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A basis for the Kauffman skein module
of the product of a surface and a circle

RENAUD DETCHERRY

MAXIME WOLFF

The Kauffman bracket skein module S.M/ of a 3–manifold M is a Q.A/–vector
space spanned by links in M modulo the so-called Kauffman relations. For any closed
oriented surface † we provide an explicit spanning family for the skein modules
S.† � S1/ . Combined with earlier work of Gilmer and Masbaum (Proc. Amer.
Math. Soc. 147 (2019) 4091–4106), we answer their question about the dimension of
S.†�S1/ being 22gC1C 2g� 1 .

57M27

1 Introduction

The Kauffman bracket [11] skein module is an invariant of compact oriented 3–
manifolds. It was first introduced independently by Przytycki [17] and Turaev [18] as
a way to generalize the Jones polynomial of links in S3 . It can be thought as a module
over any ring R containing an invertible element A 2R . The skein module S.M;R/
with coefficients in R is the R–module

S.M;R/D SpanR.L�M framed link/=isotopy;K1;K2

spanned by isotopy classes of framed links in M, modulo the two (local) Kauffman
relations K1 and K2 :

D A CA�1 ;(K1)

L[ D .�A2�A�2/L;(K2)

where the above relations identify linear combinations of framed links that are identical
except in a small ball in M. In the significant case where R DQ.A/ is the field of
rational functions in the variable A, we will write S.M/ for S.M;Q.A// for simplicity.

The skein modules of 3–manifolds have long been mysterious and notoriously hard
to compute, and for a long time very little was known about the structure of skein
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modules of general 3–manifolds. They have been partially or completely computed
for an increasing number of closed 3–manifolds (S3 and lens spaces by Hoste and
Przytycki [9; 10], integer Dehn surgeries on the trefoil by Bullock [2], some prism
manifolds by Mroczkowski [15], the quaternionic manifold by Gilmer and Harris [6],
the 3–torus by Carrega [3] and Gilmer [5], and some infinite family of hyperbolic
manifolds by the first author [4]). Finally, Witten conjectured that S.M/ has finite
dimension for every closed 3–manifold (see Gilmer and Masbaum [7, Section 8] for a
discussion). Recently, Gunningham, Jordan and Safronov posted a general proof [8] of
Witten’s finiteness conjecture. Their proof, which relies on factorization algebras, the
theory of DQ–modules and some careful quantization of character varieties/character
stacks, is powerful and generalizes to other types of skein modules besides the Kauffman
bracket skein module.

However, the proof in [8] is rather nonconstructive; in particular, it is still hard for a
given 3–manifold M to compute the dimension dimQ.A/.S.M// or to find a family of
framed links that is a basis of S.M/. It would be rather interesting to give some general
interpretation of the dimensions dimQ.A/.S.M//. Another aspect of skein modules
that remains unclear is the integral structure of skein modules of closed 3–manifolds.
The following statement, concerning the “integral” version of the skein module S.M/,
that is, the skein module S.M;ZŒA˙1�/ with coefficients in ZŒA˙1�, was suggested
to us by Julien Marché in private communication.

For n 2 Z let fng D An�A�n .

Conjecture 1.1 Let M be a closed compact oriented 3–manifold. There exists an
integer d > 0 and finitely generated ZŒA˙1�–modules Nk such that

S.M;ZŒA˙1�/D ZŒA˙1�d ˚
M
k>1

Nk;

where , furthermore , the module Nk is a fkg–torsion module.

The integral structure of skein modules is also of interest because of its interaction
with quantum invariants, as we will explain later in this introduction. After a first
version of this work was available as preprint, we learned that Rhea Bakshi disproved
Conjecture 1.1 for some 3–manifolds; see [1].

In this article, we focus on a single family of manifolds: products †�S1 of a compact
closed oriented surface † of genus g > 2 and a circle. (However, we believe that our
techniques can be employed for other circle bundles over a closed surface). We note that
skein elements in †�S1 admit some particularly nice diagrammatic representations as
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so-called arrowed diagrams. Indeed, we can always put a link L�†�S1 in general
position with respect to the projection † � S1 ! †, and, besides the over/under-
crossing information, we only need to remember where the link L intersects †� f0g.
We remember this information by putting an arrow on the diagram at such intersections;
the direction of the arrow gives the direction in which L is rising. This notation was
first introduced by Dabkowski and Mroczkowski in [16], where it was used to compute
the skein module of †0;3 �S1 .

With this notation, let us introduce a family B of elements of S.†�S1/ consisting of
the following diagrams. For each nonzero homology class of H1.†;Z=2/, we choose
an oriented simple closed curve representing it, and consider the diagram consisting
of this curve with no arrows, as well as the diagram consisting of this representative
with one arrow. Finally, we consider a trivial curve on †, with 0 to 2g arrows. Then,
our main result is the following:

Theorem 1.2 The family B is a basis of the skein module S.†�S1/. In particular ,
S.†�S1/ has dimension 22gC1C 2g� 1.

Our proof is completely elementary; it uses only skein relations and direct computation.
It is independent of [8].

The skein modules of the manifolds †�S1 were previously studied by Gilmer and
Masbaum [7]. They introduced a general tool to bound below the dimension of skein
modules. Given a closed compact oriented 3–manifold M, Gilmer and Masbaum
defined a linear map

ev W S.M/!CU
ae:

In the above, U denotes the set of roots of unity of even order, and CU
ae is the Q.A/–

vector space of functions of the variable A 2 U that are defined almost everywhere.
For example, any function F.A/ 2 Q.A/ is an element of CU

ae , as it is defined as
long as A is not a root of the denominator of F . Moreover, for any k 2 Z, there is a
map pk 2 CU

ae which maps any primitive root of unity of order 2p to pk. The map
ev is defined using the Reshetikhin–Turaev invariants of links in M : given a 2pth

root of unity A with p > 3 and a link K �M, there is a well-defined topological
invariant RT.M;K;A/ 2C . The invariant can be computed by choosing any surgery
presentation L for M, and computing a colored Kauffman bracket of L[K, where L
has been colored by some special polynomial !p 2 ZŒA˙1�Œz�, called the Kirby color.
We will not give a complete definition of RT.M;K;A/, and just refer to [7] for details.
The important point to us is that, with this definition, the invariant RT.M;K;A/
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naturally satisfies the Kauffman relations with respect to K. Thus it is possible to
extend it Q.A/–linearly from the set of framed links to any element of S.M/, as
those elements are Q.A/–linear combinations of links in M. The only caveat is that
we may have to exclude some values of A 2 U if they are in denominators of the
coefficients of the linear combination. Using the map ev in the special case where
M D†�S1 , Gilmer and Masbaum showed that the dimension of its image is at least
22gC1C 2g� 1, and thus so is the dimension of S.†�S1/. They conjectured that
this is actually the dimension of S.†� S1/. Theorem 1.2 answers positively their
conjecture; our contribution is to prove that the family B , of cardinal 22gC1C 2g� 1,
generates S.†�S1/. Our proof is constructive: given a link L in †�S1 , it is possible
to algorithmically decompose it as a linear combination of elements of B .

For simplicity we stated Theorem 1.2 with the skein module with coefficients in Q.A/,
but in fact we only need fkg D Ak �A�k to be invertible, for all k ¤ 0. In partic-
ular, a byproduct of our proof is that torsion elements of the integral skein module
S.†� S1;ZŒA˙1�/ are always of fkg–torsion for some k > 1, in conformity with
Conjecture 1.1.

For any manifold M, the skein module S.M/ has a natural H1.M;Z=2/–grading,
as the Kauffman relations always involve links in M that have the same homology
class in H1.M;Z=2/. Thanks to the basis we computed, we can answer some other
questions raised in [7] about the structure of quantum invariants of links in †�S1 :

Corollary 1.3 For any z 2 S.†� S1/, the image of z by Gilmer and Masbaum’s
evaluation map is of the form

ev.z/D
X
i2I

Ri .A/p
i

for some rational functions Ri .A/2Q.A/, and where IDfg�1; gC1; : : : 3g�3g[fgg.
Moreover , the Gilmer–Masbaum map is injective on each graded subspace of S.†�S1/.

The corollary results from the fact that Gilmer and Masbaum showed that it is the
case for elements that are linear combinations of nonseparating simple closed curves
with 0 or 1 arrows, and the trivial curves with 0 to 2g arrows. In particular, the
rational functions Ri .A/, as linear combinations of the coefficients in the basis B , are
algorithmically computable invariants of links in †� S1 that satisfy the Kauffman
relations.

Let us stress that Theorem 1.2 does not imply Conjecture 1.1 for M D†�S1 ; one
would need to prove in particular that the Ri .A/ have bounded denominators. This
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is related to the work of Marché and Santharoubane [14], who defined a Jones-like
polynomial invariant for links L in † � S1 , considering the highest order of the
asymptotics of the quantum invariants RTp.†� S1; L/. Their invariant, which has
value in ZŒA˙1�, is closely related to the invariant R3g�3.A/. As our method is
algorithmic, we computed the coefficients in the basis B of a few arrowed diagrams.
These coefficients have interesting integral properties; they seem to be in ZŒA˙1�

instead of Q.A/, which corroborates Conjecture 1.1 for M D†�S1 .

We may also hope to find more direct formulas for these coefficients; this may produce
an alternative proof of the linear independence of B as it would then suffice to prove
invariance of these coefficients by Reidemeister moves. We hope to explore further
these coefficients, which may be thought of as Jones-like polynomial invariants for
links in †�S1 , in a later work.

The article is organized as follows. In Section 2, we introduce the notion of arrowed
diagrams and the elementary moves they satisfy. In Section 3.1, we introduce several
important relations that we will use throughout the paper. In the remainder of Section 3,
we define a notion of degree on the set of arrowed multicurves, and, by expressing
multicurves as linear combinations of multicurves of smaller degree, we prove that
S.†�S1/ is spanned by arrowed trivial curves and arrowed nonseparating curves. In
Section 4, we show that one only needs up to 1 arrow on nonseparating curves, and
up to 2g arrows on the trivial curve, to span S.†�S1/. Finally, in Section 5.2, we
introduce an equivalence relation on the set of nonseparating curves that is motivated
by relations in the skein module. We compute the equivalence classes of this relation,
and deduce that nonseparating curves (with the same number of arrows) that represent
the same element in H1.†;Z=2/ also represent the same element of S.† � S1/,
concluding the proof of Theorem 1.2.

Acknowledgements Detcherry was supported by the Max Planck Institute for Mathe-
matics during this research, and thanks the institute for its hospitality. Wolff learned
about this problem, and about TQFT more generally, from Julien Marché while he was
writing his introductory text [13]. We are also both grateful to Gregor Masbaum for
his constant interest in this work.

2 Arrowed diagrams, complexity and trivial components

In this section, we introduce the notion of arrowed multicurves and arrowed diagrams
on †. While the definition of elements in the skein module S.M/ of a 3–manifold M
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is very much 3–dimensional, this notion will give us a purely 2–dimensional way
of thinking of elements of S.†� S1/. Arrowed diagrams were first introduced by
Dabkowski and Mroczkowski in [16], where they were used to compute the skein
module of †0;3 �S1 .

Let us view the S1 factor of †� S1 as Œ0; 1�=0�1 , and let L be a link in †� S1 .
By a general position argument, up to isotopy L can be assumed to be transverse to
†�f0g and have no vertical tangent and, furthermore, the image of L by the projection
† � S1 ! † can be assumed to only have a finite number of double points with
transverse intersection. The diagram of the projection, together with the choice of
upper and lower strand at each double point/crossing, is almost enough to determine L
up to isotopy. The only missing information is when does L cross the level †� f0g.
Thus we add an arrow on the projection at each point of the projection coming from
an intersection point L\ .†� f0g/. Moreover, we choose the direction of the arrow
to be the direction in which L crosses †� f0g positively. Conversely, any arrowed
diagram gives rise to a link in † � S1 in an obvious way. Because the Kauffman
bracket skein module deals with framed links, we would like to put a canonical framing
on each arrowed diagram. We do so by choosing the parallel of L to be the push-off
of L along the positive direction of S1 . With this convention, any framed link L still
has an arrowed diagram, as we can always correct the framing by adding curls to the
components of the diagram.

Dabkowski and Mroczkowski gave a complete set of moves describing isotopy of
framed links in †�S1 :

Proposition 2.1 [16] Two arrowed diagrams of framed links in †�S1 correspond
to isotopic links if and only if they are related by the standard Reidemeister moves R01 ,
R2 and R3 and the moves

� �.R4/ .R5/ �

The relations R4 and R5 imply the commutation relation: if 
 � ı is the link obtained
by stacking the diagram 
 on top of ı , then 
 � ı D ı � 
 . It is easy to see directly that
those two links are isotopic in †�S1 .

By relation R4 , we note if a strand of an arrowed diagram has some number of arrows
(maybe with different directions) in succession, only the algebraic number of arrows
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matters. It will often be useful to write an arrow indexed by n 2 Z to denote n
successive arrows all pointing to the direction of the arrow. If n is negative, it has to
be understood as jnj arrows pointing in the opposite direction.

In all this article, by an arrowed multicurve, or multicurve for short, we mean an
arrowed diagram without double points. In other words, this is a diagram whose
projection on † is a 1–dimensional submanifold of †. Each of its components may
be homotopically trivial, or essential, and we count these curves to form the degree
and complexity of the diagram.

Definition 2.2 If 
 is an arrowed multicurve and n (resp. m) are its number of
essential, nonseparating (resp. nontrivial separating) simple closed curve components,
then we define

deg.
/D nC 2m:

We also define the complexity of 
 as .deg.
/; nCm/. Complexities are ordered
using the lexicographic order.

Notice that the above notion of degree does not depend on the number of arrows that
decorate each component of 
 .

Note that in the definition of the degree and complexity, we do not count the trivial
components of 
 . This is because we can essentially get rid of them, as follows:

Proposition 2.3 For † a closed compact oriented surface , the skein module S.†�S1/
is spanned by arrowed multicurves containing no trivial component , and by the arrowed
multicurves consisting of just the trivial curve with any number of arrows.

Moreover , every arrowed multicurve is a linear combination of arrowed multicurves as
above and with same degree and complexity.

Proof It is clear that repeatedly applying Kauffman relations K1 to the crossings of an
arrowed diagram will express it as a Q.A/–linear combination of arrowed multicurves.
Thus the main point of Proposition 2.3 is its second assertion: we can eliminate a trivial
component (with arrows) if the multicurve has at least one other component, without
changing its degree or complexity.

Let us consider an arrowed multicurve 
 containing a trivial curve and another compo-
nent. If the trivial curve contains no arrow then the Kauffman relation K2 gets rid of it.
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Otherwise, we use the relations

n
D

n� 1

A
n
CA�1

n
D A�1

n� 2
CA

n� 1

In the above, the left strand stands for a strand of another component of the starting
multicurve (which is the second term of the left-hand side of the second equality).

By using this relation, we can express 
 as a linear combination of arrowed multicurves
where the number of arrows on a trivial component has increased, or decreased; this
number of arrows can therefore be pushed to 0, and then the Kauffman relation K2
gets rid of that trivial component. We then proceed inductively to erase the trivial
components, until there is either no trivial component left, or just one trivial component
and no other component.

3 Reducing the degree of multicurves

The main result of this long section will be the following:

Proposition 3.1 The skein module S.†�S1/ is spanned by arrowed multicurves of
degree 6 1. That is , S.†�S1/ is spanned by arrowed nonseparating curves and by
arrowed trivial curves.

In the next subsection, we first introduce a few helpful relations that relate a few
multicurves of the same degree, up to lower-degree terms. We will use them to prove
Proposition 3.1 inductively, showing that any arrowed multicurve of degree n> 2 is a
linear combination of arrowed multicurves with smaller degree.

3.1 The sphere and the torus relation

Our first relation relates multicurves that sit on a 5–holed sphere subsurface of †:

Proposition 3.2 For any n> 1, we have the sphere relation .Sn/ between multicurves
of degree 2nC 6:
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f2nC 2g C f2ng � 0

nC 1 curves n curves

In the above figure , the two boundary components on the left are nonseparating curves
of the ambient surface †, while all the other red curves are essential , separating curves
of †. The black square may be homotopically trivial in †, or not. Finally , � is
equality up to a linear combination of multicurves with degrees 6 2nC 5.

We note that the multicurves above are indeed of degree 2nC 6, as the middle n
components and the two rightmost ones are separating, they contribute 2nC 4 to the
degree, and for each summand one adds either a separating curve or two nonseparating
curves, adding a total of 2 more to the degree. We will sometimes refer to the relations
.Sn/ as the sphere relations.

Proof We prove Proposition 3.2 by considering the resolutions of the diagram shown
in Figure 1. In this diagram, the 5–holed sphere is drawn as a 4–holed disk, with
the boundary of the disk and the leftmost hole corresponding to the two boundary

0 1 n nC1

nC2nC3

2nC2

2nC3

0 1 n nC1

nC2
nC32nC3

Figure 1: The black curve 
 stands atop the green curve ı inside a 4–holed
disk. The two rightmost boundary components are the rightmost boundary
components in Proposition 3.2. There are n>1 strands of 
 going in between
the two squares, and the left (resp. right) diagram corresponds to n being
odd (resp. even). In each diagram, we labeled the crossings from 0 to 2nC3 ,
following the green curve.
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components on the left of relation .Sn/. We have to consider two slightly different
patterns, depending on whether n is odd or even. The diagram shows two simple closed
curves 
 and ı , with 
 (in black) standing on top of ı (in green). We will produce
relation .Sn/ from the commutation relation 
 � ı D ı � 
 , after a careful study of the
multicurves that appear after resolving the crossings using Kauffman relations. We
recall that in 
 �ı and ı �
 the exact same resolutions appear, with coefficients changed
by replacing A by A�1 . With this in hand, it is sufficient to study the resolutions
of 
 � ı . There are 2nC 4 crossings between 
 and ı , and thus 22nC4 resolutions.
Our claim is that among all those resolutions, there are only two of maximal degree,
and that this maximal degree is 2nC 6.

Notice that the 2nC 4 crossings cut the black and green curves 
 and ı into 2nC 4
black arcs and 2nC4 green arcs. Moreover, any component of any resolution consists of
several green and black arcs, alternating between green and black; any such component
is composed of an even number of arcs. We will focus mainly on the green arcs, and
denote them by .i; i C 1/ with 06 i 6 2nC 3, with cyclic notation, as suggested in
Figure 1.

Given a resolution � of 
 � ı and a green arc a , consider the connected component
�0 of � containing a . We will say that the contribution of a to the degree of �
equals p.a/=q.a/, where q.a/ is the number of green arcs in �0, and where p.a/
equals 0 if �0 is a nonessential curve of †, 1 if it is a nonseparating simple closed
curve, and 2 if it is a nontrivial separating curve. This way, deg.�/ is the sum of the
contributions of its green arcs.

Let us bound, individually, the contribution each green arc can have to the degree of
a resolution of 
 � ı . The arcs .2nC 3; 0/, .0; 1/, .nC 1; nC 2/ and .nC 2; nC 3/
are the only ones that can form a closed curve containing no other green arcs: for the
two first ones that curve is nonseparating, for the two others it is separating. Hence the
maximal contributions they can give to the degree are respectively 1, 1, 2 and 2. For
any other green arc a , we will have p.a/6 2 and q.a/> 2, hence the contribution a
cannot exceed 1. By summing up all these contributions, we deduce that for each
resolution � of 
 � ı we have deg.�/6 2nC 6.

Finally, let us examine in which resolutions of 
 � ı the degree 2nC 6 can indeed be
reached. The contributions of both green arcs .nC 1; nC 2/ and .nC 2; nC 3/ need
to equal 2. For this, these green arcs have to be matched to one black arc to make a
separating curve in †. Thus, the crossings nC 1, nC 2 and nC 3 need to receive the
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resolutions �, C and �, respectively. Now, in order to reach maximal contribution
to the degree, the green arc .n; nC 1/ has to be paired with another green arc and
two black arcs, to form a separating curve of †. The only possibility for that is to be
paired with the green arc .nC3; nC4/, and the crossings numbered n and nC3 have
to both receive the resolution �. The same argument with the arc .n� 1; n/ implies
it is paired with the arc .nC 4; nC 5/ and the crossings n� 1 and nC 4 have the
resolution �. We continue further left, until the arc .1; 2/, which is paired with the arc
.2nC 2; 2nC 3/ (it can also be paired with the arc .2nC 3; 0/ to form a closed curve,
but that curve is trivial in †). In conclusion, all crossings except nC 2 and maybe 0
have to receive the resolution �.

Depending on the resolution of the crossing labeled 0, we have two possible diagrams of
maximal degree. The one for which the resolution of 0 is � yields the first diagram of
the relation .Sn/. It has 2g�3 signs � and one sign C, hence it comes with coefficient
A�2gC2 in 
 � ı , and with coefficient A2g�2 in ı � 
 . The positive resolution of 0
yields the second diagram, with coefficient A�2g in 
 �ı and A2g in ı �
 . The equality

 � ı D ı � 
 in the skein module thus proves the formula .Sn/.

We defined the sphere relation .Sn/ for any n > 1. We will need another relation,
which we will call .S0/. It is again a relation between multicurves on a 5–holed sphere
subsurface, although it has a slightly different form.

Proposition 3.3 In S.†�S1/, we have the following relation between multicurves
that coincide except in a 5–holed sphere:

f4g C f2g C f2g

D f4g C f2g C f2g
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Proof We get the relation looking at resolutions of 
 �ı , where 
 and ı are the simple
closed curves

1

2 3 4




ı

In the above, we numbered some boundary components from 1 to 4, where 1 and 2
correspond to the two leftmost boundary components in Proposition 3.3 and 3 and 4
to the two rightmost components. We get the sphere relation .S0/ from the equality

 � ı D ı � 
 . Note that resolutions with an even number of positive resolutions at
crossings will appear with the same coefficient 1 on both sides, so we need to analyze
the other resolutions only. Let us order the crossings from left to right; the following
sums up the different resolutions:

CCCC �CCC CC�C

���� ���C �C��

with the remaining odd resolutions C�CC, CCC�, ��C� and C��� all yielding
trivial curves. Thus, collecting all terms of the equality 
 � ı D ı � 
 , we indeed get the
relation .S0/.

We now establish another useful relation, which we will call the torus relation. This is
a relation between multicurves that sit on a torus (with several holes) subsurface of †.
We have:

Proposition 3.4 Let 
 be an arrowed multicurve. We suppose that there exists a
simple curve ı which intersects exactly once n > 3 components of 
 and which is
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n strands

0 n� 1

Figure 2: The black curve 
 0 stands atop the green curve ı . The dashed
quarter-circles correspond to the boundary component of the torus. We labeled
the crossings from 0 to n� 1 , from left to right. The surface is represented
as a torus using the square model, but regions of the diagram may actually
contain some genus, or be connected by handles.

disjoint from all other curves of 
 . Then , up to multicurves of lower degree , 
 is a
linear combination of arrowed multicurves obtained from 
 by replacing any number
of pairs of consecutive components of 
 along ı by their connected sum along the arc
of ı connecting them , provided the resulting curves are nontrivial and separating.

Note that in the torus relation all multicurves are of degree n: all components of 

are nonseparating as they intersect ı once, and the other multicurves have the same
degree as we always replace two nonseparating curves with one separating one. We also
remark that any multicurve that satisfies the hypothesis of Proposition 3.4 is a linear
combination of multicurves with smaller complexity. If moreover no pair of consecutive
components bounds a subsurface †0 �† with genus > 1, then 
 is actually a linear
combination of multicurves of smaller degree, as those connected sums are all either
trivial curves or nonseparating curves.

Proof We prove Proposition 3.4 using a similar method as for Proposition 3.2. Let
us introduce the curve 
 0 which is the 1=n fractional Dehn twist of 
 along ı . The
curves 
 0 and ı are represented in Figure 2. We will deduce the relation from the
equality 
 0 � ı D ı � 
 0. This time, the diagram shown in Figure 2 has n crossings, thus
n green arcs and n black arcs. The crossings are labeled 0 to n� 1, and considered as
elements of Zn . Notice that the black arcs connect crossing i to crossing i C 1. We
will find the bigons and squares of the diagram, and show that no bigon corresponds to
a separating curve, which will imply that the maximal degree is at most n. As there are
both green and black arcs connecting i to iC1, we get exactly n bigons, and each green
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arc belongs to exactly one bigon. Notice that here it is important that n> 3, otherwise
there are actually two black arcs that close up the green arc .0; 1/, as 1C1D 0 mod 2.
Each of those bigons corresponds to a vertical curve in the square representing the
one-holed torus; that is, the bigons correspond to parallel nonseparating curves.

Let us now search for the squares .i; iC1; j; k/, where .i; iC1/ is a green arc. Given
the form of black arcs, they must be of the form .i; i C 1; i C 2; i C 1/. We note
that those squares all correspond to the curves that are connected sums of consecutive
components of 
 along an arc of ı . In a maximal-degree resolution, all green arcs
must belong to either a bigon (which has to be a nonseparating curve as we saw) or
a square that is a separating curve. So the different resolutions are exactly 
 and the
different possible multicurves described in the first part of Proposition 3.4. Thus the
equality 
 0 � ı D ı � 
 0 gives exactly the equation of Proposition 3.4.

Next we introduce a relation between arrowed multicurves in a two-holed torus subsur-
face of †. Those relations will involve multicurves with at most two components (in
the subsurface), which are not covered by Proposition 3.4.

Proposition 3.5 We have the relations

a

b

aC 1

bC 1

aC b aC bC 2

A�1 �A D�A CA�1

and

a

b

aC 1

bC 1

aC bC 2 aC b

A �A�1 D A �A�1

In particular , the multicurves on the left-hand side of two equations are linear combina-
tions of multicurves of smaller complexity.

Proof From Reidemeister moves R5 , we have
a

b

D

aC 1

bC 1
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After resolving the crossings, this gives the first equation. Similarly, the second equation
is a consequence of the relation

a

b

D

aC 1

bC 1

Finally, let us call Da;b and DaC1;bC1 the two multicurves on the left-hand side
of the two equations; let � be equality modulo multicurves of smaller complexity.
Note that Da;b is composed of two nonseparating curves, so it has degree 2. The
multicurves on the right-hand side have only one component, thus have degree at most 2
and smaller complexity than Da;b . Thus we have A�1Da;b �ADaC1;bC1 � 0 and
ADa;b �A

�1DaC1;bC1 � 0, which implies that f2gDa;b � 0 and f2gDaC1;bC1 � 0.
So the multicurves on the left-hand side are linear combinations of multicurves of
smaller complexity.

3.2 The dual graph of an arrowed multicurve

Given an (arrowed) multicurve in †, we define its dual tree as follows:

Definition 3.6 Let 
 be a multicurve in †. Let c be the multicurve that consists of a
copy of each distinct homotopy class of nontrivial separating curves among components
of 
 , and let V be the set of connected components of †X c . Then the graph � dual
to 
 has one vertex for each element of V and one edge for each component of c ,
connecting the two connected components of †X c that it bounds. To each vertex
v 2 V , we associate the corresponding connected component †.v/�†. We let g.v/
denote its genus, and by 
 \†.v/ we mean the arrowed diagram of †.v/ consisting
of the nonseparating connected components of 
 lying inside †.v/.

Note that the graph � is actually a tree as any edge of � is disconnecting.

For 
 2 S.†�S1/ a multicurve, we say that 
 is stable if it is not a linear combination
of multicurves of smaller complexity.

Lemma 3.7 Let 
 be a stable multicurve and let v be a vertex of the dual graph of 
 .
Then 
 \†.v/ consists of either 0 or 1 nonseparating curves.

Proof Let 
 0 be the multicurve 
\†.v/, which consists only of nonseparating curves.
By the torus relation, if we can find a curve ı which intersects at least three components
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of 
 0 exactly once, then 
 is a linear combination of multicurves of smaller complexity,
hence 
 is not stable. Also, if we can find a curve ı which intersects exactly two
components of 
 0 once, then a neighborhood of the union of these three curves is a
two-holed torus. Proposition 3.5 then asserts that 
 is not stable.

Thus, we just need to prove that such a curve ı exists provided 
 0 contains at least two
nonseparating curves. For this, consider the dual graph G.v/ to 
 0 in the usual sense;
its vertices are the connected components of †.v/X
 0 and each component of 
 0 yields
one edge of G.v/. If G.v/ has at least two vertices then we can find an embedded
loop in G.v/, which can be followed to define a curve ı as above. Similarly, if G.v/
has only one vertex, but at least two loops, then the two corresponding components
of 
 0 are nonseparating, and mutually nonseparating in †.v/, hence we can find a
curve ı intersecting just these two curves once; provided G.v/ has at least two edges,
such a curve ı exists.

Proposition 3.8 Let 
 be a stable multicurve on †. Then the dual graph of 
 is
linear.

Proof Let 
 be a stable multicurve and � be its dual graph. Let us note that by
definition of dual graphs, if a vertex v of � has valency 6 2 then its genus g.v/ is at
least 1. Hence, it is then sufficient to prove that if two vertices v and v0 are connected
by an edge and if g.v0/> 1, then the valency of v is at most 2. Indeed, assuming this
claim, starting at the leaves of the tree � which have genus > 1, then neighboring
vertices also have valency 6 2 and thus genus > 1. Once can proceed inductively to
prove that � is linear.

Thus let us assume that � has two connected vertices v and v0 such that g.v/> 1 and
suppose the valency of v0 is at least 2. A neighborhood of the connected components
of 
 corresponding to the edge .v; v0/ looks like the second term of the sphere relation
of Proposition 3.2, with n> 1 curves in the middle.

If n> 2, we have to apply the sphere relation .Sn�1/, reducing the value of n while
adding copies of the two leftmost boundary components. Doing so, we actually increase
complexity, but we keep the same degree. We inductively reduce the value of n until we
hit nD 1. Finally, we apply the relation .S0/ of Proposition 3.3, which now expresses
the multicurve we got in terms of multicurves of smaller degree. We deduce that the
multicurve 
 was not stable.

We end this section with a lemma that refines Lemma 3.7 for vertices of valency 2:
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Lemma 3.9 Let 
 be a stable multicurve and v be a vertex of its dual graph � of
valency 2. Then 
 \†.v/D∅.

Proof Because of Lemma 3.7, we know that 
 \†.v/ is either empty or a single
nonseparating curve. The subsurface †.v/ has genus g > 1 and two boundary com-
ponents. We will provide a relation to show that a multicurve in †.v/ consisting of
the two boundary components and one nonseparating curve is a linear combination of
multicurves of smaller degree.

Consider two curves 
 and ı in a surface †g;2 as follows:



ı

In the above, the two circles are the two boundary components of †g;2 , and the opposite
sides of the big square are identified. Moreover, we attach g� 1 handles to the little
square, so that the surface indeed has genus g .

Let us order the crossings from bottom to top. We claim that the resolution CC�
consists of the two boundary components plus one nonseparating curve, which gives
total degree 5, and that all other resolutions have degree at most 3. The different
resolutions are summed up in the following diagrams:
CCC CC� C�C �CC

��� C�� �C� ��C

degD 3 degD 5 degD 1 degD 1

degD 1 degD 3 degD 3 degD 1
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Figure 3: A sausage-decomposed subsurface of † .

As the resolution CC� appears in 
 �ı�ı �
 with coefficient f1g ¤ 0, that multicurve
is a linear combination of multicurves with smaller degree, which is what we wanted.

3.3 Sausage decompositions of surfaces

Thanks to Proposition 3.8 and Lemma 3.7, the skein module of †�S1 is generated
by arrowed multicurves which are put on † in a kind of standard form that fits well
with a special kind of pair of pants decomposition of † which we will call a sausage
decomposition of †. We define such a decomposition below:

Definition 3.10 Let † be an oriented compact closed surface of genus g . A sausage-
decomposed subsurface †0 �† is the data of a subsurface of † with 2 to 4 boundary
components together with a pair of pants decomposition of the type described in
Figure 3 with pair of pants being ordered from left to right. Moreover, a sausage
decomposition of † is the data of a sausage subsurface of † composed of 2g pairs of
pants, and with two boundary components that each bound a disk in †.

Let us remark that in a sausage decomposition of †, there is a well-defined left (and
right) boundary component.

Let us fix a sausage-decomposed subsurface †0 �†, containing N D j�.†0/j pairs of
pants. We fix an integer m> 0 and k0 2 f1; : : : ; N � 1g so that the subsurface which
is the union of the first k0 pairs of pants of †0 has a single boundary component to
its right. Let a; b 2 Z and k 2 f0; : : : ; N g X fk0g; we write Dk

a;b
for the diagram

(depending on the parity of k )

a

b

m curves

k pairs of pants

k0 pairs of pants

aC b
m curves

k pairs of pants

k0 pairs of pants

or
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When k D k0 , we would like to define a Dk
a;b

similarly, except we need to specify
the relative position of the blue and red curves. Thus we get two versions, lDka;b
and rD

k
a;b

, where the red curve is put respectively to the left and to the right of the m
blue curves:

aC b

lD
k0

a;b

aC b

rD
k0

a;b

All those diagrams define elements of S.†�S1/, which depend also on m and the
sausage-decomposed subsurface †0, but for simplicity we omit those dependences from
the notation.

It is obvious that if m D 0 then lD
k0

a;b
D rD

k0

a;b
. There is a more general relation

between those two diagrams, which we describe in the following lemma:

Lemma 3.11 For any a; b 2 Z and m> 0, we have

lD
k0

a;b
� A2m.aCb/rD

k0

a;b
;

modulo diagrams of smaller degree.

Proof For any a; b 2 Z we have

a b

D

a bC 1

Thus,

aC 1 bA�1 CA
a� bC 1 a bC 1

D A CA�1
a� b� 1

so that

aC 1 b
D A2

a bC 1

Thus we can push any arrow on any curve to the curve immediately to its right, at the
expense of multiplying by A2 each time. To push all arrows from the leftmost to the
rightmost of the mC 1 curves, we multiply by A2m.aCb/ .
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The next proposition says that we can push multicurves Dk
a;b

outwards to the boundary
of the subsurface †0. Let V @†

0

be the subspace of S.†�S1/ spanned by the elements
D0
a;b

and DN
a;b

.

Proposition 3.12 Up to diagrams of smaller degree , for any a; b 2 Z, we have

lD
k0

a;b
; rD

k0

a;b
2 V @†

0

.

This proposition rests upon the following relations between the Dk
a;b

:

Lemma 3.13 Let k 2 f0; : : : ; N � 1g and a; b 2 Z.

� If k … fk0� 1; k0g then

ADka;b �A
�1DkaC1;bC1 D AD

kC1
aC1;bC1

�A�1DkC1
a;b

:

� If k D k0 then

ArD
k
a;b �A

�1
rD

k
aC1;bC1 D AD

kC1
aC1;bC1

�A�1DkC1
a;b

:

� If k D k0� 1 then

ADka;b �A
�1DkaC1;bC1 D AlD

kC1
aC1;bC1

�A�1lD
kC1
a;b

:

Proof Those equations are direct applications of the first or second two-holed torus
relation of Proposition 3.5. We apply them in the .kC1/st pair of pants of the decom-
position of †0, which may oriented to the right or to the left depending on the parity
of k . The cases where kD k0�1 or k0 work the same as the others, as we can always
keep the extra curves away.

Let V be the Q.A/ vector space formally spanned by elements Dk
a;b

(and elements

lD
k0

a;b
and rD

k0

a;b
) for a; b 2 Z and k 2 f0; : : : ; N g. We will, by a slight abuse of

notation, sometimes consider elements of V as elements of S.†�S1/ that might be thus
subject to relations. We define on V a shift operator s W V !V by s.Dk

a;b
/DDk

aC1;bC1

and, similarly, s.lDka;b/D lD
k
aC1;bC1

and s.rDka;b/D rD
k
aC1;bC1

. It should be kept
in mind that this operator s acts on the space of diagrams V , before quotienting by the
skein relations; it does not act on elements of the skein module. Also let A W V ! V

be the multiplication operator by A and consider

�C D As�A
�1; �� D�A

�1sCA and �C;m D A
2mC1s�A�1:

We note that �C;0 D�C .
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Lemma 3.14 For any a; b 2Z, we have �k0

C lD
k0

a;b
2 V @†

0

and �N�k0
� rD

k0

a;b
2 V @†

0

.

Proof By Lemma 3.13, we have ��Dka;b D�CD
kC1
a;b

provided we do not run into
the extra m curves. As the operators �C and �� commute, we get that �2�D

k
a;b
D

�2
C
DkC2
a;b

and so on, as long as we do not collide with the m blue curves. In the end
we get �k0

C lD
k0

a;b
D�k0

�D
0
a;b
2 V @†

0

, and �N�k0
� rD

k0

a;b
D�

N�k0

C
DN
a;b
2 V @†

0

.

We will now use Lemma 3.11 in order to translate the first equation of Lemma 3.14,
�
k0

C lD
k0

a;b
2 V @†

0

, in terms of the elements rD
k0

a;b
. Let rV (resp. lV ) be the sub-

space of V generated by the elements of the form rD
k0

a;b
(resp. lD

k0

a;b
). Let t W lV ! rV

be the linear operator defined by

t .lD
k0

a;b
/D A2m.aCb/rD

k0

a;b

for all a; b 2 Z. By Lemma 3.11, for all a; b 2 Z we have, up to diagrams of smaller
degree, lD

k0

a;b
� t .lD

k0

a;b
/. The operator t can be thought of as a change of basis

operator between the rD
k0

a;b
and the lD

k0

a;b
, up to lower-degree terms. Note that the

shift operator does not commute with this transformation; indeed,

s.lD
k0

a;b
/D lD

k0

aC1;bC1
� t .lD

k0

aC1;bC1
/D .t ı s/.lD

k0

a;b
/D .t ı s ı t�1/.t.lD

k0

a;b
//

and, similarly,

�
k0

C
.lD

k0

a;b
/� .t ı�

k0

C
ı t�1/.t.lD

k0

a;b
//D A2m.aCb/.t ı�

k0

C
ı t�1/.rD

k0

a;b
/:

Moreover, it can be easily computed that t ı s ı t�1 D A4ms , which also implies that

t ı�C ı t
�1
D�C;2m:

From this we get, for all a; b 2Z and, up to diagrams of lower degree, that �k0

C lD
k0

a;b
�

A2m.aCb/�
k0

C;2m.rD
k0

a;b
/. In the end, we get the system(

�
k0

C;2mrD
k0

a;b
2 V @†

0

;

�N�k0
� rD

k0

a;b
2 V @†

0

:

This should be thought of as an invertible linear system, and we are ready to conclude
the proof of Proposition 3.12.

Proof of Proposition 3.12 We will write D 2 V @†
0

for a given diagram D to mean
that D 2 V @†

0

up to smaller degree diagrams. By Lemma 3.11, we only want to show
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that rD
k0

a;b
2 V @†

0

. We have �k0

C;2m.rD
k0

a;b
/ 2 V @†

0

and �N�k0
� .rD

k0

a;b
/ 2 V @†

0

. We
note that �C;2m D A4mC1s�A�1 and �� D�A�1sCA commute, and that

idV D
1

A4mC2�A�2
.A�1�C;2mCA

4mC1��/:

We conclude that

rD
k0

a;b
D idNV .rD

k0

a;b
/D

1

.A4mC2�A�2/N
.A�1�C;2mCA

4mC1��/
N .rD

k0

a;b
/2V @†

0

as, after expanding, any term will contain either �k0

C;2m or �N�k0
� .

Corollary 3.15 Fix a sausage decomposition of †. Any (arrowed ) multicurve of the
form

n1 > 0

m1 > 0 curves

m2 > 0 curves

mg�1 > 0 curves

n2 > 0 curves
curves

is actually a linear combination of curves of the same type with all mi D 0 and of equal
degree , plus multicurves of smaller degree. In the above , arrows may be added in an
arbitrary way.

It should be noted that, by applying Corollary 3.15, we may actually increase the
complexity, as the separating curves are replaced by nonseparating ones, twice in
number.

Proof Corollary 3.15 results from applying Proposition 3.12 many times, pushing the
groups of separating curves out step by step.

From the results of Section 3.2, the skein module S.†�S1/ is spanned by multicurves
of the type described in Corollary 3.15. This may be used to strengthen Corollary 3.15
to the following proposition, which is the main result of the present section.

Proposition 3.16 The skein module S.†�S1/ is spanned by arrowed trivial curves
and arrowed nonseparating simple closed curves.

Proof Thanks to Corollary 3.15, we will only need to show that multicurves of the type
described in the corollary and with mi D 0 and n1Cn2 > 2 are linear combinations
of multicurves of smaller degree.
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Let us first assume that n1 or n2 is at least 2. Without loss of generality, let us
assume that n1 > 2. Slightly adapting our previous notation, we define arrowed
multicurves Dk

a;b
compatible with the sausage decomposition of †, which have n1�2

extra curves on the left and n2 on the right. For example, the multicurve D1
a;b

looks
like

n1� 2> 0 n2 > 0
curves

a

b

curves

By comparison, the multicurve D2g�1
a;b

would look like

n1� 2> 0 n2 > 0
curves curves

a

b

We will use the relations of Lemma 3.13 to relate the multicurves Dk
a;b

for k 2
f0; : : : ; N g, while always leaving the “extra” blue curves unchanged. Note that we
can always (up to multicurves of smaller degree) push all arrows from the blue curves
to the red curves. Let lD1a;b denote the arrowed multicurve where the red curve
in D1

a;b
is put to the left of the blue curves. As in Lemmas 3.13 and 3.11, we have

lD
1
a;b
� A2.n1�2/bD1

a;b
and �ClD1a;b � 0. The same computation as before thus

gives �C;n1�2D
1
a;b
� 0, where �C;n1�2 D A

2n1�3s�A�1 .

Similarly, if rD
2g�1

a;b
is the diagram obtained from the diagram D

2g�1

a;b
by putting the

red arrowed curve to the right of the n2 blue curves, we would have ��rD
2g�1

a;b
�0 and

rD
2g�1

a;b
� A�2n2bD

2g�1

a;b
. Thus ��;n2

D
2g�1

a;b
� 0, where ��;n2

D�A1�2n2sCA.

Thanks to Lemma 3.13, we have�
�C;n1�2D

1
a;b
� 0;

��;n2
�2g�2� D1

a;b
���;n2

�
2g�2
C

D
2g�1

a;b
� 0:

Let us note that �� , �C;n1�2 and ��;n2
all commute. Moreover, let us note that

idV D
1

A2n1�2�A�2�2n2
.A�1�2n2�C;n1�2CA

2n1�3��;n2
/
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and
idV D

1

A2n1�2�A�2
.A�1�C;n1�2CA

2n1�3��/:

When expanding the expression

idV D
1

.A2n1�2�A�2�2n2/.A2n1�2�A�2/2g�2
.A�1�2n2�C;n1�2CA

2n1�3��;n2
/

ı .A�1�C;n1�2CA
2n1�3��/

2g�2;

any term will contain either a factor �C;n1�2 or a factor ��;n2
�2g�2� . Applying idV

to D1
a;b

, we conclude that D1
a;b
� 0. This shows that as long as n1 > 2, the multicurve

above is a linear combination of arrowed multicurves of smaller degree.

Finally, in the remaining case where n1 D n2 D 1, we can fit the multicurve on a
two-holed torus subsurface, so that the two boundary components of the two-holed
torus are nonseparating in †. Proposition 3.5 then shows that the multicurve with
n1 D n2 D 1 is a linear combination of nonseparating simple closed curves (the two
boundary components of the two-holed torus).

4 Elimination of arrows

By the previous section, the skein module S.† � S1/ is spanned by all arrowed
multicurves whose underlying multicurve is either a nonseparating curve or a trivial
curve. We will now study the “vertical” part of those curves, that is, relate elements of
S.†�S1/ that differ only by the number of arrows we put on them. We will treat the
cases of nonseparating curves and of the trivial curve separately.

4.1 Arrows on nonseparating curves

We have:

Proposition 4.1 Let 
 be a nonseparating simple closed curve , with some choice of
orientation , and for n 2Z let 
n be the arrowed curve 
 with n arrows in the direction
of 
 . Then , for any n 2 Z, we have 
n D 
n�2 2 S.†�S1/.

Based on the above proposition, to span S.†�S1/, it is sufficient to consider nonsep-
arating curves with 0 or 1 arrows. Moreover, for nonseparating curves with 1 arrow
the direction of the arrow can be chosen arbitrarily.
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Proof We begin by observing that by using relation R5 of Section 2 we have
n

D

n� 1

Using Kauffman relations K1 and K2 , this gives the arrow-shift relation
n

D �A2
nC 1

�A4
n� 1

Hence, adding one trivial curve with one arrow in the direct orientation to the diagram

n yields the linear combination �A2
nC1�A4
n�1 .

On the other hand, the equality
nC 1

D

n

gives, this time, that the same diagram obtained by adding one trivial curve with
one arrow in the direct orientation to 
n equals �A2
n�1 �A4
nC1 . The equality
between these two expressions is equivalent to f1g.
nC1�
n�1/D 0. This proves the
proposition.

4.2 Arrows on the trivial curve

We now turn to the case of the trivial curve. To set things up, for n 2Z let the arrowed
curve Sn be the trivial curve with n arrows in the positive direction. If we fix a
sausage decomposition of †, then Sn also corresponds to the curve D0n;0 defined in
Section 3.3. It also corresponds to the curve D2g

�n;0 . We introduce a last operator � ,
on the vector subspace of V formally spanned by the Sn , by �.Sn/ D S�n . This
operator will be treated similarly as we treated the shift operator s (which we recall
is defined by s.Sn/D SnC2 as Sn DD0n;0 ), and the operators �C D As�A�1 and
�� D�A

�1sCA in Section 3.3; they are only defined as linear operators on V , but
we will use them to write relations in S.†�S1/, as in Section 3.3.

In this context, as there are no “extra” curves that act as barriers here, the relations
given by Lemma 3.13 simply read

��D
k
a;b D�CD

kC1
a;b
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for any a; b 2 Z and any 06 k 6 2g� 1. Thanks to these relations, we can show that
the arrowed curves Sn satisfy the following system of relations:

Proposition 4.2 The multicurves Sn 2 S.†�S1/ satisfy

(1) A�n�2Sn�A
nC2S�n 2 SpanQ.A/.S0; : : : ; Sn�1/ for all n> 1.

(2) �2g� .Sn/D .� ı�
2g
C
/.Sn/.

Proof The second point of the proposition results from our remarks above. Indeed,
from Lemma 3.13, we get, for any n 2 Z,

�
2g
C
D
2g
n;0 D�

2g
� D

0
n;0;

which, recalling that D0n;0 D Sn and D2gn;0 D S�n , gives exactly (2).

Thus we just need to prove point (1). Recall the arrow-shift relation obtained in the
preceding section,

n

D �A2
nC 1

�A4
n� 1

Applying this relation to the diagram

will give us that A�2S1 D A4S�1 , which implies the nD 1 case of (1). We proceed
to prove (1) by induction on n.

Assume that (1) has been established for some n. Using the arrow-shift relation, we
have

n

A�n�2
�n

�AnC2

D�A�nSnC1�A
�nC2Sn�1CA

nC4S�nC1CA
nC6S�n�1

By the induction hypothesis and the arrow-shift relation, the left hand side is in
SpanQ.A/.S0; : : : ; Sn/. Thus A�nSnC1�AnC6S�n�1 2 SpanQ.A/.S0; : : : ; Sn/, and,
by induction, (1) holds for all n> 1:

We will use this system to prove the following proposition, which shows that the
subspace of S.†�S1/ spanned by arrowed trivial curves is finite-dimensional:
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Proposition 4.3 The subspace of S.†�S1/ spanned by the arrowed curves .Sn/n2Z;

is actually spanned by the curves Sn for nD 0; : : : ; 2g .

Proof Let n> 1. Let us take a closer look at the equation

�2g� .Sn�2g/D .� ı�
2g
C
/.Sn�2g/:

We expand both expressions, using that �� D�A�1sCA and �C D As�A�1 . We
get

2gX
kD0

�2g
k

�
.�1/kA2g�2kSn�2gC2k D

2gX
kD0

�2g
k

�
.�1/kA2k�2gS�nC2g�2k :

As we assumed n > 1, extracting the terms in Sl with jl j maximal from both sides,
we get A�2gSnC2g �A2gS�n�2g modulo Span.S�n�2gC1; : : : ; SnC2g�1/. Now, if
� is equality modulo Span.S�n�2gC1; : : : ; SnC2g�1/, using Proposition 4.2(1) we
get the invertible system�

A�2gSnC2g �A
2gS�n�2g � 0;

A�n�2g�2SnC2g �A
nC2gC2S�n�2g � 0I

hence, for any n> 1, we have

SnC2g ; S�n�2g 2 Span.S�n�2gC1; : : : ; SnC2g�1/:

We remark that using only Proposition 4.2(1), by induction we can show that if jnj6 2g
then Sn 2 Span.S0; : : : ; S2g/. From there we can use the above result to inductively
deduce that, for any n 2 Z, the element Sn is in Span.S0; : : : ; S2g/.

5 Relating nonseparating curves

In this last section, we conclude the proof of Theorem 1.2. Thanks to Section 3, we
know that S.†�S1/ is spanned by arrowed nonseparating curves and arrowed trivial
curves, and, thanks to Section 4, we know that we need only nonseparating curves
with 0 or 1 arrows and trivial curves with at most 2g arrows to span S.†�S1/. Thus,
to prove Theorem 1.2, the only missing ingredient is to prove that two nonseparating
curves 
 and 
 0 (both with 0 or 1 arrows) such that Œ
�D Œ
 0�2H1.†;Z=2/ represent
the same element in S.†�S1/, which is what we prove in this section.
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a1

b1

a2

b2

a3
b3

˛1 ˛2

ˇ1 ˇ2

˛3

ˇ3


1


2


3

Figure 4: On the left, the standard generators of �1.†/; on the right, the
Lickorish generators of Mod.†/ , drawn for † a genus 3 surface.

5.1 Action of Dehn twists on the fundamental group

In this section, we will set some notation for the fundamental group and mapping
class group of †, and perform some elementary computations that we will need in
Section 5.2.

Here, let † be a closed compact oriented surface of genus g . For elements a; b2�1.†/,
we adopt the convention that a � b is the path obtained by following first the oriented
loop a then the loop b . Let a1; b1; : : : ; ag ; bg be the standard generators of �1.†/,
as shown in Figure 4, left, so that �1.†/ is the group

�1.†/D ha1; b1; : : : ; ag ; bgi=Œa1;b1�Œa2;b2�:::Œag;bg�D1:

We also introduce three families of simple closed curves on †: the curves ˛i , ˇi
and 
i represented in Figure 4, right. One can easily check that the curve ˛i (resp. ˇi
and 
i ) represents the free homotopy class Œai � (resp. Œbi � and Œa�1iC1biaib

�1
i �). The

Dehn twists along the curves ˛i , ˇi and 
i form the well-known Lickorish generators
of the mapping class group Mod.†/:

Theorem 5.1 [12] The 3g � 1 Dehn twists �˛i
; �ˇi

for 1 6 i 6 g and �
i
for

16 i 6 g� 1 generate Mod.†/.

For use in the next section, let us collect here a few formulas expressing the action of
the Dehn twists �˛i

, �ˇi
and �
i

on �1.†/.

Lemma 5.2 Let " 2 f˙1g.

� The map �"˛i
sends bi to bia"i and leaves all other generators of �1.†/ invariant.
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� The map �"
ˇi

sends ai to aib�"i and leaves all other generators invariant.

� The map �"
i
sends bi to 
"i bi , sends aiC1 to 
"i aiC1


�"
i , sends biC1 to

biC1

�"
i and leaves all other (including ai ) generators of �1.†/ invariant.

The proof of the lemma consists of homotoping the images of generators by the Dehn
twists, and is left as an exercise for the reader.

5.2 An equivalence relation on the set of simple closed curves

For 
 and ı two simple closed curves on †, let i.
; ı/ be the geometric intersection
number of 
 and ı . Also let Œ
� 2 H1.†;Z=2/ be the Z=2–homology class of 
 .
Finally, for any simple closed curve 
 on †, let �
 denote the Dehn twist along 
 . We
find some elementary equalities between different simple closed curves in S.†�S1/:

Proposition 5.3 Let 
 and ı be two simple closed curves on †, viewed as elements
of S.†�S1/. Then:

� If i.
; ı/D 1, then 
 D �2
ı
.
/.

� If i.
; ı/D 2, then 
 D �ı.
/.

Moreover , those relations stay true after decorating 
 and �n
ı
.
/ with the same number

of arrows.

Proof If i.
; ı/D 1, a neighborhood of a[ b in † is a one-holed torus. Moreover,
�ı.
/ and ı also intersect once. Looking at the Kauffman resolution of the equation
�ı.
/ � ı D ı � �ı.
/, we have

D

A CA�1
D A CA�1

hence

D

A CA�1
D A CA�1

which gives us that .A�A�1/
 D .A�A�1/�2
ı
.
/, and thus 
 D �2

ı
.
/ as we work

over Q.A/ coefficients.
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When i.
; ı/D 2, if the algebraic intersection of a and b is 0, then a neighborhood
of a[ b in † is a 4–holed sphere. Otherwise, a neighborhood of a[ b is a 2–holed
torus. Let us assume the former. Let 
 0 be the 1

2
fractional Dehn twist of 
 along ı .

The equation 
 0 � ı D ı � 
 0 reads

D

A2 C C CA�2

D A�2 C C CA2

thus

D

A2 C C CA�2

D A�2 C C CA2

which implies that .A2�A�2/
 D .A2�A�2/�ı.
/, and thus 
 D �ı.
/.

The case where the algebraic intersection of a and b is ˙2 is fairly similar and left to
the reader.

This computation leads us to define an equivalence relation on nonseparating simple
closed curves on †.

Definition 5.4 On the set of nonseparating simple closed curves on †, let � be the
equivalence relation generated by:

� If 
 and ı are simple closed curves such that i.
; ı/D 1, then 
 � �2
ı
.
/.

� If i.
; ı/D 2, then 
 � �ı.
/.

The proof of Theorem 1.2 now reduces to the following proposition:

Proposition 5.5 Let 
 and 
 0 be two simple closed nonseparating curves on †. Then

 � 
 0 if and only if Œ
�D Œ
 0� 2H1.†;Z=2/.

Although we think it is likely that an appropriate use of the mapping class group
literature could lead to a short proof of Proposition 5.5, we were unable to find a
statement that would directly apply. Instead, we had to resort to a brute force proof.

Algebraic & Geometric Topology, Volume 21 (2021)



A basis for the Kauffman skein module of the product of a surface and a circle 2989

Proof of Proposition 5.5 Notice that, by definition, if 
 � 
 0 then there is a mapping
class group element � 2 Mod.†/ such that 
 0 D �.
/. Moreover, if 
 and 
 0 are
related by a generating relation as in Definition 5.4, then clearly Œ
�D Œ
 0�. The direct
implication follows.

Next we remark that if 
 � ı , then, for any � 2Mod.†/, we have that �.
/� �.ı/.
Indeed, if, for example, 
 0D �2

ı
.
/ and i.ı; 
/D 1, then �.
 0/D� ı�2

ı
ı��1.�.
//D

��.ı/.�.ı//. Moreover, i.�.ı/; �.
// D i.ı; 
/ D 1, so �.
 0/ � �.
/. The same is
true for the other generating relations, and the general case follows by transitivity.

Let us now introduce the finite set F of elements of �1.†/ of the type

a
"1

1 b
�ı1

1 � � � a
"g

g b
�ıg

g ;

where the "i and ıi are elements of f0; 1g, not all zero. Notice that F contains exactly
one element in each nonzero homology class of H1.†;Z=2/. Moreover, all of these
loops actually represent simple closed curves on †, which are just connected sums
of simple closed curves a"i

i b
�ıi

i . Also let G denote the set of Lickorish generators,
G D f�˛i

; �ˇi
; �
i
g. By the above discussion, Proposition 5.5 will follow once we

prove:

Lemma 5.6 For any simple closed curve c D a"1

1 b
�ı1

1 a
"2

2 b
�ı2

2 � � � a
"g

g b
�ıg

g 2 F and
any Dehn twist � 2 G D f�˛i

; �ˇi
; �
i
g, we have that �.c/ and ��1.c/ are equivalent

to elements of F .

Proof Let us treat first the case of the generators �˛i
. For c 2 F , let us write

cDwa
"i

i b
�ıi

i z , where w and z are expressed in generators of �1.†/ different than ai
and bi . If ıi D 0, then we have �˙1˛i

.c/D c , so the �˙1˛i
.c/ are equivalent to elements

of F . So let us assume ıi D 1. If ıi D 1, then i.c; ˛i /D 1, and thus �˛i
.c/� ��1˛i

.c/.
So it is sufficient to prove that one of the two is equivalent to an element of F . Let
� 2 f˙1g. By the formulas in Lemma 5.2, we have that ��˛i

.c/ D wa
"i

i a
��
i b�1i z .

Depending on the value of "i , we see that either �˛i
.c/ or ��1˛i

.c/ is an element of F ,
so both are equivalent to elements of F .

Working with the generators �ˇi
is similar: Still writing c D wa"i

i b
�ıi

i z , we have that
if "i D 0 then �˙1

ˇi
.c/D c , which is an element of F already. Otherwise, i.ˇi ; c/D 1,

so that �ˇi
.c/ � ��1

ˇi
.c/ and moreover we find that one of the �˙1

ˇi
.c/ is an element

of F . We finally turn to the case of the Lickorish generators �
i
. This time, let us write

c D wtz D wa
"i

i b
�ıi

i a
"iC1

iC1 b
�ıiC1

iC1 z . There are 16 possibilities for the middle word t ,
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which we subdivide into three categories, depending on the geometric intersection
number with 
i :

� For t D 1, ai , b�1i b�1iC1 , aib�1i b�1iC1 , b�1i aiC1b
�1
iC1 or aib�1i aiC1b

�1
iC1 , we

have that i.Œt �, 
i /D 0.

� For t D b�1i , aib�1i , b�1i aiC1 , aib�1i aiC1 , b�1iC1 , aib�1iC1 , aiC1b�1iC1 or
aiaiC1b

�1
iC1 , we have that i.Œt �; 
i /D 1.

� For t D aiC1 or aiaiC1 , we have that i.Œt �; 
i /D 2.

Again, if i.Œt �; 
i /D 0, then �˙1
i
.c/D c and we have nothing to prove. Moreover, if

i.Œt �; 
i /D 2, then, by definition of the relation �, we have that �˙1
i
.c/� c .

It remains to show that if i.Œt �; 
i / D 1 then the elements �˙1
i
.c/ are equivalent to

elements of F . As before, those two elements are equivalent, so we only have to find
that one of them is equivalent to an element of F in each case. We proceed to show
this in the remaining eight cases:

(1) If t D b�1i then �
i
.c/D wb�1i 
�1i z D wa�1i b�1i aiC1z . But then we have that

i.�
i
.c/; ˛i /D 1, so that �
i

.c/� ��2˛i
ı �
i

.c/. But we compute that

��2˛i
ı �
i

.c/D waib
�1
i aiC1; z;

which is an element of F .

(2) If t D aib�1i then �
i
.c/D waib

�1
i 
�1i z D wb�1i aiC1z 2 F .

(3) If t D b�1i aiC1 then ��1
i
.c/D wb�1i aiC1
iz D waib

�1
i z , which is an element

of F .

(4) If t D aib�1i aiC1 then ��1
i
.c/D waib

�1
i aiC1
iz D wa

2
i b
�1
i z . Thus,

i.˛i ; �
�1

i
.c//D 1;

so that ��1
i
.c/� �2˛i

ı ��1
i
.c/. We compute that

�2˛i
ı ��1
i

.c/D wb�1i z

is an element of F .

(5) If t D b�1iC1 then ��1
i
.c/D w
�1i b�1iC1z D wbia

�1
i b�1i aiC1b

�1
iC1z . We find that

i.��1
i
.c/; ˇi /D 1, so that ��1
i

.c/� ��2
ˇi
ı �
i

.c/. We compute that

c0 D ��2ˇi
ı ��1
i

.c/D wb�1i a�1i b�1i aiC1b
�1
iC1z:

But now i.c0; ˛i /D 2, so that c � c0 � ��1˛i
.c0/. We compute that

��1˛i
.c0/D waib

�1
i aiC1b

�1
iC1z

is an element of F .
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Ai

Bi

Ai

B 0i

Ci

Di

Ci

D0i

Figure 5: The curves Ai , Bi , B 0i , Ci , Di and D0i in the genus 2 subsur-
face with boundary the curve corresponding to the free homotopy class of
Œai ; bi �ŒaiC1; biC1� 2 �1.†/ .

(6) If t D aiC1b�1iC1 then ��1
i
.c/Dw
�1i aiC1b

�1
iC1zDwb

�1
i a�1i bib

�1
iC1z . Similarly

to the previous case, we find that

c � ��2ˇi
ı ��1
i

.c/D c0 � ��1˛i
.c0/D waib

�1
i b�1iC1z;

which is an element of F .

(7) If t D aib�1iC1 then �
i
.c/D wai
ib

�1
iC1z D waia

�1
iC1biaib

�1
i b�1iC1z D c

0. Let us
introduce Ai D aia�1iC1bi and Bi D aib�1i b�1iC1 . By abuse of notation, we also write
Ai and Bi for the simple closed curves corresponding to the free homotopy classes
ŒAi � and ŒBi �. Those simple closed curves are represented in Figure 5. We see in the
figure that i.Ai ; Bi /D 1, and also that �Ai

.Bi /D A
2
i Bi . It is moreover clear that �Ai

leaves all the generators aj and bj with j not i or i C 1 invariant. Thus we have that

�
i
.c/D c0 � ��2Ai

.c0/D wA�1i Biz D w.b
�1
i aiC1/.b

�1
i b�1iC1/z D c

00:

Now call Ci and Di the simple closed curves corresponding to the free homotopy
classes Œb�1i aiC1� and Œb�1i b�1iC1�. Again we have that i.Ci ;Di / D 1, and that
�Ci
.Di /DC

2
i Di , with �Ci

leaving the aj and bj with j not i or iC1 invariant. So,

�
i
.c/� c00 � ��2Ci

.c00/D wC�1i Diz D wa
�1
iC1b

�1
iC1z:

Finally, this last element is equivalent to waiC1b�1iC1z , an element of F , using the
square of the Dehn twist along ˛iC1 .

(8) Finally, if t D aiaiC1b�1iC1 then

�
i
.c/D wai
iaiC1b

�1
iC1z D waia

�1
iC1biaib

�1
i aiC1b

�1
iC1z D c

0:

This time, let Ai D aia�1iC1bi and B 0i D aib
�1
i aiC1b

�1
iC1 . We still have i.Ai ; B 0i /D 1

and that �Ai
.B 0i /D A

2
i B
0
i , so that, similarly to the previous case, we get

c0 � wA�1i B 0iz D wb
�1
i aiC1b

�1
i aiC1b

�1
iC1z:
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Again setting Ci Db�1i aiC1 and D0i Db
�1
i aiC1b

�1
iC1 , we still check that i.Ci ;D0i /D1

and thus that
c0 � ��2Ci

.c0/D c00 D wC�1i D0iz D wb
�1
iC1z;

which is an element of F .

Lemma 5.6 now being established, Proposition 5.5 follows: by induction, for any
word in the Lickorish generators w and any element s of F , there is s0 2 F such
that w.s/� s0. As any nonseparating simple closed curve is of the form w.Œa1�/ for
some w 2Mod.†/, any nonseparating simple closed curve is equivalent to an element
of F .
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