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Climate variability and hominin evolution are inextricably linked. Yet, hypotheses examining
the impact of large-scale climate shifts on hominin landscape ecology are often
constrained by proxy data coming from off-site lake and ocean cores and temporal
offsets between paleoenvironmental and archaeological records. Additionally, landscape
response data (most commonly, records of vegetation change), are often used as a climate
proxy. This is problematic as it assumes that vegetation change signifies global or regional
climate shifts without accounting for the known non-linear behavior of ecological systems
and the often-significant spatial heterogeneity in habitat structure and response. The
exploitation of diverse, rapidly changing habitats by Homo by at least two million years ago
highlights that the ability to adapt to landscapes in flux had emerged by the time of our
genus’ African origin. To understand ecosystem response to climate variability, and
hominin adaptations to environmental complexity and ecological diversity, we need
cross-disciplinary datasets in direct association with stratified archaeological and fossil
assemblages at a variety of temporal and spatial scales. In this article, we propose a
microhabitat variability framework for understanding Homo’s adaptability to fluctuating
climates, environments, and resource bases. We argue that the exploitation of
microhabitats, or unique ecologically and geographically defined areas within larger
habitats and ecoregions, was a key skill that allowed Homo to adapt to multiple
climates zones and ecoregions within and beyond Africa throughout the Pleistocene.
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INTRODUCTION

Climatic and environmental variability are often presented as major influencers on human evolution
(Vrba, 1995b; Potts, 1998a; Trauth et al., 2010; Cerling et al., 2011; deMenocal, 2011), including the
origins and diversification of Homo or the development of specific stone tool technologies (Potts
et al., 2020; Lupien et al., 2021; Schaebitz et al., 2021). Variable Pliocene-Pleistocene climate for
example, may have required hominins to effectively respond to the extreme selection pressures
imposed by dynamic climatic systems, leading to genetic and morphological change and
technological innovation (e.g., Committee on the Earth System Context for Hominin Evolution,
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2010). It is even argued that changes in African climate and
hominin extinction, speciation, and behavioral events were
inextricably linked over the past 6 million years (deMenocal,
2011). The last appearance of Australopithecus afarensis around
2.9 Ma (Campisano and Feibel, 2008; Alemseged et al., 2020), the
appearance of the genus Homo at 2.8 Ma (Villmoare et al., 2015),
the emergence of Paranthropus after 2.7 Ma (Coppens, 1968;
Harrison, 2002), and the earliest evidence for Oldowan stone
tools at 2.6 Ma (Semaw et al., 1997; Braun et al., 2019) appear to
overlap with Northern Hemisphere glacial intensification, faunal
changes, aridification, and grassland expansion in Africa (Bobe
and Eck, 2001; Semaw, 2003; Evolution, 2010; deMenocal, 2011).
Moreover, the emergence of Homo erectus and subsequent
migrations out of Africa seemingly occurred when subtropical
temperatures cooled around 1.9 Ma (Ravelo et al., 2004), while
the appearance of the Acheulean at ∼1.75 Ma has been suggested
to coincide with increases in African wind-borne dust and
aridification near 1.8 Ma (deMenocal, 2004; Lupien et al., 2018).

Yet, linking hominin landscape ecology and climate variability
to technological, morphological, or behavioral changes remains
challenging as clear cause-and-effect relationships between
specific climatic events and major evolutionary occurrences are
difficult to establish. This is often due to temporal and spatial gaps
in paleoclimatic, paleoenvironmental, and archaeological records
(Marean et al., 2015; Faith et al., 2019; Faith et al., 2021).
Additionally, recent discoveries of the earliest stone tools
(i.e., the Lomekwian) from Kenya dating to 3.3 Ma (Harmand
et al., 2015), the earlier appearance of H. erectus in southern
Africa at 2.0 Ma (Herries et al., 2020), and the likelihood that
Acheulean biface shaping emerged gradually out of bifacial core
reduction during the Oldowan (Duke et al., 2021) are not
evidently linked with major climate and environmental events.
Furthermore, Northern Hemisphere Glaciation was a gradual
process, and a consistent stepwise transition toward greater
aridity in Africa at ∼2.8 Ma does not exist, with regional, often
asynchronous, changes being observed in different parts of the
continent (Trauth et al., 2021). Mammalian evolution is also not
always directly linked to major climate shifts in a one-to-one
manner as species adopt a variety of strategies, including
mobility/migration, dietary, morphological, or cultural change,
and the ongoing utilization of small microhabitats within a wider
changing regional environmental context (Boutin and Lane,
2014; McCain and King, 2014; Figueirido et al., 2019; Stewart
et al., 2021).

Indeed, particular caution must be adopted when studying
paleoclimate and paleoecology within a human evolutionary
framework, as hominin habitat-types are not always
synchronous with changes in regional or global climate
(Blumenthal et al., 2017; Groucutt, 2020; Faith et al., 2021;
Trauth et al., 2021). That is, landscape response data (most
commonly, records of vegetation change), are often used as a
climate proxy even though it is well established that ecosystems
do not necessarily exhibit a linear response to global or regional
climate drivers (Holling, 1973; Bennett et al., 2021). Although
difficult to identify archaeologically, we must also consider
hominin agency, specifically the genus Homo in comparison to
other hominins and primates, for its capacity to survive and adapt

to resource limited conditions and manipulate their
environments. We know, for instance, that by least ∼1.8 Ma
(Gabunia et al., 2000; Zhu et al., 2008; Garcia et al., 2010;
Ferring et al., 2011) and possibly ∼2.1 Ma (Zhu et al., 2018),
Homo had adapted to multiple climate zones and ecoregions
within and beyond Africa, selected specific habitats within larger
biomes, and was able to tolerate extreme climatological and
ecological events without the need of sophisticated technology.
In addition, Middle Pleistocene hominins modified their
ecosystems, such as through fire use, which influenced local
and regional ecologies, thus adding another dimension to
vegetation change that is not entirely climate mediated
(Gowlett, 2016; Petraglia, 2017; Thompson et al., 2021).

Until relatively recently, cross-disciplinary datasets in direct
association with stratified archaeological and fossil assemblages
were not specifically targeted when reconstructing hominin
landscape environments or ecologies. “Off-site” (i.e., distal)
lake and ocean cores have produced well-integrated, high-
resolution reconstructions of the broad environmental context
in which the genus Homo and its closest hominin relatives
evolved, adapted, and experimented with novel technologies
(Feakins et al., 2005; Feakins et al., 2007; Castañeda et al.,
2009; Magill et al., 2013a; b; Uno KT. et al., 2016; Tierney
et al., 2017; Caley et al., 2018; Colcord et al., 2018; Lupien
et al., 2018; Lupien et al., 2019; Lupien et al., 2020; Lupien
et al., 2021). These data, however, are often derived from
sources distal to hominin activity. Although we have long-
term records that demonstrate changes in plant landscape
composition (Feakins et al., 2005; Feakins et al., 2007; Feakins
et al., 2013; Uno K. T. et al., 2016), they do not necessarily show
the ecological subtleties and complexity that on-site
(i.e., proximal) records can provide. Increasingly, however,
phytolith and pollen records (Bonnefille, 1995; Barboni et al.,
1999; Albert et al., 2006; Bamford et al., 2006; Bamford et al.,
2008; Albert et al., 2009; Barboni et al., 2010; Rossouw and Scott,
2011; Albert and Bamford, 2012; Barboni, 2014; Albert et al.,
2018; Itambu, 2019; Mercader et al., 2021; Stollhofen et al., 2021),
as well as paleontological and stable isotope analyses
(WoldeGabriel et al., 1994; Cerling et al., 1997; Pickford and
Senut, 2001;Wynn, 2001;White et al., 2009b;WoldeGabriel et al.,
2009; Prassack, 2010; Cerling et al., 2011; Kovarovic et al., 2013;
Magill et al., 2013a; b; Quinn et al., 2013; Bibi and Kiessling, 2015;
Bibi et al., 2018; Colcord et al., 2018; Pante and de la Torre, 2018;
Prassack et al., 2018; Faith et al., 2019; Roberts et al., 2020;
Sanders, 2020), have sought to track changes in landscapes
occupied by Pleistocene hominins. The pursuit of more
detailed data relating to hominin population resource use and
microhabitat availability across space and time is beginning to
provide more nuanced insights into the relationship between
hominin morphologies and technologies and local-to-regional
scale environmental change (Barboni et al., 2010; Blumenschine
et al., 2012; Magill et al., 2015; Itambu, 2019; Patalano, 2019;
Martin et al., 2021; Mercader et al., 2021).

This article reviews the potential role of microhabitat
variability in human evolution by examining archaeological
and paleoecological datasets that have revealed hominin
morphological and technological adaptations to changing
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environments over time and space. We begin by defining
microhabitat variability, and the differences between biomes,
ecoregions, and habitats. We then present field and analytical
research methods designed to identify microhabitat variability in
the Pleistocene. This is followed by a review of the key prevailing
climate and environmental hypotheses for human evolution, as
well as issues related to landscape response data like the
inherently non-linear attributes of some ecosystems. This is
followed by case studies using three examples of microhabitat
variability from Oldupai Gorge (formerly Olduvai) in Tanzania
and the adaptability of Homo to distinct environmental settings.
Finally, we propose a framework for utilizing diverse datasets
compiled from multiple environmental proxy records as an
analytical tool for evaluating hominin adaptability across

ecologically diverse landscapes and consider how to best factor
a microhabitat variability framework into existing paleoclimatic,
paleoenvironmental, and evolutionary models.

MICROHABITAT VARIABILITY

High spatial resolution and multi-proxy archaeological and
paleoecological datasets are crucial for locally reconstructing
climate drivers and biome- and intrabiome-scale ecological
change. Such analyses are a necessary starting point for
underpinning how climate-ecosystem feedbacks have
influenced hominin evolution. We classify “microhabitats” as
unique ecologically and geographically defined areas within larger

FIGURE 1 | Different scales of plant landscape variability. (A) Biomes as defined by White’s (1983) African phytochoria (supplementary information for
classifications) overlain on African ecoregions as delineated by the World Wildlife Federation (WWF) (Olson et al., 2001); (B) Eastern African biomes and ecoregions with
focus onWhite’s Somalia-Maasai Regional Center of Endemism (XII). Note the numerous and diverse ecoregions within the larger phytogeographic biomes. (C) Different
habitat types that can be found throughout the Somalia-Maasai Regional Center of Endemism. From left to right: forest, woodland, wooded grassland, and
grassland. Table 1 for a synopsis of main habitat types.
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habitats (Figure 1, Figure 2). At the largest scale are “biomes,”
which we identify using White’s (1983) description of extant
African phytochoria, termed Regional Centers of Endemism
(White, 1979). Nested within the biomes are various
“ecoregions,” or relatively large areas of land containing a
distinct assemblage of natural communities and species that
share climatic and environmental conditions (Olson et al.,
2001). The porosity and chemistry of soils, topography,
groundwater sources, and edaphic conditions influence
vegetation structure and floristic patterns to create distinct
habitat and microhabitat assemblages inside each ecoregion
(Sept, 2013). “Habitats” are areas covered by relatively
uniform vegetation types within each ecoregion (Table 1), that
represent major biotic zones and correlate with various climatic

indices such as rainfall seasonality, summer aridity, and
minimum winter temperatures (Van Wyk and Smith, 2001). A
“microhabitat” on the other hand, is a smaller but highly
distinctive area that differs from encompassing habitat types in
that it exhibits unique floristic conditions that can change at
meter scales (Figure 2). While, on a spatial scale, these ecosystems
might seem relatively unimportant, biotically they can be home to
a variety of diverse flora and fauna, often exerting specific
pressures on the evolution of morphology, feeding behaviors,
and migratory patterns (Fjeldså and Lovett, 1997; Stewart et al.,
2010; Sintayehu, 2018).

Microhabitat variability is exemplified best by mosaics, or
where local geological, tectonic, microclimatic, and
hydrological conditions and both natural and anthropogenic

FIGURE 2 | (A)Google Earth image showing Lake Manyara in the Tanzanian Rift Valley and forests on the northern and western shores that are fed by groundwater
discharged from the escarpment. Insert photo shows the view from atop the northern escarpment. (B) An ecological and elevation profile of segment A-A1 showing
variability at a small scale. In the ecological profile, true forest is found from 0 to 0.25 km, and then gradually transitions to woodland until ∼0.6 km before opening into
wooded grassland until 1.0 km. After 1.0 km, the wooded grassland transitions to an open grassland, which terminates at the water’s edge at 1.75 km. After
2.1 km, emergent halophytic vegetation (saline and brackish swamp adapted species) flourish on an exposed surface.
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disturbances create well-defined patches of distinct plant
communities that may offer unique food resources (Mucina
and Rutherford, 2006). Gallery forests for example, are a key
element within the Somalia-Maasai Regional Center of
Endemism of eastern Africa (White, 1983), which consists
of Acacia-Commiphora deciduous bushland and thicket,
wooded grassland, edaphic grasslands, and other habitat
types. Dense, fire-exclusionary gallery forests can grow
proximal to abundant or permanent freshwater sources,
including near rivers or groundwater aquifers. Thus, a
particular combination of eco-hydrological conditions can
permit the formation of highly diverse landscape mosaics
over relatively small geographic distances (Mucina and
Rutherford, 2006). Contributing to microhabitat variability
is ecological diversity, which includes both alpha
(α-diversity) and beta (β-diversity) diversity (Whittaker,
1960). Alpha diversity reflects that within a localized
microhabitat, while β-diversity reflects that between different
microhabitat types. Both α-diversity and β-diversity are
determined by climatic conditions as well as the frequency
of fires and other disturbances and a combination of slopes,
aspect, soil depth and nutrients, moisture availability, age, and
evolutionary history of the landscape (Geldenhuys, 1992;
Mucina and Rutherford, 2006). The well-drained alluvial
fans on the northwestern and western shores of Lake
Manyara, Tanzania for example, support a “drought
resilient” groundwater-fed evergreen forest that would
otherwise not develop under the existing rainfall regime of
650 mm per year (Copeland, 2007; Barboni, 2014) (Figure 2).
This forest is atypical of the Somalia-Maasai Acacia-
Commiphora deciduous bushland and thicket and volcanic
grasslands that abound in this region of Tanzania. Crucially,
this forest supports key edible taxa that are relied upon by a
range of fauna (such as chimpanzees in western Tanzania) like
the Cape Mahogany (Trichilia emetica) and the Sycamore Fig
(Ficus sycomorus) (Copeland, 2007 and references within).

Identifying Microhabitat Variability
Reconstructing microhabitat variability through archaeological
or paleoecological proxies is, of course, difficult given the
delimited nature of excavations or core retrieval and
taphonomic limitations. Recent studies, however, have shown
that it is possible to track microhabitat changes at spatial scales
(Magill et al., 2015; Arráiz et al., 2017; Itambu, 2019; Patalano,
2019). Many archaeological and paleoanthropological sites
permit well-defined, high-resolution temporal analyses, though
few have had adjacent geological exposures that allow for analyses
to be conducted at a high spatial resolution targeted as well.
Oldupai Gorge in northern Tanzania, the Ain Béni Mathar-
Guefaït basin in eastern Morocco, and even the Nihewan
Basin in northern China are such examples where exposed
sedimentary deposits allow for radiometric or
magnetostratigraphic dating of fluvio-lacustrine sequences so
that both temporal and spatial paleo-reconstructions are
possible (Figure 3). The application of sequence stratigraphic
methods to geologic exposures provides a time-layered
framework that enables correlations between sedimentary units
across facies boundaries (Uribelarrea et al., 2017; Stanistreet et al.,
2018). This also allows for the horizontal sampling of terrestrial
sediments at and beyond archaeological sites, as well as across
exposed sedimentary units along meter-, and when possible,
kilometer-scale transects (Figure 3). The analyses of specific
paleo-proxies (Table 2) collected in paleosol horizons can then
help document spatial distributions in vegetation and provide an
ecological context of such things as hominin foraging behavior or
raw material procurement (Section 5).

Nevertheless, investigations into hominin resource use and
microhabitat variability have largely been limited to Oldupai
Gorge due to its number of documented archaeological sites,
geographic extent, and well-defined stratigraphy (Barboni et al.,
2010; Blumenschine et al., 2012; Magill et al., 2015; Itambu, 2019;
Patalano, 2019; Mercader et al., 2021). Sampling at other
paleoanthropological locations on the other hand, has mostly

TABLE 1 | Synopsis of main habitat types mentioned in the text. Adopted from White, 1983.

—

Forest A continuous strand of trees at least 10 m tall with a closed, multistory, overlapping canopy. Woody plants dominate the
biomass, and a shrub layer is normally present. The ground layer is usually sparse but may contain bryophytes, epiphytes,
orchids, or mosses depending on moister availability

Woodland Open stands of trees that are at least 8 m high, but no more than 20 m, with woody plants accounting for ∼40% of the
biomass over a field layer of grasses. Woodland canopies do not overlap extensively, but occasionally, stands of woodland
have a closed canopy and thus a poorly developed grass layer

Bushland and thicket Open stands of bushes, defined as woody, multi-stemmed plants usually 3–7 m tall with a main stem 10 cm or more in
diameter, that cover >40% or more of the land. Bushes often flourish in rocky or stony substrates that are unfavorable to
grasses. Thicket is a closed stand of bushes that are so densely interlocked that they form a nearly impenetrable obstacle
that hinders movement

Shrubland Stands of shrubs that vary in height from 0.1 to 2 m. Usually open or closed stands of shrubs occur where taller bushes and
trees cannot grow because of low rainfall, extended drought periods, low temperatures, high rates of evapotranspiration,
and oligotrophic or nutrient-poor soils

Grassland Stretches of grasses and other herbs that develop when woody plant cover is <10%. African grasslands are structurally
simple with woody species only occurring in specialized microhabitats that are dependent on the availability of moisture.
Forbs also form an important component of grasslands andmay contribute more in terms of biome species richness than do
grass species

Wooded Grassland Stretches of grasses and other herbs, with woody plant cover ranging from 10 to 40%. Woody plants are always scattered,
but often grade into grassland or woodland
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focused on proxy records collected in lake basin or ocean cores
that track long-term climatic trends and regional environmental
signals (Faith et al., 2021). Classifying paleo-microhabitats is also
contingent on the taphonomy of environmental proxies
(Table 2). Diverse faunal assemblages can suggest the
juxtaposition of distinct microhabitats (Kovarovic et al., 2013),
but can be skewed by niche exploitation of specific species by
hominins or the disproportional preservation and dominance of
some species [e.g., very large mammals (≥180 kg)] in fauna
collections over other [e.g., small mammals (<1,000 g)] (Faith

et al., 2019). Biogenic silica, pollen, and plant wax biomarkers
(Godwin, 1934; Faegri and Iversen, 1989; Piperno, 2006; Sachse
et al., 2012; Diefendorf and Freimuth, 2017; Cabanes, 2020;
Patalano et al., 2021), are three additional proxies most often
applied for plant landscape reconstructions (Table 2), and when
used effectively, have the potential to produce a clear ecological
context into which hominin behavior can be interpreted (e.g.,
Mercader et al., 2021). By taking a multi-proxy approach to
studying non-analog ecosystems andmicrohabitat variability, it is
possible to overcome some of the problems inherent with

FIGURE 3 | Stratigraphic overview of Oldupai Gorge and landscape sampling for spatial habitat variability. (A) View of the Second Fault in the eastern part of the
gorge and the displacement of the stratigraphic Beds. On the left (hanging wall), all beds except for Naisiusiu are exposed, while on the right (foot wall), only the Bed I
Lavas and Beds I-III are visible. Exposure taken from the northern rim of the gorge facing south and encompasses ∼600 m east to west. Photo by Robert Patalano. (B)
Locations (white dots) around the main confluence of the gorge where clays in contact below Tuff IF were sampled for plant wax biomarkers and phytoliths (Itambu,
2019; Patalano, 2019). (C) Example in which both Tuff IF (1) and the clays in contact below the tuff (2) are exposed. Photo by Laura Tucker.

TABLE 2 | Main paleoecological proxies that can be used to study microhabitat variability.

Pollen Phytoliths Plant waxes Faunal isotopes

Benefits Compositionally rich record of vegetation
change

Often abundant in paleosols Ubiquitous in terrestrial and
aquatic sediments

Ratios track dietary
preference

Highest taxonomic resolution
Can track boundary between woodland and
grassland Track photosynthetic pathway

and changes in hydroclimate
Provide landscape-scale
environmental signals

Drawbacks Preservation contingent on anoxic
conditions, usually in aquatic depositional
settings

Cannot reliably identify photosynthetic
pathway or plant taxonomy, specifically at the
species level

Production varies by taxonomic
group

Biased to feeding behavior

Transport distance differs between taxa
Preservation depends on initial
burial dynamics and diagenesis

Not diagnostic of hominin
habitat preference
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undertaking regional climate-ecosystem comparisons for human
origins studies (Faith et al., 2019; Faith et al., 2021).

ENVIRONMENTAL AND CLIMATE
VARIABILITY AND HUMAN EVOLUTION

The evolutionary significance of climatic and environmental
variability has been reviewed elsewhere within the context of
human origins (Vrba et al., 1989; Potts, 1996; 1998a; b; Vrba,
2007; Maslin and Trauth, 2009; Potts, 2013; Maslin et al., 2015;
Faith et al., 2021). Early explanations of human evolution focused
on intrinsic stimuli whereby a simple transition from one habitat
type to another (forest to grassland, for example) set the stage for
speciation or specific hominin characteristics like bipedalism and
tool use (Dart, 1925; Washburn, 1960; Wilson, 1979; Wolpoff,
1980; Coppens, 1994). While these Habitat Specific Hypotheses
have, for the most part, been replaced, their assumptions often
persist in evolutionary discourse (Table 3). Generally, these
hypotheses stipulate that the transition from closed woodlands
to open grasslands underpinned the development of meat-eating,
hunting, brain enlargement, fire use, food distribution, complex
sociality, and even language (review in Potts, 2013).

Laporte and Zihlman (1983) were early proponents for the
impact of environmental change on driving African mammalian
evolution (including hominins) by proposing that adaptive
changes were a response to changing environments caused by
global cooling or orogeny, or as hominins migrated into new
habitats. This has since resulted in multiple climate variability
hypotheses that link changes in climate to environmental
reorganization and subsequent speciation and extinction

events, species’ adaptive versatility, and the selection of
behavioral and morphological mechanisms that enhance
adaptive fitness (Table 3). For instance, the appearance of
Homo and Paranthropus around 2.5 Ma was proposed to have
followed climate pulses caused by Northern Hemisphere glacial
intensification and the closing of the Isthmus of Panama (Vrba
et al., 1989; Vrba, 1995a; b). We now know, however, that there is
even earlier evidence of Homo around 2.8 Ma (Villmoare et al.,
2015), and possibly as early as 3.3 Ma, (Püschel et al., 2021), and
there was no pulse towards greater aridity in Africa at the time
(Trauth et al., 2021). On the other hand, increased ecological
resource variability (Potts et al., 2020) is considered amajor factor
in a species’ adaptive versatility specifically in unstable,
unpredictable, or unfamiliar environments, and there is now
more compelling evidence for hominin evolutionary events
during periods of highly variable eastern African climate
shifting from very-dry and very-wet conditions between 5.0
and 0.2 Ma (Trauth et al., 2005; Maslin et al., 2013; Maslin
et al., 2014; Potts et al., 2020; Lupien et al., 2021).

In contrast to these hypotheses centered on upheaval and
change, some treatises have argued that climatic stability may
have been important for driving hominin evolution as species
must adapt and evolve in competition with other evolving species
(Van Valen, 1973; Strotz et al., 2018). In these (Table 3), highly
productive and stable environments lead to competition among
species resulting in directional selection as they move toward
fitness optimum when striving to gain a competitive advantage
over others (Brockhurst et al., 2014). As cladogenesis can lead to
populations deviating from their species and the possibility of a
descendant evolving while its ancestor persists, there is thus a link
between microevolutionary processes and macroevolutionary

TABLE 3 | Synthesis of selected environmental hypotheses for human evolution.

Hypothesis Type Environmental
setting

Evolutionary outcome Drawback References

Savanna Habitat
specific

Transition from closed forest to
open grassland

Bipedalism, tool use,
encephalization, etc.

Hominin landscapes were ecologically
diverse with multiple habitat types

Dart (1925); Washburn
(1960); Wilson (1979);
Wolpoff (1980)

East side story Habitat
specific

Wet, forested west/central
Africa vs. dry, open eastern
Africa

Split between Pan and Homo from
last common ancestor

Based on the assumption that hominin
evolution only occurred in eastern
Africa

Coppens (1994)

Turnover pulse Climate
variability

Rapid phases of aridity and
limited resources

Extinction and speciation No solid evidence for rapid ecological
and evolutionary changes in the
eastern African fossil record

Vrba (1985); Vrba
(1995a); Vrba (1995b);
Vrba (2007)

Variability
selection

Climate
variability

Trends toward drier and more
variable climate resulting in
unpredictable resource base

Heritable traits that enhance
adaptive versatility favored over
those that thrive in stable
environments

Assumes linear driver-response
between climate change and hominin
ecosystem change

Potts (1996); Potts
(1998b); Potts (2013)

Pulsed climate
variability

Climate
variability

Short periods of extreme
climate variability and rapid
landscape reorganization

Hominin speciation,
encephalization, and dispersals
out of Africa

Does not account for hominin localities
or habitats beyond the East African Rift
Valley

Maslin et al. (2014)

Red queen Productive
stability

Stable, predictable, resource
rich environments

Competition amongst species
leading to fitness optimum and
evolution

Ignores importance of abiotic factors
and may only operate at the
population level

Van Valen, (1973)

Chase red
queen

Productive
stability

Stable, predictable, resource
rich environments

Cladogenesis (typically amongst
populations)

Has been difficult to show in extinct
taxa

Strotz et al. (2018)

Microhabitat
variability

Ecological
variability

Diverse and varied with ample
resource opportunities

Successful adaptability of Homo to
environmentally complex
landscapes

Few paleoanthropological localities
allow for testing spatial variability

—

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 7876697

Patalano et al. Microhabitat Variability in Human Evolution

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


patterns (Strotz et al., 2018). P. boisei,H. erectus,H. habilis andH.
rudolfensis were all present at Koobi Fora during the maximum
extent of Paleo-Lake Lorenyang (1.9–1.8 Ma), when resource
availability would have been highest, resulting in these
hominins co-evolving in competition with each other (Maslin
et al., 2015). Additionally, Au. sediba, P. robustus, and H. erectus
were contemporaneous in South Africa between 2.04 and 1.95 Ma
(Berger et al., 2008; Herries et al., 2020), coinciding with
substantial changes in South African ecosystems that may
have placed selective pressures on Australopithecus, leading to
divergent Homo and Paranthropus lineages (Ledogar et al., 2016;
Joannes-Boyau et al., 2019).

ECOSYSTEM RESILIENCE IN FACE OF
CLIMATE CHANGE

Disentangling the influence of climate changes on plant
landscapes and impacts on resource availability is a
fundamental, yet often overlooked, stepping-stone for linking
climate drivers to human behavioral change, evolution, and
migration patterns. This is an essential element for validation
of the variability hypotheses given that they all mandate a degree
of environmental determinism (e.g., Faith et al., 2021). Yet
historically, paleoecological and paleoclimatic records have
often been conflated (e.g., Morrison and Hamilton, 1974), an
approach often necessitated by cost, access, and methodological
constraints. While linear driver-response assumptions may be
viable for climatically sensitive habitats such as tropical montane
settings, they may overlook the inherently non-linear attributes of
ecosystems (Holling, 1973; Hirota et al., 2011; Willis et al., 2013;
Seddon, 2021). Thus, an interpretation of a stable climate
exclusively drawing on paleoecological data extracted from a
climatically resilient ecosystem would be entirely misconstrued
(Hamilton et al., 2020). Equally problematic is an assumption of
extreme climate change from ecological data showing a
catastrophic ecological state shift in response to a relatively
minor, potentially non-climatic disturbance (Hirota et al.,
2011). This emphasizes the importance of producing
independent records of climatic and non-climatic stressors and
landscape response data prior to making interpretations of
hominin behavior from the archaeological record.

From a climate perspective, the progressive formation of the
East African Rift System (EARS) after 12 Ma increased aridity in
eastern Africa as wind patterns became less zonal, reducing
available moisture particularly on the leeward sides of uplifted
regions (Sepulchre et al., 2006; Hardt et al., 2015). Tectonic
activity also helped create distinctive and topographically
complex landscapes and geographical barriers that hominins
had to successfully navigate (King and Bailey, 2006). Evidence
from soil carbonates (Wynn, 2001; Levin et al., 2004;Wynn, 2004;
Levin et al., 2011; Quade and Levin, 2013) and pollen and plant
wax biomarkers (Feakins et al., 2005; Feakins et al., 2007; Feakins
et al., 2013) illustrate a progressive proliferation of C4 plants
beginning at approximately 10 Ma, presumably in response to
increased aridity following rifting (deMenocal, 2004). Grass
pollen and plant wax biomarkers from marine cores in the

Gulf of Aden (Feakins et al., 2013) and the Somali Basin (Uno
K. T. et al., 2016) show that C3 grasslands had actually expanded
in eastern Africa by 12 Ma but from 10 Ma onwards, were steadily
replaced by C4 plants (Feakins et al., 2007; Uno K. T. et al., 2016),
though this was not a gradual process (Magill et al., 2013a; b;
Colcord et al., 2018; Lupien et al., 2019).

Changes in northeastern African flora have also been
attributed to variability in orbital precession (Feakins et al.,
2005; Feakins et al., 2007; Maslin and Trauth, 2009; Magill
et al., 2013b; Feakins et al., 2013; Uno KT. et al., 2016; Lupien
et al., 2018). Precession, with an average periodicity of ∼23,000
years, may have influenced human evolution and adaptability by
controlling local water availability, biome diversification, and key
speciation and dispersal events (Maslin and Trauth, 2009; Potts,
2013). Environmental variability may have also increased the
adaptive versatility of hominins and their capacity to adjust to
new habitats (Potts, 2013). The timing and nature of changes in
hydrology and vegetation cover and the relationship to hominin
species turnover (Feakins et al., 2007; Lupien et al., 2018), the
appearance of new stone tool technologies (Lupien et al., 2020),
the ability to control fire (Collins et al., 2017; Brittingham et al.,
2019), and hominin dispersals out of Africa (Castañeda et al.,
2009; Tierney et al., 2017) have all been viewed in light of orbital
forcing and environmental variability. In southeastern Africa,
rapidly fluctuating wet-dry cycles between approximately 2.2 Ma
to 2.0 Ma likely contributed to the local extinction of
Australopithecus and Paranthropus due to habitat
marginalization (Caley et al., 2018), at a time when the genus
Homo was emerging prominently in Africa (Antón, 2003;
Plummer et al., 2009; Herries et al., 2020).

On shorter timescales, the Intertropical Convergence Zone
(ITCZ) dictates the position of African and Indian Ocean
Monsoons and controls the seasonal distribution of
precipitation across Africa (Nicholson, 1996). Driven by solar
insolation, the ITCZ produces singular rainy seasons in many
parts of the continent, but it is difficult to simply attribute
African precipitation cycles directly to incoming solar radiation
(Yang et al., 2015), as African hydroclimate is modulated by
influences from both the West African and Indian Ocean
monsoons, the Walker Circulation, topography, and
anomalies of ocean sea-surface temperatures, all of which can
cause unimodal to trimodal distributions of rainfall across of the
continent (Nicholson, 1993, 1996; Williams et al., 2012; Yang
et al., 2015; Parhi et al., 2016; Ummenhofer et al., 2018;
Schaebitz et al., 2021). In eastern Africa for example, the
region’s aridity has been attributed to the Turkana low-level
jet (Nicholson, 2016) and orography (Christensen and
Kanikicharla, 2013) even though there is a bimodal annual
cycle of precipitation. Continental rainfall distribution is also
sensitive to changes in the El Niño Southern Oscillation (ENSO)
(Nicholson and Selato, 2000; Pausata et al., 2017), originating
from Pacific sea surface temperature anomalies (Kaboth-Bahr
et al., 2021). Changes in ENSO influence east-west and
equatorial-southern moisture gradients across Africa
(Nicholson and Selato, 2000; Nash et al., 2016; de Oliveira
et al., 2018), such that when humid condition prevail in
eastern or equatorial Africa, arid conditions persist in
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western or southern Africa (Nicholson, 1996; Kaboth-Bahr
et al., 2021).

African plant landscapes, and forests in particular, are unique
in that they recover faster after disturbances and appear to be
more resistant to drought compared to other tropical habitats,
such as those in South America or Southeast Asia (Willis et al.,
2013; Cole et al., 2014; Bennett et al., 2021). This drought-
resistance may be due to the relatively dry contemporary
conditions across the continent (Malhi et al., 2004) as well as
the biogeographic history and diversification of drought-adapted
species (Parmentier et al., 2007). As African climate has oscillated
between wetter and drier conditions, modern plant biomes may
have developed drought-tolerance over time due to the loss of
mesic-adapted species (Pennington et al., 2009). If, for example,
humid lowland tropical African forests are more resistant to
short-term extreme climate anomalies today, it is possible that
moisture availability across Africa (e.g., paleo-ENSO effects) may
not have had a large role in governing the distribution of
vegetation communities or plant landscape structure at shorter
timescales during the Pleistocene (Bennett et al., 2021). There is
also non-linearity in both the spatial and temporal response of
African vegetation to specific climatic drivers. Understanding
these differences is important for determining spatial patterns of
resilience and the sustainability of ecosystems in relation to
climate changes (Willis et al., 2013).

Alternatively, hominin ecosystem engineering, especially
intentional fire manipulation by H. sapiens, is an aspect of
vegetation change that is not entirely climate mediated but
may have had a significant influence on plant community
composition and structure (Gowlett, 2016; Petraglia, 2017;
Thompson et al., 2021). Controlled fire use is apparent in the
archaeological record prior to the Middle Stone Age (Glikson,
2013; Gowlett, 2016), and both archaeological and ethnographic
evidence indicate deliberate landscape modification through
controlled burning to maintain mosaic landscapes and as a
subsistence-related strategy (White, 2013; Scherjon et al., 2015;
Petraglia, 2017; Bliege Bird et al., 2020; Thompson et al., 2021).
This also suggests that controlled and manipulated fire may have
had a pronounced effect on Pleistocene environments (Archibald
et al., 2012), with Middle Pleistocene hominins burning
landscapes to create resource-rich microhabitats that provided
populations with abundant gatherable plants and ecological
settings appealing to animal prey species (Haws, 2012;
Thompson et al., 2021). Reconstructing paleoenvironments
through a microhabitat variability framework can therefore
help to understand the impact of hominin ecosystem
modification on plant landscapes, especially when non-
linearity and spatial patterns of resilience and climate drivers
are also considered.

MICROHABITAT VARIABILITY ANDHUMAN
EVOLUTION

By twomillion years ago, there is an apparent increase in the body
mass ofHomo (Pontzer, 2012; Antón et al., 2014), which in turn is
related to its wider geographic distribution compared to other

hominins (Antón, 2003) and an increase in energy expenditure
(Aiello and Key, 2002; Aiello and Wells, 2002). Additionally,
there was a shift in the archaeological record from assemblages of
low-density artifact scatters in narrower depositional contexts to
denser concentrations of archaeological material in a broader
array of habitat settings (Plummer and Finestone, 2018).
Although earlier hominins had access to a wide array of
habitat types (Figure 4), Homo excelled in the successful
exploitation of resources from greater ecological contexts. In
eastern Africa for example, greater tool use possibly allowed
hominins to adapt to microhabitat variability and ecological
instability, as evident in the occupation of a broad spectrum of
habitats ranging from open grasslands to riparian forests. At
Kanjera South, on the Homa Peninsula in Kenya, hominins
exhibited comparatively complex land use and toolmaking
behaviors as raw materials were transported from over 10 km
(Braun et al., 2008a; Braun et al., 2008b; Braun et al., 2009a; Braun
et al., 2009b; Braun and Plummer, 2013). Tools were employed to
process a diverse range of resources including animal tissue and
underground storage organs and woody and herbaceous plants
(Ferraro et al., 2013; Lemorini et al., 2014; Lemorini et al., 2019).

Microhabitat Variability at Oldupai Gorge: A
Case Study
As an “archaeosphere” representing the paleoanthropological
record of broader eastern Africa, Oldupai Gorge (formerly
Olduvai Gorge) presents an interesting opportunity to explore
microhabitat variability across both temporal and spatial scales
using multiple paleoecological proxies collected in archaeological
and geological horizons (Figure 3, Supplementary Figure S1).
Spatial geomorphological, sedimentological, stratigraphic, and
geometric analyses are made possible by Oldupai’s well-
defined Beds: I-IV (2.038 ± 0.005–0.6 Ma), Masek
(600,000–400,000), Ndutu (400,000–32,000), and Naisiusiu
(17,550 ± 1,000–10,400 ± 600 BP) (Leakey, 1971; Hay, 1976;
Deino, 2012; Domínguez-Rodrigo et al., 2013; Diez-Martín et al.,
2015). In fact, these beds and marker tuffs, which are exposed for
∼25 km throughout the eastern and western gorges, have made it
possible to correlate paleoecological and archaeological datasets
across time and space, highlighting the evolution of Homo within
a diverse, variable landscape (Cavallo and Blumenschine, 1989;
Sikes, 1994; Blumenschine et al., 2012; Uribelarrea et al., 2014;
Uribelarrea et al., 2017; Stanistreet et al., 2018).

At the Ewass Oldupa site, where the earliest evidence of the
Oldowan is found at Oldupai Gorge (Mercader et al., 2021),
hominins used a homogenous toolset within emerging landscapes
and volcanically-disturbed habitats multiple times over
235,000 years. The Oldowan assemblage consists of some raw
material sourced from up to ∼12 km away and shows
technological adaptation to major geomorphic and ecological
transitions, whereby stone tool use permitted provisioning across
ecologically diverse and complex environments over time and
space. Tool use allowed for a more generalist strategy in acquiring
plant food resources within a rapidly changing plant landscape
that ranged from fern meadows to woodland mosaics,
naturally burned landscapes, lakeside woodland/palm
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groves, and hyper-xeric steppes. This generalist strategy and
ability to use emerging landscapes, a finding that is unique for
Homo ∼ 2.0 Ma, depicts complex behavior among early
Pleistocene hominins. Early evidence of this environmental
response suggests that fundamental aspects of human
adaptability was not solely connected to our species’ origin
(Potts et al., 2020), but rather by the time of our genus’ origin
and likely played a major role in Homo’s ability to expand
within and beyond Africa.

Perhaps the most well-known locality at Oldupai is the Frida
Leakey Korongo (FLK) site, as it was here at “Level 22” (better
known as FLK Zinj) that Mary Leakey discovered P. boisei in 1959
(Leakey, 1959). This level, situated between Tuffs IB and IC
(Supplementary Figure S1), was interpreted as an occupation or
living floor (Leakey, 1959; Leakey, 1971), where hominins made
stone tools to butcher mammals from nearby habitats (Bunn and
Kroll, 1986; Blumenschine, 1995). Situated in uppermost Bed I
and only ∼100 m north of FLK Zinj is FLK North, one of the
richest Pleistocene archaeological deposits known (Leakey, 1971;
Domínguez-Rodrigo et al., 2010). FLK N is a 3.0 m, 15,000-years
sequence in Upper Bed I subdivided into nine archaeological
units dated between 1.803 Ma and 1.818 Ma (Deino, 2012). The
marker tuffs that cap each site, and the organic rich silty-waxy
clays directly in contact below the tuffs, are observable in
exposures for more than 2 km throughout the main
confluence of the gorge (Figure 3). These organic-rich clays
were deposited on the alluvial fans and floodplains
surrounding paleo-Lake Oldupai and have been the focus of
recent paleoecological, microhabitat variability studies.

There is evidence from plant wax biomarkers (Magill et al.,
2015; Patalano, 2019) and phytoliths (Barboni et al., 2010;
Blumenschine et al., 2012; Arráiz et al., 2017; Itambu, 2019),
collected from organic rich clays directly in contact with both
Tuff IC and Tuff IF, for ecologically diverse hominin
microhabitats throughout the Oldupai depositional basin
(Figure 3, Figure 5). A combination of plant wax biomarkers
and their stable carbon isotopes, phenol derivatives of lignin
which distinguishes woody from herbaceous plants, fern and
sedge biomarkers that demarcate wetlands, and phytoliths
revealed the geographic distribution of different microhabitats
across the FLK Zinj paleo-landscape (Magill et al., 2015; Arráiz
et al., 2017). Abrupt changes fromwetland vegetation, to dense C3

woody coverage, to open C4 grassland were identified at meter-
level scales, showing that FLK Zinj was a forest microhabitat
adjacent to a wetland situated within a greater grassland
catchment (Magill et al., 2015). Compounded with the
phytolith results, which are dominated by woody morphotypes
and supported by grass, sedge, and palm types (Arráiz et al.,
2017), both datasets indicate relatively wet and wooded
microhabitats across the FLK Zinj landscape, situated within a
catchment dominated by arid-adapted C4 species. Additionally,
plant wax carbon and hydrogen isotopes and biogenic silica also
show that C3 plants dominated the archaeological assemblage at
FLK N (Itambu, 2019; Patalano, 2019). Phytolith and plant wax
data from the clays directly below Tuff IF indicate that at the top
of Bed I, Oldupai’s landscape was variable mosaic with areas of
dense vegetation and abundant fresh water (e.g., FLK N), Typha
dominated wetlands, open grassland, and ecotones (Figure 5).

FIGURE 4 | Eastern African hominin paleoecology. The paleoenvironmental record from early hominin bearing sites shows ecologically diversified landscapes. The
Mio-Pliocene environments of Ardipithecus have been reconstructed as lakeside, mosaic ecosystems that included permanent wetlands, dense woodlands or gallery
forests, wooded grasslands, and grasslands, all of which indicate a degree of spatial variability in the proportion of plant type composition and coverage (WoldeGabriel
et al., 1994; WoldeGabriel et al., 2001; Levin et al., 2008; White et al., 2009a; White et al., 2009b; Lovejoy et al., 2009; WoldeGabriel et al., 2009; Cerling et al.,
2010). Australopithecus anamensis also frequented C3 dominated, closed canopy riparian or gallery forests within an otherwise dry, open acacia woodland catchment
(Leakey et al., 1995; Saylor et al., 2019), while Au. afarensis accessed open grasslands, dry bushlands, and riparian woodlands and forests (Johanson et al., 1982;
Andrews, 1989). In southern Africa (not shown), Au. africanus likely had access to forests, ecotones, wooded grasslands, and grasslands (Rayner et al., 1993; Sloggett,
2016), and Au. sediba made use of C3-dominated microhabitats within a regional environment of abundant C4 grasses ∼2.0 Ma (Bamford et al., 2010; Henry et al.,
2012).
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Interpreted as a woodland or even a true forest, the reconstructed
C3 environment at FLK N suggests that it may have been similar
to the dense evergreen forest that now flourishes near freshwater
springs percolating out of the rift escarpment on the
northwestern and western shores of Lake Manyara.

The archaeology and paleontology of each site indicate that
hominins butchered animals at FLK Zinj (Leakey, 1971;
Blumenschine, 1995; Dominguez Rodrigo, 1997; Domínguez-
Rodrigo and Barba, 2007; Domínguez-Rodrigo et al., 2014),

but processed hard-shelled nuts and fruits at FLK N
(Domínguez-Rodrigo et al., 2007a; Diez-Martín et al., 2010;
Domínguez-Rodrigo et al., 2010). Apart from the FLK Zinj
Level 22 and David’s Site (DS) (Domínguez-Rodrigo et al.,
2017a), no other Bed I site provides evidence for access and
the direct consumption of animals by hominins (Domínguez-
Rodrigo et al., 2007b; Domínguez-Rodrigo et al., 2017b). That is,
all other sites seemingly involved the use of Oldowan tools for
plant processing (cf. Blumenschine, 1995). Woody vegetation

FIGURE 5 |Microhabitat Variability at Oldupai Gorge at ∼1.8 and ∼1.84 Ma reconstructed from plant wax biomarker and phytolith analyses. (A)Data from the clays
directly below ∼1.8 Ma Tuff IF (Itambu, 2019; Patalano, 2019). (B) Data from the ∼1.84 FLK Zinj horizon (Magill et al., 2015; Arráiz et al., 2017). Microhabitat icons are not
to scale but rather represent the reconstructed plant landscape structure at given sampling locations based on plant proxies.
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patches may have been the incentive that enticed hominins to use
FLK Zinj and FLK N as focal points on the landscape to process
both plant and animal foodstuffs acquired within the
microhabitats that developed across Oldupai’s basin.

EXPANDING THE MICROHABITAT
VARIABILITY FRAMEWORK

Over the past two decades, spatial paleoecological analyses have
allowed us to better understand the ways in which hominins
adapted to microhabitat variability across space and time. Others
have brought attention to the role microhabitat variability played
in creating potentially resource-rich habitat types and
opportunities for niche diversification and specialization
amongst hominins (Stern, 1993; Foley, 1995; Cachel and
Harris, 1998; King and Bailey, 2006; Reynolds et al., 2015).
Higher spatial resolution environmental proxy data and more-
precise dating techniques (Herries et al., 2020; Martin et al.,
2021), even demonstrate the influence of microhabitat variability
in shaping hominin evolutionary biology and anatomy. Although
the focus has been on early Homo from around 2.0 Ma and at
Oldupai Gorge, morphological differences between P. robustus
from Drimolen and Swartkrans in South Africa, which are only
∼6 km apart, represent highly resolved evidence for
microevolutionary change associated with ecological variability
across a short time frame and restricted geography (Martin et al.,
2021). Differences in mandibular morphology between
specimens from each location developed as a dietary
adaptation to a marginal ecological setting. That is, the slightly
younger but more robust Swartkrans P. robustus exhibit a more
efficient bite force, likely representing a microevolutionary
change within this population due to a dietary shift toward
foods that were mechanically challenging to process
(Sponheimer et al., 2006). This coincided with a reduction in
ecological productivity following increased aridity and small-
scale microhabitat reorganizations (Caley et al., 2018).

The Oldupai case study highlights how global and regional
climate, tectonic and sudden geomorphological activity, and
hydrogeography all contribute to spatially variable, often
ecologically diverse and environmentally complex biomes,
ecoregions, habitats, and microhabitats. Based on the available
evidence, the ability of the genusHomo to adapt and thrive across
regions of both high and low ecological diversity, as well as within
ecosystems that change drastically, was in place by at least 2.0 Ma
and likely assisted in technological developments and dispersals
within and beyond Africa later in time. For instance, H. sapiens’
successful ability to innovate under decreased resource
predictability was cultivated by an evolutionary history of
navigating complex and diverse ecological transitions. In the
Olorgesailie basin of Kenya, the onset of the eastern African
Middle Stone Age (MSA) is tied to H. sapiens behavioral and
technological adaptation to habitat and resource variability (Potts
et al., 2020). Between 400 and 320 Ka, dynamic landscape change
through space and time (triggered by geologic, climatic, and
ecological factors) likely led to lower resource reliability and
may have necessitated that H. sapiens adopt MSA types of

stone tool technology as a hunting innovation (Potts et al.,
2020), specifically as distinct ecological zones developed over a
distance of less than 20 km following increases in Middle-to Late-
Pleistocene aridification and environmental variability (Owen
et al., 2018).

By filling a “generalist specialist” niche, Homo and especially
H. sapiens, excelled at adapting to environmental extremes and
exploiting microhabitat variability across deserts, at high altitudes
and latitudes, and within tropical rainforests, was able to
successfully innovate under periods of decreased resource
predictability (e.g., Potts et al., 2020), and construct their own
environments (e.g., Thompson et al., 2021). As this ability to
adapt and thrive in dynamic environments was already well-
established in Homo, the addition of unique behavior like
complex ecological knowledge and plant landscape
modification and construction, eventually allowed H. sapiens
to occupy of a wide diversity of ecological settings across the
majority of the Earth’s continents (review in Roberts and Stewart,
2018).

The microhabitat variability framework suggests that as
African landscapes were impacted spatially by tectonic activity
and hydrogeology, and temporally by orbital forcing and rainfall
seasonality, the flexibility of Homo was likely beneficial in
unstable, unpredictable, or unfamiliar environments. As tool
innovation and use, specifically after 2.0 Ma, allowed for a
more generalist strategy in acquiring plant and animal food
resources across diverse and rapidly changing landscapes, the
adaptive versatility of Homo and the capacity to adjust to new
habitat types may have helped to withstand periods of extreme
climate variability throughout the Pleistocene. There are
numerous hypotheses regarding climatic variability driving
hominin evolution and the eventual appearance and dispersal
of our species (Table 3). However, there has been less
consideration of ecological variability across space, largely due
to sampling and methodological issues (also Faith et al., 2021).
With new, transdisciplinary approaches toward reconstructing
hominin environments directly on-site and across archaeological
and geological horizons, we can address and test the following
research questions:

• Did Pliocene and Pleistocene hominins rely on oases of
woodland/forest habitats within wider grassland
ecoregions? If so, to what extent and for what purpose
(e.g., protection, food)?

• Did dispersals of hominins simply occur when larger
ecoregions expanded (e.g., “savannah” corridors (Dennell
and Roebroeks, 2005))?

• On the other hand, did geographic ecological variability
always play a role in hominin dispersals first across Africa
and then beyond?

• How can we better factor the microhabitat variability
framework into paleoclimatic, paleoenvironmental, and
evolutionary models? That is, can we go beyond the
natural selection and speciation models that use distal
proxy records to compare climate windows to biome and
ecoregion changes and the ensuing influence on genetic
variability and human evolution?

Frontiers in Earth Science | www.frontiersin.org December 2021 | Volume 9 | Article 78766912

Patalano et al. Microhabitat Variability in Human Evolution

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


To tackle these questions, future research designs should
consider correlating and sampling terrestrial sediments from
archaeological and geological horizons to collect and analyze
such environmental proxies as outlined in Table 2. This would
involve identifying geologic strata and their geographic extent,
collecting sediments from correlated deposits, testing organic
preservation, and then paleoenvironmental reconstruction
through proxy analyses. By understanding the spatial
variability of environments and locations of concentrated
archaeological assemblages, we can then better interpret
hominin land-use patterns and activity within a regional and
global climatic context to discern the ways in which Homo
adapted to microhabitat variability over time and space.

CONCLUSION

Microhabitat variability provides a framework within which to
understand the adaptability of hominins across spatially and
temporally changing, sometimes rapidly, plant landscapes.
Because members of the genus Homo were already adept at
exploiting diverse food-types from multiple habitats including
disturbed and emerging environments by 2.0 Ma, they
successfully navigated ecosystem reorganization during pulses
of climate instability throughout the Pleistocene. By
incorporating paleoecological analyses for studying
microhabitat variability in future paleoanthropological
research, we can better interpret the evolutionary importance
of climatic and non-climatic stressors and plant landscape
responses to then validate or refute the habitat specific or
variability hypotheses.

A microhabitat variability approach incorporates evidence
for adaptations involving tool use, demonstrated by Oldowan
hominins from Oldupai, high-resolution environmental proxy
evidence for meter-scale changes in hominin landscape ecology,
and field and laboratory methodologies for identifying patches
of distinct plant communities that may have offered unique food
resources and shelter. With research designs that focus on
exploring and understanding hominin microhabitat
variability, we can uncover further information relating to
major adaptive morphological, technological, and cultural
features that have not been fully addressed by human
evolution environmental hypotheses. This approach,
therefore, has the potential to significantly contribute to
current interpretations of hominin evolutionary processes
within an ecological framework by uncovering additional
evidence for Homo’s successful exploitation of resources
under wide-ranging climate zones and ecoregions within and
then beyond Africa.
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