite set A of representatives of the

�-orbits in Y . Since � is irreducible and A is finite, there are a k � 1 and an " > 0 such
that �kx .y/ � " for all x; y 2 A. Since � is �-invariant and �-harmonic functions are
also �k-harmonic, we get that h.
x/ � "h.
y/ for all positive �-harmonic functions
h, 
 2 � , and x; y 2 A.

Choose an origin x0 2 X \A. By Proposition 6.8.3, the associated Martin kernels
for the � and �-random walks coincide on Y �X ,

K.y; x/ D
G.y; x/

G.x0; x/
D

g.y; x/

g.x0; x/
D k.y; x/

for all y 2 Y and x 2 X . Hence if .xn/ is a diverging sequence inX such thatK.:; xn/
converges to a positive �-harmonic function h on Y , then the restriction of h to X is a
positive �-harmonic function on X .

Let now .yn/ be a diverging sequence in Y such that yn ! � 2 @min
� Y , that is,

K.:; yn/! K.:; �/, a minimal positive �-harmonic function on Y . Write yn D 
nan
with 
n 2 � and an 2 A and set xn D 
nx0. Then .xn/ is a diverging sequence in
X . Since K.:; xn/ and K.; :yn/ are �-harmonic away from xn and yn, respectively,
we get from the above that K.:; xn/ � "�2K.:; yn/ away from xn and yn, and hence
any limit � of (a subsequence of) .K.:; xn// is a positive �-harmonic function on Y
dominated by �. Since � is minimal and �.x0/ D �.x0/ D 1, we conclude that � D �.
Since k D K on Y �X , we also conclude that the restriction of � to X is �-harmonic.
Therefore the minimal part of @�Y is contained in @�X . Conversely, by the above, any
bounded or positive �-harmonic function on X extends to a �-harmonic function on
Y . It follows now easily that @min

� X D @min
� Y .

The proofs of the remaining assertions are similar to the previous ones.
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Lemma 6.12. If �nX is finite and h is a positive �-harmonic function on X , then

�h=h is bounded for any 
 in the center of � .

Proof. Let 
 belong to the center of � . For all a 2 � , x 2 X , and k � 1, we then have

�kax.
ax/ D �
k
ax.a
x/ D �

k
x.
x/:

Hence if c > 0 and k � 1 are such that �kx.
x/ � c for all x in a finite set of represen-
tatives of the orbits of � in X , then �kx.
x/ � c > 0 for all x 2 X . With such c and k,
we obtain

h.x/ D
X
y2X

�kx.y/h.y/ � �
k
x.
x/h.
x/ � ch.
x/

for any x 2 X , and then 
�h=h � 1=c.

Together with the �-invariance, symmetry of � gives

�x.

�1x/ D �
x.x/ D �x.
x/;(6.13)

for all x 2 Y (and similarly for � on X ).

Theorem E00. Suppose that � is symmetric and that Y is �-recurrent mod � . Let h be
a minimal positive �-harmonic function on Y . Then either h is constant or there is a

 2 � such that 
�h=h is unbounded.

Proof. Let x0 2 Y and set X D �x0. Normalize h so that h.x0/ D 1 and assume
that 
�h=h is bounded for all 
 2 � . Then c.
/ D 
�h=h is a constant for all 
 2 � .
Clearly, cW� ! R>0 is a homomorphism. Using that hjX is �-superharmonic (by an
analog of Theorem 3.13) and (6.13), we get

0 D h.x0/ � 1

� �x0
.h/ � 1

D

X
x2X

�x0
.x/.h.x/ � 1/

D
1

2j�0j

X

2�

�
�x0

.
x0/h.
x0/C �x0
.
�1x0/h.


�1x0/ � 2
�

D
1

2j�0j

X

2�

�x0
.
x0/

�
c.
/C c.
/�1 � 2

�
� 0;

where �0 denotes the isotropy group of x0. It follows that c.
/ D 1 for all 
 2 � with
�x0

.
x0/ > 0. By passing to �k for an appropriate k if necessary, the latter can be
achieved for each 
 2 � . Hence h is invariant under � . But then h is constant since Y
is �-recurrent mod � .
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If � is Abelian and the action of � on Y is cofinite, then 
�h=h is bounded for all

 2 � , by Lemma 6.12. Hence Theorem E00 has the following consequence.

Corollary 6.14. If � is Abelian, � is symmetric, and the action of � on Y is cofinite
then any positive �-harmonic function on Y is constant.

For left-invariant Markov chains on groups, Corollary 6.14 is well known and
attributed to Choquet and Deny, who characterize, more generally, solutions � of the
equation � D � � � for general measures � on locally compact Abelian groups [9,
Theorem 3].

Example 6.15. The function ex is a positive �-harmonic function on Z with respect
to the non-symmetric probability measure � supported on ¹�1; 1º with �.�1/ D
e=.e C 1/ and �.1/ D 1=.e C 1/.

Using Margulis’s reduction to the Abelian case [21], we have the following conse-
quence of Corollary 6.14.

Corollary 6.16. If � is nilpotent and � an irreducible symmetric probability measure
on � , then any positive �-harmonic function on � is constant.

We now come to bounded harmonic functions. We will need the following special
case of [18, Theorem 3.9].

Lemma 6.17. Assume that �nY is finite. Let � 2 � and h 2 H1.Y; �/. Assume that
h.
�y/ D h.�
y/ for all 
 2 � and y 2 Y . Then h.�y/ D h.y/ for all y 2 Y .

Theorem F00. If �nY is finite, then all bounded �-harmonic functions on Y are invari-
ant under the FC-hypercenter of � . In particular, if � is FC-hypercentral, then Y does
not have non-constant bounded �-harmonic functions.

The arguments in the proof are taken from the proofs of Lemma 2.4 and Corol-
lary 2.5 in [19].

Proof of Theorem F00. Let N be a normal subgroup of � such that all h 2 H1.Y; �/

are N -invariant and 
 2 � have the property that its conjugacy class in �=N is finite.
Then the centralizer of 
 in �=N has finite index in �=N and, therefore, its preimage
� 0 in � finite index in � . We have 
 2 � 0 and N � � 0. Now � 0nY is finite since � 0

has finite index in � . By definition, Œ
; � 0� � N , hence any commutator 
�
�1��1

with � 2 � 0 leaves any h 2 H1.Y; �/ invariant. But then 
 leaves all h 2 H1.Y; �/

invariant, by Lemma 6.17.
Let N now be the normal group of 
 2 � which leave all h 2 H1.Y; �/ invariant.

Then, by the above, FC.�=N/ is trivial. Hence �˛ � N for any ordinal ˛.
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If � is hypercentral, then h is �-invariant and has therefore at most j�nY j many
values. In particular, h has a maximum. Hence h is constant, by the maximum prin-
ciple.

Theorem G00. There is a �-invariant bounded projection L1.X/! H1.X; �/. In
particular, if the action of � is proper and all bounded �-harmonic functions on X
are constant, then � is amenable.

The proof of Theorem G00 consists of a translation of the proof of [20, Theorem 30]
to the discrete case.

Proof of Theorem G00. Let mWL1.N0/ ! R be an invariant mean for the Abelian
semigroup N0, that is, m is a functional with m.1/ D 1, m.f / � 0 if f � 0, and
m.fk/ D m.f / for all f 2 L1.N0/ and k 2 N0, where fk.l/ D f .k C l/.

Let x 2 X and f 2 L1.X/. Then fx WN0 ! R, fx.k/ D �kx.f /, belongs to
L1.N0/, and we set

OmWL1.X/! L1.X/; Om.f /.x/ D m.fx/:

Then k Omk � kmk D 1 and Om.f /D f if f is �-harmonic. Moreover, Om is �-invariant,
since � is �-invariant. Furthermore,

Om
�
�.f /

�
.x/ D m

��
�.f /

�
x

�
D m

��
k 7! �kC1x .f /

��
D m

�
.fx/1

�
D m.fx/ D Om.f /.x/

since m is an invariant mean. Now

�.f /x.k/ D
X
y;z2X

�kx.y/�y.z/f .z/

D

X
y;z2X

�x.y/�
k
y.z/f .z/

D

X
y2X

�x.y/fy.k/:

For an exhausting sequence F1 � F2 � � � � of finite subsets of X , we then obtainˇ̌̌
�.f /x.k/ �

X
y2Fn

�x.y/fy.k/
ˇ̌̌
�

X
y2XnFn

�x.y/k�
k.f /k1 �

X
y2XnFn

�x.y/kf k1

for all k 2 N0. Therefore


�.f /x � X
y2Fn

�x.y/fy




 � X
y2XnFn

�x.y/kf k1:
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Since ˇ̌̌
Om.f /.x/ �

X
y2Fn

�x.y/ Om.f /.y/
ˇ̌̌
D

ˇ̌̌
m.�.f /x/ �

X
y2Fn

�x.y/m.fy/
ˇ̌̌

D

ˇ̌̌
m.�.f /x/ �m

�X
y2Fn

�x.y/fy

�ˇ̌̌
� kmk




�.f /x � X
y2Fn

�x.y/fy





� kmk

X
y2XnFn

�x.y/kf k1;

which tends to 0 as n!1, we conclude that

Om.�.f /x/ D
X
y2X

�x.f / Om.f /.y/;

that is, Om.f / is a �-harmonic function on X . The first assertion follows.
If the action of � is proper, then the isotropy groups �x of � are finite. Fixing a set

R � X of representatives of the �-orbits in X , we define

EWL1.�/! L1.X/; E.f /.
x/ D
1

j�xj

X
�2�x

f .
�/;

where x 2 R. Then kEk � 1 and E.1/ D 1. Furthermore, E is �-equivariant,

E.��f /.
x/ D
1

j�xj

X
�2�x

.��f /.
�/

D
1

j�xj

X
�2�x

f .�
�/

D E.f /.�
x/ D
�
��E.f /

�
.
x/:

Hence Om induces an invariant mean on � if H1.X; �/ is trivial.

Remark 6.18. For the second assertion of Theorem G00, we only need that the stabiliz-
ers of the �-action on X are amenable. Then we would set E.f /.
x/ D mx.
�f /,
where x 2 R and mx is an invariant mean for �x .
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