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a b s t r a c t 

Advances in magnetic resonance imaging have shown how individual differences in the structure and function 
of the human brain relate to health and cognition. The relationship between individual differences and the levels 
of neuro-metabolites, however, remains largely unexplored – despite the potential for the discovery of novel 
behavioural and disease phenotypes. In this study, we measured 14 metabolite levels, normalised as ratios to 
total-creatine, with 1 H magnetic resonance spectroscopy (MRS) acquired from the bilateral anterior cingulate 
cortices of six healthy participants, repeatedly over a period of four months. ANOVA tests revealed statistically 
significant differences of 3 metabolites and 3 commonly used combinations (total-choline, glutamate + glutamine 
and total-N-acetylaspartate) between the participants, with scyllo-inositol (F = 85, p = 6e-26) and total-choline 
(F = 39, p = 1e-17) having the greatest discriminatory power. This was not attributable to structural differences. 
When predicting individuals from the repeated MRS measurements, a leave-one-out classification accuracy of 
88% was achieved using a support vector machine based on scyllo-inositol and total-choline levels. Accuracy 
increased to 98% with the addition of total-N-acetylaspartate and myo-inositol – demonstrating the efficacy of 
combining MRS with machine learning and metabolomic methodology. These results provide evidence for the 
existence of neuro-metabolic phenotypes, which may be non-invasively measured using widely available 3 Tesla 
MRS. Establishing these phenotypes in a larger cohort and investigating their connection to brain health and 
function presents an important area for future study. 
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. Introduction 

The characterisation of individual differences in brain structure and
unction is an important goal for neuroscience in order to better under-
tand cognitive and behavioural variations and vulnerabilities to poor
hysical and mental health. Magnetic resonance techniques are partic-
larly well-suited to the study of individual differences, providing a
ealth of structural ( Kanai and Rees, 2011 ) and functional ( Finn et al.,
015 ) information from a single scanning session. For example, indi-
idual differences in cortical grey and white matter have been associ-
ted with a range of behavioural measures, including decision making
 van Gaal et al., 2011 , p.), general intelligence ( Haier et al., 2004 ),
ersonality traits ( DeYoung et al., 2010 ), reaction time ( Tuch et al.,
005 ) and bimanual co-ordination ( Johansen-Berg et al., 2007 ) tasks.
imilarly, differences in functional connectivity can explain variance in
ifestyle, demographic and psychometric factors ( Smith et al., 2015 ).
tructural and functional information is not redundant, suggesting that
uantification of different physiological variables will help to explain
n increasingly high proportion of the behavioural variance between

ndividuals. 
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MR is an extremely versatile technique, and in addition to struc-
ural and functional information from MR imaging, MR spectroscopy
MRS) provides a complementary view of the brain. The most common
echnique, 1 H MRS, can measure a range of key metabolites within the
uman brain, offering unique insight into the metabolic state of neural
issue. The localised level of one of the most readily observed metabo-
ites, N-acetylaspartate, has been associated with several measures of
ognition, including fluid intelligence ( Nikolaidis et al., 2017 ), cognitive
erformance ( Jung et al., 1999 ) and creativity ( Jung et al., 2009 ) – high-
ighting the efficacy of MRS in characterising individual differences in
igher order cognitive processing. It is also possible to measure the pri-
ary inhibitory neurotransmitter in the mature human brain, Gamma-
minobutyric acid (GABA), with edited MRS acquisition techniques
 Mescher et al., 1998 ), and the resting-state level of GABA has been cor-
elated with individual differences in motor reaction times ( Stagg et al.,
011 ), visual orientation discrimination ( Edden et al., 2009 ), tactile dis-
rimination ( Puts et al., 2011 ) and motor decision speed ( Sumner et al.,
010 ). 

Despite these studies, individual differences in neurometabolic pro-
les, as measured with MRS, remain underexplored relative to anatomi-
y 2022 
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Table 1 

A summary of the MRS data acquired for each of the 6 study participants. GM fraction is the 
ratio of grey matter to white matter contained within the MRS acquisition region. Water supp. 
eff. is the efficiency of the water suppression measured from the relative heights of the water 
signals in the water supressed and water reference data. 

GM fraction (%) spectral SNR linewidth (ppm) water supp. eff. (%) 

participant N mean s.d. mean s.d. mean s.d. mean s.d. 

1 8 72 3.1 172 14 0.037 0.0028 0.46 0.07 
2 13 70 5.3 142 17 0.043 0.0043 0.95 0.56 
3 11 70 2.3 153 21 0.041 0.0074 0.45 0.09 
4 12 75 4.4 147 14 0.036 0.0044 0.64 0.15 
5 11 70 6.2 133 22 0.044 0.0078 0.47 0.11 
6 11 72 1.5 167 14 0.037 0.0041 0.51 0.07 

c  

i  

M  

v  

e  

a  

i  

2  

a  

c  

r  

t  

t
 

p  

m  

e  

o  

2  

l  

e  

n

2

2

 

(  

c  

3  

t  

a
 

n  

c  

p  

s  

s
 

e  

T  

g  

d  

m  

p  

f  

u  

p  

m  

p  

o  

o  

t  

a
 

a  

d  

v

2

 

y  

t  

a  

(  

i  

(  

g  

p  

(  

p  

f  

q  

a  

c  

t  

m  

i  

B  

m  

s  

e  

a  

e  

i
 

h  

2  

i  

m  

t  

2
 

a  

w  

p  

a  

c  

m  

i  
al, diffusion and functional MRI. Previous investigation has focussed on
ndividual metabolite levels, bypassing one of the primary strengths of
RS: the ability to measure multiple metabolites simultaneously. Multi-

ariate analysis of metabolite “profiles ” for phenotype discovery is well-
stablished in the field of metabolomics, where biofluids such as urine
nd blood plasma are known to have metabolic features specific to an
ndividual that remain stable over a period of months ( Assfalg et al.,
008 ). Whilst urine and blood samples are convenient to collect and
nalyse, their relevance to neuro-metabolism is unknown and likely
onfounded by the blood-brain barrier. In contrast, MRS provides di-
ect measurement of endogenous cytosolic brain metabolites and would
herefore be expected to have greater sensitivity and relevance in de-
ecting and interpreting individual differences in neuro-metabolism. 

In this work, we seek to demonstrate the existence of neurometabolic
henotypes which distinguish individuals with high precision and re-
ain stable over a period of months. MRS was acquired from the bilat-

ral anterior cingulate cortices of six healthy participants over a period
f four months, measured as part of the day2day study ( Filevich et al.,
017 ). Using advanced spectral analysis and conventional machine
earning techniques, we show how combining multiple metabolite lev-
ls yields high classification accuracy between participants – providing
ovel evidence for the existence of neuro-metabolic phenotypes. 

. Methods 

.1. Participants and MR acquisition protocol 

Eight participants (six female) took part in the day2day study
 Filevich et al., 2017 ) and were scanned with an imaging protocol in-
luding MRS over a period of four months. Insufficient MRS data (N <

) was acquired for two participants and these were excluded from fur-
her analysis, leaving six participants (five female) who were scanned
n average of 11 times over the study period. 

MRI and MRS were collected on a 3T Magnetom Trio MRI scan-
er system (Siemens Medical Systems, Erlangen, Germany) using a 12-
hannel radiofrequency head coil. The fMRI stability quality assurance
rocedure ( Friedman and Glover, 2006 ) was performed weekly, to en-
ure consistency of the MR measurements, and no major hardware or
oftware changes were made over the study period. 

A T1 weighted anatomical MRI scan (MPRAGE) was acquired at
ach session with the following sequence parameters: TR = 2500 ms,
E = 4.77 ms, TI = 1100 ms, FOV = 256 × 256 × 192 mm 

3 , flip an-
le = 7°, bandwidth = 140 Hz/pixel, 1 × 1 × 1 mm 

3 voxel size, 9:20 min
uration. A single voxel MRS PRESS acquisition volume (25 × 30 × 20
m 

3 ) was placed on the bilateral ACC ( Figure 1 A) and both water sup-
ressed (128 averages) and water reference (8 averages) were acquired
rom the same region. The following MRS sequence parameters were
sed: TR = 3000 ms, TE = 80 ms, flip angle = 90°, 2048 complex data
oints, 2500Hz spectral width, “advanced ” automated shimming, 6:36
in duration. Water suppression was performed with the vendor im-
lementation of CHESS ( Haase et al., 1985 ). An intermediate echo-time
2 
f 80 ms was chosen based on its particular efficacy for the detection
f glutamate at 3 Tesla ( Schubert et al., 2004 ) and the general reduc-
ion of spectral interference from macromolecules and residual water
ssociated with longer echo-times. 

Further details on participants and the MR acquisition protocol is
vailable in the day2day investigation paper ( Filevich et al., 2017 ). The
ay2day study was approved by The Ethics Committee of Charité Uni-
ersity Clinic, Berlin. 

.2. MR spectroscopy analysis 

Raw MRS data were processed and analysed with the spant anal-
sis package ( Wilson, 2021a ). Following coil combination, individual
ransients were aligned using the RATS method ( Wilson, 2019 ) and
utomated spectral fitting was performed with the ABfit algorithm
 Wilson, 2021b ). A simulated basis set was used for analysis contain-
ng the following set of standard metabolites: alanine (Ala), aspartate
Asp), creatine (Cr), gamma-Aminobutyric acid (GABA), glucose (Glc),
lutamine (Gln), glutathione (GSH), glutamine (Gln), glycerophos-
hocholine (GPC), myo-inositol (Ins), lactate (Lac), N-acetylaspartate
NAA), N-acetylaspartylglutamate (NAAG), phosphocholine (PCho),
hosphocreatine (PCr), scyllo-inositol (sIns) and taurine (Tau). The
ollowing standard combinations of metabolites were used in subse-
uent analysis due to high spectral interference: N-acetylaspartate + N-
cetylaspartylglutamate (tNAA); phosphocholine + glycerophospho-
holine (tCho); creatine + phosphocreatine (tCr) and glutamate + glu-
amine (Glx). The commonly used set of broad signals to model macro-
olecular and lipid signals present in 1 H MRS data were also included

n the basis set, see Table 1 of ( Wilson et al., 2011 ) for the full listing.
aseline modelling was performed using the adaptive penalised spline
ethod ( Wilson, 2021b ), without modification to any of the default con-

traint parameters. Metabolite levels were normalised as ratios to tCr to
liminate the influence of CSF on metabolite level estimates. Additional
nalysis was performed on metabolite levels scaled to the water refer-
nce signal, as described in ( Gasparovic et al., 2006 ), to evaluate the
nfluence of using tCr as a common scaling factor. 

The spectral signal-to-noise ratio (SNR) was measured from the peak
eight of the tNAA resonance and the noise region between -0.5 and -
.5 ppm. Spectral linewidth was estimated from the full width half max-
mum of the tNAA resonance and the water suppression efficiency was
easured as a ratio between the magnitude peak heights of the wa-

er resonance in the suppressed and unsuppressed spectra ( Kreis et al.,
020 ). All spectra were visually assessed for artefacts. 

Cramér–Rao lower bounds (CRLBs) were calculated to estimate the
ccuracy of each metabolite level. CRLB standard deviation estimates
ere converted to a percentage error and the mean calculated for each
articipant. The lowest mean percentage CRLB for each metabolite
cross participants was taken as a measure of accuracy. Accuracy was
alculated in this way to prevent participants with systemically a low
etabolite level, and therefore high percentage error, from dominat-

ng the estimate. Metabolite estimates with an amplitude of zero had a
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Fig. 1. A) MRS voxel positioning in the bilateral ACC region shown on a T1 weighted MPRAGE scan from participant 2. B) ABfit analysis result, from the same 
scanning session as part A), with the baseline and fit residual shown in black as the bottom and top traces respectively. C) Mean spectrum (N = 66) calculated following 
baseline subtraction and normalisation to the height of the tCr resonance. 
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ercentage error of infinity and were not included in the above calcula-
ion. Any metabolites with a mean percentage CRLB greater than 50%
ere excluded from further analysis. Furthermore, the following indi-
idual metabolites, which are known to strongly overlap, were excluded
nd replaced with the standard set of combinations listed above: NAA,
AAG, Cr, PCr, GPC, PCho, Glu, Gln. 

The MRS acquisition voxel was spatially mapped to the volumetric
1 data with the spant software package, and percentages of white mat-
er, grey matter and CSF calculated from tissue segmentation performed
ith the FAST ( Zhang et al., 2001 ) method – implemented as part of the
SL package ( Woolrich et al., 2009 ). . Each voxel position was manu-
lly assessed for accuracy, and positioning errors causing a displace-
ent of greater than 5 mm in any direction were excluded from further

nalysis. 
3 
.3. Neuro-metabolic phenotyping 

To establish a neuro-metabolic phenotype we sought metabolite lev-
ls that: 1) have high discriminatory value in distinguishing between
ndividuals and 2) are stable over a period of months. The stability and
nter-participant variability of each individual metabolite level was eval-
ated with one-way ANOVA, using participant level groupings, as an
nitial exploratory step. For example, the strength and likelihood of a
enuine difference in the mean value of tNAA between each participant
s related to the ANOVA F-statistic and p-value respectively. 

In addition to measured metabolite levels, one-way ANOVA was also
erformed directly on each spectral data point (following automated
pectral alignment and phasing with RATS and ABfit) over the default
tting range between 0.2 and 4 ppm to corroborate the metabolite level
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Fig. 2. All spectra with acceptable quality (N = 66), overlayed and split across the participants to visually evaluate spectral stability. Each spectrum is plotted 
with partial transparency to illustrate the consistency between sessions. Frequency and phase correction were performed automatically and baseline estimates were 
subtracted to reduce variance from residual water. Spectra are normalised to the height of the tCr resonance at 3.03 ppm. 
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nalysis. The resultant F-values may be plotted to establish the most
mportant spectral regions for distinguishing between each participant,
roviding a complementary metabolic analysis independent from the
ssumptions and potential bias of spectral fitting algorithms. 

Supervised machine leaning was used to determine if multiple
etabolite levels could be combined to classify individuals, thereby es-

ablishing the existence of a temporally stable neuro-metabolic pheno-
ype for the six individuals studied. A support-vector machine learn-
ng algorithm with a linear kernel was applied to various combina-
ions of metabolite levels and classification accuracy was assessed us-
ng leave-one-out cross-validation. Training, classification and valida-
ion step were performed using the mlr3 ( Lang et al., 2019 ) R package
nd the LIBSVM library ( Chang and Lin, 2011 ). 

An unsupervised principal component analysis was also performed
o explore the proportion of variance in metabolite levels that may be
ttributed to individual differences. The full set of metabolites, as listed
bove, were included in the analysis as ratios to total-creatine, however
trongly overlapping resonances, such as glutamate and glutamine, were
eplaced with their combined levels (e.g. Glx). Metabolite levels were
ach centred to have a mean of zero and scaled to unit variance prior to
rincipal components analysis. 

All MRS analysis, statistics and machine-learning was performed
ith the R statistical computing platform ( R Core Team, 2021 ) and anal-
sis scripts used to generate the figures and tables in this paper will
e available from https://github.com/martin3141/neuro _ metabolic _
henotyping upon publication. The day2day dataset, including the MRS
nd MRI data presented here, is freely available for usage in scientific
esearch. To prevent its circulation unrelated to research usage, we ask
hat scientists interested in obtaining the dataset email author (SK) di-
ectly. 
4 
. Results 

A total of 69 spectra were available for analysis. All fitting results
nd voxel locations were manually inspected to confirm the absence
f significant spectral artefacts and appropriate positioning of the MRS
cquisition region on the T1 anatomical scan. An example is shown in
ig. 1 . Three spectra were discarded for having: 1) poor linewidth (0.07
pm) relative to the other data; 2) incorrect voxel positioning and 3) a
trong artefact from a spurious residual water echo. Supplementary Fig.
 shows each voxel position for subject 3 and the excluded scan due to
ncorrect placement. The remaining 66 spectra were distributed among
he 6 participants as listed in Table 1 . The date of each scan is shown in
upplementary Fig. 2 and the mean duration between the first and last
can for each participant was 78 days. Spectral quality was very high
ith a mean linewidth of 0.04 ppm and mean SNR of 151 over all 66

pectra. CRLB based error estimates for each metabolite, as described
n the previous section, are listed in Supplementary Table 1, with Tau,
ABA, Glc, Lac and Ala being removed from further analysis due to their
stimated errors being greater than 50%. 

Phase, frequency and baseline corrected spectra, as determined as
art of the automated processing pipeline ( Wilson, 2021b , 2019 ), are
hown in Fig. 2 . Each spectrum is plotted with transparency and grouped
y participant to illustrate the high consistency in data quality, and to
ighlight the presence of any strong spectral features with the potential
o discriminate between the participants. For example, the ratio between
he tCho / tCr resonances, at 3.2 and 3.03 ppm respectively, appears
haracteristically elevated in participants 5 and 6 relative to participants
 and 3. 

Whilst informative, the visual assessment of individual differences
n spectral appearance is inherently biased towards higher concentra-

https://github.com/martin3141/neuro_metabolic_phenotyping
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Table 2 

ANOVA summary statistics for each metabolite quan- 
tity to evaluate the difference in mean metabolite lev- 
els between the 6 participants studied. Values in bold 
are below the Bonferroni corrected p-value of 0.0071. 

metab. / tCr F-statistic p-value 

sIns 85.0 6.34e-26 

tCho 39.2 1.13e-17 

Ins 20.9 5.07e-12 

Glx 19.9 1.24e-11 

tNAA 8.2 5.66e-06 

Asp 4.9 8.18e-04 

GSH 1.9 1.02e-01 

Fig. 3. Spectral ANOVA results performed on each frequency domain point in- 
dependently and grouped over participants (as shown in Fig. 2 ). Large F-statistic 
values correspond to a strong differences in the mean spectral intensity between 
participants. Predominant spectral differences between participants are clear at 
3.35 and 3.2 ppm, assigned as sIns and tCho respectively, in good agreement 
with the metabolite fitting results listed in Table 2 . 
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ion metabolites with multiple equivalent protons, such as the primary
inglet resonances from tNAA, tCr and tCho. One-way ANOVA was ap-
lied in a univariate fashion (once for each metabolite) to explore the
iscriminatory value of each metabolite, where a larger F-statistic indi-
ates a more likely difference in mean metabolite levels between par-
icipants. Table 2 shows strong differences in the levels of multiple
etabolites indicating a large proportion of the variance in the observed
etabolite levels can be attributed to individual differences in neuro-
etabolism – which were stable over the MRS data acquisition period

f four months. Supplementary Table 2 shows the same analysis but per-
ormed on concentration estimates derived from water reference based
caling ( Gasparovic et al., 2006 ) – rather than metabolite levels as ra-
ios to tCr. Good agreement was found between both analyses, and while
Cr was found to differ between individuals (F = 9.4) very strong effects
emained for both sIns (F = 71.1) and tCho (F = 63.7). 

The sIns and tCho metabolites had the strongest discriminatory
alue, with both primary resonances being observable at 3.35 and 3.2
pm respectively ( Fig. 2 ). A further confirmatory analysis was per-
ormed by performing one-way ANOVA directly on the processed spec-
ral data to highlight frequency ranges related to individual differences,
nd significantly reduce any potential confounds related to biases or in-
tabilities in the fitting procedure. Strong agreement was found between
he spectral ( Fig. 3 ) and fitted metabolite ( Fig. 2 ) ANOVA results – with
oth analyses finding sIns and tCho as the most discriminatory spectral
egions and metabolite levels. Coefficients of variation for each metabo-
5 
ite are listed in Supplementary Table 3, with sIns and tCho having mean
oefficients of 12.6 % and 5.7 % respectively when averaged across the
ix participants. 

The ability of one or more neuro-metabolites to uniquely distinguish
r characterise individuals may be framed as a classification problem,
nd therefore suited to a machine learning approach. A simple classi-
cation model, based on the two most effective univariate predictor
ariables: tCho and sIns ( Table 2 ), was used to confirm the efficacy of
ombining one or more MRS derived neuro-metabolites to predict the
onor participant. A support vector machine learning model, with a lin-
ar kernel, was applied to the tCho and sIns predictors (as ratios to tCr)
nd a high classification accuracy of 88% was achieved – as measured
ith leave-on-out cross-validation. Fig. 4 shows the classification deci-

ion boundaries and predicted classes of the 68 donor spectra. Most data
oints cluster about distinct centroids attributable to each participant. 

A second exploratory classification model was implemented with the
ame methodology but including additional metabolites to investigate
ow the use of a more complete metabolite “profile ” may be used to
mprove classification accuracy. The combination of tCho, sIns, tNAA
nd Ins (as ratios to tCr) yielded an improved leave-one-out accuracy of
8% – relative to the previous two-feature model. 

The results of an unsupervised principal component analysis per-
ormed on the statistically significant metabolite levels (see Table 2 )
re shown in Fig. 5 . Part A) shows reasonable separation between par-
icipants 2, 3 and 6 may be achieved by comparing PC1 vs PC2, which
ogether account for 63% of the total variance in the dataset, whereas
C1 vs PC3 (part B) shows improved separation for participant 1. The
oadings arrows in parts A) and B) indicate that scyllo-inositol and total-
holine each contribute primarily to PC1 and PC3, implying temporally
table individual differences are one of the primary sources of variance
n neuro-metabolite levels. 

Small differences in the mean levels of grey matter tissue included
n the MRS acquisition region are seen in Table 1 – with a range of 6%.
hese differences are likely due to minor variations in the subject’s bi-

ateral ACC anatomy, for example cortical thickness and sulcal patterns.
ince metabolite levels are known to vary between grey and white mat-
er ( Wang and Li, 1998 ), we explored the association between the levels
f grey matter voxel composition and metabolite values. Fig. 6 shows no
ignificant link between the grey matter fraction and sIns and tCho, in-
icating that genuine changes in neuro-metabolism are the cause of the
bserved individual differences in metabolite levels, rather than varia-
ions in neuroanatomy. 

. Discussion 

Our results show it is possible to accurately characterise an individ-
al based on their neuro-metabolic profile, as measured non-invasively
ith MRS. The stability of this profile, over a period of months, pro-
ides new evidence for the existence of a neurometabolic phenotype in
umans, with scyllo-inositol, total-choline and total-creatine acting as
he dominant metabolic features in the bilateral ACC brain region. We
lso show how the addition of tNAA and myo-inositol levels confers a
ore precise characterisation and, more generally, how combining MRS
erived neurometabolic profiles with machine learning is an important
nd currently underused tool in neuroscience and neuropathology. 

Our observation that scyllo-inositol is characteristically different be-
ween individuals and stable over a period of months is novel and not
eadily explained by other studies. The age range of our cohort was
oo narrow (24-32 years) for differences to be congruent with changes
reviously linked to normal aging ( Kaiser et al., 2005 ), and the volun-
eers’ alcohol consumption was significantly below the levels associated
ith alcoholic metabolic encephalopathy ( Viola et al., 2004 ). Large el-

vations in the scyllo-inositol to myo-inositol ratio have been reported
or a single healthy individual when compared to normative levels, as
bserved in this study and others, suggesting these two molecules are
egulated independently and large relative deviations are compatible
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Fig. 4. Decision boundary plot for the sup- 
port vector machine classifier model applied to 
tCho/tCr and sIns/tCr. Leave-one-out accuracy 
was 88%. 

Fig. 5. Principal component analysis of metabolite levels as ratios to total-creatine. PC1 vs PC2 and PC1 vs PC3 scores plotted as points in parts A) and B) respectively, 
with metabolite loadings represented as grey arrows. Percentages of the explained variance for each principal component are shown in part C). 

6 
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Fig. 6. Scatter plot of the relationship between the primary distinguishing metabolite features and the proportion of grey matter in the MRS acquisition region. The 
absence of any correlation suggests gross anatomical features are not the primary source of variance in these metabolite quantities. 
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ith healthy brain function ( Seaquist and Gruetter, 1998 ). This large
levation in scyllo-inositol was also found to be stable over a period of
2 months, in agreement with our results. The relatively high concen-
ration of scyllo-inositol in some fruit juices suggests diet may be one
otential source of variability ( Sanz et al., 2004 ). This, combined with
n association between fruit juice consumption and improved cognitive
unction in healthy middle-aged males ( Alharbi et al., 2016 ) promotes
cyllo-inositol as an interesting new biomarker for further study – poten-
ially providing a mechanistic link between diet and healthy cognitive
geing ( Lamport et al., 2014 ). 

In addition to scyllo-inositol, several other metabolites were found
o differ between participants – including tNAA, tCho and myo-inositol.
umerous studies have shown how these commonly measured metabo-

ites alter with pathology ( Oz et al., 2014 ), however their precise role
n healthy brain tissue remains unclear. These metabolites levels are
nown to differ between neuro-cellular types ( Urenjak et al., 1993 ) and
heir levels may therefore relate to individual differences in grey mat-
er tissue composition. For example, tNAA and myo-inositol are gener-
lly considered to be approximate markers of neuronal and glial cell
ypes and their concentrations may reflect the relative proportions or
etabolic state of these cells within the bilateral ACC MRS acquisition

olume. 
A PRESS sequence with an intermediate echo-time of 80 ms was

sed for this study. This echo-time is known to be advantageous due to
he suppression of interfering macromolecular signals, thereby reducing
he need for an echo-time specific macromolecular signal model. How-
ver, intermediate echo-times are also associated with reduced metabo-
ite signal intensity arising from increased T2 relaxation and a general
ephasing of J-coupled metabolite resonances, e.g., myo-inositol, phos-
hoethanolamine and ascorbate. Furthermore, the localisation quality
f commercial PRESS implementations are known to be poor at 3 Tesla
nd above ( Wilson et al., 2019 ). More modern acquisition methods, such
s semi-LASER or SPECIAL ( Öz et al., 2021 ), combined with a short
E protocol and improved macromolecular modelling ( Cudalbu et al.,
021 ) should be preferred for future studies for improvements in both
ignal localisation and metabolite detection accuracy. 

MRS derived metabolite measures are commonly expressed either as
atios, e.g., tNAA/tCr, or as concentrations based on information avail-
ble from a water reference scan ( Near et al., 2021 ). Both approaches
ave strengths and limitations, with the ratio method being simple to
mplement, but making interpretation difficult in the case when both
ontributing measures are known to vary. Conversely, the water ref-
rence approach simplifies interpretation, but potentially erroneous as-
umptions about the water content of tissue and relative relaxation rates
7 
re required. In the case of MRSI, metabolite ratios are more commonly
sed since water reference data are more time consuming to acquire and
herefore less likely to be available. In this study, primary analysis was
erformed on metabolite ratios to tCr, however a secondary analysis
howed the findings to be consistent with water referenced metabolite
evels (see Table 2 vs Supplementary Table 2). Agreement between the
wo different approaches provides evidence our findings are robust, and
hat either method is suitable for neuro-metabolic profiling. 

Systematic differences in data quality between participants have the
otential to introduce biases in metabolite levels during fitting, result-
ng in erroneous discriminatory metabolite markers. Supplementary Ta-
le 4 shows systematic differences in SNR, water suppression efficiency
nd tNAA linewidth were present in our data, however the effect sizes
F = 7.3, 6.5, 4.5) were small relative to the top three discriminatory
etabolite markers (F > 20) and we therefore conclude data quality is
ighly unlikely to be driving these differences in metabolite levels. Fur-
hermore, Fig. 2 shows stable baselines across the full spectral range,
ndicating baseline distortions from residual water signal were not high
nough to influence metabolite fitting. Fig. 3 shows how a simpler spec-
ral analysis agrees with the results from metabolite fitting, giving fur-
her evidence that fitting biases caused by differences in data quality
re unlikely to be driving the observed metabolite differences. Under-
ying factors that may explain the systematic differences in SNR, tNAA
inewidth and residual water include: 1) relative differences in the tNAA
ignal strength, 2) the ratio between NAA and NAAG and 3) the propor-
ion of CSF in the MRS voxel. 

Whilst this work presents new evidence for the existence of neu-
ometabolic phenotypes, one of its primary limitations is the low num-
er of participants studied (N = 6). Attempts to discount trivial and sys-
ematic factors driving metabolite differences (e.g. differences in brain
orphology or participant head motion) will be heavily underpowered,

herefore our results provide a strong justification for studies with a
reater number of participants. A further limitation is the investigation
f a single brain region. Regional variations in metabolite levels have
een established with MR spectroscopic imaging (MRSI), showing dif-
erences of up 10% in tNAA between the left and right cerebral hemi-
pheres and a trend towards increasing levels from the anterior to poste-
ior cerebrum ( Maudsley et al., 2009 ). Whilst MRSI is prone to reduced
ata quality, compared to single voxel MRS ( Wilson et al., 2019 ), this
oss may be mitigated by the addition of spatial information – ultimately
mproving individual characterisation. 

The cognitive implications of these individual differences in metabo-
ite profiles presents an important area for future study. The levels
f frontal-parietal tNAA have been shown to predict fluid intelligence
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 Nikolaidis et al., 2017 ), and follow different age related changes be-
ween adults with autism spectrum disorders compared to those with
ypical development ( Aoki et al., 2012 ). The relationship between emo-
ional traits and MRS acquired from the right dorsal anterior cingu-
ate cortex has also been recently reported ( White et al., 2021 ), where
NAA was found to correlate with Absorption and Aggression, as mea-
ured by the Multidimensional Personality Questionnaire Brief Form
 Patrick et al., 2002 ). Glx and tCho were also associated with be-
avioural flexibility and social affiliation, however these relationships
ad a smaller effect size and were not statistically significant following
orrection for multiple comparisons. These results, combined with our
ndings, justify much larger studies to explore how the neurometabolic
rofiles from multiple brain regions, as measured with MRSI, relate to
ontextual changes in cognition and personality and to stability in such
raits over time. 

The two metabolites with the most discriminatory power between
articipants were scyllo-inositol and tCho, and notably both these
etabolites have been associated with ageing and cognitive decline.
ietary choline has been associated with improved performance in
ognitive tasks for middle-aged and older men, with greater choline
ntake found to correlate with verbal fluency and memory func-
ion ( Ylilauri et al., 2019 ). Dietary choline supplementation has also
een shown to improve spatial memory and beta-amyloid load in an
lzheimer’s Disease mouse model ( Velazquez et al., 2019 ). Increases in
cyllo-inositol are associated with ageing ( Kaiser et al., 2005 ) and di-
tary supplantation has been shown to ameliorate impaired cognition
n a Alzheimer’s Disease mouse model ( McLaurin et al., 2006 ). The abil-
ty of MRS to detect these neuro-metabolic markers in-vivo presents a
ompelling potential diagnostic technique to detect the early stages of
ognitive decline, and future work should be undertaken to explore the
onnection between these markers, diet and cognitive changes associ-
ted with ageing. 

In conclusion, we have shown how combining MRS with machine
earning may be used to derive temporally stable neuro-metabolic pro-
les from healthy adults. The high classification accuracy achieved in
iscriminating between six participants provides novel evidence for the
xistence of neuro-metabolic phenotypes, and future work is warranted
o investigate a greater number of individuals and explore how these
ndings relate to the wider adult population, cognitive function and
rain health. 
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