Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Temporal entanglement, quasiparticles and the role of interactions

MPG-Autoren
/persons/resource/persons232821

Giudice,  Giacomo
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
MCQST - Munich Center for Quantum Science and Technology, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2112.14264.pdf
(Preprint), 963KB

6346.pdf
(Verlagsversion), 404KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Giudice, G., Giudici, G., Sonner, M., Thoenniss, J., Lerose, A., Abanin, D. A., et al. (2022). Temporal entanglement, quasiparticles and the role of interactions. Physical Review Letters, 128: 220401. doi:10.1103/PhysRevLett.128.220401.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-CF0A-4
Zusammenfassung
In quantum many-body dynamics admitting a description in terms of non-interacting quasiparticles, the Feynman-Vernon influence matrix (IM), encoding the effect of the system on the evolution of its local subsystems, can be analyzed exactly. For discrete dynamics, the temporal entanglement (TE) of the corresponding IM satisfies an area law, suggesting the possibility of an efficient representation of the IM in terms of matrix-product states. A natural question is whether and how integrable interactions, which preserve stable quasiparticles, affect the behavior of the TE. While a simple semiclassical picture suggests a sublinear growth in time, one can wonder whether interactions may lead to violations of the area law. We address this problem by analyzing quantum quenches in a family of discrete integrable dynamics corresponding to the real-time Trotterization of the interacting XXZ Heisenberg model. By means of an analytical solution at the dual-unitary point and numerical calculations for generic values of the system parameters, we provide evidence that, away from the non-interacting limit, the TE displays a logarithmic growth in time, thus violating the area law. Our findings highlight the non-trivial role of interactions, and raise interesting questions on the possibility to efficiently simulate the local dynamics of interacting integrable systems.