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A B S T R A C T   

Conversational turn taking in humans involves incredibly rapid responding. The timing mechanisms underpin
ning such responses have been heavily debated, including questions such as who is doing the timing. Similar to 
findings on rhythmic tapping to a metronome, we show that floor transfer offsets (FTOs) in telephone conver
sations are serially dependent, such that FTOs are lag-1 negatively autocorrelated. Finding this serial dependence 
on a turn-by-turn basis (lag-1) rather than on the basis of two or more turns, suggests a counter-adjustment 
mechanism operating at the level of the dyad in FTOs during telephone conversations, rather than a more 
individualistic self-adjustment within speakers. This finding, if replicated, has major implications for models 
describing turn taking, and confirms the joint, dyadic nature of human conversational dynamics. Future research 
is needed to see how pervasive serial dependencies in FTOs are, such as for example in richer communicative 
face-to-face contexts where visual signals affect conversational timing.   

1. Introduction 

A well-known phenomenon in research on human communication is 
that two speakers in conversation are able to take turns rapidly with only 
about 200 millisecond silent gaps in between on average (Ten Bosch, 
Oostdijk and Boves, 2005; de Vos, Torreira, & Levinson, 2015; Stivers 
et al., 2009). This exquisite feat of timing is deemed to be too quick to be 
a purely reactive process, since producing a turn in response to a turn 
end would take considerably longer than this (more on the order of 600 
ms, as evidenced by psycholinguistic experiments on word production 
times, Indefrey & Levelt, 2004; Levinson, 2016). Thus, a more antici
patory mechanism must be at play. By now, we know that this process 
involves prediction of the content (or at least the gist) of the unfolding 
turn, allowing next speakers to begin planning their turn while still 
listening to an on-going turn (Barthel & Levinson, 2020; Barthel, 
Sauppe, Levinson, & Meyer, 2016; Bögels, Magyari, & Levinson, 2015; 
Corps, Crossley, Gambi, & Pickering, 2018). At the same time, predict
ing turn content also allows upcoming speakers to project roughly when 
the current turn may end (de Ruiter, Mitterer, & Enfield, 2006; Sacks, 
Schegloff, & Jefferson, 1974; but see Corps, Gambi, & Pickering, 2018) 
based on a whole suit of possible informative sources, including 

semantics, syntax, and pragmatics. In addition, turn-final cues occurring 
close to turn end, such as phonetic (Local & Walker, 2012) and prosodic 
cues (Schaffer, 1983), help upcoming speakers to anticipate an immi
nent termination and to launch their turn on time (Barthel, Meyer, & 
Levinson, 2017; Levinson, 2016; Levinson & Torreira, 2015). 

This rich suite of information that is predictive of turn ends could 
explain how fast response times in conversation can be achieved despite 
the psycholinguistic complexity involved. In addition, it has been pro
posed that the temporal structure of conversation may facilitate the 
timing of turns. Wilson and Wilson’s (2005) coupled oscillator model 
presumes oscillatory cycles determined by a speaker’s syllable rate 
rhythmically entrains interlocutors’ putative endogenous oscillators. 
Such oscillators are in anti-phase relation with the rhythm dictated by 
the speaker’s syllable rate, and they govern the listeners readiness to 
initiate a turn. Such a mechanism could account for the precise timing of 
turn transitions first noted by Sacks et al. (1974). The oscillatory cycles 
could also account for the timing of transitions that involve some 
overlap or gap which results from a whole host of utterance-related 
factors (such as speech rate, word frequency, turn duration and 
complexity, predictability, speech act, accompanying visual signals, and 
so forth e.g., Corps, Gambi, & Pickering, 2018; Holler, Kendrick, & 
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Levinson, 2018; Roberts, Torreira, & Levinson, 2015). Also, at the end of 
turn units where transition becomes relevant, the right to the next turn 
cycles back and forth between interlocutors based on a set of turn-taking 
rules (Sacks et al., 1974), which can impact turn timing. Thus, an 
oscillatory timing mechanism entrained to quasi-rhythmic features of 
the conversation, in conjunction with turn-taking rules and the projec
tive power of syntax, pragmatics and semantics as well as prosodic, vi
sual and other cues announcing upcoming turn termination would allow 
next speakers to anticipate rather precisely when the next turn may be 
launched (Wilson & Wilson, 2005). 

Human anticipatory timing mechanisms have been extensively 
studied in more basic, non-communicative paradigms. Most notably in 
sensorimotor synchronization paradigms, whereby subjects are asked to 
tap with the rhythm of an auditory or visual beat (Repp, 2005). Such 
research has revealed very stable patterns of human timing behaviour. 
For example, when tapping to an isochronous rhythm, humans tend to 
anticipate the upcoming signal by tapping earlier in time, and therefore 
tend to have a negative mean asynchrony in relative timing distributions 
which can go up to 100 milliseconds in average, though usually the 
negative mean asynchrony is about 10–40 milliseconds (Repp, 2005). 
This particular negative mean asynchrony phenomenon is unlikely to be 
applicable to FTOs in conversation, however, as this would mean that 
speakers tend to consistently overlap in their turns. Indeed, a negative 
mean asynchrony of around − 100 ms does not match the statistical 
distribution of FTOs in spontaneous conversation, which tend to be 
characterized by a positive mean asynchrony of +200 ms (Stivers et al., 
2009). Critically, there is a rather wide variation around this mean of 
several hundred milliseconds (with some FTOs resulting in considerable 
overlap and others long gaps, see Stivers et al., 2009), due to factors 
influencing cognitive processing and conversational pragmatics, as seen 
above. 

A second major finding in basic non-communicative timing research 
is that there can be statistical serial dependencies over series of motor- 
auditory timing events (Comstock, Hove, & Balasubramaniam, 2018; 
Iversen, Patel, Nicodemus, & Emmorey, 2015; Repp, 2005). Namely, 
when tapping to an isochronous auditory rhythm (e.g., a beeping 
sound), subjects tend to adjust their timing based on their previous 
timing. For example, when a subject times their tap too early relative to 
the beep, then they time their next tap later relative to the next beep to 
an extent that linearly scales with the previous tap-to-beep asynchrony. 
This goes the other way too, such that a late tap is followed by an early 
tap with some consistent extent, i.e., with some opposite signed 
magnitude. Of course, such linear dependence between consecutive 
timing is not a perfect 1:1 correlation (which would lead to perfect os
cillations), but rather a more noisy statistical scaling relation that is 
nevertheless persistent throughout the series. This statistical tendency in 
motor-auditory timings to become negatively correlated through time at 
a lag of 1 is referred to as a lag-1 negative autocorrelation (or negative 
AR1). Interestingly, it has been found that this serial dependence only 
applies to domains where humans show exquisite performance in timing 
(Hove, Fairhurst, Kotz, & Keller, 2013; Iversen et al., 2015), such as 
tapping to an auditory discrete stimulus (e.g. a beep) or to a visual 
continuously changing stimulus (e.g., a moving bar), but not when the 
stimulus does not match the respective modality’s affinity (such as 
tapping to a continuous sound or a discrete visual signal; Chen, Penhune, 
& Zatorre, 2008). 

The finger tapping paradigm has been extended to dyadic situations 
too (e.g., Konvalinka, Vuust, Roepstorff, & Frith, 2010; Pecenka & 
Keller, 2011). In a study by Konvalinka et al. (2010) subjects were to 
continue tapping with a simple auditory rhythm that ceased after 
auditory presentation. The rhythm continuation either was assisted by a 
computer-generated stable beat, a beat generated by another person 
who could not hear the subject (unidirectional), or a beat generated by 
another person who could also hear the person and thus interact 
(biderectional). Only for the biderectional condition it was found that 
subjects “corrected the duration of their [inter-tap intervals] in the 

opposite directions on a tap-to-tap basis in a mutual attempt to syn
chronize with one another” (p. 2227). Such anticipatory mutual adap
tation (and synchronization performance) is more pronounced in paired 
individuals with high versus low individual timing abilities; abilities 
that relate to musical training (Pacenka & Keller, 2011). When partici
pants are sequentially (rather than simultaneously) tapping with an 
isochronous rhythm that is continuously presented, a mimicking ten
dency is found where timing sequences are positively correlated at lag-1 
(Nowicki, Prinz, Grosjean, Repp, & Keller, 2013). Thus in basic joint 
tapping research we also see a serially dependent dance of mutual ad
justments that lead to counteraction or mimicking. But do humans enter 
into such a dance in conversation too? And would we see counteraction 
or mimicking? 

It is surprising that the serial dependence in conversational timing 
has not yet been tested in conversational dynamics. Even more so 
because timing researchers have hypothesized for example that musical 
turn taking is a kind of ability that depends on basic entertainment 
mechanisms next to more top-down planning (Phillips-Silver & Keller, 
2012). Conversational turn-taking is of course more complex, but a more 
comparable phenomenon to musical turn taking. Furthermore, issues of 
serial dependence can be directly relevant to questions in conversation 
research. For example, finding a lag-1 autocorrelation (in any direction) 
is a key statistical signature of active timing adjustments (Semjen, 
Schulze, & Vorberg, 2000). It would further mean that the joint timing 
system is using its own performance (previous turn) as feedback for its 
future performance (the next turn), in the most basic and cognitively 
cheap way possible, by only adjusting its timing based on the previous 
cycle’s timing. 

Although there is no reason that negative AR1 cannot be instantiated 
by currently popular models in turn taking, such serial dependencies in 
FTOs have neither been assessed nor predicted (Levinson, 2016; Wilson 
& Wilson, 2005). This is interesting because negative AR1 could be 
informative about whether FTOs between speakers are regulated by the 
individual speakers separately, or that speakers act as some kind of 
coupled system regulating the conversation as a dyad (Wilson & Wilson, 
2005; Wilson & Zimmerman, 1986). As Wilson & Zimmerman (1986, p. 
377) maintain: “between-turn silence [is] interactionally generated, 
involving both the current and the next speaker”. Here we additionally 
suggest that the timing of the preceding turn is used projectively in the 
conversation to time the next turn. This would be very much in line with 
the notion of language as a bilateral, joint activity (Clark, 1996) and the 
deeply social nature of human cognition (De Jaegher, Di Paolo, & Gal
lagher, 2010; Sebanz & Knoblich, 2008). 

Specifically, if we find that FTOs are timed as a response to the 
previous turn alone (lag-1 negative autocorrelation), this would suggest 
that turn timing operates on the level of the dyad as both speakers are 
timing the conversation’s turn transitions based on the respective previ
ous turn – which, typically, is produced by the other speaker. However, 
if negative autocorrelations occur within speakers only, then lag-2 au
tocorrelations are to be expected, as turns generally return at a lag of two 
(i.e., speaker A [lag 0], speaker B [lag 1], speaker A [lag2]). Lag-2 au
tocorrelations would signal that speakers are timing their own transi
tions with reference to their own previous deviation from average 
transition time, where the other speaker’s FTO is ignored. This is an 
alternative intuitive assumption at face value, and one that presumes 
operations based on a mechanism much more grounded in individual 
cognition and behaviour regulation than the notion of turn transition 
timing emerging from two (or more) closely coupled systems. 

In the current study we test whether the phenomenon of timing 
adjustments as obtained from basic research on sensorimotor synchro
nization can be observed in more complex conversational timing as well. 
We perform autocorrelation analysis on an open dataset of conversa
tional turn taking in telephone conversations (Switchboard corpus of 
English telephone conversation, Godfrey, Holliman, & McDaniel, 1992), 
to test the assumption that a timing mechanism based on lag-1 auto
correlations may be underpinning the temporal coordination of turn 
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transitions in talk. Note, however, that it is neither necessary, nor 
obvious, for the series to be autocorrelated at lag 1. In fact, it may be that 
there is no short-lagged autocorrelation, or that autocorrelations happen 
over lags of 2 or more. 

2. Method 

2.1. Dataset 

The current dataset (retrieved here: https://osf.io/dve6h/) consists 
of the ‘Switchboard corpus of English telephone conversation’ (Godfrey 
et al., 1992). It was further enriched by Roberts et al. (2015) with in
formation about FTOs (i.e. turn transition times defined by the end of 
turn A and the beginning of turn B). To identify turns and turn transi
tions Roberts et al., 2015 state that (p. 509) “We approximated “turns” by 
“gluing” phonological words together if they were from the same speaker and 
had less than 180 ms gap between them. The floor transfer offset (FTO) or 
“gap” and “overlap” duration between turns from different speakers was 
calculated using the same method as in Heldner and Edlund (2011)“. 
Heldner & Edlund’s method (2010) consists of treating vocal activity as 
a binary activity (speech vs. silence) where “gaps” consist of between- 
speaker silences and “overlaps” of between-speaker overlap. FTOs 
capturing gaps between turns result in positive numbers, with FTOs 
capturing overlap resulting in negative numbers. 

For our analysis outlined below we treat the FTO series as a time 
series, as one would do for asynchronous timing series based on rhyth
mic tapping to a metronome. However, there is a particular peculiarity 
to conversational FTO series in that depending on your theoretical 
standing we would either include or exclude FTOs that precede or follow 
a backchannel contribution. Backchannels are short interjections that 
can, for example, signal continued engagement (e.g., “yeah”, “uhu”), 
and which are very frequent in conversation (Knudsen, Creemers, & 
Meyer, 2020). Crucially, in terms of pragmatic function, back
channels—also termed continuers—pass up the opportunity to speak 
and thus do not constitute turns as such (Schegloff, 1982; Yngve, 1970). 
Backchannels might carry an inherent autocorrelation signature, where 
short backchannel-FTOs are interwoven with longer non-backchannel- 
FTOs. To understand whether any serial dependencies we may find 
are dependent on backchannel contributions we therefore also consider 
a FTO series excluding values that involve a backchannel contribution. 
This resulted in an exclusion of 53% of the full observed FTO series. Note 
that backchannel contributions which occur in complete overlap with 
on-going speech by the respective other speaker are excluded also in the 
full FTO time series, following Roberts et al. (2015). 

In total, there were 349 conversations, with an average of 60.43 (SD 
= 21.75) conversational turns, and an average conversation time of 
288.33 s (SD = 23.47). Following Roberts and colleagues, we excluded 
all FTOs that were negatively or positively removed from zero with 2200 
milliseconds (0.36% of the data). The conversations had an average FTO 
of 177 milliseconds (SD = 435), indicating a tendency to initiate a turn 
after the previous turn ended (see Fig. 1 for distributions). When 
excluding FTOs associated with backchannel contributions, the average 
FTO was 177 (SD = 356). For further information on the current dataset 
see Roberts et al. (2015). 

2.2. Overview analysis procedure 

For each conversation the sequence of FTOs was submitted to auto
correlation analyses at lag 1 through 4. An autocorrelation for a FTO 
series (see Fig. 2) is a simple association of a FTO at turn t with that of a 
FTO at a turn t minus a turn lag of magnitude l (i.e., FTOt - l). Thus the 
autocorrelation of lag l = 1 (AR1), is the correlation between FTOt vs. 
FTOt-1. A negative AR1 would indicate that a faster FTO is immediately 
(i.e., with a lag of 1 turn) followed by a slower FTO of a related 
magnitude and vice versa. A positive AR1 would indicate that adjacent 
FTOs tend to have similarly signed direction, e.g., relatively fast FTOs 

followed by relatively fast FTOs, and this would mean that there is a 
(slight) drift away from some initial average. To assess other possible 
serial dependencies with even longer distances, we will perform the 
same analyses for AR1-AR4 (e.g., Iversen et al., 2015). We will do so for 
a) the FTO series as observed, and b) for all turn transitions only, that is, 
excluding all backchannel responses (see Method). Critically, the auto
correlation analyses on the FTO series are performed on the FTO series 
(and the FTO series when excluding backchannels) as well as its order- 
shuffled complement, to make sure that autocorrelations are not deter
mined by some chance ordering of the same series. 

We further assess whether the degree of antipersistence at lag 1 of 
FTOs is related to particular pragmatic factors in an exploratory anal
ysis. In contrast to autocorrelation values that are calculated over a se
ries of values, the (anti-)persistence value of an FTO can be calculated 
point by point by assessing the change in FTO over the points (i.e., 1st 
derivative of FTO with respect to the turn). An individual point is 
persistent with a positive magnitude x, if it follows the direction of 
change in timing with magnitude x (e.g., if three consecutive FTO 
changes +20 milliseconds in timing we can conclude that the last two 
values are persistent). For a graphical example see Supplemental 
Figure 1. Conversely, an FTO value is antipersistent with a negative 
magnitude x, if that FTO value is opposite in the direction of change 
relative to the previous FTO. Average antipersistence should scale with a 
negative AR1 (which we will provide a sanity check for), and anti
persistence values will be related in our further exploratory analyses to 
variables that dynamically change point by point; namely the pragmatic 
context, such as the dialogue act type of the previous turn, and the 
grouping of dialogue acts based on sequential position (initiating versus 
responding) and valence (negative versus positive), following the 
groupings used by Roberts et al. (2015). 

3. Results 

3.1. Autocorrelations for lag 1 (AR1) to 4 (AR4) 

Fig. 3 provides an overview of the distributions of AR1 to AR4 
observed for each conversation’s FTO series, as observed and without 
backchannels, as well as a shuffled complement based on the observed 
series for comparison. There is a clear deviance as compared to the 
shuffled series at a lag of 1, indicating on average a negative AR1. We 
further assessed whether these differences were statistically reliable. 

Firstly, we performed a simple two-sided t-test of the observed AR1 
versus the AR1 of the shuffled series, yielding a highly reliable 

Fig. 1. Distribution of FTOs in the ‘Switchboard corpus of English Telephone 
Conversation’. 
Note. Smoothed density distributions of observed FTOs. Red-colored vertical 
line indicates the observed mean of the FTO distributions, with negative 
numbers indicating overlap, positive numbers indicating inter-turn gaps). 
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difference, t = − 6.966, df = 348, p < .0001. The series that did not 
include backchannels had a reduced AR1 relative to the observed series 
but this difference did not reach statistical significance, t = − 0.520, df =
348, p = .603. Even when removing backchannels, the negative AR1 for 
that series was still reliably more extreme than the shuffled series, t =
− 5.521, df = 348, p < .0001. 

Secondly, we determined the reliability of the effect of the negative 
AR1 irrespective of a shuffled baseline by performing mixed linear 
regression (using maximum likelihood estimation) of FTO onto FTO lag 
1, with random intercept and slope for dyad. This also confirmed that 
there was a negative relation between FTO relative to FTO of the pre
vious turn, b [95% CI: lower, upper] = − 0.064 [− 0.079, − 0.049], SE =
7.878, t (20314) = − 8.350, p < .0001, Cohen’s d = − 0.120, SD random 
effect per conversation = 0.022. The intercept in the model was esti
mated at b = 202.70, SE = 7.88, t (20314) = 25.73, p < .001, SD random 
effect intercept per conversation = 131.99. 

When removing backchannels we also observed a reliable AR1, b 
[95% CI: lower, upper] = − 0.033 [− 0.054, − 0.012], SE = 0.011, t 
(10450) = − 3.642, p < .002, Cohen’s d = − 0.06, SD random effect per 
conversation = 0.029. The intercept in the model was estimated at b =
201.25, SE = 9.83, t (10450) = 20.48, p < .001, SD random effect 
intercept per conversation = 131.99. 

4. Simulations 

The current AR1 tells us that in a conversation a shorter FTOt tends to 
be followed by a longer FTOt+1 and vice versa, but only on a turn by turn 
basis (i.e., not strictly periodically). There is a simple way to demon
strate that an exclusive negative AR1 does not show up simply because 
two different speakers take turns. Consider that in dyadic conversation 
two systems are in play, namely person A and person B, who both have 
intrinsic tendencies to speak (and interrupt) at a certain time (mean FTO 
A ∕= mean FTO B) with a certain variability (SD FTO A ∕= SD FTO B). 
Further person A and B alternate in taking turns. To exemplify what 
autocorrelation structure arises out of these simple facts, we computed 
for each conversation the observed Mean and SD for FTOs. Then we 
simulated FTOs based on Gaussian distributions with that same Mean 
and SD, alternating A and B turns, with a total amount of turn transitions 
equal to the observed amount of turn transitions for that conversation. 
We then recomputed the autocorrelations. Fig. 4 shows the simulated 
ARs next to the observed ARs. Table 1 also provides the AR coefficients 
for the simulated series. 

The analyses on the simulated data reflect the periodic structure that 
we invoked by sampling from two Gaussian distributions that contribute 
FTOs to a conversation FTO series in alternating fashion: this resulted in 
positive correlations between FTOs produced by the same timing 

Fig. 2. Example of FTOs from a single Switchboard Corpus conversation. 
Note. This is an example of the FTO data of one conversation from the Switchboard Corpus which had a particularly high magnitude negative AR1. For the time series 
(right upper panel), each point indicates a transition between speakers (i.e., no within-speaker transitions). All FTOs are shown in their original order in the con
versation. Colored points (orange vs. green) indicate speaker FTOs involving backchannels (green), or FTOs not involving backchannels (orange). The lines 
orthogonal to the added density distributions of the time series FTOs indicate average FTO. Note that this time series has a negative lag-1 autocorrelation of r = 0.22 
(p = .012) as indicated by the blue slope where FTOi vs FTOi-1 is plotted. Please note that for autocorrelation plots, each FTO for a particular turn Y is plotted against 
the FTO of a previous turn X at lag 1–4 (i.e., x1, x2, x3, x4 in this example). There are no statistically reliable (p’s > 0.05) AR2 (in red), AR3 (in green) or AR4 (in 
purple) observed for this series. The negative AR1 is reflected in the time series such that relatively fast timing of a turn tends to be immediately followed by a slower 
timing, and vice versa such that a slow transition is followed by a fast transition. However, the oscillations are not simply repeating or perfectly cyclical, but rather 
change in amplitude over the conversation, thereby losing dependencies over longer timescales (AR2, AR3, or AR4). For the final analysis we also performed an 
autocorrelation analysis on this series but excluding the backchannel-labelled FTOs. 
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distribution (AR2 and AR4) and negative correlations between FTOs 
contributed between different timing distributions (AR1and AR3), with 
no dissipation of correlation strength over lags (e.g., AR1 is statistically 
similar to the AR3; see Table 1), as the exact same timing distribution 1 
and 2 is sampled from in alternating fashion. This is different from the 
observed data where exclusively a statistically reliable negative AR1 is 
found. What this means is that information is lost over the conversation 
in the observed data, where only lags of 1 are serially dependent, and 
that the dependency dissipates over longer lags due to dynamic varia
tions that happen in FTOs during the conversation. Thus, we conclude 
that the observed data are not a product of two independent Gaussian 
processes that are sampled in alternation. The observed data show 
rather that there is a short-scale lag-by-lag serial dependency, suggesting 
a more dynamic and between-speaker dependency where the next 
speaker responds to the current speaker in a manner that relates to the 
extent of the temporal deviation from the mean that the previous 
speaker’s response time caused. If the observed data were generated by 

two independent processes, then we should have found the persistent 
positive AR2 as indeed shown in the simulated data produced by two 
independent processes. 

4.1. Exploratory analysis: possible contributors to negative AR1 in 
conversation FTOs 

Each turn is characterized by a particular dialogue act, speech rate, 
duration, and other properties in the original coding of the Switchboard 
Corpus, and these factors are known to influence FTOs (e.g., Roberts 
et al., 2015). So how can we quantify which of those factors may be 
contributing to the negative AR1 we observe, which was calculated on 
the level of the whole conversation (other than excluding certain dia
logue acts, as we did with backchannels)? We do this by relating the 
individual factors (including speech rate, turn duration, and dialogue 
act), with the (anti-)persistence value of that turn in the series, which 
should contribute to negative AR1. An antipersistent value (as shown in 

Fig. 3. Autocorrelations for observed, backchannel excluded, and shuffled series. 
Note. Each point in a point cloud represents an autocorrelation value (for lag 1 through 4) of the respective FTO sequence for a particular conversation. The point 
clouds are organized according to their density distribution. The left panel shows the observed autocorrelations, and the middle panel the series with backchannels 
excluded. The outer right panel shows the autocorrelations performed on the randomly shuffled FTO sequences. It can be seen that for observed data there tends to be 
a negative lag-1 autocorrelation, which is clearly divergent from AR2–4 and the shuffled series. The serial dependency is destroyed when shuffling the series as shown 
in the right panel. This means that the dyads are timing FTOs with reference to the previous FTO, rather than with reference to their own previous FTO. Indeed, in case 
of the latter, negative lag-2 autocorrelations would be observed (since speaking turns tend to alternate between speakers). 
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supplemental Fig. A) is a FTO that changes in the opposite direction of 
the previous FTOs change. As a sanity check that the (anti-)persistence 
values and the AR1 autocorrelation of the whole series are correlated, 
Fig. 5 shows a summary of this dependence, where for each conversation 
the mean (anti-)persistence is given against the autocorrelation of that 
series, r (347) = 0.487, p < .0001). We can now use the antipersistence 
value to relate it to properties that are at the level of the turn rather than 
the conversation. 

Since we have some information about each FTOs relative 

contribution to a negative AR1 of that series, it is now possible to see 
whether there are any clear contributors from turn-by-turn defined 
properties. We do not have a specific hypothesis at this stage and will 
report some exploratory analyses only. Firstly, speech rate, normalized 
last vowel and consonant duration of the turn did not seem to relate (ps 
= ns.) to the persistence value of the following FTO (see supplemental 
Fig. B). However, we did find a reliable but very weak correlation be
tween antipersistence and previous turn duration, r = − 0.029, t (21011) 
= − 4.211, p < .001, where the longer a turn takes the more likely a floor 

Fig. 4. Observed versus simulated series. 
Note. Simulated data are shown in blue, where FTOs were simulated based on sampling from Gaussian distributions that were parameterized with the empirically 
observed Mean and SDs for the FTOs from person A (to B) and person B (to A). The observed data plots are the same as reported in Fig. 3. It can be seen that the 
simulated data are markedly different from the observed data, where for the observed data there is only a persistent dependency at lags of 1, while in the simulated 
data the dependency is more static, with persistent positive between-turn correlations. 

Table 1 
Autocorrelation (lag 1 through 4), Means and (SDs) for observed FTOs, observed data with backchannels removed (‘no backchannels’), shuffled series, and simulated 
series.   

AR1 (r) AR2 (r) AR3 (r) AR4 (r) 

Observed M (SD) − 0.083 (0.136) 0.005 (0.143) − 0.020 (0.133) 0.016 (0.133) 
95%CI[lower, upper] [− 0.096, − 0.069] [− 0.010, 0.0.021] [− 0.034, − 0.005] [0.002, 0.029] 
Observed No backchannels M (SD) − 0.078 (0.183) − 0.005 (0.198) − 0.040 (0.181) − 0.007 (0.177) 
95%CI[lower, upper] [− 0.097, − 0.059] [− 0.026, 0.016] [− 0.060, − 0.020] [− 0.026, 0.011] 
Shuffled M (SD) − 0.012 (0.137) − 0.020 (0.143) − 0.019 (0.131) − 0.008 (0.133) 
95%CI[lower, upper] [− 0.027, 0.002] [− 0.036, − 0.005] [− 0.33, − 0.006] [− 0.022, − 0.006] 
Simulated M (SD) − 0.131 (0.162) 0.084(0.188) − 0.113 (0.168) 0.081 (0.182) 
95%CI[lower, upper] [− 0.148, − 0.114] [0.064, 0.104] [− 0.131, − 0.095] [0.062, 0.101] 
Simulated No backchannels M (SD) − 0.21 (0.168) 0.774 (0.174) − 0.117 (0.169) 0.072 (0.173) 
95%CI[lower, upper] [− 0.139, − 0.103] [0.059, 0.095] [− 100, − 0.133] [0.054, 0.090]  
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transfer offset follows that changes in the opposite direction from the 
previous FTO; thus when there is shorter (or longer) FTO, followed by a 
long turn, it is likely that the next FTO is longer (or shorter) (see Fig. 6). 

Note. Duration of the previous turn in ms is given relative to the 
(anti)persistence value of the following FTO, together with their 
respective smoothed density distributions. It shows that there is indeed a 
weak tendency such that the longer the turn takes the more likely that 
the FTO goes in the opposite direction from the previous FTO. 

We also globally assessed possible clear differences in FTO persis
tence values as related to the dialogue act type. For example, it is wholly 
possible that the timing pattern contributing to the negative AR1 (i.e., 
antipersistence) is related to only a few dialogue act types that occur a 
lot during the conversation. However, Fig. 7 shows that no particular 
dialogue act seems to be driving the negative AR1 as antipersistent FTOs 

are observed across the board for all dialogue act types. There might of 
course be differences in the degree of antipersistence of FTOs, but we 
will not test this post-hoc in the current sample given the many multiple 
comparisons and the concomitant type-1 error inflations, as well as the 
large variation in the number of datapoints per dialogue act category. To 
provide some indication for possible differences that would be statisti
cally detectable, we have used a similar grouping of a subset of the 
dialogue act types as categorized by Roberts et al. (2015), where we 
distinguish between positively versus negatively valenced dialogue acts, 
as well as responses and initiations. Fig. 7 and Table 2 provide the main 
results for these comparisons. They show that these larger dialogue 
categories all tend to be antipersistent, and tend to have overlapping 
confidence intervals between categories. Judging from the non- 
overlapping confidence intervals there are no clear differences in anti
persistence. We thus conclude that the current antipersistent turn-by- 
turn tendencies that contribute to the overall negative-lag 1 autocorre
lation seems to be stable across the currently defined pragmatic 
contexts. 

Note. Boxplots and density distributed jitter points for each turn’s 
dialogue act type and its FTO. The original dialogue act types are shown 
in panel (A), and the broader categories used to group dialogue acts by 
Roberts and colleagues are shown in panels (B) & (C). FTOs can be 
persistent (to the right of the gold line) or antipersistent (to the left of the 
gold line). Antipersistence is contributing to the negative AR1 observed 
for the data. From the current graph it can clearly be seen that all dia
logue acts seem to have in general antipersistent FTOs, suggesting that 
negative AR1 is a phenomenon that may not depend on a particular 
dialogue act type or group. There are possibly some specific dialogue act 
types in panel (A) that have more extreme antipersistent FTOs, but this is 
difficult to currently ascertain due to issues of multiple comparisons and 
unequal sample sizes. Future targeted hypothesis testing should be 
employed to see whether AR1s are more likely to be observed for 
particular types of dialogue acts and turn transitions (e.g., question- 
answer sequences). 

5. Discussion 

The current findings provide preliminary evidence that faster turn 
transitions are likely to be followed by slower turn transitions (FTO) at a 
turn lag of 1 and vice versa. This basic phenomenon applied to FTO 
series, referred to as lag-1 negative autocorrelation (negative AR1), is a 
well-established phenomenon in much more basic timing capabilities of 
humans (e.g., Iversen et al., 2015). Namely, when tapping to an 
isochronous auditory metronome, timers tend to show a negative AR1 in 
the relative timing of their tap, relative to the metronome’s beat. This is 
a timing mechanism based on the short-term information of tapping too 
soon, which helps the next tap to be timed a little later. In conversation, 
two agents are in play, and the astonishing finding is that agents are 
sensitive to each other’s FTOs as they adjust their own FTOs based on the 
previous FTO (determined by the previous speaker’s response time), 
rather than only their own which typically occurs at a lag of 2. Indeed, 
we did not observe a reliable AR2 (or AR3 or AR4), but only a negative 
AR1 in the FTOs. Further simulating FTOs based on two Gaussian in
dependent processes that were parametrized by the observed data, we 
confirmed that such independent processes cannot generate an exclu
sively negative AR1, instead showing a similar-valued positive AR2 and 
AR4, indicating autocorrelations of two independent alternating, periodic 
processes. We thus suggest that the current findings indicate that 
negative AR1 is a dynamic process adjusted turn by turn through two 
speakers timing to take the floor. 

We reason that the negative AR1 phenomenon in conversation FTOs 
emerges from a process of joint action, based on interlocutors forming a 
coupled system. This is compatible with the idea that turn-taking is 
coordinated at the level of the dyad (or group) rather than resulting from 
individual action (e.g., Wilson & Zimmerman, 1986). Thus, the current 
findings extend a basic principle of the oscillator model of turn-taking 

Fig. 5. Relation between mean FTO (anti)persistence values with the AR1 co
efficient. 
Note. Average persistence values (negative averages indicate general opposite 
change FTO of M milliseconds) plotted against the AR1 coefficient for each 
conversation. In general, more negative mean persistence values relate to more 
negative AR1. 

Fig. 6. Scatterplot of duration of previous turn with (anti)persistence value.  
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(Wilson & Wilson, 2005) to an account where interlocutors entrain not 
only to the syllable-rhythm cycling, as originally proposed (facilitating 
timing in terms of when to launch a turn), but also the relative timing of 
turn transitions (that is, the duration of turn transitions, which, in turn, 
influence the next). Investigating the particular ways turn transitions 
change the oscillators’ cycling goes beyond the present research, but 
seems to be implementable in a number of ways, for example by shifting 
the phase or adjusting the period of the oscillator based on the previous 

lag-1 asynchrony (see Repp, 2005 for an overview of how timing ad
justments can be implemented in such models). 

While the negative AR1 confirms that the calibration of FTO is 
regulated at the level of the dyad, rather than at the level of the indi
vidual speaker, it is important to stress that the underlying dynamics for 
the current statistical signature for turn by turn serial dependence is a 
matter of speculation. To speculate, we imagine that there are varying 
levels of cognitive complexity that one can invoke to simulate the 

Fig. 7. Dialogue act type and (anti-)persistence.  

Table 2 
Descriptives for (anti-)persistence values per dialogue act grouping.   

Persistence 
M (SD) 
95%CI[lower, upper] 

Initiating − 241.56 (589.12) 
[− 265.83, − 217.28] 

Responding − 256.22 (567.19) 
[− 303.72, − 208.71] 

Negative valence − 257.08 (492.74) 
[− 182.37, − 331.79] 

Positive valence − 227.60 (555.69) 
[− 194.12, 261.07]  
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current negative AR1. For example, since basic rhythmic timing as well 
as conversational timing show similar statistical dependencies, and both 
domains have been approached from coupled oscillator perspectives, it 
is possible that the negative AR1 is a basic phase-adjustment mechanism 
instantiated by a domain-general coupled-oscillator timing system. 

However, it is also possible that there is another level of explanation, 
in the sense that timing a turn in relation to the previous turn’s timing is 
an embodied mechanism that allows one to enact rules that seem to 
govern conversation. Namely, Sacks et al. (1974) state that interlocutors 
aim to initiate turns without much of a silent gap or overlap. We also 
know that turn transition times are highly variable and a turn coming in 
a little earlier or later is actually pragmatically meaningful. Thus pre
cision attained on the level of the conversation (small mean turn tran
sition times) is heavily contextualized by high variability generated by 
overlaps and silences of varying lengths. In this line of reasoning then 
the negative AR1 can be seen as a way to regulate precision under a 
highly variable system (see Keller, Novembre, & Hove, 2014). Inter
estingly, Repp and Keller (2008) showed that when participants are 
asked to time a tap with a computer-generated beat which has a phase 
adjustment in the opposite direction of the participant’s timing ten
dency, thus hampering synchronization, musically trained participants 
will adjust their timing to counteract the artificial partner. Perhaps in a 
similar fashion negative AR1 FTO timing in conversations is a way to 
regulate precision under dynamic variability: To adjust one’s timing in 
the opposite direction of the other’s variable timing may help to enact 
Sacks et al.’s rule of aiming for consistent timing under the pragmati
cally functional perturbations deviating from the norm (minimal-over
lap/minimal silence). 

Above we have argued that the negative lag-1 phenomenon can be 
seen as a dynamic constraint on the natural variability. What mechanism 
enacts this constraint remains a matter of speculation going beyond the 
current results, as stated above. However, we can further make two 
broad distinctions in possible approaches (Stepp & Turvey, 2010): 
Namely those approaches that suggest that some anticipatory (timing) 
behaviour is based on an internal model that discretely computes tim
ings based on modality-specific stored information of the past and cur
rent states. Alternatively, there are approaches that suggest that the 
future can be anticipated based on ongoing (time-delayed) coupling 
with relevant information in the environment. 

Internal model approaches need not be complex, and a very lean 
account to explain negative lag-1 correlations in inter-tapping intervals 
is provided by Wing & Kristofferson (1973; for a broader perspective see, 
Wing, 2002). They show that one only needs to posit that a central timer 
dictates a timing interval (with some variability) from which tapping 
commands are issued at each interval boundary that however suffer 
from a variably delayed motor implementation (e.g., due to nerve- 
conduction constraints). If we then also assume that the variability of 
the central timer and the motor system are independent, then if a tap is a 
bit earlier implemented due to variable motor delay, by necessity, the 
tapping interval is shortened, and the next one inevitably lengthened. 
While it is not immediately clear how such a mechanism would extend 
into more complex conversational between-person timing, possibly 
compatible auxiliary assumptions can be made whereby feed forward 
models of the motor system are implemented that also issue motor 
predictions for the other person (Fisher, Hadley, Corps, Pickering, 
2021). Such assumptions are invoked to explain for example why dual 
motor task can interfere with predicting turn ends in music and speech 
(Fisher, Hadley, Corps, Pickering, 2021). 

Another set of approaches often referred to as dynamic or emergent 
timing approaches (Schöner, 2002) emphasize the ongoing continuous 
coupling with the environment, where often a system of (coupled) os
cillators is invoked that respond to some temporal structure in the 
environment in a particular way as determined by the system-internal 
coupling relations between the systems’ components (see also Abney, 
Paxton, Dale, & Kello, 2021; Large, Herrera, & Velasco, 2015; Tognoli, 
Zhang, Fuchs, Beetle, & Kelso, 2020). Negative lag-1 autocorrelations 

can be modeled as a continuously coupled oscillator timing system too 
(Schöner, 1994), where random variations that deviate from some 
typical continuous oscillatory cycle are attracted to enter back into the 
typical oscillatory regime. Recently it has even been shown that dy
namic timing models that have an about 200 ms delayed self-coupling 
loop give rise to the characteristic negative mean asynchrony dis
cussed in the introduction, which was also extended for joint timing, 
where a delayed coupling was established between agents that were 
tapping in alternation (Roman, Washburn, Large, Chafe, & Fujioka, 
2019). Thus it seems that dynamical systems models can be in principle 
extended to account for serial dependencies in conversational timing, 
and indeed Wilson & Wilson (2005) propose such an extension by sug
gesting that persons entrain to one another continuously in an anti- 
phase fashion so as to time the next turn. 

It is wholly possible that there are explanations of the current phe
nomenon that may arise out of the unique constraints of conversing, 
rather than arising out of basic timing mechanisms. A reviewer of the 
current research interestingly suggested that the negative lag-1 auto
correlation in FTO series may be accounted for in the following way: 
short FTOs are likely to follow longer turn durations because turn ends 
can be more easily anticipated for longer turns. Further, shorter gaps 
tend to precede turns that require less planning time, and such turns are 
often of shorter duration (Roberts et al., 2015). The reverse arguments 
would hold for longer gaps and longer turn durations. However, we do 
not think that this rationale can explain our findings, for the following 
reasons. 

Firstly, it should be noted that we must explain a serial dependence 
that occurs throughout the FTO series. Thus suggesting that FTOs are 
driven by turn duration does not necessarily explain the serial de
pendency. After all, it is possible that indeed long turns tend to be fol
lowed by short gaps, and short turns tend to followed by long gaps, but if 
the turn durations themselves are not serially dependent but randomly 
structured (or oscillating between two random processes as in our sim
ulations), we would not have a FTO series that is negatively lag-1 
autocorrelated (but that can nevertheless be perfectly correlated with 
turn durations). Thus by letting FTOs be driven by turn duration one 
does not explain the current serial dependence of FTO series, one must 
also then predict (on some basis) a negative lag-1 autocorrelation in the 
turn duration. To check this we assessed turn duration autocorrelations 
lag-1 to 4, and it showed a more oscillatory pattern, with negative lag-1, 
positive lag-2, and negative lag-3 autocorrelations, much more akin to 
our simulation of two random independent processes generating an FTO 
in alternation (see supplemental materials). Thus since FTO autocorre
lation structure does not match turn duration autocorrelation structure, 
an explanation where turn duration drives FTO serial dependence seems 
unlikely. 

Secondly, in our exploratory analysis we find that longer turn du
rations were reliably correlated with the antipersistence of the FTO. This 
means that longer turn duration tends to follow with an FTO that goes in 
the opposite direction to the previous FTO. But importantly this means 
that longer turn durations can result in both shorter as well as longer 
FTOs (as compared to the previous FTO), and thus an exclusive relation 
where longer turn durations tends to follow a shorter FTO that con
tributes to the negative lag-1 autocorrelation does not seem to hold. 
Indeed, if we split out antipersistence values for longer or shorter anti
persistent FTOs, we clearly see that longer and shorter antipersistent 
FTOs scale similarly with turn duration (see supplemental figure S3). 

Of course, we think it is very much possible that there is an expla
nation - very much like the one above - that is solely rooted in conver
sational dynamics rather than the basic timing phenomenon in 
individual and joint tapping tasks. However, we think at present the 
most parsimonious explanation is one that accepts that timing in con
versation is rooted in more basic timing abilities such as (jointly) tap
ping to a more predictable metronome. This timing mechanism would 
interact with the variability in timing related to pragmatic factors. One 
would expect, for example, that dispreferred responses, which tend to be 
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characterized by longer than average turn transitions (see Kendrick & 
Torreira, 2015 for an overview) would be associated with stronger 
antipersistence patterns, based on the basic timing mechanism we pro
pose here, which would lead to counter adjustments in the following 
FTO (i.e., shorter than average FTOs, equalling weaker antipersistence). 
This trend was not observable in the present data, but due to the small 
sample size in this category, the data for this dialogue act by itself may 
not yield reliable information, and the heterogeneity of the dialogue act 
categories applied (Jurafsky et al., 1997) might further complicate 
drawing firm conclusions, emphasizing the need for future research into 
this matter. Also, we ought to bear in mind that the participants in the 
present dataset were strangers, being asked to talk with various in
terlocutors one after another, while conversation analytic investigations 
typically focus on more naturalistic settings. This may mean that the 
conversations analyzed here are characterized by different pragmatic 
constraints, potentially making certain actions more (e.g., agreements) 
and others less likely (e.g., disagreements), which may influence the 
frequency of their occurrence as well as their interactional significance. 

One other interesting aspect of dialogue act type that may warrant 
further investigation is the timing of backchannel responses. Although 
pragmatically they function differently to speaking turns (allowing po
tential next speakers to forego the opportunity to take the turn, in fact), 
interestingly, backchannels seem to pattern in the same way as turns (i. 
e., based on negative AR1), judging by the reduction in the strength of 
negative AR1 when backchannels are removed from the dataset. 

A related issue that we need to be aware of is that the timing of FTOs 
are not fixed targets. Indeed, a person may aim to intervene and there
fore time their turn to interrupt, or may want to leave a silence to show 
surprise, or delay their response when it is dispreferred (see above). 
Therefore, in conversations the FTO target is moving all the time, and 
according to pragmatic constraints. It is therefore not surprising that we 
find a small effect size in terms of the negative lag-1 autocorrelation; 
after all the variability in conversations due to pragmatically moving 
targets injects what we now treat as random noise relative to the esti
mate of our effect. It would indeed be surprising if effect sizes found in 
tapping tasks would be replicated in terms of the same magnitude in 
conversational timings too. Given this variability, it is very interesting 
that we still find what seems to be a highly statistically reliable serial 
dependence in FTOs. Nevertheless, we also need to emphasize that the 
negative lag-1 autocorrelations themselves were highly variable over 
the conversations (see Fig. 3, left panel), implying that the current 
phenomenon should not be seen as a hard and fast rule, but rather a 
statistical tendency that for some conversations are very pronounced, 
while for a small minority this tendency is even completely absent. 

A further caveat is that our floor transfer offset durations are derived 
from simple manual, tool-based acoustic measurements (distinguishing 
between phonation and silence). Such measurements may differ from 
interlocutors’ psychological perceptions in conversational context. One 
way to arrive at more certainty concerning the equivalence of the two 
would be to compare the simple manual acoustic measurements to 
measures from experimental studies (e.g., combining encephalographic 
and reaction times) targeting the detection of acoustic stimuli bound
aries in a variety of contexts, ideally embedded in interactive, 
conversation-like settings. Future research is needed to advance our 
knowledge in this domain. 

There are some further promising avenues of research further 
informed by basic timing research. Namely, it has been shown that 
perceptual systems (e.g., auditory vs. visual) have modality-specific af
finities for temporal coupling, with synchronization being most optimal 
for auditory-discrete and for visual-continuous stimuli (Comstock et al., 
2018; Hove et al., 2013). Furthermore, in the study on sequential joint 
timing discussed in the introduction (Nowicki et al., 2013, see experi
ment 2), it was also found that auditory rather than visual information 
was important to induce serial dependencies in joint tapping. It might 
thus be possible that when multimodal perceptual systems are used in 
conversation that different temporal characteristics emerge in FTO 

series as currently observed in auditory-only coupling during the tele
phone conversations. It is also possible that especially in multimodal 
interactions the complexity of the temporal structure of social interac
tion increases (Pouw et al., 2021). Emergent timing perspectives have 
proposed several methods for gauging temporal complexity, such as 
complexity matching, which probes between-person temporal de
pendencies that happen on much longer time scales, spanning the whole 
conversation than the still short time scales (max. 4 turn transitions) 
have studied here (Abney et al., 2021). 

Floor transfer timing may not only be different because there are 
different channels for communication however, they may also be 
different because the very information about turn transfer (silences, and 
overlaps) used by speakers to time a next turn can be perceived differ
ently depending on the linguistic or wider (multimodal) context. Indeed, 
while our turn durations are derived from simple acoustic measure
ments, listeners attune to such acoustic energy in relation to the con
texts, and thus we should also remind ourselves that our FTO measure in 
the current paper does not need to be a simple reflection of the psy
chological process of turn transition perception and action. 

A further identification of the prevalence of the current joint timing 
phenomenon (or lack thereof) across animal species (Takahashi, Nar
ayanan, & Ghazanfar, 2013; Okobi, Banerjee, Matheson, Phelps & Long, 
2019) and different human languages and contexts (e.g., Stivers et al., 
2009) can have important theoretical implications for elucidating 
domain-general mechanisms that may underly timing in communicative 
turn taking, next to possible domain-specific mechanisms (Castellucci 
et al., 2022). The negative AR1 phenomenon exhibited could further be 
accounted for by oscillator models of turn taking, possibly improving their 
predictive power (Takahashi, Narayanan, & Ghazanfar, 2013; Wilson & 
Wilson, 2005). Any of these models should take into account that the 
timing mechanism seems to operate despite variation due to dialogue act 
types. To conclude, the currently observed pervasiveness of the AR1, and 
the current findings that FTO is adjusted at the level of the dyad rather 
than the individual, provides a basis for the claim that timing to take the 
turn emerges from two speakers in interaction as originally emphasized by 
dynamical system models and their precursors (Wilson & Wilson, 2005; 
Wilson & Zimmerman, 1986). 
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