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Abstract. Tl\/I2 is a global three-dimensional 
model of the atmospheric transport of passive tracers. The adjoint of TM2 is a model 
that allows the efficient evaluation of derivatives of the simulated tracer concentration 
at observational locations with respect to the tracer's sources and sinks. We describe 
the generation of the adjoint model by applying the Tangent linear and Adjoint Model 
Compiler in the reverse mode of automatic differentiation to the code of TM2. 
Employing CON as an example of a chemically inert tracer, the simulated concentration 
at observational locations is linear in the surface exchange fluxes, and thus the transport 
can be represented by the model's Jacobian matrix. In many current inverse modeling 
studies, such a matrix has been computed by multiple runs of a transport model for a 
set of prescribed surface flux patterns. The computational cost has been proportional 
to the number of patterns. In contrast, for differentiation in reverse mode, the cost is 
independent of the number of flux components. Hence, by a single run of the adjoint 
model, the Jacobian for the approximately 80 latitude by 100 longitude horizontal 
resolution of TM2 could be computed efficiently. We quantify this efficiency by 
comparison with the conventional forward modeling approach. 
For some prominent observational sites, we present visualizations of the Jacobian matrix 
by series of illustrative global maps quantifying the impact of potential emissions on the 
concentration in particular months. Furthermore, we demonstrate how the Jacobian 
matrix is employed to completely analyze a transport model run: A simulated monthly 
mean value at a particular station is decomposed into the contributions to this value by 
all flux components, i.e. the fluxes into every surface model grid cell and month. This 
technique also results in a series of global maps. 
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1. Introduction 

The radiative balance of our atmosphere is sensitive to the concentrations of a number 
of trace gases. Enhanced concentrations of these greenhouse gases may thus lead to 
climate change. This sensitivity of climate to perturbations in the concentrations of 
greenhouse gases is being estimated by means of complex General Circulation Models 
[Watson et al., 19951. For predictions of climate change and its impacts, these models 
use the greenhouse gas concentrations as boundary condition. To control the temporal 
development of these concentrations, in turn, the sources and sinks of the respective 
gases have to be predicted over the time period of interest. Hence, reliable models of the 
underlying source and sink processes are urgently needed to determine the feedbacks 
of future climate changes on the concentration of the gases. Improving our knowledge 
about the past and current source and sink magnitudes would help to improve and 
verify these process models. 
At present, however, for many greenhouse gases such as carbon dioxide (CO2), carbon 
monoxide (CO), methane (CH4), or nitrous oxide (N20l not even the current magnitudes 
of the natural as well as the anthropogenic sources and sinks can be quantified with 
sufficient accuracy [Houghton et al., 1995]. Especially for CON and CHO there have been 
considerable efforts to measure directly the exchange fluxes between the atmosphere 
and different source reservoirs (over oceans e.g by global ship campaigns or over land 
by means of eddy correlation methods). Although this "Bottom Up" approach locally 
yields important information on the relevant processes, large uncertainties are induced 
by the necessary assumptions for extrapolation to regional or global scales. 
During the last decades, an observational network of increasing density is being 
established to monitor the relevant trace gases. Space borne observations are also 
becoming available, as well as measurements on board of ships and planes. In contrast 
to local flux measurements, if carefully selected, the atmospheric data are representative 
for the concentrations on larger spatial scales. Hence, these observations provide 
a means of estimating the sources and sinks on larger scales. Thereby the fluxes 
can be linked to atmospheric observations by a more or less sophisticated model of 
the atmospheric transport, if necessary complemented by a module of the relevant 
atmospheric chemistry. The systematic search for patio-temporal flux fields that, in 
combination with an atmospheric transport model, yield modeled concentrations close 
to observations is called inverse modeling of the atmospheric transport. 
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In order to prevent future climate change, for several greenhouse gases, attempts are 
being made to reduce the anthropogenic emissions: On intergovernmental level, emission 
targets are being negotiated. In this context, another perspective for inverse modeling 
is to derive regional estimates of the fluxes to monitor the success of these attempts. 
A number of groups have investigated the feasibility of inversion of the atmospheric 
transport. The challenge consists in employing the information from a spatially sparse 
observational network in an optimal way to derive regional flux estimates together 
with an estimated range of confidence. Technically, this constitutes an ill-posed or 
underdetermined inverse problem: A unique solution can only be derived by use of 
additional assumptions (regularization of the inverse problem). The validity of these 
assumptions as well as the reliability of the transport model are crucial for the quality 
of the resulting estimates. Recently, a number of studies have been carried out to 
quantify the magnitude of the sources and sinks of CON lEntirzg and Mansbridge, 1989; 
Eating et al., 1995; Ciaos et al., 1995; Haas-Laursen, 1997; Rayner et al., 1998 in press 
, Bousquet, 1997; Law, 1998 in press], CHO Brown, 1993; Hein and Hermann, 1994; 
Brown, 1995; Hein et al., 1996], and halocarbons [Brown, 1993; Hartley and Prénrz., 
1993]. Differences among these studies mainly consist in the resolution of the transport 
models (two dimensional or three dimensional) and in the kind of assumptions for 
regularization, which is formally reflected by different inversion techniques [see e.g. 

EntfMg, submitted]. 
Most of the relevant long lived trace gases are either not (CO2) or only weakly 
(CH4, N2O, halocarbons) coupled to tropospheric chemistry and thus, in a good 
approximation, can be inverted with a linearized representation of the transport. The 
transport then can be taken into account in the following way: The surface flux field is 
decomposed into prescribed patio-temporal patterns ("source" or "flux" components) 
with unknown scaling coefficients. The transport model is run separately with each of 
the source components, and the contributions to the concentration signal at each of the 
monitoring sites and times are recorded. 'These contributions can be interpreted as a 
discretized " impulse response" or "Greens function" that quantifies the responseof the 
modeled concentration at the observational sites and time periods to unit changes in 
the magnitude of each source component. 
Formally, this impulse response or Greens function is the Jacobian matrix representing 
the first derivative of the modeled concentration at the observational sites and dates 
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with respect to the coefficients of the source components. Computationally, for of 
source components, of model runs (or a single ' / I f  tracer run transporting emissions 
from each source component separately) have to be performed to determine the of 
differential quotients constituting the columns of the Jacobian matrix. The complexity 
of the transport model thus essentially limits the number of source components that 
can be considered. The additional assumption that the flux fields can be represented 
by a few patterns is thus inherent in this approach and, in part, determines the result 
of the inversion. It is evident, though, that for many trace gases such a restricted 
representation does not take account of the spatial and temporal variability in an 
appropriate way. In combination with inhomogeneous sampling, this low resolution in 
the space of unknowns may lead to biased estimates as recently investigated by Trampert 
and Snieder 119961. 
Here we present an alternative approach employing the adjoint of the three-dimensional 
transport model TM2. By means of the Tangent linear and Adjoint Model Compiler 
[TAMC Goering, 19961 this numerical module has been constructed automatically from 
the TM2 source code in the " reverse mode" of automatic differentiation. The principles 
of adjoint code generation and the adjoint model are introduced in Sect. (3), By a 
single run of the adjoint model the exact Jacobian is efficiently computed row by row, 
for which the cost is proportional to the number of observations and nearly independent 
of the number of flux components. Hence, defining the flux patterns as the model 
grid cells, we are able to determine the Jacobian for the horizontal TM2 resolution of 
approximately 80 by 100 and monthly temporal resolution. 
The Jacobian is computed for the simulation of the quasi-stationary seasonal cycle of 
C027 which is carried out in a cyclost ationary setup of TM2 described in Sect. IQ). 
The rows of the Jacobian quantify the sensitivity of the modeled concentration at a 
particular station and month to the fluxes into every surface layer grid cell at every 
month. A visualization results in instructive maps of the potential influence of the 
flux components for the respective months on a particular observable. Prescribing for 
each grid cell the relative distribution of the fluxes over the year (e.g. constant flux ) 

the information on potential influence can be condensed to one map for each monthly 
mean concentration. On the other hand, it is possible to derive the sensitivity of any 
particular feature that can be computed from the monthly mean concentrations (e.g. 
the yearly mean concentration, or the magnitude of the seasonal cycle). For linear 
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combinations of the monthly mean concentrations, in addition to compute potential 
influence areas, it is possible to decompose the feature as modeled in a particular run 
according to the contributions resulting from the respective flux components. Besides 
these sensitivity studies, the Jacobian can be applied for tracer simulations instead of 
Tlv[2 [Knott, 19971, as long as the setup the matrix has been derived for is appropriate 
for the problem at hand. 
In a companion paper [Kaminslci et al., submittedl, we present a Bayesian inversion 
on the TM2 grid, in which we combine the Jacobian with both atmospheric CON 
observations of the period from January 1981 to January 1987 from the NOAA/ClvIDL 
program 1Globalview-CO2, 19961 and a priori information on the fluxes. This a priori 

information is derived from output of high resolution models of both the terrestrial 
biosphere (SDBM, [Knott and Hermann, 19951) and the ocean [Six and Maier-Reimer, 
19961 as well as fossil fuel burning statistics [Andres et al., 19971 and estimates of land 
use change [Houghton et al., 19871. 
In summary, the outline is as follows: In Sect. (2) we give a description of the transport 
model and the setup for which we derive the matrix representation. The principles of 
adjoint code generation and the adjoint model are introduced in Sect. (3). Sect. (4) 
discusses the Jacobian and its use to compute sensitivities of particular features. 

Sect. (5) contains concluding remarks. 

2. Model of the Quasi-Stationary Seasonal Cycle 

A statistical analysis of the observed atmospheric CON concentrations as performed e.g. 
by Keeling et al. 119891 points out that, on time scales of a few years, the concept of a 
quasi-stationary seasonal cycle is appropriate to describe the prevailing features in the 
records. This quasi-stationary seasonal cycle component in the concentration, which 
essentially is composed of a global trend and a spatially varying seasonal cycle, can 
be extracted from the observations as well as be simulated by atmospheric transport 
models. Since these transport models use CON surface exchange flux fields as boundary 
condition, comparison of the observed and the simulated quasi-stationary seasonal 
cycles provides a way to constrain these fluxes. In this section we briefly introduce our 
transport model TM2, give a formal definition of the quasi-stationary seasonal cycle, 

and describe an appropriate setup of Tl\/I2 for simulation of the quasi-stationary seasonal 
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cycle. The adjoint model, which is described in Sect. (3), then evaluates the derivative 
of the function that is defined by this particular setup. Comparison of simulated 
concentrations to observations is deferred to Sect. (7) of Kaminski et al. [submittedl. 
TM2 is a three-dimensional atmospheric transport model, which solves the continuity 
equation for an arbitrary number of atmospheric tracers on an Eulerian grid spanning 
the entire globe 1He'éma1m, 19951. It is driven by stored meteorological fields derived 
from analyses of a weather forecast model or from output of an atmospheric general 
circulation model. Tracer advection is calculated using the "slopes scheme" of Russel 
and Lerner 119811. Vertical transport due to convective clouds is computed using the 
cloud mass flux scheme of Tiedtke 119891. Turbulent vertical transport is calculated 
by stability dependent vertical diffusion according to the scheme by Louis 119791 
Numerically, in each base time step the model calculates the source and sink processes 
affecting each tracer, followed by the calculation of the transport processes. 
The spatial structure of the model is a regular latitude-longitude grid and a sigma 
coordinate system in the vertical. The base "coarse grid" version of the model uses 
a horizontal resolution of approximately 80 latitude by 100 longitude (the horizontal 
dimension of the grid is fig = 36 X 24) and 9 layers in the vertical dimension. The 
numerical time step of this model version is four hours. 
We apply TM2 to simulate the quasi-stationary seasonal cycle component in the CON 
concentration at particular observational sites. Therefore, prescribing the same monthly 
mean surface exchange flux fields f each year (cyclostationarity), and starting from zero 
initial concentration, TM2 is run by repeatedly cycling through the same meteorological 
fields of the year 1987 derived from analyses of the European Center for Medium Range 
Weather Forecast (ECMWF), which are available to the model every 12 hours. Thereby 
the meteorological fields have been adjusted in order to guarantee air mass conservation. 
This adjustment is also applied when switching from the fields of December 31 to 
January l [Heir/zann, 19951. We use monthly mean values of the simulated concentration 
for comparison with observations, because for shorter averaging periods the influence 
of synoptic events, whose interannual variations are not resolved, would become too 
important. To extract time series of concentrations C5 at particular sites S, we first 
compute monthly means and then perform a bilinear interpolation in the horizontal 
from the TM2 grid to the exact location of S. 
With periodic boundary conditions and periodic transport, at every site, the simulated 
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concentration as well tends towards a periodic state Co' For a flux field with nonzero 
global annual mean, however, a linear trend is superimposed on the cyclostationary 
concentrations. The spatial variation of the magnitude of the annual mean flux as 
well as the effect of eovarying seasonal cycles of fluxes and transport (rectifier effect) 
described e.g. by Pear ran and Hyson 119801, Heifrnann et al. 119861, Hermann and 
Keeling [1989], Denning et al. 119951 result in a spatially varying offset in Cp- Formally, 
at the i-th month, the simulated concentration C31 can be composed as: 

+ C5,i `: 55,i 6 ' t ¢ + 0 5 + R 5 , f » ;  7 (1) 

where the single terms have the following meaning: The periodic component has been 
split up into a function S5¢ with yearly period lS5,i+12 = 55,0 and zero annual mean 
denoting the seasonal cycle as well as the spatial gradient contribution Ag. The long 
term global linear trend b is related to the global annual mean flux f' by 

b o¢-f- 7 (2) 

where Q = 0.476 p p m / G t C  is the conversion factor from mass to concentration for 

instantaneous global mixing as used by the transport model. The length of the time 
interval from the beginning of the simulation to the middle of the al-th month to is given 

by 

to 
o 1 - 2 

: (7 / ) years 

The residuum Re tends to zero as the length of the time series increases. 
We define the quasi-stationary seasonal cycle as 

12 (3) 

+ CS,i - Rs,i = S b • of; + GO = Co,S,i + b ' to (4) 

To represent the quasi-stationary seasonal cycle, in addition to the global linear trend, 12 
numbers per site are needed to quantify co: 11 numbers for SS and 1 number for Gs. As 
soon as Rs ;  is close enough to zero to be neglected, the quasi-stationary seasonal cycle 
can be extracted from our modeled time series. Hermann and Keeling 119891 found that 
for tropospheric sites a spin up period of 3 years is sufficient to achieve an appropriate 
degree of convergence in Eq. (4). The rate of convergence reflects the model's time 
scales of mixing. These time scales are commonly quantified in terms of exchange times 
[Rayner and Law, 1995], a concept applied in the context of box diffusion models. More 
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precisely, the rate of convergence is determined by the longest exchange time, which, 
in the troposphere, is associated to the interhemispheric transport. Employing the 
radioactive tracer 85Kr, Jacob et al. [19871 found an interhemispheric exchange time of 
1.1 years for a similar transport model, and Heir arm and Keeling [1989] found 1.3 years 
for TM2. Similar to Heir arm and Keeling [19891 as "standard setup" of TM2, we choose 
to perform a four year run, of which we extract the monthly mean concentrations in the 
last year. Together with the global annual mean flux, these 12 values per site determine 
the trend and the periodic component representing the quasi-stationary seasonal cycle : 

b a - f  

Cp,s,i C5,1;+3-12 - i¢+3-12 a i 12). 1, (5) 

In the terminology of linear algebra, the standard setup includes the choice of a basis 
(and its order) for the space of fluxes, i.e. a set of of - 12 X fig vectors spanning the 
space, and f e 1R"f is a representation of a particular flux vector by its components with 
respect to that basis. The components of f quantify the 12 monthly mean fluxes into 
each surface grid cell. In particular, the basis defines the physical units of the fluxes. 
Similarly, with respect to a basis in the space of concentrations, the output C e mc is 
a vector of ac = 12 x n., components for the modeled monthly mean concentration at 
n . , observational sites. Since, in addition, every step in the simulation is linear, in the 
standard setup TM2 can be represented by a real ac X of matrix T, and the application 
of the model to a flux field f can be written as 

C Tf (6) 

Using this matrix notation, the model of the quasi-stationary seasonal cycle in Eq. (5) 
reads 

b = awf- 

= Tf - t -a . f -  
CP 9 (7) 

where the vector t contains the values of to. 
Concatenating b and Co to one vector Cqsc) these equations define a single matrix M: 

Cqsc 
I 

I (8) 



10 

Since our model neglects interannual variations in the transport as well as in the fluxes, 
a careful interpretation of Cqsc is necessary: If it was interpreted as the quasi-stationary 
seasonal cycle of 1987, the year of the meteorological data, Cqsc would be subject to both 
sources of error: For the spin up years the difference in the meteorologies to 1987 as 
well as the differences in the fluxes to 1987 would be neglected. Instead, as in the study 
of Hein et al. 119961, Cqsc should be interpreted as a mean quasi-stationary seasonal 
cycle over a target period of a few years: Prescribing the mean flux over the whole 
target period, the error caused by the cyclostationary flux assumption decreases with 
increasing length of the target period. The error induced by using the meteorology of 
a particular year to simulate the whole target period still remains. One might argue 
that a climatology, i.e. the meteorology of a mean year, should be employed instead. 
In order not to underestimate the transport, however, TM2 needs the synoptic scale 
variation, which is partly removed by the averaging procedure yielding the climatology. 
Hence, instead of using a mean meteorology, Cqsc is interpreted as one particular element 
of the ensemble of modeled concentrations that would result from using the same mean 
fluxes but the meteorologies from the particular years of the target period. This model 
error has to be taken into account, when comparing Cqsc to the mean quasi-stationary 
seasonal cycle extracted from observations. Recent studies indicate that this error is 
not too large: Knott and Heir arm 119951 investigated the impact of the meteorological 
data by comparing the seasonal cycle of the monthly mean concentration simulated with 
TM2 in the standard setup driven by the meteorology either of 1986 or 1987. In their 
study they obtain only a minor difference. With a different model Law and Simmonds 
119961 explored the sensitivity of fluxes resulting from an inversion to the year of the 
meteorological fields. They also found small differences. In Sect. (9) of Kaminski et al. 
[submitted] these results are confirmed by a comparison of the flux fields inferred from 
two inversions that we perform on the basis of meteorological data from 1986 and 1987. 

3. The Adjoint Model 

As explained in Sect. (2), for the standard setup, TM2 can be represented by a ac X of 
matrix T. For given surface fluxes f , by a model run, we are able to compute the 
resulting concentrations at the station locations Cmod = Tf. The matrix T itself is yet 
to be determined. 
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Following e.g. Eating et al. 119951, by applying Tl\/I2 subsequently to the of standard 
basis vectors 61 = (1,0, ...,0), " ' 1  e'Il,f  = (0, ...,0, 1) spanning R e f ,  the matrix T could 
be computed column by column. This can be looked upon as a special case of 
approximating the Jacobian matrix that represents the first derivative of a function 
by differential quotients: Due to linearity of the model (i) differential quotients are 
not merely an approximation of the Jacobian, and (ii) the Jacobian of T is equal to 
T. A disadvantage of this approach is that it requires of runs of TM2 and thus is 
only feasible for a small number of flux components. In this section we introduce an 
alternative and for our matrix much more efficient approach: By the model adjoint to 
TM2 in the standard setup the Jacobian matrix is computed row by row in reverse 
if ode. Here the computational cost depends on the number of rows, i.e. on No) rather 
than on the number of columns, i.e. on of. This kind of an adjoint model is uncommon 
in geosciences: Usually, rather than vector valued functions, scalar valued functions are 
being differentiated. 

As will be sketched in Sect. (31), for the implementation of an adjoint model there 
are alternative strategies. The adjoint of TMS has been derived directly from the 
model code, following the concept of differentiation of algorithms. Thereby the 

Tangent linear and Adjoint Model Compiler [TAMC Gierfing, 19961 has been applied to 
generate automatically the adjoint code. Briefly summarizing earlier work [Giering and 
Kaminski, in press], Sect. (3.2) introduces the concept of differentiation of algorithms. 
Finally, Sect. (38) describes how Tlv[2's adjoint has been generated. 

3.1. Adjoint Code Construction 

In the following we briefly sketch three approaches to adjoint code construction 
whose essential difference is the level on which the adjoint operators are constructed. 
Traditionally, as demonstrated e.g. by Marchuk 119951 for various dynamical systems, 
adjoint models have been derived from the description of the system by a state function 
of space and time, being the solution of what Marchuk refers to as the main problem. 
Typically, the main problem consists of a set of differential equations together with 
initial and boundary conditions that, in the terminology of functional analysis, define a 
(potentially non linear) differential operator T in an appropriate space of functions H. 
Spaces of this type are examples of Hilbert spaces, vector spaces furnished with an inner 
product < - , .>. For the atmospheric transport of a passive tracer, the main problem 
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consists of the continuity equation, together with a. prescribed initial concentration 
field and a prescribed source sink distribution. Each observable quantity is represented 
by a linear functional on the Hilbert space. The control variables, i.e. functions that 
characterize the system such as initial or boundary conditions or parameters in the 
formulation of T, are also elements of appropriate Hilbert spaces. The sensitivity of a 
quantity to a change in the control variables is then the Hilbert space or continuous 
analogue of the familiar first derivative in finite dimensional spaces, which will be 
discussed iii Sect. (3.2). Applying First order perturbation theory to the particular 
problem at hand, a Hilbert space analogue of the chain rule is derived: The sensitivity 

of the functional's value to a change in the control variables can be composed of the 
sensitivity of the functional's value to a change in the state function and the sensitivity 
of the state function to a change in the control variables. Thereby it can be shown, that 
the sensitivity of the state function with respect to a change in the control variables can 
be obtained as the solution of the adjoint problem, being defined by the adjoint T* of 

the differential operator T. The adjoint operator can be defined by 

( T d u f / ) ) = ( ¢ , T * © / 1 )  (9) 

for each QD E D(T*) C H and <11 6 D(T) C H, whenever the domain D(T) of T is 'large 
enough'. (If T is non linear, i.e. it depends on the state of the system, or it depends in 
a direct way on the control variables, an additional term quantifies this contribution to 
the sensitivity of the functional to the control variables. This is a continuous analogue 
to the product rule.) 
In most practical applications the main problem is so complex that it has to be tackled 
numerically: First a discretization scheme for the main equations is chosen, and then a 
numerical model for integration of the discrete equations is coded. Since, in general, 
the adjoint problem is as complex as the main problem, it is solved numerically as 
well. The resulting implementation is called adjoint model. The solution of the adjoint 
problem is then used to evaluate the discretized expression of the sensitivity. Besides 
the cumbersome analysis that for a particular problem is necessary to rigorously define 
T and T* and to derive an expression for the sensitivity, this approach has a distinct 
disadvantage: There is no unique choice of a discretization scheme for the adjoint 
problem, and a priori it is not clear which choice will result in a discrete version that 
is adjoint to the discretization of the main problem. In particular, the appropriate 
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discretization scheme for the adjoint problem can be different from that for the main 
problem, i.e., as operators, building the adjoint and discretization do not interchange 
l G7"'iewank, 19891. Due to inappropriate discretization, thus, the sensitivity computed 
by the adjoint model differs from the sensitivity of the numerical model of the main 
problem. As is examined by e.g. Shah [19911 and remarked by Talagrand and Co fufrtier 

[19871, therefore it is favorable to develop the adjoint model from the discretization 
of the main problem: The adjoint operator is derived for the discretized form of T, 
operating in a finite dimensional space. Implicitly, this adjoint operator also defines the 
discretization scheme for the adjoint problem. As in the traditional approach, eventually 
an adjoint model solving the discrete adjoint problem has to be implemented, and the 
solution is used to evaluate the discretized expression of the sensitivity. This approach 
has been applied to weather forecast models e.g. by Talagmnd and Courtier 119871 , 
Courtier and Talagrand 119871 or to ocean circulation models e.g. by Thacker and Long 
119881 
A more direct approach for adjoint code generation uses the code of the main model as 
starting point: The composition of the main model with some functionals characterizing 
the quantities of interest is considered as an algorithm mapping a finite representation of 
the control variables onto the values of the functionals. As described below, by applying 

systematically the chain rule of differentiation to every single step in the model code in 
reverse mode, a model for the sensitivity is constructed. In the terminology introduced 
above, this model is the composition of the adjoint model with the implementation 
of the functional's first derivative. Using the model code as starting point for adjoint 

code construction, however, this distinction is no longer important, so that we slightly 
change our terminology and refer to this composition as adjoint model in the following. 
In Sect. (3.2) we demonstrate that, essentially, the adjoint model performs subsequent 
multiplications in reverse order of the adjoints of the Jacobian corresponding to the 
single steps in the model code. The main advantage of this approach is that, on the level 
of the single steps in the model code, the adjoints can be constructed according to simple 
rules [Gierfing and Kaminski, in press. Thus this task can be handled automatically 
[Gierz'ng, 1996; Juedes, 19911 without any knowledge of the nature of the main problem 
and the system that is integrated by the model. For applications to geosciences see 
e.g. Talagrand [1991] and Thacker 119911. The concept of applying systematically the 
chain rule to differentiate a numerical code is known as 'differentiation of algorithms', 
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'computational differentiation', or 'automatic differentiation' [Griewanl 1989], and 
adjoint code construction is merely one of its applications. For an overview see e.g. [ii 

[1991] or Corliss and Roll [1996]. 

3.2. Differentiation of Algorithms 

In the following we describe how a function that is composed of elementary functions can 
be differentiated by use of the chain rule. When talking about elementary functions the 
reader should have in mind the single statements of. the TM2 code, although the same 
mathematical formalism can be applied, if the elementary functions are considered to 
be related e.g. to basic physical processes such as advection or diffusion. For automatic 

generation of derivative computing code, however, it is crucial that the Jacobian of the 
single steps can be constructed according to simple rules. Let 

7-MR" - )  ]R'*' 

X »-> Y 

be a function that is composed 

K 
H = HK HE =~ Qu' o o (10) 

1_1 

of K differentiable elementary functions: 

'HZ H111 _ )  Rl1I 

Z1-1 »-> z" 
(2 = 1, K) 

Even if 'H is not given symbolically, i.e. by a formula, but by a numerical algorithm 
such as TM2, the Jacobian matrix representing the first derivative of H 

<97-£(X) 
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<97-L1 (X) 
all 

6?-Lm(X) 
6x1 

3"H1 (X)  
6)X,1 

6?-Lm(X) 
3xn 

can be computed using the chain rule of differentiation from the Jacobian of the 
elementary functions 

an l x )  
EX X-X0 

IZK-1=Z0K-1 
aW 
5*Z0 \Z0=X0 (11) 
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Thereby 

go - /HI H1(X0) O o < Z < (1 K) 

denote the intermediate results, through which the derivatives of the elementary 
functions depend on X0. 
For evaluating the multiple matrix product in Eq. (11) there are many possibilities. 
Depending on the size of the elementary matrices they differ in the number of operations 
that have to be performed and in the size of the matrices containing the intermediate 
derivatives. For an algorithm tackling the evaluation of this multiple matrix product, 
the most obvious strategies are the forward and the reverse mode, where forward and 
reverse refer to the order of operations imposed by the composition: Operating in 
forward node, the product is evaluated from the right to the left, which means that the 
product is computed in the same order as for evaluation of 'H in Eq. (low. Alternatively, 
the product can be evaluated from the left to the right, which is denoted as reverse 
mode, because the order is opposite to the order for evaluation of 7-i in Eq. (10). Thereby 
the intermediate matrices at the Z-th step of this procedure contain 0(?¢/<>.0X'£1)(x) l 
in forward node and 01U°'°0;,/+1)(2!) in reverse mode. Thus forward and reverse 
refer to the directions in which the intermediate derivatives are propagated by the 
respective algorithm for evaluation of Eq. (11). According to Eq. (11) the forward node 
step corresponding to the Z-th step of the composition (10) is: 

I2 1 I 20 

XzX0 

(9(7-l1 o 07-£1)(X) 
ax X X 0  

aW 
1 1 1 1 Z Z0 

6lfHl-1 O o *£1)(X) 
EX X_X0 (12) 

* 

With respect to the standard inner product the adjoint matrix of egg) is simply the 
transposed matrix. Thus Eq. (11) can be written in the form 

_ aW 
- ̀3Z0 lz0=x0 

* 37-£(X) I 
ax 

MLK 
azff-1 'ZH-1=Z0K-1 

* 

X X 0  
(13) 

adjoint of 

This means, the reverse mode step corresponding to the l-th step of the composition 
(10) is performed by multiplying the intermediate matrix a(»Hho---o»H!+1)(Zl) a2:/ 

aw' 
az*-1 ZI-1=2I-7 

0 

l2I=2 by the 
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Therefore the reverse mode is also called adjoint mode. 
As illustrated by Fig. (1) for a scalar valued function (m = 1) of n = 5 variables, in the 
forward mode all matrices containing intermediate derivatives have n columns, whereas 
in the reverse node they have m rows. Therefore in forward node the number of 
operations as well as the storage requirements are proportional to in, whereas in reverse 
mode both is proportional to m. 
In general, the intermediate results Zo' of the preceding step are required for the 
evaluation of the derivatives of the elementary functions (see Eq. 111. While in the 
forward mode the intermediate results are required in the same order as computed, in 
the reverse mode they are required in reverse order. Thus providing of the intermediate 
results is more complicated in reverse mode and in general causes extra operations or 
extra storage requirements [Giering and Kaminski, in press], which has to be taken into 
account when comparing the efficiency of reverse and forward mode for a particular 
function H (see Sect. (3,3)). 
The Tangent linear and Adjoint Model Compiler [TAMC Gierflng, 1996] is a tool that 
automatically generates code for evaluation of first derivatives. The TAMC is a source 
to source translator that accepts essentially FORTRAN 77 code for the evaluation of a 
function and generates code for evaluation of its Jacobian. As requested by the user, 
the generated code operates either in forward or reverse mode. The schemes for forward 
or reverse mode are practically implementations of the general rules (12) and (14) 
respectively. Of course, this implementation is not unique: The scheme chosen for the 
TAMC is based on a few principles [Giering and Kaminski, in press], which essentially 
have been suggested by Talagrand 119911. Rigorous application of these principles yields 
rules for differentiating the single statements a code is composed of. These simple rules 
can be applied automatically by source to source translators like TAMC or Odyssée 
lRostatMg et al., 1993]. 

3.3. Generation of the Adjoint Model 

By the TAMC the model adjoint to TM2 in the standard setup has been generated 
automatically. To ensure an accurate interpretation by the TAMC the structure of the 
model code had to be slightly rearranged. 
As is obvious from Eq. (Ml, the intermediate results ZN (required variables) have to be 
provided for the adjoint run. Unlike many other adjoint applications in meteorology 
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and oceanography, in transport models many of the required variables quantify the 
dynamic state of the atmosphere. These required variables do not depend on the control 
variables, i.e. the sources and sinks. In the terminology of adjoint code construction 
they are called passive variables. Hence, in principle, they could be computed and 
stored once and then be read during each adjoint run. Since this would require disk 
space of about 1.3 gigawords (GW), lat least on a Cray C90) it is more efficient to 
recompute the required values during every adjoint run. In order to reduce these storage 
requirements during the adjoint run it is favorable to include a so-called checkpointing 
scheme lGriewank, 19911 in the adjoint model: In a first integration of Tl\/I2 the state 
of the model is saved at checkpoints in weekly intervals on disk. During the adjoint run 
the checkpoints are used as starting points for recomputation and storing of required 
values for the whole week in a second file. Finally, for the adjoint computations these 
stored values are read. The storage requirements are reduced considerably at the cost 
of an additional model integration. This checkpointing scheme also is implemented 
automatically by the TAMC . 
In Table (1) the adjoint model's CPU and memory requirements are compared to 
computation of the Jacobian by differential quotients. The numbers refer to a Cray 
C90 supercomputer. For the standard setup with ' f i g  = 1, the adjoint model needs the 
CPU time of about 3.5 TM2 runs and about the same amount of memory as TM2. The 
Jacobian for 27 stations, including the stations in Fig. (2), has been computed in two 
separate runs in order not to allocate more memory than 32 Megawords (MW). In total, 
the CPU time of about 85 TM2 runs has been used. While the memory requirements 
are proportional to the number of output values ac, the CPU time per value decreases 
with increasing No for two reasons: First, for our function T, the cost of providing the 
required variables is independent of ac. Thus, for higher ac there is no additional cost. 
Second, by the TAMC the adjoint code is arranged to achieve a vector lengths of ac; for 
vectorized loops of the transport model, advanced compilers are even capable to enlarge 
vector dimensions by a factor of ac. On a vector machine like the C90, this yields a 
considerable speedup, because the computations for the individual vector components 
are independent of each other. For the same reason, a similar speedup could be achieved 
on a parallel machine. In contrast, from the difference of runs with one and two tracers, 
one can estimate a CPU time of 7460 TM2 runs for the computation of the full Jacobian 
by an of tracer run. By rearranging the TM2 code, so that the tracer dimension of is 
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used for vectorization instead of the dimension of the zonal grid (36), a speedup could 
be achieved, too. Yet this speedup is limited by the maximum vector length, which 
is 128 on the C90. In addition, this multitracer run would need more memory than 
is available on most machines (429 MW), so that it had to be split up to a couple of 
runs with less tracers. For a linear function like T, the Jacobian that is computed by 
differential quotients is free from truncation error. In that respect, the forward mode 
is not superior to differential quotients. Nor is the forward mode superior in terms of 
computational efficiency, because it includes an additional function evaluation, so that 
for small 'Nf the forward mode would be slightly slower, and for large of the efficiency 

would be comparable to differential quotients. Hence, there is no need to include explicit 
numbers for the forward mode in this comparison. 

4. The Matrix Representation 

In Sect. (Q) we have defined a standard setup of our transport model to simulate the 
quasi-stationary seasonal cycle at particular observational sites. Sect. (3) then has 
introduced the adjoint of the transport model and has discussed the computational 
benefit of applying the adjoint to derive a representation of the model by its Jacobian 
matrix T, which in Karriinski et al. [submitted] is employed for an inversion of the 
atmospheric transport of CO2. Besides its use for inversions, the Jacobian by itself is an 
interesting object to study, because it quantifies how the transport relates a given flux 
field to the quasi-stationary seasonal cycle at the observational sites. In this section, we 
first visualize and discuss parts of the full Jacobian and then give examples of collapsing 
the matrix to compress or summarize its information. Also we demonstrate how the 
matrix is applied to analyze transport model runs by decomposing the simulated values 
with respect to the contributions of the fluxes into all grid cells in all months. 
In the following we discuss the Jacobian matrix T derived for is = 25 locations 
of stations from the NOAA/CMDL global observational network (see Fig. (2) and 
Table (2), whose data we use for our inversion example of Kaminskfi et al. [submitted]. A 
row of T consists of the sensitivity of the modeled concentration at a particular station 
and month to the Huxes into each of the fig = 36 X 24 TM2 surface layer grid cells at 
each month. The columns of T quantify the impact of a particular flux component on 
the modeled concentration at each station and month. Thereby the sensitivity or the 
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impact are defined as the change in the concentration resulting from a change in the 
flux, which formally is represented by the derivative of the concentration with respect 
to the flux and has the unit of a concentration divided by a flux. 
For comparison of the respective entries, direct visualization of the Jacobian is not very 

instructive: According to the definition of our standard setup, the single entries quantify 
the concentration change that results from switching on a uniform flux for a particular 
month in a particular grid cell in every year of the four year simulation period. Hence, 
in addition to the properties of the atmospheric transport model, the matrix also reflects 
features determined by our setup, such as Ii) the lengths of the spin up period, (ii) 
whether the month the concentration refers to is earlier in the year than the month the 
flux refers to, and (iii) the lengths of the month the flux refers to. Feature (iii can 
be easily removed from the Jacobian by changing units from concentration per flux to 
concentration per yearly mean emission rate. To get rid of features (1) and (ii), rather 
than the Jacobian itself, we plot its difference from an appropriate reference matrix. 
In Eq. (7), we already made use of such a reference matrix, namely the matrix whose 
entries quantify the changes in the global linear trend contributions to the respective 

concentration components that result from changes of the respective flux components. 
With this reference matrix, we get rid of feature (i) but not of feature (ii), because the 
entries in the matrix are the same regardless of the month the flux belongs to. Yet this 
choice of a reference matrix is appropriate to visualize a column of the Jacobian, because 
within one column of T all entries refer to the same flux component, and its impact 
on all the concentration components can be compared. With respect to this reference 
matrix, plots of the columns, according to Eq. (7), show the impact of a particular flux 
component on the periodic contributions to each of the concentration components. 
For visualization of the Jacobian's rows as in Figs. (3) - (5) discussed below, in 
contrast, we choose a reference matrix that removes features (i) and (ii), namely the 
Jacobian that our standard setup would yield, if global mixing was instantaneous. In 
other words, the reference matrix is derived from a one box model that behaves like 

TM2 with infinitely fast diffusion, i.e. it also uses a = 0.476 ppm/GtC  to convert mass 
into concentrations. Since a row corresponds to the concentration at a particular station 
and month, it yields 12 global maps, each of which is quantifying this concentration's 
sensitivity to the mean surface exchange fluxes in a particular month at any location 
on the globe. A positive value on the map for any month quantifies a sensitivity to 
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an emission at the corresponding grid cell and the respective months that is enhanced 
compared to instantaneous global mixing: a value of ac ppmv/GtO/year means that a 
yearly emission of 1 GtC, which is uniformly distributed over the respective grid cell 
and month, in a Tl\/I2 run yields a monthly mean concentration at the station and 
month that is enhanced by Hz: p p m .  Note that for stations in the lower model layers, 
the average of these sensitivities with respect to all flux components, in general, will be 
higher than zero. This is simply because we deal with surface fluxes, while our reference 
is derived for a homogeneous distribution in the entire atmosphere. In contrast, for 
observations in the stratosphere this average would be lower than zero. 
As an example, in Fig. (3) the second half of the matrix row corresponding to the 
November mean concentration at the station on Ascension Island (ASC: 7°55'S, 
10°25'W, 54 m) is displayed. November emissions in the ocean region ranging from 
the south of Africa (300 south) to the equator at the longitude of ASC would have the 
highest impact (more than 10 ppm/GtO).  Going one month back to October emissions, 
the area of highest impact is shifting to the east, now covering the southern half of 
Africa. Still the impact of this region is at least as high as for November emissions. 
Interestingly, at the latitude of ASC in the Pacific Ocean and part of the Indian Ocean, 
the impact of emissions in November or even in October is smaller than for instantaneous 
global mixing. This demonstrates the disadvantages of using the mean concentration at 
a monitoring station in a two-dimensional inversion to constrain the fluxes at a latitude 
band around the respective station on a monthly time scale. In the maps quantifying 
the impact of emissions earlier in the year (not shown), the predominant structure is 
a division of both hemispheres. Compared to instantaneous global mixing the impact 
of the northern hemisphere is about 0.5 ppm/GtC  smaller, whereas the impact of the 
southern hemisphere is larger by the same amount. This feature is clearly caused by the 
relatively slow interhemispheric mixing across the Hadley cell. Quantitatively, the fact 
that the impact of October emissions north of 300 is more than 0.5 p p m / G t C  smaller 
as compared to instantaneous global mixing shows that not even the emissions of the 
previous year have been transported to ASC at an amount comparable to instantaneous 
global mixing (0476 ppm/GtC).  This reflects the fact that in TM2 the transport needs 
more than one year to achieve a globally well mixed atmosphere (see Sect. (2))_ 
For comparison, maps for two stations and months are displayed, where the shape of the 
areas with high potential impact compared to instantaneous global mixing is more zonal 
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than for ASC. Fig. (4) shows the potential impact of emissions in the first half of the 
year to the May mean concentration at the station on the mountain Mauna Loa, Hawaii 
(MLO: l9"32'N, l55"35'W, 3397 m). The potential impact is highest for May emissions 
around of the station. The absolute peak values are lower than those for ASC (less than 
10 ppm/GtC)  because the emission is diluted before reaching the mountain location. 
As another example, in Fig. (5) we display the impact of emissions in the first half of 
the year on the June mean concentration at the Point Barrow station in Alaska (BRW: 
66"00'N, 2"00'E, 6 m). Here the area of highest impact is well focussed near the station 
with high peak values of up to 70 ppm/GtC.  The information on potential impact can 
be compressed on the flux side, or on the concentration side, or both: Prescribing the 
shape of the seasonal cycle of the emissions into every surface grid cell, each matrix 
row can be projected to a single map of the potential impact of a yearly flux on the 
respective monthly mean concentration. On the concentration side, for all features that 
can be derived from the monthly mean concentrations at the stations, the sensitivities 
with respect to monthly or yearly emissions (in combination with prescribed temporal 
shape) can be easily computed from the matrix. As an example, in Fig. is) we show the 
sensitivity of the annual mean concentration at ASC, MLO, and BRW, respectively, to 
fluxes that are constant in time over the whole year. Compared to the monthly maps 
the peak of the potential impact is lower, slightly more widespread but still in the same 
regions. This indicates that, for uniform emissions throughout the year, at these stations 
the modeled concentration is not very sensitive to the seasonality of the transport. 
Another way of looking at the maps is in terms of the size of surface areas that are 
'observed' by the respective stations: On the monthly time scale all three stations are 
most influenced by an area of only a few grid cells. On the annual time scale there are 
differences among the stations: While ASC still observes only a small area, BRW is 
representative for the northern high latitudes, and MLO is strongly influenced by the 
entire northern hemisphere. When investigating a particular scientific question these 

transport characteristics, of course, are merely a fraction of the features that determine 

the importance of a monitoring location. Other features are the specific source/sink 
characteristics of the tracer of interest. 
We discussed the potential impact quantified by the Jacobian. If a particular flux field 
f is prescribed, according to Eq. (8) by a matrix multiplication with the Jacobian this 
potential impact can be used to simulate the resulting quasi-stationary seasonal cycle at 
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the station locations. Hence, the Jacobian is an extremely efficient transport model by 
itself. Once the Jacobian has been computed, for the simulation of the quasi-stationary 
seasonal cycle at the stations, there is no need to run TM2 again, as long as the setup 
(including the location of the stations) is still appropriate for the tracer of interest. 

For an example, we employed the a posteriori CON fluxes inferred in an inversion of the 
atmospheric transport [Kaminski et al., submitted]. These fluxes are the sum of the 
fossil fuel component and the biosphere and oceanic components depicted in Fig. (9) of 

Kaminski et al. [submitted]. Fig. (7) shows the simulated periodic component of the 
quasi-stationary seasonal cycle at Mauna Loa, which has been computed according to 
Eq. (8). 
Using the matrix does not only reduce the computational cost of a simulation to the cost 
of a simple matrix multiplication but also the amount of required disk space. While the 
meteorological fields to drive TM2 for one year occupy about 30 MW, the matrix just 
needs 36 X 24 X 12 x 27 X 12 W - 3 MW. Thus, among other applications, as transport 
model the Jacobian represents a valuable tool for sensitivity tests: Knott 119971 
investigated the response of the atmospheric CON concentration at the NOAA/CMDL 
stations to exchange flux Fields computed by a large number of different formulations of 
his terrestrial biosphere model. 
In addition to quantifying potential impact and to perform transport simulations, by 
means of the Jacobian it is easy to analyze the simulation in terms of the simulated 
impact of all components of a prescribed flux vector: Writing Eq. (8) in the form (and 
dropping the index qsc for convenience) 

Cf; 

'l1,1r 

2 Mi,jfj' 
i=1 

7 (15) 

Co each concentration component is decomposed into the contributions Cm = M fy 
by the respective flux component fa. The quantity is then the portion of Co 

resulting from the flux component j in the simulation and like the potential impact can 
be conveniently displayed on 12 maps per concentration component. 
As an example, we analyzed the simulation of the quasi-stationary seasonal cycle 
at MLO, which was based on the flux field described above. Fig. (8) shows the 
decomposition of the May mean in the periodic component of the quasi-stationary 
seasonal cycle , which is depicted in Fig. (7>. On the northern hemisphere, the 
interpretation is straight forward: In months where fluxes into the atmosphere are 

'HE/Q 
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large, grid cells tend to have a positive contribution to the May concentration at Mauna 
Loa. In winter, this is the case for most of the terrestrial grid cells, i.e. most of Asia, 
Europe and North America. In contrast, whenever there are large fluxes from the 
atmosphere into the ocean or the biosphere, the respective grid cells have a negative 
contribution, i.e. those fluxes reduce the May concentration at Mauna Loa. This is 
the case for the North Atlantic sink. Of course, according to Eq. 115), this is weighted 
by the effect of the transport: For example, although the absolute value of the May 
fluxes into the North Atlantic is smaller than that of the terrestrial uptake in June at 
the temperate latitudes over Asia, the contribution of the North Atlantic sink in May 
to the May concentration at Mauna Loa is much larger. These different weighting 
factors are reflected in Fig. (4). For the southern hemisphere, a different factor becomes 
important: Since interhemispheric exchange is slow, the main contribution of southern 
hemisphere fluxes on the May concentration is trough changes of the north-south 
gradient. For example in December the fluxes from the atmosphere into the Southern 
Ocean increase the north south gradient and thus have a negative contribution to the 
periodic component of the quasi-stationary seasonal cycle at all stations in the north. 
Formally, this is reflected by Eq. (7): a small transport term is dominated by a large 
negative reference term. Similarly the South American source has a negative impact 
on the the periodic component of the quasi-stationary seasonal cycle at Mauna Loa, 
because this source flattens the north south gradient. 
Again, as for the potential impact, the information can be compressed on the Hux 
side, the concentration side, or both sides. For example in Kaminski et al. 119961 we 
analyzed a TM2 run employing the fluxes derived by a biosphere model [SDBM, Knott 
and Hellmann, 1995]: On the flux side we prescribed the shape of the SDBM fluxes, 
and on the concentration side we projected on the simulated seasonal cycle. We thus 
decomposed the magnitude of the modeled seasonal cycle at particular observational 
sites with respect to the contributions by the respective grid cells, which yields one 
map per station. For this study we had to run the adjoint model once per station. 

By means of the Jacobian this kind of decomposition is easily performed without the 
adjoint model. 
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5. Concluding Remarks 

We demonstrated the benefit of the adjoint approach for the computation of the 
Jacobian matrix representing a three dimensional atmospheric transport model. This 
matrix maps flux fields on the model's approximately 80 by 100 horizontal grid onto the 
simulated concentrations at 27 observational sites. For this setup the computational 
efficiency of the adjoint was about 100 times higher as compared to conventional forward 
modeling. 

The adjoint model has been generated automatically from the transport model code by 
the TAMC. To ensure an accurate interpretation, prior to invoking the TAMC, the code 
had to be prepared and rearranged slightly. In particular constructs that complicate the 
order of execution of the statements had to be replaced. Unlike the conventional use 
of adjoint models, where the adjoint model evaluates the derivative of a scalar valued 
cost function, which is then iteratively minimized by an optimization algorithm, the 
Jacobian computed here is the derivative of a linear vector valued function. 
As a linear function mapping fluxes on concentrations at observational sites, the 
Jacobian contains all information about the transport. Hence, once the Jacobian is 
available for a particular setup, it can replace the transport model: To simulate the 
concentrations at the station locations, instead of running the model for a given flux 
field, this flux field can be multiplied by the Jacobian, which is much more efficient in 
terms of both memory and CPU requirements. 
Plots of the rows of the Jacobian provide information about the potential impact 
of emissions at every location on the globe and in every month on the modeled 
concentration at a particular station and month. On the other hand, combining the 
Jacobian to a prescribed flux Held, a simulated concentration value at a particular station 
and month can be analyzed: This value can be decomposed into the contributions of 
the fluxes in the respective grid cells and months. 
Such maps of potential or simulated impact could provide valuable information about 
differences iii the transport simulated by different models. In that respect the reverse 
approach could complement the maps of concentration fields simulated by running 
prescribed flux Fields forward through different models. The reverse approach requires 
that adjoints of the respective transport models be available. Since transport models 
typically are implemented in Fortran, we suggest the use of automatic differentiation 
tools such as the TAMC. 
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The Jacobian contains all necessary transport information to infer the magnitude of 
cyclostationary CON surface exchange fluxes together with their uncertainties from 
observed concentrations at the station locations and prior estimates of the fluxes. In a 
companion paper [Kaminslcvl et al., submitted, we present such an inversion study using 
atmospheric CON observations of the period from January 1981 to January 1987 from 
the NOAA/CMDL program [Conway et al., 1994; Globalview-002, 1996]. Our inversion 
contrasts the conventional use of adjoint models for optimization, where a (potentially 
expensive) computation of second derivatives is necessary to obtain estimates of the 
uncertainties in the unknown variables. 

I 
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Table 1. Comparison of efficiency in the computation of the Jacobian between adjoint 
model and differential quotients for a Cray C90; columns: no. and description of run, 
CPU time in seconds and multiples of the CPU time for a simple forward run, memory 
requirements in MW and in multiples of the memory required by a simple forward run. 
The numbers for 10368 tracers are computed from scaling up the differences between the 
1 and 2 tracer runs (the forward model does not vectorize over the tracer dimension). 

Run 

I 
N 

3 
4 
5 
6 

Forward 1 Tracer 
Forward 2 Tracers 
10368 Tracers (from 1 and 2) 
10368 x 1 Tracer 
Adjoint, ac =1 
Adjoint, ac =24 (2 Stations) 
Adjoint, ac =108 (9 Stations) 
Adjoint, ac =216 (18 Stations) 
Sum of 5 and 6 

Memory in 
MW Relative 

0.933 1 
0.974 1.04 

29.090 460 
0.933 
1.092 1.2 
3.999 4.3 

15.797 16.9 
30.962 33.2 

CPU time in 
s h/d Relative 

186 1 
320 1.72 

1389364 16 d 7460 4 
1928448 22 d 10368 

660 3.5 
3045 16.4 
5560 30 

10260 55 
15820 4.4 h 85 

1 
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Table 2. 25 NOAA/CMDL monitoring stations whose observational data we use in our 
inversion example . 

Identifier 

ALT 
MBC 
BRW 
STM 
CBA 
SHM 
CMO 
AZR 
NWR 
MID 
KEY 
MLO 
KUM 
GMI 
AVI 
RPB 
CHR 
SEY 
ASC 
SMO 
AMS 
CGO 
PSA 
HBA 
SPO 

Description 
Alert, N.W.T. 
Mould Bay, N.W.T. 
Point Barrow, Alaska 
Ocean Station " M" 
Cold Bay, Alaska 
Shemya Island 
Cape Meares, Oregon 
Azores (Terceira Is.) 
Niwot Ridge, Colorado 
Sand Island, Midway 
Key Biscayne, Florida 
Mauna Loa, Hawaii 
Cape Kumukahi, Hawaii 
Guam 
St. Croix, Virgin Islands 
Ragged Point 
Christmas Island 
Seychelles (Mahe Is.l 
Ascension Island 
American Samoa 
Amsterdam Island 
Cape Grim, Tasmania 
Palmer Station (Anvers Is.) 
Halley Bay 

Amundsen Scott (South Pole) 

Country 
Canada 
Canada 
U.S. 
Norway 
U.S. 
U.S. 
U.S. 
Portugal 
U.S. 
U.S. 
U.S. 
U.S. 
U.s. 
U.S. Territory 
U.S. 
Barbados 
Kiribati 
Seychelles 
U.K. 
U.S. Territory 
France 
Australia 
Antarctica 

Antarctica 
Antarctica 

Latitude 
82 2'7'N 
'76 14'N 
71 l9'N 
66 00'N 
55 12'N 
52 43'N 
45 29'N 
38 45'N 
40 03'N 
28 13'N 
24 40'N 
19 32'N 
19 31'N 
13 26'N 
17 45'N 
13 10'N 
2 00'N 
4 40'S 
7 55'S 
14 15'S 
37 57'S 
40 41'S 
64 55'S 
75 40'S 
89 59'S 

Longitude Elevation 
62 31'W 210 
119 20'W 15 
156 36'W 11 
2 00'E 6 
162 43'W 25 
174 06'E 40 
124 00'W 30 
27 05'W 30 
105 38'W 3749 
177 22'W 4 
80 12'W 3 
155 35'W 3397 
154 49'W 3 
144 47'E 2 
64 45 W 3 
59 26'W 3 
157 19'W 3 
55 10'E 3 
14 25'W 54 
170 34'W 30 
77 32'E 150 
144 41'E 94 
64 00'W 10 
25 30'W 10 
24 48'W 2810 
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Figure 1. Example of forward and reverse mode illustrating the differences in the storage 
requirements and in the number of operations: The same matrix product, whose result 
has 1 row and 5 columns, is evaluated in forward mode, i.e. from right to left (top), and 
in reverse mode, i.e. from left to right (bottom). In forward mode the matrices holding 
the intermediate results have 5 columns, while in reverse mode they have 1 row. 
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Figure 3. The second half of the Jacobian's row corresponding to the November mean 
concentration at the station on Ascension Island (ASC: 7°55'S, 14°25'W, 54 m). For 
our cyclostationary model setup, each global map shows the concentration's sensitivity 
to a periodical yearly emission, which is uniformly distributed over a particular month. 
Reference is instantaneous global mixing, i.e. negative numbers quantify sensitivities 
that are reduced due to transport. The cross indicates the station location. 
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Figure 4. The first half of the Jacobian's row corresponding to the May mean concen- 
tration at the station on the mountain Mauna Loa, Hawaii (MLO: 19032'N, l55°35'W, 
3397 in). For our cyclostationary model setup, each global map shows the concentration's 
sensitivity to a periodical yearly emission, which is uniformly distributed over a partic- 
ular month. Reference is instantaneous global mixing, i.e. negative numbers quantify 
sensitivities that are reduced due to transport. The cross indicates the station location. 
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Figure 5. The first half of the .]acobian's row corresponding to the June mean concen- 
tration at the Point Barrow station in Alaska (BRW: 66000'N, 2°00'E, 6 m). For our 
cyclostationary model setup, each global map shows the concentration's sensitivity to a 
periodical yearly emission, which is uniformly distributed over a particular month. Ref- 
erence is instantaneous global mixing, i.e. negative numbers quantify sensitivities that 
are reduced due to transport. The cross indicates the station location. 
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Figure 6. Collapsed .]acobian's rows corresponding to the 12 monthly mean concentra- 
tions at the stations on Ascension Island (ASC: 7755'S, 14025'W, 54 m), on the mountain 
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Figure 8. Decomposition of the May component in the quasi-stationary seasonal cycle at 
Mauna Loa based on the flux field inferred in the inversion of Kaminskzl et al. [submitted]. 
The respective maps quantify the contributions from the fluxes at all months and grid 
cells in per cent. Negative values mean that the fluxes in the respective months and grid 
cells have a negative contribution, i.e. increasing those fluxes would yield a reduced May 
component i11 the quasi-stationary seasonal cycle at Mauna Loa. 
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Abstract . Models of atmospheric transport can 
be used to interpret patio-temporal differences in the observed concentrations of CON 
in terms of its surface exchange fluxes. Inversion of the atmospheric transport is the 
systematic search for both a flux Held that yields an optimal match between modeled 
and observed concentrations and, equally importantly, the uncertainties in this inferred 
flux field. The present inversion study combines observations of the CON concentration 
at the global station network of the NOAA/CMDL in the 1980s with a representation 
of the atmospheric transport model TM2 by its Jacobian matrix, which has been 
previously computed by the adjoint model of TM2. This Jacobian matrix maps monthly 
fluxes on the approximately 80 latitude by 10° longitude horizontal model grid onto 
the resulting changes in the monthly CON concentration at every station. Since the 
number of observational sites is much smaller than the number of grid cells, the inverse 
problem is highly underdetermined. A unique solution is determined by including a 
priori information on the surface exchange fluxes derived from output of high resolution 
models of both the terrestrial biosphere and the ocean, combined with statistics of 
fossil fuel burning and land use change. Performing a Bayesian synthesis inversion, for 
the 1980s, the average seasonal cycle and the mean annual magnitude of CON surface 
fluxes on the TM2 grid are inferred. The resulting simulated concentration compares 
well with independent observations. On a global scale, an oceanic sink of 1.5 :t 0.4 
gigatons of carbon (GtC) is estimated, the flux pattern suggests a southward transport 
of carbon through the ocean. On a regional scale, however, the inferred exchange fluxes 
exhibit high uncertainty, indicating a low capacity of the global observational network 
to monitor regional trace gas emissions. These findings are relatively insensitive to slight 
modifications of either the observational network or the meteorological data driving the 
transport model. 
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1. Introduction 

I 
I 

Due to human activities such as fossil fuel burning and changes in land use, the 
atmospheric CON concentration has rised by about 25% since preindustrial times. 
Observations of the atmospheric CON concentration indicate that during the 1980s about 
3 GtC/year of the estimated anthropogenic emissions of about 7 CtC/year remained in 
the atmosphere. On decadal time scales, the lnost important processes that can remove 
CON from the atmosphere are uptake by the ocean and by the terrestrial biosphere. 
The net exchange flux with the ocean is driven by the difference between oceanic and 
atmospheric partial pressures of C021 while the net exchange flux with the terrestrial 
biosphere is the difference between Net Primary Productivity (NPP) of the vegetation 
and heterotrophic respiration fluxes from plant litter and soil. Unbalances in the net 
exchange fluxes are caused by a number of terrestrial sink processes such as regrowth of 
forest following harvest, fertilization by the increasing atmospheric CON concentration, 
or fertilization by nitrogen, but their magnitude is difficult to quantify. 
For the 1980s, the Intergovernmental Panel on Climate Change (IPCC) estimates a 
yearly oceanic uptake of 2 :E 0.5 GtC based on a number of studies running models 
of the oceanic carbon cycle [Houghton et al., 1995a]. A yearly uptake of about 2 GtC 
by the terrestrial biosphere is computed as the residuum in the budget equation of 
atmospheric CO2. 
Spatial differences in the atmospheric concentrations of CO2, which are being measured 
at global networks of monitoring stations, reflect the spatial and temporal structure 
of the exchange flux fields. Prescribing surface flux fields, the atmospheric CON 
concentration at observational sites can be simulated by atmospheric transport models. 
Consistency of simulated concentrations with observations has the potential to constrain 
flux fields. Investigating this consistency for a number of reasonable flux scenarios, 
Keeling et al. [19891 and Tans et al. [1990] inferred a sink in the midlatitudes of the 
northern hemisphere, but both studies differ in their interpretation of this sink. While 
Keeling et al. attributed much of this sink to an oceanic southward transport of carbon 
by the global thermohaline oceanic circulation (global ocean uptake of more than 2 
Gtc), Tans et al. found only a marginal oceanic uptake (less than 1 GtC) and concluded 
a major terrestrial sink. One reason for this disagreement is that in both studies the 
information from the atmospheric CON observations is complemented by different pieces 
of additional information: while Keeling et al. use atmospheric measurements of the 
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isotopic composition of CO2, Tans et al. employed data of air-sea partial pressure 
differences of CON . 
Inversion of the atmospheric transport is an alternative to subjectively choose flux fields 
and compare the simulated atmospheric responses with observations. It consists in a 
systematic determination of a flux Held that yields an optimal match between simulated 
and observed concentrations. A second, equally important goal of an inversion is to 
provide an estimate for the uncertainty in the inferred flux field. 
A typical horizontal resolution for transport models employed in global inversion 
studies is 80 latitude by 100 longitude, i.e. in every time step the magnitudes of 
the Hux into about 1000 grid cells have to be specified. On the other hand, the 
number of sampling sites at which global observational networks provide concentration 
mesurements of atmospheric CON is less than 100. Hence, the inverse problem is highly 
underdetermined, i.e. there are many flux fields yielding the same modeled concentration 
at the observational sites. To obtain a unique solution, additional information has to be 
included in the inversion procedure. One way to do so consists in introducing further 
equations (hard constraints) for the flux field. The usual approach is to compose the 

flux field of patio-temporal patterns with no, unknown scaling coefficients. Spatial 
patterns such as latitude bands [Brown, 1993, 1995; Cfiais et al., 1995] or spherical 
harmonics in space [Enti'rrg and Mansbridge, 1989] can be derived from the geometry 
of the earth and then be combined e.g. with harmonics in time. Alternatively, a 
partitioning of the earth's surface characterized by relevant processes can be constructed 
[Hartley and Print, 1993; Hein and Hermann, 1994; Entfzlng et al., 1995; Hein et al., 
1996; Bousquet, 1997; Rayner et al., 1998 in press al, or statistically motivated patterns 
like Empirical Orthogonal Functions (EOFsl of the fluxes can be derived. Provided that 

is small enough to yield an overdetermined inverse problem, the coefficients can be 
determined by a regression (More precisely, Na: has to be smaller than the number of 
linear independent equations). In another approach the inverse problem is made even 
determined, i.e No is made equal to n ,  by interpolation or extrapolation of the observed 
concentrations [Ciaos et al., 1995; Law, 1998 in press]. Here the actual inversion step is 
based on a statistical model rather than on a transport model. See Enting [submitted] 
for a more detailed classification of inversion techniques. 
An alternative to handle the underdetermined problem without reducing the number 
of unknowns is the so-called Bayesian approach, which allows to include a priori 
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information on the fluxes in the inversion: Both atmospheric observations and a priori 
information are described in terms of probability densities. Employing the transport 
as constraint, consistent probability densities are derived. The a priori information 
regularizes the underdetermined inverse problem. Usually the observations as well as 
the a priori information about the fluxes are described in terms of Gaussian probability 
densities. In combination with linearized transport, simple formulas for the posterior 
estimate of the fluxes and its uncertainty can be derived. 
In many recent studies [Hartley and Print, 1993; Hein and Heim afrm,  1994; Eating 
et al., 1995; Hein et al., 1996; Bousquet, 1997; Rayner et al., 1998 in press at, both 
approaches are combined: First flux patterns are defined, and then a priori information 
on the unknown scaling coefficients is included. The respective transport model is run 
separately with each of the flux components, and the contributions to the concentration 
signal at each of the monitoring sites and times are recorded. In this manner, a 
transport matrix mapping scaling coefficients onto concentrations is derived. Due to the 
considerable computational cost of the necessary transport model runs the number of 

source components remains low, in the abovementioned studies the spatial resolution 
ranges from 5 to about 30 regions. 
The two most recent of the abovementioned studies infer the surface exchange fluxes 
of CON for the periods from 1985 to 1995 [Bou5quet, 1997] and from 1980 to 1995 
[Rayner et al., 1998 in press at, respectively. In addition to observations of atmospheric 
CON at global networks and prior estimates for the surface exchange fluxes, they 
include further observations to better discriminate between land and ocean uptake: 
Both use mesurements of the isotopic composition of CO2. Rayner et al. also include 
mesurements of the oxigen to nitrogen ratio. They estimate yearly ocean uptakes of 1.5 
:t 0.5 GtC lBou5quet) and 2.1 GtC lRayrLe'r et al.) respectively. 
For the present study we also apply the Bayesian approach. Yet, as described in a 
companion paper [Kaminski et al., submitted, for the atmospheric transport model 
TM2 in a cyclostationary setup, a matrix representation on the entire model grid is 
available. In contrast to the abovementioned studies, we are in a situation to perform an 
inversion for the model's spatial resolution of approximately 80 latitude by 100 longitude 
and monthly time scale in the flux space. Compared to a few prescribed patterns this 
high resolution enables us to capture much more of the spatial variability of the fluxes, 
which allows a more realistic simulation of the concentration. Evidently, with increasing 
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number of unknowns, the gain of information about the particular unknowns from the 
atmospheric observations becomes smaller: The higher the resolution in the space of 
fluxes, the lower the reduction of uncertainty for a particular flux component by the 
inversion. Yet for sums of flux components representing large scale quantities such as 
e.g. the scaling coefficients of prescribed patterns, the gain of information is higher than 
for individual flux components. Another important advantage of a higher resolution has 
been pointed out by Snieder 119931 and Trampers and Snieder 119961: In combination 
with inhomogeneous sampling of the observations, insufficient resolution in the space 
of unknowns causes the inversion to yield biased estimates. Our network (see Fig. (2) 
o f  Kamvlnskvl et al, [submitted]) indeed seems to be characterized by an inhomogeneous 
spatial distribution of the observational sites. Hence, a high resolution appears favorable 
to reduce a possible bias, especially in sums of estimated fluxes. For our inversion of the 
transport of CO2, we use a priori information on the surface fluxes derived from output 
of high resolution models of both the terrestrial biosphere and the ocean, combined with 
statistics of fossil fuel burning and land use change. 
The layout of the remainder of this paper is as follows: Sect. (2) presents our inverse 
modeling approach; a more formal, brief introduction to the Baysian approach is given 
in Sect. (A). Sect. (3) describes the a priori information on the fluxes. Sect. (4) deals 
with the atmospheric observations, followed by a description of our inversion technique 
and a discussion of the singular value spectrum in Sect. (5). The inferred flux fields 
as well as its spatial and temporal means are presented in Sect. (6) together with 
their uncertainties. A recipe to compute posterior uncertainties is given in Sect. (B). 
Sect. (7) discusses the resulting simulated concentration at observational sites. Sect. (8) 
presents the total fluxes for some oceanic regions and countries. An attempt to assess 
the reliability of the posterior flux field is made in Sect. (9). Eventually, in Sect. (10) 
we draw conclusions about the carbon cycle and discuss perspectives of the adjoint 
approach for inversion of the atmospheric transport. 

2. Methodology 

In a companion paper [Kaminski et al., submitted], we have described our model for the 
simulation of the quasi-stationary seasonal cycle of atmospheric CON at the sampling 
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sites of an observational network, C c ;  

Cqsr: : MJ" (1) 

Thereby M essentially is the Jacobian matrix of the atmospheric transport model TM2 
in a cyclostationary setup, and f is a prescribed surface flux Held on the approximately 
80 latitude by 100 longitude model grid. The Jacobian matrix has been computed by the 
adjoint model of TM2, which also has been introduced in Komvlnski et al. [submitted]. 
The corresponding inverse problem consists in the algorithmic determination of a flux 
Held f ,  that for the observed quasi-stationary seasonal cycle satisfies Eq. (1). 
We solve for monthly mean fluxes on the entire horizontal (36 x 24) TM2 grid, 
i.e. we have 12 X 36 X 24 10000 unknowns. As will be described in Sect. (4), 
on the observational side we use monthly means at 25 stations plus a global trend, 
i.e. we have 301 equations. Hence, the inverse problem defined by Eq. (1) is highly 
underdetermined, i.e. there are many flux fields yielding the same modeled concentration 
at the observational sites. 
Within a Bayesian framework, an inversion of Eq. (1) is stabilized by including a priori 
information on the fluxes. Rather than operating on the pure numbers Cqsc and f , the 
objects of Bayesian inversions are probability densities. The basic idea is illustrated 
in Fig. II): A prior state of information is characterized by independent probability 
densities of both atmospheric observations and a priori information on the fluxes. 
Employing Eq. (1) as constraint, consistent probability densities can be derived as 
described in appendix A. 

In our study, the observations as well as the a priori information about the fluxes 
are described in terms of Gaussian probability densities see Sect. (4) and Sect. (3), 
respectively). Together with the linear model of Eq_. (1), the inversion yields a Gaussian 
posterior probability density for the fluxes; for the mean and the covariance matrix 
explicit formulas can be derived (see appendix A). 
For computational convenience, for both the observations and the a priori fluxes, we 
assume simple diagonal covariance matrices, i.e. we specify uncertainties in the form of 
standard deviations but we avoid the definition of correlations among the uncertainties 
of different flux components or different observations. According to Eq. (AS), the a 
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posteriori flux field also minimizes the cost function 

J<f`) 
'Nf f +2 2 

'L 1/2[2(/5 )- ( 
¢q...,» 

'i=1 ac 
(2) 

The a posteriori field, in a least squares sense, is close to the a priori field f ,  and 
the atmospheric response at the stations is close to the observations Cqsc- Thereby 
the weights of the individual terms are given by the reciprocals of the respective 
uncertainties, of and ac. Since we are not only interested in the posterior flux fields, 
but also in an analysis of the posterior covariance matrix, we perform our inversion on 
the basis of a Singular Value Decomposition (SVD, see Sect. (5)), instead of employing 
iterative minimization algorithms. 

3. A Priori Fluxes 

In this section, we specify a prior flux into each grid cell and month, together with its 
uncertainty. We compose this flux field of the contributions from four components: a 
seasonal terrestrial biosphere in annual equilibrium, a correction for land use change, 
the ocean, and fossil fuel burning. Fluxes into the atmosphere are positive. 
For the biosphere component the seasonal net exchange fluxes derived by the Simple 
Diagnostic Biosphere Model (SDBM, [Knott and Hermann, 19951) were interpolated 
from the models 0.50 grid to the TM2 grid. The SDBM is driven by climate data, 
observed greenness from satellite derived global vegetation index data, and a drought 
stress indicator calculated with a one layer bucket model. NPP is the product of a 
globally constant photosynthetic light use efficiency, the observed greenness and the 
drought stress factor. Soil respiration is proportional to the drought stress factor and 
an exponential function of the soil temperature that is characterized by one global 
parameter Q10; in each grid cell, the proportionality factor is chosen to achieve a locally 
balanced yearly net flux. Two global model parameters, the light use efficiency and Q10 , 
have been tuned by minimization of the misfit between observations of the seasonal 
cycle of atmospheric CON and the seasonal cycle simulated by feeding the modeled fluxes 
into TM2. For this procedure the observations at the northern hemisphere stations 
BRW, CBA, AZR, KUM from 1980 to 1990 and STM from 1982 to 1990 were used 
(see station nap in Fig. (2) of Kaminski et al. [submitted]). Through this parameter 
fit at least a part of the atmospheric observations that are used in our inversion have 

I 
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already influenced our a priori flux field. Here we make an error, because the inversion 

procedure is based on the assumption of independent information about fluxes and 
atmospheric observations. Yet we do not expect the flux field to change much, if 
instead the atmospheric observations from a period excluding our target period were 
chosen for the fit. In addition, since only two global parameters have been tuned, most 
details of the flux field's structure are imposed by the climate and satellite data. Of 
course, alternatively, fluxes computed from models that are not based on atmospheric 
observations can be used; for our standard case, nevertheless, we decided in favor of the 
SDBM, because the model performed well in intercomparison studies [Hermann et al., 
1998]. 
Since the fluxes computed by the SDl\/IB represent a terrestrial biosphere in local 
equilibrium, i.e. the local annual mean flux is zero, perturbations of this equilibrium 
have to be quantified separately. The only perturbation for which we explicitly specify 
an a priori flux is land use change. O11 the basis of regional estimates by Houghton 
et al. 119871, an annual mean field of fluxes due to land use change has been compiled 
by Heimanrf, and Keeling [1989]. The global annual mean source is 1.7 GtC. 
For the oceanic component the seasonal net exchange fluxes computed by a simple 
plankton model [Size and Maier-Reimer, 1996] embedded in the Hamburg model of 
the oceanic carbon cycle [Maier-Reimer, 1993] were interpolated from the models 3.5" 
grid to the Tll/I2 grid. The fluxes for the 1980s were taken from a transient run with 
prescribed observed atmospheric CON concentrations, starting in 1756 from the models 
equilibrium for the preindustrial CON concentration [Entvlng et al., 1994] Hence, in 
contrast to the biosphere component, the oceanic net exchange fluxes are not balanced, 
the global annual mean ocean uptake is 1.7 GtC. 
From fossil fuel burning statistics of Andres et al. [1997] on a 10 grid, annual mean 
fluxes on the TM2 grid have been interpolated. The global annual net source is 5.3 GtC. 
Compared to the biosphere and oceanic components, the uncertainty is rather small, so 
that we exclude this component from the inversion by a procedure described in Sect. (4) . 
The annual mean of the a priori flux field, i.e. the sum of the flux contributions from 
terrestrial biosphere and ocean, is shown in the middle panel of Fig. (2). 
Compared to the uncertainties in the observed concentration, it is much more difficult to 
quantify the uncertainties in the fluxes. Yet these uncertainties are crucial parameters 
for the inversion as expressed by Eq. (2): A term with a large uncertainty has merely a 
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small impact on the result of the inversion. Hence, by assigning large uncertainties to 
the fluxes we can perform a weighting iii favor of the observed concentration. In the 
following we describe our standard choice, which is intended to emphasize the weight on 
the atmospheric observations. Among the individual flux components, the recipe gives 
a smaller weight to the a priori values of those components we consider more uncertain. 
By and large we consider large fluxes more uncertain than small ones, yielding higher 
weights for the small fluxes, which affects in particular oceanic fluxes. 
In every grid cell with a land fraction of more than 1%, the terrestrial flux is considered 
to be the sum of NPP, soil respiration, and land use change contributions. Each 
month the uncertainty for this sum of fluxes is determined by assuming independent 

uncertainties of 50% for the NPP and soil respiration components and an uncertainty 
of 100% for the land use change component. We neglect the small negative temporal 
correlation among the uncertainties of fluxes into the same grid cell that is induced by 
the SDBM constraint of locally balanced annual mean flux. We assume a minimum 
uncertainty of 0.12 kg/m2/year for grid cells with an annual mean NPP of more 
than 0.01 kg/m2/year. In all grid cell with a smaller NPP such as deserts and ice 
covered regions the a practically zero uncertainty ( 10-12 kg/m2/year) is assigned to the 
terrestrial flux. 

The uncertainty for oceanic flux contributions is defined as follows: To every grid cell 
with an ocean fraction of more than 1% and with nonzero annual mean fluxes, we also 
assign the terrestrial minimum uncertainty of 0.12 kg/m2/year. In all grid cells with 
zero annual mean oceanic fluxes such as ice covered areas a practically zero uncertainty 
( 10-12 kg/m2/year) is assigned to this oceanic flux. 

According to this recipe, every grid cell has a terrestrial, or a ocean uncertainty, or 

both. 111 grid cells that have both, in proportion to the land fraction a mean uncertainty 
is assigned. The resulting uncertainties are displayed in Fig. (3). 

4. Observed concentrations 

Globalview - CON is a database of high quality atmospheric measurements coordinated 
by the NOAA/CMDL. The observational net comprises more than 60 sites, for 
which smoothed weekly data together with an estimate of their uncertainties have 
been prepared 1Globalview-CO2, 1996]. In order not to be affected by problems 
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of intercalibration between different networks, we have restricted the data to those 
measured in the NOAA laboratory [Conway et al., 19941. As discussed in Kaménskfi et al. 
[submitted], our model is appropriate to simulate the mean quasi-stationary seasonal 
cycle for a target period of a few years. In their study Tons et al. [19901 interpreted the 
observations from 1981 to 1987. We choose a similar target period from January 1981 to 
January 1987 excluding the El Nico year 1987. For this target period data from the 25 
NOAA sites displayed in Fig. (2) of Kaminski et al. [submitted] were available. Unlike 
Tans et al. [19901 we have not excluded data from any particular site of the network like 
the mountain stations MLO and NWR. We have not used the version of the data set in 
which temporal gaps in the records have been closed by statistical extension procedures 

[Masarie and Tans, 19951. 
For comparison with our model, we extract from the observations the quasi-stationary 
seasonal cycle: At every station S and every month ii in the target period, the mean 
concentration c5~,,; together with its uncertainty are computed. To quantify a periodic 
and a trend component, we employ a statistical model similar to the one for the 
definition of the quasi-stationary seasonal cycle in Kaminski et al. [submitted] 

+ CS,i = Co,s,i + b ' to N5,1 - 5.9 + b ° to + his + N5,i (3) 

Again, the periodic component Co is decomposed into a periodic function $5 with 
zero mean and an offset ELs. For the observations, however, the offset in turn can be 
considered as the sum of two terms: The global mean concentration C-0 at the beginning 
of the target period, and the spatial gradient as. The second term is the contribution of 
a global linear trend, where t, is the length of the time interval from the beginning of the 
target period to the middle of the i-th month. The noise term Ns can be attributed 
to deficiencies in the transport model as well as interannual variations in the fluxes and 
the transport, since these are not resolved by our model setup. The quantities Co and b 
are estimated by a least squares Ht together with their uncertainties. 
Our model of the quasi-stationary seasonal cycle derived in Kaminski et al. [submitted] 
can be easily adapted by adding the unknown global mean concentration 50 at the 
beginning of the target period, 

b = c u - t  

Co = 60+Tf -15 o f  1 

(4) 
(5) 
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where T denotes the Jacobian matrix. Extending f by one "pseudo flux" component for 
Eo, this linear relation between unknowns and observables (composed to one vector Ccgt 

quantifying the quasi-stationary seasonal cycle ) defines the matrix M of Eq. (1). 
As mentioned in Sect. (3), in the inversion we want to consider the fossil fuel component 
in the Huxes ff as known, because its uncertainty is much smaller than the uncertainty 
of the oceanic and biospheric components. Due to linearity of Eq. (1), from the 
observations we can subtract the modeled quasi-stationary seasonal cycle component at 
the station locations resulting from the fossil fuel source M f f .  Eventually, we interpret 
f in Eq. (1) as the sum of the oceanic and biospheric components and Cqsr: as the 
observed response of the concentration. 
For the data covariance matrix CC in Eqs. (AQ) and (A3), we assume a diagonal 
structure, i.e. there are no correlations among uncertainties of different observations. 
Within the fitting procedure for Eq. (3), uncertainties for Co and b are derived, that are 
consistent with the uncertaities in the monthly mean observations. Another uncertainty, 
however, results from our model setup not taking account of the interannual variations 
of the transport. This uncertainty is estimated by computing 12 mean residue, one for 
each month. Since the residue are due to the interannual variation of both fluxes and 
transport, and our model only neglects the variation of the transport, this estimate can 
be considered as an upper limit of the resulting error. Finally, we compose the variances 
of each component in Co as the sum of both variances that determined within the fitting 
procedure and that derived from the residue. The first contribution can be interpreted 
as a mixture of model error and observational error, while the second quantifies a 
model error. For the result of the inversion, however, this distinction is not important, 
since model error and observational error enter Eq. (A2) only by their sum. The fossil 
fuel component in the fluxes is uncertain as well. The IPCC [Houghton et al., 1995b1 
estimates a 90% confidence interval of ;1; 10% from the global annual mean flux. For 
convenience, we do not assume an uncertainty in the pattern of the emissions. Thus, 
the resulting variances in the simulated fossil fuel component in the quasi-stationary 
seasonal cycle can be easily computed and added to the estimates derived above. The 
covariances are not taken into account. 
In our inversion, we consider the global mean concentration 50 at the beginning of 
the target period as unknown. In order to allow for a high flexibility, we assume the 
extremely high uncertainty of dz 1000 p p m .  The prior estimate is derived from the lit 
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to the observations (see Eq. (31) by computing the mean offset Zi for all stations. The 
trend b is 1.41 ppinv/year. Its uncertainty determined within the Fitting procedure 
is negligibly low, so that as prior uncertainty we assume the contribution from the 
uncertainty of the fossil fuel emissions which is 0.16 ppm/year.  
Fig. (4) shows the observed and modeled quasi-stationary seasonal cycles for 1981. The 
observations and their uncertainties have been composed of the fit as described above. 
Two versions of the modeled quasi-stationary seasonal cycle are displayed: The first 
results from the prior flux Held, which has been described in Sect. (3). The second 
results from the posterior flux field determined by the inversion and will be discussed in 
Sect. (6)- 

5. Singular Value Decornposition 
In our inversion, the information on the atmospheric transport is combined with 
atmospheric observations and the a priori information on the fluxes according 
to Eq. (A3). Technically, the basis of our inversion consists of a Singular Value 
Decomposition (SVD) of the model matrix M in Eq. (1). Since the SVD is derived e.g. 
in Menke 119891 and well described e.g. in Press et al. 119861, here we only give a brief 
summary. The aim of this section is to show how the SVD is applied to our problem 
and to discuss the singular values and vectors. 
In the spaces of Huxes and concentrations, by the SVD two sets of ac orthonormal vectors 
are derived, with respect to which the matrix M is diagonal: the right hand singular 
vectors and the left hand singular vectors. The diagonal elements are called singular 
values. The left hand singular vectors span the complete space of concentrations, while 
the right hand singular vectors only span a subspace of the space of fluxes. Arranging 
the associated singular vectors column by column in two matrices, U for the left hand 
singular vectors and V for the right hand singular vectors, and the singular values on 
the diagonal of a third matrix D, so that the associated singular vectors and values are 
in the same position within their respective matrices, our matrix M can be expressed as 

M = UDVT 9 (6) 

where VT is the transposed of V. 
Requiring orthonormality of the singular vectors and non negativeness of the singular 
values defines the singular values uniquely. U, D, and V are "almost" uniquely defined: 



64 

• Permutations simultaneously changing the order in all three matrices are possible. 

The singular values do not necessarily differ from each other (the identity matrix 
represents a pathological example). In such a case, simultaneous rotations of 
right hand and left hand singular vectors within the subspaces corresponding to 
the same singular value are possible, because these rotations do not disturb the 
orthonormality. For one-dimensional subspaces, i.e. for singular values appearing 
only once in D, such a rotation degenerates to a simultaneous flip of the signs of 
both the associated left hand and right hand singular vectors. 

Through the orthonormality condition, the SVD depends on the units in the spaces 
of fluxes and concentrations. The only units being intrinsic to the problem are the 
prior uncertainties of the fluxes and the concentrations. Expressing the fluxes and 
concentrations in multiples of their uncertainties (we will refer to them as natural units) 
has the advantage that their prior covariances are represented by the respective identity 
matrices (for convenience we denote both by 1), which also simplifies coding of the 
inversion algorithm. Although we transform to natural units to carry out and discuss 
the inversion, we keep on displaying fluxes and concentrations in original units. 
Using natural units, a unit change of a flux component has much higher impact on 
the simulated concentrations, if this flux component has a high prior uncertainty. 
Consequently, the right hand singular vectors associated to the highest singular values 
tend to be dominated by flux components with high uncertainty. Apart from this, 
flux components that, due to atmospheric transport, have a high impact on the 
concentrations at one or several stations project well on the right hand singular vectors 
corresponding to the highest singular values. Those flux components are well observable 
by the network. 
The SVD of M is carried out by a library routine from NAGLIB 1NAGLIB, 19871 . 
Fig. (5) shows the spectrum of singular values of M in descending order. Except for 
the first singular value, which is by three orders of magnitude higher than the second 
one, the spectrum is concentrated on a relatively small interval on the positive axis: 
The difference between the second largest and the smallest singular values is less than 
three orders of magnitude. In particular, none of the singular values is zero, because 
the accuracy of our routine is higher than these 5-6 orders of magnitude. Hence, the 
following three equivalent statements hold: (i) Our matrix M has full rank, i.e the rows 
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are linearly independent. (ii) The space spanned by the right hand singular vectors is 
perpendicular to the null space of M denoted by N(M)) being defined as the subspace 
of the space of fluxes formed by all f with Mf = 0. (iii) The range of M is the entire 
space of concentrations. Using the terminology of Menke [1989], our inverse problem 
is not overdetermined, since for any vector of observations at the stations we can find 
a flux vector that satisfies Eq. (1), i.e that yields a consistent vector of simulated 
concentrations. In other words, the observations cannot contradict each other. But, of 
course, the problem is underdetermined: Together with one flux field satisfying Eq. (1) 
comes a whole Tbf - 'ii dimensional subspace of flux vectors that satisfy Eq. Ii) (All flux 
vectors satisfying Eq. (1) differ by a vector in N(M)) .  
In the SVD all quantities of interest are expressed most naturally and most conveniently 
in natural units. According to Eq. (A8), the posterior covariance matrix takes the form 

Cf a = 1 - R  = 1 - v  D2 VT 
m 1 + DO 

where Run = M'1M is our notation for the model resolution matrix. In the directions 
of the right hand singular vectors corresponding to the highest singular values, the 
uncertainty of the fluxes is most efficiently reduced. As explained above, those singular 
vectors are dominated by flux components with high uncertainty. This is consistent 
within the Bayesian framework, because it is easier to improve the degree of knowledge 
about those components that a priori are most uncertain. In N ( M ) ,  the uncertainty 
is not reduced at all. Of course, it is interesting to see which directions in the space 
of fluxes are constrained by the observations and how well they are constrained. The 
first singular value is about 28400. The corresponding right hand singular vector 
is dominated by a component of 1000 ppm for the correction of the global mean 
concentration at the beginning of the target period, which we introduced as additional 
unknown in Sect. (3); all flux components are close to zero with a global annual mean 
flux of -1.3 -10'4 GtC. The corresponding left hand singular vector consists of a 
uniform concentration of about 3.52 ~10-2 p p m ;  the trend component is extremely 
small. These numbers are consistent: Multiplying M by this right hand singular vector 
according to Eq. (6) yields 3.52 ~10'2 ppm X 28400 1000 p p m ,  which corresponds 
to the 1000 ppm correction of the initial concentration component. According to 
Eq. (7), the uncertainty in the direction of the first right hand singular vector is about 

1+2é40)]2 10l9 natural units. The second singular value is 12. The component of the 

(7) 
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global mean concentration is -0.2 p p m ;  the annual mean flux (see Fig. (6)) is positive 
in the southern hemisphere and negative in the northern hemisphere with a global 
mean of -0.6 GtC. The concentration is positive at the southern hemisphere stations 
and negative at the northern hemisphere stations, the trend component is only -0.02 
ppm/year. This singular value is mainly associated to the north-south gradient of the 
concentration. Its posterior uncertainty is of order 10'2 natural units. The next few 
singular values are primarily associated with the seasonal cycles in the fluxes and the 
concentrations. The remaining singular values range from 4.9 to 0.074, so that their 
posterior uncertainties range from 0.040 to 0.99 natural units. A detailed discussion of 
all singular values and vectors is far beyond the scope of this thesis. 
According to Eq. (A5), the inverse is 

._ D M 1 = V I  + DO UT 

A misfit between observed and modeled concentrations yields a correction in the 
subspace of fluxes that is perpendicular to N ( M ) .  The atmospheric data do not add 

any information to N ( M ) .  A misfit in the direction of a left hand singular vector that 
is associated to a low (high) singular value yields a large (small) correction of the fluxes 
in the direction of the associated right hand singular vector. For the largest, the second 
largest, and the smallest singular value, these amplification factors D/(1  + D2) take the 
values 3.52 -10-5, 9.01 -10-2, and 7.39 -10l2, respectively. 
Without the stabilizing effect of the a priori information, being reflected by the l in 
the denominator of Eq. (8), the amplification factor would be the pure reciprocal of 
the singular value. Systematic errors projecting well on the left hand singular vectors 
associated to small singular values would be subject to tremendous amplifications. In 
this situation, the spectrum of singular values usually is truncated to get rid of these 
" nuisance" directions at the cost of reducing the subspace of the space of fluxes that can 
influence the concentrations [Menke, 1989; Eating, 1993; Brown, 1995]. 
In the direction of a particular right hand singular vector, the reduction of variance and 
the adjustment of the fluxes by the inversion are coupled through the corresponding 
diagonal factors in the SVD. The adjustment, however, also depends on the misfit iii 

the direction of the corresponding left hand singular vector. If this misfit is small, the 
variance is reduced without any adjustment. 

(8) 
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6. A Posteriori Fluxes 
The a posteriori probability density in the space of fluxes is Gaussian (see Sect. (A)) 
and thus can be represented by its mean and its covariance matrix. The dimensions 
of our problem make a discussion of the full covariance matrix difficult, similar to the 
discussion of all singular vectors in Sect. (5) . 
Single components of the flux vector, spatial or temporal means, however, are easier 
to discuss. Since they are derived from the flux vector by linear projections, their 
one-dimensional probability densities are Gaussian as well. The centers of these densities 
are our best estimates of the respective quantities, we will refer to these centers as 

posterior values. The variances of these densities quantify the uncertainties of the 

respective estimates. The square roots of the variances are the standard deviations, 
we will refer to them as posterior uncertainties. Sect. (B) gives a recipe for efficient 
computation of the posterior uncertainties for thes projections. One must keep in mind 
that a loss of information is the cost of this compression by projections. 
Fig. (7) shows the a posteriori sum of the terrestrial and oceanic flux components. 
The predominant feature is the seasonality of the land components: On the northern 
hemisphere, beginning in May at the mid latitudes and in June at the high latitudes, the 
terrestrial biosphere acts as a sink. From September in the high latitudes and October 
iN the mid latitudes, in contrast, CON is released by the biosphere. The fluxes over India 
exhibit a different seasonality: They are positive from April to August and negative 
from September to February. In the Tropics there is release in winter and uptake in 
summer and autumn: Between the northern and the southern hemisphere the phases 
are shifted by 6 months. In the South American mid latitudes the phase of the fluxes is 

opposite to the one in the northern mid latitudes. Australia has a peculiar seasonality: 
Its phase is similar to the northern hemispheric phase. Over the ocean the seasonality 
is less pronounced. In the Southern Ocean there is uptake from November to February 
and a slight release from April to July. From December to May the North Atlantic is a 
slight sink. 

In the annual mean (Fig. (2)) there is a substantial terrestrial sink in the northern 
mid latitudes contrasted by a small source in the northern high latitudes. The African 
tropics are a sink, while the South American tropics exhibit a spatially alternating 
source-sink pattern. Australia is a small sink. The ocean takes up CON in most regions. 
The Equatorial Pacific, however, is a strong source, and the South Atlantic and the 
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Southern Ocean at high latitudes are a smaller source. In addition, localized sources 
are induced in the neighborhood of some of the stations (Cape Meares in Oregon, Point 
Barrow in Alaska), and localized sinks are induced around Cape Grim in Tasmania and 
Hawaii. Fig. (8) shows the zonal means; the global annual mean sink is 2.3 j; 0.3 GtC. 
To understand the behavior of the inversion procedure in detail, it is convenient to 
consider the cost function introduced in Eq. (2). The optimal flux Held minimizes 
the sum of two contributions: the deviation of the posterior fluxes from the prior 
fluxes and the misfit between modeled and observed concentrations. Thereby the prior 
uncertainties are weighting factors. Fig. (4) shows the observed quasi-stationary seasonal 
cycle as well as the simulations with the prior and the posterior fluxes. In Fig. (9), the 
difference of the posterior and prior fluxes is displayed. A priori, since the ocean uptake 
and the land use change flux cancel each other, the global annual mean flux is 0.0 :iz 1.5 
GtC. To match the global trend, however, a net sink of 2.3 GtC is needed. To achieve 
this, the inversion procedure tends to reduce those flux components with relatively high 
uncertainty, because the corresponding deviation of the prior fluxes has a small weight 
in the cost function. According to the spatial distribution of the prior uncertainties 
(see Fig. (3)), this criterion favors primarily terrestrial locations for adjustments. At 
which locations the inversion actually performs adjustments also depends on the patio 
temporal variations in the mismatch between observed and simulated concentrations. 
In January 1981, the beginning of the target period, the inversion yields a global mean 
concentration of 338.9 :|: 0.1 p p m ,  which is by 0.4 ppm smaller than the prior value. 
This difference can be clearly attributed to the higher weight of the northern hemisphere 
in the computation of the prior initial global mean concentration, which is caused by 
inhomogeneity of the network. Due to an extremely high uncertainty of 1000 p p m ,  the 
inversion procedure was essentially free to choose the initial concentration to match the 
observations. Even after subtracting this small offset from the concentrations resulting 
from the prior fluxes see Fig. (4)), in the northern hemisphere these concentrations are 
too high. 111 contrast, at the southernmost stations these concentrations are slightly too 
low. To flatten this north-south gradient, the inversion procedure enhances the net sink 
in the north and reduces the net sink in the south, which is obvious from a comparison 
of the posterior and prior zonal mean fluxes that are depicted in Fig. (8). Thereby the 
largest adjustments (see Fig. (2)) are performed in terrestrial regions with high NPP, 
soil respiration, or land use change fluxes, because of the corresponding high a priori 
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uncertainty as explained above. A fraction of this adjustment also can be attributed to 
an enhanced uptake by the northern oceans, which will be discussed in Sect. (8). 
Besides these global scale features, at a couple of stations in the phase and the amplitude 
of the seasonal cycle, there are mismatches between observed concentrations and those 

concentrations simulated with the prior fluxes. To improve the match, it is optimal, 
in terms of the cost function (Eq. (2)), to correct the fluxes locally at the grid cells 
and months in which the impact of the correction on the mismatching concentration is 
strongest. For a few stations and months, the impact has been depicted in KamfMski 

et al. [submitted]. For example, at point Barrow in Alaska (BRW) for the prior fluxes 
the resulting summer draw down in the concentration is early by about one month 
compared to observations. This yields strong mismatches in June and July, for which 
the inversion compensates by a correction of the fluxes. According to Fig. (5) of 

Kaminski et al. [submitted], for the June mean concentration, a June flux correction in 
the few grid cells around BRW and slightly east of BRW has the largest impact. The 
northern grid cells are oceanic and have a smaller prior uncertainty, while the southern 
grid cells are terrestrial and have a much higher uncertainty. The difference iii the 
uncertainties are so large, that adjusting primarily the southern grid cells is optimal. For 
equal uncertainties, however, equally distributed adjustments in all grid cells with high 
impact would yield a smaller sum of squared adjustments than unequally distributed 
adjustments and thus would be optimal: A least squares fit in general tends to smooth. 
For the July mean, the situation is similar. Possible reasons for the mismatch of 
concentrations are inaccuracies in the prior fluxes, in our model, or in the observations. 
In their publication, Knott and Heimatm 119951 name a number of possible reasons for 
an overestimation of the length of the summer draw down in their model. Furthermore, 
the satellite data used by the SDBM are less accurate in the high latitudes. 
Concerning the model of the atmospheric transport, Rehfeld [19941 has performed a 
number of simulations for radioactive tracers with a 19 layer version of TM2. He found 
some disagreements between modeled and observed concentrations in the polar regions, 

which he traces back to deficiencies in the meteorological data or reduced numerical 
stability at very high latitudes due to smaller size of the grid cells. 
Another possible reason for local mismatches is associated with the baseline selection 
procedure. This problem has been addressed by Ramo ret and Mon fray 119961, e.g. for 
the station at Cape Grim in Tasmania (CGO). To take samples being representative 
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for large scale air masses at the station observational data are rejected, whenever they 
are likely to be influenced by fluxes from southern Australia. Baseline conditions are 
defined according to criteria such as the weather regime or wind direction and speed 
at the station. Ramo ret and Mon fray successfully reduced the misfit by mimicking the 
baseline selection procedure in a high resolution version (2.5° by 2.50 in the horizontal) 
of TM2. The modeled concentration became lower from March to August and higher 
from September to November. As depicted in Fig. (9) around the south of Australia, 
our inversion procedure reduces the fluxes from February until August, while the fluxes 
are increased from September to November. Since in our model we did not mimic 
the selection procedure, at least a part of the correction of the fluxes compensates 
for this deficiency of our model. For Cape Meares in Oregon, they reported the same 
phenomenon. Unfortunately, they did not study the records of BRW. 
Another problem of our model is the poor resolution of the planetary boundary layer 
and the diurnal cycles of both turbulent vertical mixing and the biospheric fluxes. These 
diurnal cycles are covarying, because turbulent vertical mixing and photosynthetic 
activity are both driven by solar radiation. With a model that resolves turbulent vertical 
transport, Denning 119951 and Denning et al. 119951 found a significant contribution to 
the annual mean concentration for diurnally varying, annually balanced fluxes. Any 
quantification of the real magnitude of this contribution from observations is difficult. 
Since our model uses monthly mean fluxes, and the meteorological data driving the 
transport are only available every 12 hours, it cannot simulate this contribution. Also, a 
finer resolution of the vertical structure of the tracer concentration and its diurnal cycle 
would allow a better representation of the sampling process at the station locations, 
because the samples are usually taken at a particular time of the day. 
According to Eq. (A8) the diagonal of the model resolution can be expressed by 
subtracting the quotient of the variances of the respective components from 1. This 
reduction of uncertainty quantifies how the additional information from the atmospheric 
data has improved our knowledge of the fluxes. In general, the reduction of uncertainty 
by the atmospheric data is very small, reflecting the fact that, on this small scale, a 
sparse network does not provide much information. For a particular flux component, the 
reduction of uncertainty is high, whenever this component projects well on one of the 
dominant right hand singular vectors. As discussed in Sect. (5), this gain of information 
is high for flux components having a high prior uncertainty or flux components being 
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well observable by the network. Both criteria are reflected in Fig. (10). 
For temporal and spatial means, the reduction of uncertainty, i.e. the difference 
between l and the quotient of uncertainties, is a more natural quantity than means of 
the diagonal of the model resolution matrix. Fig. (11) shows the prior and posterior 

uncertainties for the annual mean as well as their quotient subtracted from 1, while 
Fig. (8) shows the same quantities for the zonal means. Also for these means the 
reduction of uncertainty is strongest in well observable areas and areas with high prior 
uncertainty. 
Comparing the reductions of uncertainty for single flux components, annual means, and 
zonal and annual means, two points are worth noting: First, the average reduction of 
uncertainty increases significantly with increasing degree of accumulation of components: 
By the inversion we learn more on larger scales than on smaller scales. Second, although 
we have high prior uncertainties, even for the 24 zonal and annual mean Huxes, the 
reduction of uncertainty remains lower than 15 %. In contrast, an alternative approach 
to the inverse problem, e.g. with 24 prescribed zonal and annual mean patterns and 
the same prior uncertainties, certainly would result in a much better reduction of 
uncertainty. This lower posterior uncertainty, however, would be to a certain degree 
artificial, because the additional information simply would be due to coupling the fluxes 
from many grid cells to flux patterns without allowing variations within the patterns. 
Simplification of the model by reducing its degrees of freedom would improve the 
reduction of variance. At the same time, however, the simulation of the concentrations 
at the stations would become less realistic. An alternative way to reduce the inverse 
problem's degrees of freedom without simplifying the model is to assume correlated 
prior uncertainties for the fluxes. 

7. Simulated Concentrations 

In this section we compare the posterior concentrations, i.e. the concentrations resulting 
from the posterior fluxes, to observations from two sets of stations: those whose data 
are used and those whose data are not used in our inversion. 
For all stations whose data are included in the inversion, Fig. (4) shows the observations 
as well as the sets of simulated concentrations resulting from the prior and posterior 
fluxes. The contributions from the initial concentration, the global trend, and the 
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inversion . 

seasonal cycle are used to compose the concentrations of 1981, the first year of our 
target period. In general, the posterior fluxes yield concentrations being consistent 
with the observations. On one hand this can be interpreted as a consequence of 
the underdeterminancy of the inverse problem and the small weight of the prior 
flux estimates. On the other hand the good fit indicates that there are no serious 
contradictions within and between both the observations and the a priori information 
on the fluxes. In detail, most of the remaining mismatch is due to a too weak simulated 
summer draw down at a number of sites on the northern hemisphere. 
In Fig. (12) we display a number of stations, whose observations we did not use for 
the inversion procedure. SYO does not belong to the NOAA/CMDL stations, and the 
other stations did not make observations during the full target period. Yet, employing 
a statistical model, Masarie and Tons [1995] managed to extend these records into 
our target period. Using data from other stations and other time periods, their data 
extension procedure constructed pseudo data. Clearly, these pseudo data are not 
independent from the data we already use, so that we could not include them in our 

Therefore and due to the considerable amount of new information that 
nevertheless is contained, these data provide an opportunity to test our posterior flux 
fields. 

Fig. (13) shows the observed and modeled quasi-stationary seasonal cycle for 1981. 
The observations are composed as described in Sect. (4) and above. The agreement 
is improved by the inversion at all sites except for the stations QPC and TAP. These 
stations are mainly influenced by the south-eastern part of the Asian continent, which 
is not well observed by our network (see Fig. (go of Kaminslci et al. [submitted] and 
Fig. (11)), but which has a high prior uncertainty. The inversion yields a flux field 
that over all is consistent with these additional observations although the weight on the 
observations is high. 

8. Oceanic and Terrestrial Fluxes 

For every grid cell and every month, as discussed in Sect. (6), we can compute a 

posterior flux field and H. posterior uncertainty. To infer information about the processes 
that control these fluxes, rather than a division into grid cells a division into regions 
associated to these processes is needed. For example, we would like to separate the 
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oceanic and terrestrial contributions to the fluxes. In this section, first, we give a recipe 
to perform the necessary bookkeeping for accumulation of flux components. This recipe 
is then applied to infer the fluxes for a partitioning of the ocean into the regions used in 
the study of Tons et al. 119901, which allows to compare results. Furthermore we present 
the net fluxes for some countries and continents. 
For grid cells crossed by a coastline, in general, there is no way to distinguish between 
land and ocean contributions. Splitting the flux in proportion to the grid cell's land 
fraction provides at least a crude recipe. In many of these grid cells, however, a small 
oceanic flux is dominated by a much larger terrestrial flux. Hence, this crude recipe is 
likely to yield an unrealistic estimate of the oceanic contribution, while the error for 
the land contribution in general is much lower. Therefore, to estimate regional oceanic 
fluxes, we slightly modify our recipe. As described in Sect. (3) a quasi zero terrestrial 
uncertainty has been assigned to flux components with negligible terrestrial contribution 
to the flux. Except those flux components, all grid cells with a land fraction of more 
than 1% are regarded as land grid cells and their flux contribution is neglected iii the 
computation of the regional mean. By this procedure we clearly miss a fraction of the 
oceanic fluxes, which we try to correct in a second step: Comparison of the posterior 
and prior flux fields indicates only small differences. To account for the missing fraction 
of the oceanic flux, we simply scale the posterior regional mean in the same proportion 
as the prior mean has to be scaled to recover its accurate oceanic fraction. 
According to this scaling recipe, we compute the annual mean fluxes for a partitioning 
of the ocean into six regions defined by Tons et al. 119901. For all regions the prior and 
posterior values as well as the scaling factor are listed in Table (1). The last column 
contains estimates derived by Tans et al. on the basis of observed air-sea differences in 
the partial pressure of CO2. The last but one line contains the sum, whose uncertainties 
are derived from the uncertainties of the regional estimates neglecting correlations. The 
numbers in the last line result from scaling the entire ocean with a single factor derived 
for the entire ocean and are thus less accurate. The sum of the posterior regional 
uptakes is by 0.1 GtC higher than the posterior uptake computed by scaling the entire 
ocean, which is caused by the lower regional scaling factor of the equatorial source 
as compared to the global scaling factor. The low reduction of uncertainty of about 
10% indicates that even on global scale our data are insuiiicient to distinguish between 
oceanic and biosphere fluxes. 
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By means of our inversion we have constructed a global flux Held that achieves a high 
degree of consistency with the atmospheric data. Its ocean uptake is about 1.5 GtC. In 
contrast, in their study Tans et al. concluded an ocean uptake of less than 1 GtC after 
comparing the atmospheric response to several flux scenarios. The oceanic flux field of 
Tans et al. is based on observations of the air-sea differences in the partial pressure 
of CON during two periods: from January to April and from July to October. After 
closing spatial and temporal gaps by interpolation, employing an empirically derived 
expression for the monthly gas exchange coefficient Tans et al. transformed partial 
pressure differences into the regional CO2 fluxes in Table (1). Yet combining these 
ocean flux fields with reasonable land flux fields, their simulated atmospheric response 
showed a significantly steeper north-south gradient in the atmospheric concentrations as 
observed, until they also varied the fluxes in the equatorial and southern oceans. 
A difference to our study consists in the transport models: Tarts et al. used the GISS 
model instead of TM2. Without performing our inversion with the GISS model, it is 
not possible to quantify the corresponding a posteriori fluxes. Results of a transport 
model intercomparison [Rayner and Law, 1995; Law et al., 1996] suggest, however, that 
TM2 would yield an even steeper north-south gradient for the scenarios of Tans et al., 
which even would have amplified the difference to our study. Taylor et al. [1991] and 
Kurt 119931 discussed problems in the procedure that Tans et al. used to derive their 
oceanic fields from measurements of the differences in partial pressure. In contrast, our 
prior flux Held is consistent with the oceanic circulation and yields a partial pressure 
difference that is in the range of observations [Ku'r'z, 1993]. Adjusting slightly this prior 
ocean flux field, our objective search algorithm succeeds in finding a flux scenario that is 
consistent with both the atmospheric observations and the partial pressure differences. 
The ocean carbon cycle model providing the a priori flux fields does not simulate any 
significant north south transport of carbon by the thermohaline circulation [Webe'r, 
19961. By enhancing the oceanic sink in the northern hemisphere and reducing the 
oceanic sink in the southern hemisphere (see Table (1)), the inversion suggests such a 

transport, confirming the conclusions of Keeling et al. [1989]. The magnitude of our 
global oceanic sink, however, is smaller than the 2.3 GtC they inferred for 1984. The 
location of our Atlantic sink is slightly farther south than expected. This, however, can 
be caused by our small uncertainty on the prior estimate for the " Atlantic subarctic" 
region. With 0.5 GtC our North Atlantik sink (15°N-90°N) is comparable to the results 
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of Rayner et al. 11998 in press a] (0.6 GtC) and Bousquet [1997] (0.7 GtC). Also the 
Antarctic sink (900S-500S) of 0.2 GtC is the same as that of Bousquet and only 0.1 GtC 
stronger than that of Rayner et al.. Probably our posterior fluxes would become even 
more similar to theirs, if we increased the assumed uncertainties for the oceanic a priori 
fluxes to the values assumed in these studies (see Sect. (3)). 
Assuming a global yearly fossil fuel emission of 5.3 GtC, the inversion reveals an oceanic 
sink of 1.5 GtC and a total sink of 2.3 GtC, so that the terrestrial biosphere has 
to account for the residual of 0.8 GtC. For some countries and continents Table (2) 
opposes industrial emissions to prior and posterior magnitudes of the biosphere sink as 
computed according to the simple recipe described above. Although the recipe tends 
to overestimate the biosphere uptake by including a fraction of the oceanic sink, none 
of the countries or continents can compensate its emissions. Maybe Australia is an 
exception. Part of the Australian sink, however, can be attributed to the failure of our 
model to mimic the baseline selection as discussed in Sect. (6). The inaccuracy of the 
simple recipe is illustrated by the last line: The global prior yearly biospheric flux is 
underestimated by 0.5 GtC = 1.7 GtC - 1.2 GtC (a priori value is 1.7 GtC from land 
use change), and the global posterior yearly biospheric flux is underestimated by 0.2 
Gt() = - 0.8 GtC - (- 1.0 GtC) (a posteriori biosphere flux via the budget is -3.0 GtC 
+ 5.3 GtC - 1.5 GtC = - 0.8 Gtc). 

9. Sensitivity Experiments 

For all posterior flux estimates the Bayesian approach enables us to compute uncertainties 
quantifying our posterior state of information. These posterior uncertainties are inferred 
from the prior uncertainties of fluxes and observations using our knowledge about 
the transport. The reliability of these ingredients and our ability to formalize our 

information in mathematical expressions determine to which degree our posterior state 
of information reflects reality, and in particular whether the true values corresponding 
to our posterior estimates are likely to be in the range specified by their posterior 
uncertainties. Clearly, these posterior uncertainties only reflect the fraction of 
uncertainty resulting from factors that we managed to incorporate in our inversion 
procedure. 
While some of these sources of uncertainty not incorporated in our inversion procedure, 
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such as the deviations from the Gaussian assumption or linear transport, cannot be 
handled by our inversion procedure, others, such as errors in the transport model, can 
be explored by feeding our inversion procedure with a different set of numbers. To 
explore at least the latter type of uncertainty we perform three inversions, in each of 
which we vary a particular subset of the numbers we provide to the inversion procedure: 
the transport matrix, the observational network, or the a priori information. 
Our transport matrix represents a TM2 setup driven by meteorological data from 1987. 
To explore the sensitivity of the posterior fluxes to the transport matrix, we performed 
an inversion, for which we replace our matrix by a matrix derived with meteorological 
data from 1986. Comparing the transports of the El Nico year 1987 to that of the 
" ordinary" year 1986 can be expected to illustrate range for possible changes in the 
posterior fluxes that can be achieved by changing the year of meteorological data. In 
the annual mean there are differences on continents north of 400N as well as in the El 
Nico influenced regions. Compared to the posterior uncertainties (Fig. (11)), however, 
these differences are slight. This indicates the success of our attempt to include the 
uncertainty caused by the interannual changes in transport, which is described in 
Sect. (4). On larger spatial scales, the differences remain low as well. For instance, the 
posterior uptake by the oceanic regions defined in Table II) and by the countries or 
continents named in Table (2) change by less than 10%. The single exception is China, 
whose yearly biospheric uptake is reduced from 0.38 GtC to 0.30 CtC. Changes in the 
zonal mean are small, too. The total ocean uptake remains 1.5 GtC. 
For their study Tons et al. 119901 excluded the data from the stations CMO, NWR, 
MLC, and RPB (see Fig. (Q) of Kaminski et al. [submitted]). To explore the sensitivity 
of our posterior fluxes to slight changes in the observational network we perform an 
inversion for their network. Comparing the annual means of the posterior fluxes, besides 
a strong local change around CMO, there are slight changes in North America, Asia, 
Africa, and even South America. Again, in all oceanic regions defined in Table (1) and 
in all countries or continents named in Table (2), the changes remain lower than 10%. 
Changes in the zonal mean are small, too. With an unchanged total oceanic sink of 1.5 
GtC, the fit of the observations is equally good. 
Replacing the a priori information on the land fluxes by a more simple formulation, 
we explore the sensitivity of our posterior fluxes to changes in the a priori information. 
In contrast to our standard case, the a priori estimate for the land flux is formed 
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simply by the fields from the SDBM, i.e. we do not account for land use change. The 
prior uncertainties are based on the net exchange fluxes, rather than on the individual 
contributions of NPP and soil respiration as in our standard case: We use the absolute 
value of a flux component, whenever it is larger than 0.12 kg/m2/year, which is 
about the value of a large oceanic flux. For most of the remaining flux components we 
assume an uncertainty equal to this value of 0.12 kg/m2/year. For grid cells covered 
by deserts or ice, however, we do not want to assume large uncertainties. In order to 
exclude land grid cells without vegetation we employed the net primary productivity 
(NPP) computed by the SDBM. If its annual value is less than 0.01 kg/m2/year, in 
the respective grid cell for all months we assume an uncertainty of 10-12 kg/m2/year. 
Components with such a small prior uncertainty are essentially treated as constant by 
the inversion procedure, i.e. the a priori value is hardly changed. For ocean grid cells 
permanently covered by ice we assume as well the extremely low uncertainty of 10-12 
kg/m2/year in every month. Our criterion for identifying these grid cells is an annual 
oceanic flux of less than 5 - 10'4 kg/m2/year. 
In a previous study [Kaminski et al., 19981 we performed the inversion including the a 
priori information described above and discussed the a posteriori fields in detail. For the 
annual mean Fig. (14) shows the difference between the a posteriori fluxes for modified 
a priori information arid the a posteriori fluxes for our standard case. In contrast 
to the two sensitivity experiments discussed above, Fig. (14) reveals large differences 
between both posterior flux fields: By changing the a priori information, i.e. the spatial 
distribution of the prior uncertainty and the missing land use change contribution, 
terrestrial sources and sinks are shifted. With a slightly reduced oceanic uptake of 1.3 
GtC, the fit of the observations is as good as in the standard case. 

10. Conclusions and Perspectives 

From atmospheric observations at 25 stations, we inferred a cyclostationary flux field 
on the entire TM2 grid that is consistent with the observed quasi-stationary seasonal 
cycle during a target period at the beginning of the 1980s. In the inversion, we included 
a priori estimates of the fluxes to regularize the otherwise underdetermined inverse 
problem. This underdeterminancy is caused by the sparse network in conjunction 
with the diffusive nature of the atmospheric transport and is reflected by the poor 
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reduction of the uncertainty for estimates of single flux components. This low reduction 
of uncertainty, however, is inherent to the problem and not an artifact of the high 
resolution, it reflects the classical trade off between resolution and variance of inverse 
problems. Reducing the number of unknowns by prescribing patterns only achieves an 
apparent reduction of uncertainty, because relations among unknowns are introduced, 
thereby neglecting the uncertainties of these relations. For larger scale quantities such 
as spatial and temporal means, the reduction of uncertainty is higher. 
To infer information about the processes controlling the fluxes we had to use a few 
shortcomings: The fossil fuel contribution has been subtracted from the observations 
prior to inversion, and to untangle oceanic and biospheric fluxes,. crude recipes have 
been applied. Problems of this type can be avoided by introducing, for every grid cell 
and month, as many unknowns as there are processes of interest. The inversion then 
distributes the correction of the flux onto the processes according to their respective 
prior uncertainties. This improved resolution of processes, however, requires the 
inversion of a matrix, whose size grows linearly with the number of processes per grid 
cell. 

Our posterior estimate of 1.5 :E 0.4 GtC for the total ocean uptake contradicts the 
estimate of less than 1 GtC by Tons et al. 119901. Replacing their simple interpretation 
of observed air-sea partial pressure differences by oceanic a priori information from a 
model that includes the population dynamics of phytoplankton in conjunction with an 
objective search algorithm are the main factors our higher estimate can be attributed 
to. On the other hand our estimate is lower than the 2.3 GtC inferred by Keeling et al. 
119891 for 1984, although the structure of the sink supports their interpretation of the 
southward transport of carbon by the thermohaline circulation. On large scale, our 
posterior flux field is similar to those inferred by Rayner et al. [1998 in press a] and 
Bousquet [1997]. Our estimate is not very sensitive to changes in the a priori information 
on the biospheric fluxes, changes of the network, and changes of the meteorological data 
that drive our transport model. 

The reduction of uncertainty for the global net exchange fluxes with the ocean and the 
terrestrial biosphere is much lower as desirable. Measurements of additional tracers 
such as oxygen [Keelfing et al., 1996; Stephens et al., 1998; Rayner et al., 1998 in 
press at, ratios of carbon isotopes in CON [Ciaos et al., 1995; Rayner et al., 1998 in 
press a; Bousquet, 1997], or ratios of oxygen isotopes in CON [Ciafis et al., 1997a, b; 
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Peylfin et al., 1998 in press] have been reported to impose strong constraints on the 
partitioning between the processes. Since all these tracers are chemically inert, our 
matrix representation of the transport can be employed to include this additional 
information in the inversion procedure. In addition, a model of the processes that 
link these tracers' fluxes to the CON fluxes is required, and the additional uncertainty 
introduced by the model has to be formalized, so that it C811 be transformed to an 
uncertainty for the flux estimates. 
For a few countries and continents we estimated the magnitude of the biosphere sink to 
explore the capacity of the observations to detect the geographic origin of a tracer. In 
contrast to the resolution of processes, for problems of this type, in general, no further 
tracer can provide additional information. The only way to reduce the uncertainties 
is to increase the number of observations as well as their precision. Methods for a 
systematic investigation of the optimal location of additional observational sites have 
been presented by Rayner et al. 119961. In conjunction with search algorithms that need 
to try a high number of potential locations, for computing the atmospheric response at 
these locations the adjoint approach is clearly inferior to the forward approach, because 
the cost of the adjoint approach is proportional to the number of locations. The adjoint 
approach can be efficient, if the number of potential locations can be kept low, e.g. due 
to logistic constraints, or if a search algorithm can get along with a small number of 
trials. 
Our sensitivity experiments confirmed that for a sparse network the a priori information 
on the fluxes constitutes a crucial ingredient of the inversion. For convenience we 
assumed a Gaussian probability density, which is quantified by mean and covariance 
matrix. As mean we used output of process models. For the error covariance, however, 
110 model results were available. Hence, we invented an error covariance matrix. For 
simplicity of computation, we have not assumed correlations among the uncertainties of 
different components, although, especially on this small spatial scales, correlations are 
likely. Increasing correlations can be interpreted as a way to continuously reduce the 
degrees of freedom of the inverse problem. Hence, an increased correlation would have 
two effects on our inversion: First, the prior uncertainty of large scale mean fluxes such 
as the total ocean uptake would increase, because cancelling out of deviations from the 
mean with different sign becomes less likely. Second, spatial correlations would tend 
to couple groups of grid cells. Hence, the localized source and sink spots would get 
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less intense and more widespread. In contrast to prescribed spatio-temporal patterns, 
correlated prior uncertainties can be interpreted as a means to continuously reduce 
the number of degrees of freedom without neglecting uncertainties. By using output 
from different process models, the sensitivity of the inversion to the prior estimates can 
be investigated. Until information on correlated uncertainties from process models is 
available, the sensitivity of the inversion to this ingredient can only be explored by 
trying different assumptions on covariance matrices. 
In the present study, we characterized the sources and sinks by their net exchange fluxes 
with the atmosphere, rather than the processes causing the fluxes. After coupling the 
transport model (or its Jacobian) to process models such as the SDBM [Knott and 
Hermann, 19951, the corresponding adjoint can be applied to estimate the internal 
parameters of the process models. Coupling a model of the oceanic carbon cycle to 
the transport matrix would allow to simultaneously fit oceanic observations such as 
CON partial pressure and atmospheric observations. Here again formalizing the prior 
uncertainties in the models is important. As a by product, by running (the linearization 
of) the optimized process model forward, the parameters in the process model and their 
uncertainties could be mapped onto the exchange fluxes and their uncertainties. 
We have seen that the inversion tends to compensate for biases in our model by 
erroneous corrections of the fluxes. Hence, improvement of the model is desirable. 
For the transport model, an improved version, TM3, driven by 6 hourly reanalyzed 
meteorological fields from the ECMWF is now available. It can be run in a finer 
horizontal and vertical resolution, so that a more realistic representation of the planetary 
boundary layer is possible. With this transport model, at least in part, the sampling 
procedure at the stations can be mimicked. Furthermore, covariances in the diurnal 
cycles of the surface fluxes and turbulent vertical transport can be better resolved. 
Compared to the forward approach, on a finer grid, the computation of a matrix 
representation by the adjoint is even more advantageous. 
In our model, we assume cyclostationarity for the fluxes and the transport. An estimate 
of the corresponding model error was added to the observational uncertainty. Not 
only would it be interesting per se to study interannual variability of the fluxes [see 
e.g. Rayner et al., 1998 in press a, Law, 1998 in press, Rayner et al., 1998 in press b1, 
also would a more flexible model allow to considerably reduce the uncertainty on the 
data side, which would improve the reduction of the fluxes' uncertainties. To consider 



81 

interannual variations in the fluxes only a slight change in the setup is necessary: Instead 
of prescribing the same fluxes every year, interannual variation during the spin up is 
allowed. By the corresponding adjoint model, this more general matrix representation 
quantifying the impact of flux components up to 3 years ago can be derived at the 
same cost as the matrix for the cyclostationary case. In fact, it was not very smart 
to run the adjoint for the cyclostationary setup at all, because the general matrix can 
be easily transformed to the cyclostationary matrix. To include also the interannual 
variations in the transport, the setup has to be changed towards a simulation of the 
whole target period. For this case the cost of both the forward and the adjoint approach 
increases linearly with the length of the target period. In any case, resolving interannual 
variations in the transport imposes the challenge to computationally handle the inversion 
of a matrix whose size increases quadratically with the length of the target period. 
As a preliminary test of the impact of the interannual variations in the transport, the 
inversion has been performed in the same setup but with the meteorology of a different 
year: The resulting changes in the posterior fluxes were slight. 
In our example, we employed the Jacobian to derive an estimate of the sources and 
sinks of CO2. However, the technique can be efficiently applied to other tracers in 
the same manner, as long as the number of observations is small compared to the 
number of source components of interest. Since at our observational sites also the 
concentrations of further tracers are measured, the same matrix can be used for 
modeling the quasi-stationary seasonal cycle resulting from those tracer's surface fluxes 
(Of course a different conversion factor from mass to concentration has to be taken into 
account). If the tracer, in addition, has sources or sinks above the ground, the transport 
matrix has to be complemented by further columns representing the sensitivity of the 
modeled concentration at the stations with respect to these additional sources or sinks. 
The cost for the computation of such an extended matrix is the same as for our matrix, 
so that compared to forward modeling the adjoint approach is even more advantageous. 
The efficient computation of the transport matrix by the adjoint of TM2, which forms 
the basis of our approach, depends crucially on the sparsity of the network and on the 
linearity of the transport. For cases with as many observations as flux components 
or cases with important nonlinearities in the transport, the adjoint model allows an 
inversion without computing the full transport matrix: At the cost of 3-4 forward 
model runs, the adjoint can be employed to provide the gradient of the misfit between 
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modeled and observed concentrations (Eq. (QI) with respect to all flux components. 
Exploiting this gradient information, most powerful algorithms [see e.g. Gill et al., 1981; 
Press et al., 1986; Tarantula, 19871 can be applied to iteratively minimize the misfit by 
variation of the fluxes. If the inverse problem is well posed, these algorithms typically 
achieve a strong reduction of the misfit in a few iterations. However, although this 
approach is rather inexpensive, it does not yield reliable estimates of the uncertainties 
of the fluxes in an inexpensive way. 
Adjoint models enable us to tackle efficiently the inversion of the atmospheric transport 
with an arbitrarily high resolution in the space of fluxes. Compared to many alternative 
methods adjoint models are a valuable tool for studying sources and sinks on smaller 
scales. They can bridge the gap of scales between local process studies and global 
budgets. Of course, essential additional ingredients are high quality atmospheric 
measurements of a dense network, a good model of the atmospheric transport, and 
accurate formalization of the available a priori information on the sources and sinks. 
Adjoint models especially provide a means of inferring anthropogenic trace gas emissions, 
which might be needed in the near future. 
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Appendix A: Basic Concepts of Inverse Theory 

f ~~~/ ./ 

From the Bayesian viewpoint, our inverse problem consists in combining a set 
observations of the atmospheric CON concentration and our model of the atmospheric 
transport to improve our state of information about the surface exchange fluxes. 
In the textbook of Tarantula 119871, the concepts of inverse theory are presented in a 
beautiful way. Another good, more practical description can be found in the textbook of 
Menke 119891. We briefly summarize the important concepts for our problem. They can 
be formulated conveniently in terms of joint probability densities, which characterize 
the state of information on fluxes and concentrations at the same time. The appropriate 
vector space is R"°*"f, the space formed by concatenating the vector of fluxes and the 
vector of concentrations. 
A priori, i.e. without taking the transport into account, the state of information about 
the system is then described by a probability density p : B""+"f -> [0, l], being defined 
so that for al < Fu and < c* the integral 

ff* f:: or 
fl off c; lr 

TL enc 

I e n c  
#UQ c) dl Di d51 dE,1 C 

yields the probability that at the same time all flux components ,Q are between f and 
f.w as well as all concentration components &2 are between and e .  A priori, the fluxes 
and concentrations are independent of each other. This means there are independent 
probability densities pf and ,of containing the a priori information on the fluxes and 
concentrations respectively, so that for any J and 5 

pl f j l  = Pf(])°Pcl5l 

The state of information about the system from our model of the atmospheric transport 
also defines a probability density in the joint space R""+"f. We denote it by go El. 
Combining the a priori information to that from our model of the atmospheric transport 
yields the a posteriori probability density Ulf" E). Tarantola derives the appropriate way 
of combining the information contained in these two probability densities: 

Ulf", 5) 

where M denotes the probability density characterizing the state of null information: u 
is uniform, i.e. all pairs of fluxes and concentrations are equally likely. If the transport 
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contains any information, Huxes and concentrations are no longer independent, so that 
the resulting probability density for the fluxes has to be computed by 

1 / f ( ] l  

II f 1/(]*l**,E)d& 
in 

The a priori probability density of the fluxes is assumed to be Gaussian with mean f 
and covariance Cf 1 

»of(f) e 1/2((fl-f).c,1(i-f)) 

Furthermore the model errors are assumed to be Gaussian with mean 0 and covariance 
Cm, and the uncertainties in the observed concentrations are assumed to be Gaussian 
with mean Cabs and covariance Cob. 

p,,(E) AJ e 1/2( (5-con3) 'CofJ1 (5-cobs) ) 

In our case the model for the transport is linear. It is represented by the matrix M (see 
Eq. in). Evaluation of the integral in Eq. (Al) yields that the a posteriori probability 
density is Gaussian as well [Ta1°antola, 1987] : 

I/f(f-I e 1/2< (f~f") .0;1Zf-f') (Al) 

Thereby the covariance is 

Cf = lM*Cc 1m + of 1)-1 (A2) 

and the mean 

f' 
f-I-CfM*Cc 1 l 0 o b s " M f l  7 (A3) 

where CC -~ CM + CoI,..,. Note that the covariances of model errors and the observational 
errors do not enter the inversion procedure independently, but exclusively in their sum. 
Note further that the posterior covariance matrix is determined by the transport matrix 
and the prior covariance, however, it is independent of the mean .f of the a priori 
density. According to Eq. (Al) f '  is not only the mean but also the most likely point of 
Vf, being the minimum of the exponent: 

1/2(lf f") a 0;1(f' - D ) 
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Inserting Eq. (A3) and Eq. (A2) one can verify that f '  minimizes the cost function 

J(f ') . 1/2(( (f - f) , Cf 1(f - f`) ) + ( - my ) c - mf") )) (A4) 

f '  is often denoted as the solution of the inverse problem. The covariance Cf determines 
the uncertainty in f'. Defining the (pseudo-) inverse 

M-1 = 01,/14/*c 1 (AS) 

Eq. (A3) can be written in the form 

f' f : M-1lcobs-mfl (ASK 

1 transforms the misfit between observations Cobs and the modeled concentration 
Cfmod = Mf resulting from the a priori fluxes to a correction of the a priori fluxes. 
In this framework, the essential point is the existence of the posterior covariance 
matrix. Eq. (A2) formalizes how the a priori information on the fluxes regularizes the 
inverse problem: For singular M*Cc IM,  addition of Cf 1 allows to define an inverse. If 
M/*Cc IM is non singular, addition of Cf 1 makes the inversion more stable. (Stability 
can be quantified by any norm in the space of of X Nf matrices. A stable inversion is 
then characterized by a high norm of M*Cc 1m + Cf 1 and, consequently, by a low norm 
of Cf.) 
A concept characterizing the nature of an inverse problem is the model resolution. The 
model resolution quantifies the ability of the observations to constrain the posterior 
estimate of the mean f by Eq. (A6). If ff, is a known flux field, then Cobs j Mfo would 
be the corresponding observation provided that the model was perfect. Inserting Cobs 

and an a priori estimate f together with their covariances into Eq. (A6) yields 

f' 
f : m - - m f )  = m-1m(f0- f )  (A7) 

The matrix -Run = M`1M is denoted as model resolution matrix. The interpretation of 
Eq. (A7) is the following: For each component the correction suggested by the inversion 
procedure Eq. (A6), is a weitghted sum of the correction that would be necessary 
to recover to. Thereby the weights form the model resolution matrix. If Run equals 
the identity matrix, the model resolution is perfect: By the inversion procedure the 
components of to can be recovered independently of each other. Using the definitions 
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of M-1 (Eq. (A5)) and Cf (Eq. (A2)), the model resolution matrix can be expressed in 
terms of the product of posterior and prior covariance matrices 

1 Run -- cfm*0c am = 0,(m*c 1m + C171 'C f  1) Cf of 1 (AS) 

The higher the reduction of uncertainty, the closer the model resolution is to zero. 
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Appendix B: Posterior uncertainties of spatial or temporal 
means 

As described in Sect. (A), our inversion results in a Gaussian posterior probability 
density in the space of fluxes, which is determined by a mean and a covariance matrix. 
The space of fluxes is of dimension of Q 10000. Hence, the posterior covariance matrix 
has about nerf Q 108 entries, i.e. its size is about 100 MW. Since the matrix is symmetric, 
about 50 MW are redundant. The matrix could be computed and stored according to 
Eq. (7), but this is demanding in terms of both memory and CPU resources. Yet, since 
nobody wants to know all of these 1/2 X 108 entries, this computation is not necessary. 
Instead, what is needed is the posterior uncertainty of quantities defined by projections 
from the full space of fluxes to e.g. single components, temporal or spatial means, 
or 011 the right hand singular vectors. In this appendix we give a recipe to compute 
the posterior uncertainties of these quantities without computing the full posterior 
covariance matrix. 
Let P be a projection from the full space of fluxes to a quantity of interest g, such as 
the global annual mean ocean uptake: 

@ p f `  (Bll 

The uncertainty in the prior and posterior fluxes are 

0y=p0,pT and 0;,=p0fpT , (BE) 

where the superscript T denotes the transposed. 
Exploiting the representation of Cf in terms of the SVD of the model resolution matrix 
(see Eq. ('7)) yields: 

I 

O' y 

1 D2 1 I2(1 __ 
_|_ D2vT)0/2pT PQ, 1/2 D2 T 1/2 T oy - PC'f V 1 + D 2 V  Cf P 1 (133) 

where 0,1/2 transforms from natural to original units (Definition of square roots 
of positive definite matrices is straitforward via a representation in terms of their 
Eigenvalues and -vectors, which can by found e.g. in Tarantola [1987]). 
Since the matrix product is associative, instead of computing first the 'Nf x of matrix 
Cf, we can exploit the low dimension ac = 301 of the square matrix : Defining a D2 

14-D2 
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1 xn,, matrix H by 

1/2 D2 
+ D2 ) 

the uncertainty of y' can be written in the form: 

ii 2 
7 (B4) 

I 

ay "to - HHT (B5) 

Since (HDL 1 '2 are diagonal matrices, computation of H and, hence, 
computation of of via Eq. (B5) is very efficient. 
Similarly, posterior covariances 01,2 of quantities go and 372 defined by projections P1 
and P2 can be computed by 

I 

01,2 
T 

01,2 - H1 H2 7 (B6) 

with 
1 D2 1 

Hi '-= PzCf/2Vl1 + DQ) /2 i _ 1 , 2 )  (137) 
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Table 1. Uptake/release of some oceanic regions and the global sum in GtC/year for 1981- 
1986; prior and posterior values, scaling factor, values derived from observed air-sea partial pressure 

differences by Tans et al. [1990] . 

Location 
Atlantic subarctic 500N-90°N; 900W-20°W 
Atlantic gyre 150N-50°N; 90°w-20°w 
North Pacific 150N-900N;1100E-900W 
Equatorial 15°S-15°N;180"W-180°E 
Southern gyres 50"S-15"S;180°W-180"E 

Antarctic 900S-500S;180"W-1800E 

Sum 
Total ocean 

Prior 

-0.17 i 0.04 
-0.17 :t 0.11 
-0.55 :h 0.17 
0.55 :t 0.28 

-0.84 :iz 0.26 
-0.51 :t 0.14 

-1.69 :t 0.46 

-1.70 i 0.45 

Posterior 

-0.18 :iz 0.03 
-0.33 :iz 0.10 
-0.72 i 0.16 
0.55 5: 0.25 

-0.62 dz 0.23 

-0.20 :E 0.12 

-1.50 i 0.41 

-1.40 :iz 0.40 

Scaling 
1.75 
1.42 
1.21 
1.05 
1.19 
1.03 

1'.26 

Tans et al. 

-0.23 
-0.30 
-0.06 
1.62 

-2.39 
-0.20 
-1.6 
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Table 2. Net land uptake and release of some countries and 

continents and in the global mean in GtC/year for 1981-1986. 

Country/ Continent 

USA 
Australia 
China 
Europa 

USSR 
India 

Total land 

Prior 

0.01 :|: 0.37 
0.01 dz 0.11 
0.07 :t 0.29 

-0.02 i 0.22 
0.03 i 0.47 
0.02 i 0.13 
1.18 :h 1.33 

Posterior Fossil fuel 

-0.16 i 0.27 1.09 
-0.02 i 0.10 0.06 
-0.38 i 0.25 0.58 
-0.08 :1: 0.20 1.13 
-0.54 :iz 0.32 0.99 
-0.02 :I: 0.12 0.12 
-1.04 :t 0.53 5.27 
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Figure 1. A schematic illustration of the Bayesian approach: The a priori state of information 
is represented by independent probability densities for Huxes and concentrations. Combining 

this information to the information about the atmospheric transport, represented by our nu- 

merical model, yields a consistent a posteriori state of information, represented by a probability 
density in the joint space of fluxes and concentrations; projections to the individual spaces, in 
general, are sharper than the a priori densities. 
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Figure 2. Annual mean of the sum of the flux contributions from terrestrial biosphere and 

ocean; a posteriori (top), a priori (middle), and their difference (bottom); in the difference plot, 

positive values quantify an enhanced source or a reduced sink. 
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Figure 3. A priori uncertainties of the sum of the flux contributions from terrestrial biosphere 

and ocean. 
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Figure 4. Observed concentration with mean quasi-stationary seasonal cycle for the first year 
of the target period, 1981. Error bars reflect observational uncertainties as well as uncertainties 

due to interannual variations. Modeled concentration resulting from a priori and a posteriori 
estimates of fluxes; see Fig. (2) of Kaminski et al. [submitted] or Table (2) in Kaminski et al. 
[submitted] for station locations. 
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Figure 5. Spectrum of Singular Values. 
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Figure 6. Annual mean fluxes computed from the second right hand singular vector. 
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Figure 7. A posteriori sum of the terrestrial and oceanic flux components. 
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Figure 8. A priori and a posteriori uncertainties for the zonal and annual mean of the sum of 
the biospheric and oceanic Hux components and the difference of their quotient from 1 in %. 
Values close to 100 quantify small posterior uncertainty. 
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Figure 9. Seasonal cycle of the difference of the a posteriori and a priori flux estimates; positive 

values quantify an enhanced source or a reduced sink. 
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Figure 10. Quotient of a priori. and a posteriori uncertainties for the sum of the biosphere and 

oceanic flux components subtracted from 1 in %. Values close to 100 quantify small posterior 
uncertainty. 
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Figure 11. A priori and a posteriori uncertainties for the annual mean of the sum of the 

biospheric and oceanic flux components and the difference of their quotient from l in %. Values 

close to 100 quantify small posterior uncertainty. 
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Figure 13. Observed concentration with mean quasi-stationary seasonal cycle composed to 

represent the first year of the target period, 1981. SYO does not belong to the NOAA/CMDL 
stations, data at the remaining stations have been extended to target period. These data are 

not included in our inversion. Modeled concentration resulting from a priori and a posteriori 

fluxes. Fig. (12) shows station locations. 
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Figure 14. A posteriori estimate of annual mean of the sum of the flux contributions from 

terrestrial biosphere and ocean; inversion with modified terrestrial a priori information (top), 

standard inversion (middle), and their difference (bottom); in the difference plot, positive values 

quantify an enhanced source or a reduced sink due to the modification. 


