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SI 1. Supplementary discussion: Regional climate and environmental change 

Whereas many aspects of past palaeoclimatic change reflect orbital parameters, with changing 

amounts of energy from the sun reaching the earth, the 4.2 ka event seems to rather reflect changes in 

circulation patterns within and between regions of the earth (e.g. Bini et al., 2019). Given the similar 

climatic and orbital conditions to the present day, the 4.2 ka event is also particularly interesting in 

light of contemporary concerns about future climate change. 

Given the limitations of the Maltese palaeoenvironmental archives – with their taphonomic biases, 

chronological uncertainties, and problems of separating anthropogenic and climatic signals – we now 

turn to evaluate the wider regional climatic situation to cast light on what may have transpired in 

Malta around 4.2 ka. Given the lack of high-resolution and long-term records for the Maltese islands, 

we use climate data from a neighbouring area (Italy) to conduct modelling of Maltese archaeological 

data. It is therefore important to justify the relevance of these data to Malta 

Sicily is close (~100 km) to the Maltese Islands and much more palaeoclimate and palaeoecological 

data is available. However, in many cases the dating resolution is still relatively coarse. Some key 

records come from pollen assemblages from lake cores. Firstly, some of the same problems influence 

these records, such as it not being clear what explains significant differences between assemblages 

and the difficulty in separating anthropogenic and climate signals.  

Tinner and colleagues (2009) report the site of Gorgo Basso in western Sicily. Interesting here is that 

tree pollen shows a pronounced drop from about 4.5 ka. This decline, however, was two-stage, with 

an initial low at 4.3-4.2 ka, followed by a rise, and then another low ~3.9 ka. A similar pattern comes 

from the pattern of arboreal pollen. Quercus, for instance, rose steeply from around 5.5 ka, stayed 

high until about 4.7 ka, and then fell to a low point at about 3.9 ka. Synchronously, the highest level 

of Pistacia was recorded about 3.9 ka. Calò and colleagues (2012) present pollen data for Lago Preola 

in western Sicily. Interestingly here we can see a basic theme; in the second half of the third 

millennium BC many records show broadly similar patterns, but there are variations in the specifics. 

At Preola, we can for instance see a rise in tree pollen from about 7 ka, a phase of reduced tree pollen 

begins around just before 5 ka, falling to two low points and ~4.5 and 3.4 ka separated by a partial 

rise ~3.9 ka.  

In southern Sicily, the Biviere di Gela shows declining tree pollen from about 5.5 ka, reaching a low 

point around 4.2 ka and then staying low for another 500 years or so (Noti et al., 2009). When 

specifically wetland and aquatic pollen are considered, this low point in trees around 4.2 ka, matched 

by a spike in herb pollen, stands out more. 
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These changes seem to mirror changes across adjacent areas of the Mediterranean more broadly 

(Roberts et al., 2019). Di Rita and Magri (2019) situate these changes in terms of the progressive 

northward movement of the North African High Pressure cell. 

Given the complexities of pollen records, we next looked to mainland Italy for high resolution 

palaeoclimate records. While now moving further from Malta, we nevertheless see Italian records are 

offering reasonable proxies for the palaeoclimate of the central Mediterranean. Speleothem records 

have the benefit of precise uranium series age estimates and multiple isotope measurements. Oxygen 

isotopes primarily reflect changes in rainfall (i.e. higher δ18O values indicate aridity). δ13C values 

largely reflect biological activity in soil, so lower rainfall means reduced biological activity in soil 

and increasing δ13C values. Different sites have different strengths and weaknesses in terms of their 

data. For instance, Corchia Cave has produced an important record (Isola et al., 2019), but is a large 

and deep cave at a relatively high altitude, with complex ‘plumbing’. We therefore selected the 

Rennella Cave record for our analysis as discussed below. We mention in passing the complexity of 

available data; with the Corchia record presented by Isola and colleagues (2019) suggesting aridity 

some centuries earlier that at Renella.. The meaning of this intra- and inter-site variability is currently 

unclear, and should be kept in mind when considering the definition and timing of the 4.2 ka event. 

Renella Cave provides a record of oxygen and carbon isotope variability covering most of the 

Holocene (Drysdale et al., 2006; Zanchetta et al., 2016). Both isotopes show high variability through 

time, but it is possible to describe general trends. Both indicate decreasing aridity in the millennium 

from ca. 5.8 to 4.8 ka (our discussion here focusses on the Zanchetta et al. 2016 paper, with its higher 

resolution data). So, climate was relatively humid around 4.8 ka. It can be noted in passing that this 

climate peak correlates with the revised timing on the origin of the Tarxien period in Malta, as 

discussed in the main text. After about 4.8 ka both oxygen and carbon isotopes demonstrate 

aridifying climate. Both isotopes show less negative values (i.e. drier conditions) at ~4.25 ka 

followed by a slight rise in values and then to even less negative values ~4 ka, although of course 

discussion of such precise ages depends on the accuracy of the age-depth model. For both isotopes 

these are the most negative values in a long span of time – and what is also interesting is that while 

other periods show some similarly negative values they are close in time to also considerably higher 

values. It is only in the ~4.4 to 3.8 ka range there are no high points – so aridity is indicated both in 

direct terms by less negative isotope signals, but also by the reduction in fluctuation. In this view 

then, the ‘4.2 ka event’ actually seems to reflect several centuries of arid conditions, between ~4.4 

and 3.8 ka, with particular arid points at 4.25 ka and (even more arid) at about or slightly after 4 ka. 

We use the Renella Cave data for our REC model analyses described in the main text and in SI 3. 

 

SI.2 Supplementary discussion: Xagħra Circle Broken Statue Chronological Model 

Fragments of the broken statue were found across a narrow vertical range (supplementary table 2). 

We compared four chronological models for the radiocarbon dates from contexts in which pieces of 

the broken statue were found. The models differed in terms of the boundaries we specified for the 

start and end of the statue deposition process – these boundaries constitute the priors in Bayesian 

chronological models. In OxCal, there are several different temporal boundary types that can be 

specified for a group of sample dates (Bronk Ramsey 2009). The three we used are called 

“Boundary”, “Sigma”, and “Tau” boundaries. The “Boundary” type implies that the given 
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depositional process had abrupt start and/or end dates. The “Sigma” type implies a more gradual 

increase and/or decrease in the temporal distribution of radiocarbon samples with the slopes like the 

tails of a normal (Gaussian) distribution. Finally, the “Tau” boundary implies an exponential 

increase/decrease in the temporal density of samples through time with very long, gradual tails. 

These boundaries can be combined in different ways to produce an assortment of potential models 

(Bronk Ramsey 2009). Not all combinations are allowed, however, and only a couple were of use to 

us for evaluating the possibility that the statue pieces were deposited in a single break-and-scatter 

process. The first model we created involved two uniform boundaries. This model implied that the 

deposition of the statue pieces (or, more specifically, the associated radiocarbon samples) started and 

ended abruptly. The second model involved an initial Sigma and terminal uniform boundary, which 

would imply that there was a somewhat gradual accretion of samples leading to an abrupt end of the 

deposition process. The third model involved a Tau boundary and a uniform boundary, implying a 

few early associations between radiocarbon samples and statue pieces followed by a much more 

rapid accumulation of samples and then finally an abrupt end to the process. The last model involved 

two Sigma boundaries. This model implied that the sample-statue associations had a normal 

distribution in time with no abrupt boundaries, which would indicate that the statue pieces continued 

to be part of an active deposition process for some time after their initial breaking/scattering. No 

other combinations were allowed by OxCal. 

We reasoned that the first three of these models would be congruent with the idea that the statue was 

broken, scattered, and then reasonably stationary with the final temporal associations indicated by the 

date of a terminal uniform boundary. 

To compare the models, we used OxCal’s model fit statistics. The key statistic is called the 

“Agreement Index” (Bronk Ramsey 1995, 2009). It indicates the degree to which “unmodelled” 

calibrated date distributions overlap with their respective “modelled” distributions. A given date 

distribution is referred to as “unmodelled” after calibration but before any Bayesian priors have been 

applied while it is referred to as “modelled” afterward. The Bayesian modelling process can be 

thought of as reshaping calibrated date distributions to reflect prior knowledge about the temporal 

location of the samples in question. OxCal’s agreement index essentially measures the magnitude of 

these adjustments. Given a single date density, for example, the agreement index would be high if the 

constraints imposed by the model priors (e.g., the group boundaries described above) had only a 

slight effect on the shape and location of the date distribution. In contrast, if the unmodelled 

distributions are adjusted by a large amount, the agreement index would be lower. In effect, the index 

is reporting the degree to which the raw data “agree” with the Bayesian model. Very low agreement 

potentially indicates an empirical mis-match, suggesting that a given model may not sufficiently 

reflect the temporal distribution and chronological arrangement of the sample dates. Thus, the 

agreement index can be used to compare Bayesian models given a single set of dates under the 

assumption that one model outperforms another if the empirical observations agree more with the 

former than the latter. 

Using the agreement index, we compared the four models described earlier (see supplementary table 

3). The results indicated that the best performing model – the one with the highest agreement index – 

was the one with an initial “Tau” boundary followed by a terminal uniform boundary. This model 

implies that the group of samples contains some very early material, followed by an exponential rise 
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in temporal density of samples with an abrupt termination. A temporal distribution of samples like 

this could be explained in a few ways. In one scenario the statue was broken early on and a small 

number of radiocarbon samples (bones, to be specific) then entered into association with the broken 

statue pieces. As time progressed, more bones were deposited (and associated with the statue pieces), 

with the number of deposits/associations rising rapidly at the end of the process finally ceasing 

abruptly at a terminal boundary. In another scenario, some bones were deposited into their contexts 

early on. Then, the statue was broken near the terminal temporal boundary of the model while more 

bones were simultaneously making their way into the same depositional contexts creating the 

observed associations. Older samples – already in the cave at the time the statue was broken – could 

then have become associated with the statue pieces, or redeposited as a result of later mixing. The 

deposition of bones then ended abruptly at the terminal boundary. Finally, the statue breaking may 

have occurred at the terminal temporal boundary of the model.  This last scenario would suggest that 

a few early radiocarbon samples entered into the cave followed by a rapid increase in sample 

deposition and then the statue was broken, entering into association with the bones at the same time 

that further bone deposition ceased. 

A couple pieces of evidence allow us to eliminate the first potential scenario, we think. Firstly, the 

temporal distribution of sample associations implies that the bulk of associations between bones and 

statue pieces occurred close to the terminal temporal boundary of the model. In our view, the most 

parsimonious explanation is that the statue was broken either near or at the terminal boundary instead 

of having occurred earlier as the first scenario suggests. Secondly, the way the site was used and its 

stratigraphic character make it likely that there should be some cycling of older material into younger 

deposits. Had the statue been broken and deposited when the earliest bone samples were deposited, 

then, we would expect the radiocarbon sample associations to be more thoroughly mixed – i.e., less 

densely clustered toward the terminal boundary with more early associations. We would also expect 

more vertical spread of the statue fragments. With respect to the Bayesian models, that would have 

meant a more uniform or perhaps normal distribution of sample dates between the boundaries rather 

than one tightly clustered toward the terminal end with a fat early tail like the distribution we actually 

observed. Thus, we argue that the statue was probably broken toward the end of the bone deposition 

process and perhaps even occurred at the termination of that process. 

 

 

SI.3. Supplementary discussion: REC Models 

We used a radiocarbon-dated event-count (REC; Carleton, 2020) model to explore the relationship 

between Maltese radiocarbon-dated event counts and regional precipitation. The event-counts refer to 

the number of archaeological radiocarbon samples dated to a given time. These samples come from 

the published literature on the archaeology of Malta, including recent excavation work. The available 

dates are summarized in supplementary table 1. The precipitation amounts in our analyses were 

indicated by a δ18O proxy record recovered from a flowstone archive in a central Italian cave. This 

δ18O record was used as the sole covariate in our regression models. We aimed to test whether 

fluctuations in rainfall amount corresponded with through-time fluctuations in the abundance of 

radiocarbon-dated samples from Malta. 
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To begin we selected an appropriate temporal resolution and a target analytical interval. We settled 

on a 20-year resolution for the analysis and defined our temporal interval to begin at 3500 BC and 

end at 2730 BC. The resolution was selected as a compromise between three factors: the limited 

meaningful temporal resolution of radiocarbon dates; a temporal scale appropriate for discerning the 

impact of climate fluctuations on human lives and inter-generational social changes; and, lastly, 

computational limitations (higher resolutions correspond to large numbers of parameters in REC 

models that require estimation and, therefore, longer computation times). The time range we selected 

corresponds to the 4.2 ka event and the preceding centuries of the Temple Period. 

REC models were developed to promote better handling of radiocarbon-date uncertainty in the 

context of dates-as-data analyses (Carleton 2020, Carleton and Groucutt 2020). These types of 

analyses involve treating through-time changes in the number of radiocarbon samples in 

archaeological deposits as a proxy for a target process of interest – usually human population size, 

but sometimes a more abstract target like human activity levels has been the focus instead. Each 

sample is thought to date an “event” of interest, like the founding or occupation of a habitation site, 

the use of a hearth, the death of an individual, etc. More such events in a given time/place is thought 

to be indicative of larger population sizes and/or more human activity broadly speaking. However, 

radiocarbon samples are only dated imprecisely, which means they have (often significant) amounts 

of chronological uncertainty. This uncertainty has to be accounted for when trying to estimate the 

number of corresponding events that occurred in a given interval (or sequence of intervals). Along 

similar lines, many of the potential covariates archaeologists wish to explore typically also contain 

chronological uncertainty. Paleoclimate records, for instance, are regularly compared to radiocarbon-

date proxies and those climate records also contain significant chronological uncertainty that needs to 

be accounted for. 

REC models attempt to grapple with this dating uncertainty for the purposes of statistical regression. 

The aim of the approach is to propagate the chronological uncertainty in the variable observations up 

to target regression model parameters---e.g., regression coefficients. In the REC models published so 

far, this uncertainty propagation has been accomplished by using hierarchical Bayesian regression 

(Carleton 2020, Stewart et al. 2021 and, for details about Bayesian hierarchical models, see Gelman 

and Hill 2007). In this context, the hierarchy refers to the arrangement of the parameters in the 

regression model, of which there are two levels. The bottom level is comprised of regression model 

parameters that refer to individual regression models, each involving a randomly drawn event-count 

sequence and one or more probable covariate sequences (e.g., a probable palaeoclimate record, given 

the chronological uncertainty in the relevant age-depth model). These lower-level regression models 

have regression coefficients that are thought to be drawn from a super-population. That super 

population is characterized by a set of hyper-parameters and those parameters constitute the upper 

level of the hierarchy in a REC model. The sample of probable lower-level regression models is used 

to estimate the hyper-parameters at the top of the hierarchy. The posterior distributions of these top-

level parameters, then, ultimately reflect variation among the individual, randomly drawn 

independent and dependent variable sequences. Since variation among different probable sequences 

exists because of chronological uncertainty, the posterior distributions for the top-level parameters 

reflect that uncertainty. In other words, the chronological uncertainty is propagated into the target 

regression model parameters, which affects (usually increases) their variance as would be expected. 
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The propagation also reduces bias, again as expected, and importantly it means the final inferences 

from the model account for our uncertainty about sample dates. 

While this approach has been demonstrated to work well in simulation, we decided to adapt it for this 

analysis. Ongoing research on REC models has revealed that biases in REC model regression 

parameters can be further reduced by taking a much larger sample of probable event-count sequences 

and corresponding covariate sequences. Unfortunately, the hierarchical approach employed 

previously with REC models is computationally inefficient for large samples (more than 100 or so 

probable dependent-independent variable combinations). Ideally, in order to propagate the 

chronological uncertainty of the individual calibrated date distributions up to the target parameters of 

the regression model, many more samples of probable event count sequences (and corresponding 

covariates) should be used, preferably tens to hundreds of thousands. With this in mind, we 

abandoned the hierarchical parameter arrangement and instead created a custom MCMC simulation 

that effectively draws a new set of variable sequences (dependent and independent variables) in each 

iteration of the MCMC. This approach reduces the total number of parameters that need to be 

estimated and allows for a much larger sample of probable variable sequences to be explored and 

accounted for – more of the observable chronological uncertainty in radiocarbon dates and age-depth 

models can be propagated up to the target regression model parameters. 

Following Carleton (2020) and Stewart et al. (2021), we used a Negative-Binomial NB-REC model. 

The Negative-Binomial distribution is appropriate for count data and is commonly used instead of the 

simpler Poisson distribution in cases where observed data are over- or under-dispersed (i.e., have a 

higher or lower variance than the standard Poisson distribution of the same mean would predict) 

(Hilbe 2014). As has been argued elsewhere, over-/under-dispersion is an expected characteristic of 

radiocarbon-dated event count sequences because of the nature of chronological uncertainty and its 

impact on count data (Carleton 2020, Carleton and Groucutt 2020). Thus, the Negative-Binomial is a 

good choice for REC models. It has two parameters that together determine the location (mean) and 

scale (variance) of the distribution. These two parameters are commonly denoted ‘p’ and ‘r’, a 

convention followed in Carleton (2020). In an NB-REC model, the regression (the function relating 

covariates to the NB-distributed dependent event count variable) determines the ‘r’ parameter and the 

‘p’ parameter is estimated from the data. Importantly, every observation in a given event count 

sequence is used to model a separate NB variable conditioned on the covariate(s), which means one 

‘r’ parameter has to be estimated for every time interval in the sequence. So, for example, a 1000-

year analytical interval at a decadal resolution implies 100 intervals and, therefore, 100 ‘r’ parameters 

to be estimated in addition to the other model parameters in the regression. 

Using the adapted REC model setup, we created two NB-REC models. For one model, we compared 

event-count sequences based on all of the dates in the Maltese archaeological radiocarbon date 

database to the δ18O record. In the other model, we compared only the dates from the Xagħra Circle, 

where the most detailed studies of a relevant period archaeological site have been conducted. The 

event-count sequences were created by sampling the relevant calibrated radiocarbon date densities 

with replacement many times. Each random draw was then collated into a single count series by 

counting the number of events dated to a given time, where the times are determined by a temporal 

grid. This grid was defined by the temporal resolution and span of interest, i.e., 3500–2730 BC with 

20-year bins. We used annually sampled calibrated date densities calculated with the R package 
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“clam” (Blaauw 2021) to produce the necessary event-count samples. Along similar lines, the δ18O 

record samples were produced by first creating ensembles of the relevant age-depth model in OxCal 

and then assigning time-stamps to the palaeoclimatic observations with those sampled age-depth 

models. The OxCal age-depth model was produced using OxCal’s Poisson deposition model (Bronk 

Ramsey 2008, 2009) and was comparable to the published age-depth model for the flowstone data 

(see supplementary figure 1). Since the δ18O data were available at an annual resolution, we used a 

smooth kernel density estimator to produce a running average δ18O function sampled at the centers of 

the 20-year time bins used to produce the event-count samples. Effectively, this sampling strategy 

meant that we could compare 20-year event counts with correspondingly dated 20-year average δ18O 

values.  

As noted, the model parameters were estimated with MCMC (supplementary figure 2), specifically a 

Metropolis-Hasting algorithm with a Gibbs step for the Negative-Binomial ‘p’ parameter. The 

simulation was run for over 950,000 iterations from which the first 100,000 were discarded as burn-

in. Some of those initial iterations were also used in an adaptive step to help determine the best 

proposal distributions for the model’s parameters. The resulting MCMC chains for each parameter 

were then inspected for convergence visually and with the help of standard Geweke diagnostics 

(Geweke, 1992). Any parameter chains that exceeded a p-value of 0.001 in the Geweke tests were 

then visually inspected for convergence problems. All simulations and analyses were conducted in R 

(R Core Team 2021) with the help of several packages, including bigmemory (Kane et al. 2013), 

clam (Blauuw 2021), ggplot2 (Wickham 2016), and ggpubr (Kassambara 2020). 
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Supplementary Tables 

 

Site Laboratory number  Radiocarbon age (BP) Error Reference 

Xagħra OxA-3750 3580 75 Malone et al. (2019) 

Xagħra UBA-32019 3842 28 Malone et al. (2019) 

Xagħra UBA-32036 3846 33 Malone et al. (2019) 

Xagħra UBA-32014 3849 26 Malone et al. (2019) 

Xagħra UBA-32033 3857 36 Malone et al. (2019) 

Xagħra UBA-32043 3877 32 Malone et al. (2019) 

Xagħra UBA-32027 3893 28 Malone et al. (2019) 

Xagħra UBA-32015 3903 31 Malone et al. (2019) 

Xagħra UBA-32017 4009 39 Malone et al. (2019) 

Xagħra UBA-32018 3904 30 Malone et al. (2019) 

Xagħra SUERC-45309 3898 45 Malone et al. (2019) 

Xagħra SUERC-45310 3910 45 Malone et al. (2019) 

Xagħra SUERC-45312 3871 45 Malone et al. (2019) 

Xagħra SUERC-45311 3929 45 Malone et al. (2019) 

Xagħra SUERC-4391 3910 40 Malone et al. (2019) 

Xagħra SUERC-4390 3920 35 Malone et al. (2019) 

Xagħra UBA-32045 3926 28 Malone et al. (2019) 

Xagħra SUERC-45318 3941 45 Malone et al. (2019) 

Xagħra UBA-32020 3942 28 Malone et al. (2019) 

Xagħra OxA-27687 3942 28 Malone et al. (2019) 
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Xagħra OxA-27840 3945 27 Malone et al. (2019) 

Xagħra UBA-32022 3947 32 Malone et al. (2019) 

Xagħra UBA-32062 3952 55 Malone et al. (2019) 

Xagħra UBA-32023 3955 31 Malone et al. (2019) 

Xagħra SUERC-45316 3957 45 Malone et al. (2019) 

Xagħra OxA-27838 3958 24 Malone et al. (2019) 

Xagħra UBA-32051 3963 32 Malone et al. (2019) 

Xagħra UBA-32053 3970 25 Malone et al. (2019) 

Xagħra UBA-32032 3983 48 Malone et al. (2019) 

Xagħra UBA-32034 3986 34 Malone et al. (2019) 

Xagħra UBA-32052 3987 27 Malone et al. (2019) 

Xagħra OxA-27839 3990 25 Malone et al. (2019) 

Xagħra SUERC-45317 4002 45 Malone et al. (2019) 

Xagħra UBA-32016 4017 31 Malone et al. (2019) 

Xagħra UBA-32044 4023 26 Malone et al. (2019) 

Xagħra OxA-27803 4027 26 Malone et al. (2019) 

Xagħra UBA-32037 4031 36 Malone et al. (2019) 

Xagħra UBA-32009 4032 31 Malone et al. (2019) 

Xagħra UBA-32012 4033 27 Malone et al. (2019) 

Xagħra SUERC-4389 4035 35 Malone et al. (2019) 

Xagħra UBA-32057 4036 27 Malone et al. (2019) 

Xagħra UBA-32060 4039 29 Malone et al. (2019) 

Xagħra OxA-33926 4040 35 Malone et al. (2019) 

Xagħra UBA-32024 4043 27 Malone et al. (2019) 
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Xagħra UBA-32042 4047 32 Malone et al. (2019) 

Xagħra UBA-32039 4047 39 Malone et al. (2019) 

Xagħra UBA-10378 4048 28 Malone et al. (2019) 

Xagħra UBA-32031 4048 40 Malone et al. (2019) 

Xagħra OxA-33927 4050 36 Malone et al. (2019) 

Xagħra UBA-10383 4054 24 Malone et al. (2019) 

Xagħra OxA-27836 4058 26 Malone et al. (2019) 

Xagħra UBA-32049 4065 26 Malone et al. (2019) 

Xagħra UBA-32025 4066 27 Malone et al. (2019) 

Xagħra UBA-32021 4069 33 Malone et al. (2019) 

Xagħra OxA-27832 4077 33 Malone et al. (2019) 

Xagħra OxA-3571 4080 65 Malone et al. (2019) 

Xagħra OxA-33928 4096 36 Malone et al. (2019) 

Xagħra UBA-32056 4099 27 Malone et al. (2019) 

Xagħra UBA-32006 4102 30 Malone et al. (2019) 

Xagħra UBA-32048 4107 37 Malone et al. (2019) 

Xagħra UBA-32030 4109 34 Malone et al. (2019) 

Xagħra OxA-33924 4114 37 Malone et al. (2019) 

Xagħra UBA-32028 4118 33 Malone et al. (2019) 

Xagħra UBA-32059 4128 29 Malone et al. (2019) 

Xagħra UBA-32035 4129 39 Malone et al. (2019) 

Xagħra UBA-32050 4130 33 Malone et al. (2019) 

Xagħra UBA-32047 4131 25 Malone et al. (2019) 
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Xagħra UBA-32013 4131 29 Malone et al. (2019) 

Xagħra UBA-32061 4133 41 Malone et al. (2019) 

Xagħra UBA-32008 4136 30 Malone et al. (2019) 

Xagħra UBA-32010 4147 31 Malone et al. (2019) 

Xagħra UBA-32041 4150 45 Malone et al. (2019) 

Xagħra UBA-32038 4162 35 Malone et al. (2019) 

Xagħra OxA-3573 4170 65 Malone et al. (2019) 

Xagħra UBA-32007 4184 33 Malone et al. (2019) 

Xagħra OxA-27834 4191 25 Malone et al. (2019) 

Xagħra OxA-33923 4194 37 Malone et al. (2019) 

Xagħra OxA-27837 4198 26 Malone et al. (2019) 

Xagħra UBA-32040 4208 73 Malone et al. (2019) 

Xagħra UBA-32011 4215 31 Malone et al. (2019) 

Xagħra OxA-27833 4219 26 Malone et al. (2019) 

Xagħra OxA-3575 4225 70 Malone et al. (2019) 

Xagħra OxA-33925 4234 35 Malone et al. (2019) 

Xagħra UBA-32026 4237 30 Malone et al. (2019) 

Xagħra OxA-3569 4250 65 Malone et al. (2019) 

Xagħra OxA-3574 4260 60 Malone et al. (2019) 

Xagħra UBA-32003 4263 33 Malone et al. (2019) 

Xagħra OxA-3570 4300 60 Malone et al. (2019) 

Xagħra UBA-32046 4351 29 Malone et al. (2019) 

Xagħra OxA-33922 4495 35 Malone et al. (2019) 

Xagħra OxA-33921 4554 37 Malone et al. (2019) 



  Supplementary Material 

 14 

Xagħra OxA-3566 4600 65 Malone et al. (2019) 

Xagħra UBA-32005 4727 52 Malone et al. (2019) 

Xagħra OxA-27802 4759 27 Malone et al. (2019) 

Xagħra OxA-3572 5380 70 Malone et al. (2019) 

Bur Mgħeż OxA-8165 4305 65 Malone et al (2009) 

Ġgantija UBA-33707 3962 50 McLaughlin et al (2020) 

Ġgantija UBA-35589 4106 35 McLaughlin et al (2020) 

Ħal Saflieni OxA-8197 4130 45 Malone et al (2009) 

Kordin III UBA-33017 4363 40 McLaughlin et al (2020) 

Kordin III UBA-33021 4391 34 McLaughlin et al (2020) 

Kordin III UBA-33023 4581 40 McLaughlin et al (2020) 

Kordin III UBA-33015 4593 31 McLaughlin et al (2020) 

Kordin III UBA-33018 4614 33 McLaughlin et al (2020) 

Kordin III UBA-37860 4628 34 McLaughlin et al (2020) 

Kordin III UBA-33016 4684 46 McLaughlin et al (2020) 

Kordin III UBA-37669 4693 31 McLaughlin et al (2020) 

Kordin III UBA-37665 4737 46 McLaughlin et al (2020) 

Kordin III UBA-33020 4741 45 McLaughlin et al (2020) 

Qala il-Pellegrin BM-808 3912 64 Fenech 2008 

Santa Verna UBA-33026 4324 31 McLaughlin et al (2020) 

Santa Verna UBA-31045 4491 52 McLaughlin et al (2020) 

Santa Verna UBA-37858 4491 43 McLaughlin et al (2020) 

Santa Verna UBA-33025 4500 33 McLaughlin et al (2020) 
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Santa Verna UBA-31038 4501 34 McLaughlin et al (2020) 

Santa Verna UBA-31035 4525 35 McLaughlin et al (2020) 

Santa Verna UBA-31050 4636 43 McLaughlin et al (2020) 

Santa Verna UBA-31049 4664 41 McLaughlin et al (2020) 

Santa Verna UBA-31041 4908 37 McLaughlin et al (2020) 

Santa Verna UBA-33706 4945 87 McLaughlin et al (2020) 

Skorba BM-712 4478 56 Malone et al (2009) 

Taċ-Ċawla UBA-37864 3744 40 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30423 3858 36 McLaughlin et al (2020) 

Taċ-Ċawla UBA-31711 3891 32 McLaughlin et al (2020) 

Taċ-Ċawla UBA-33027 3896 31 McLaughlin et al (2020) 

Taċ-Ċawla UBA-40322 3903 43 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37683 3959 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30422 4018 40 McLaughlin et al (2020) 

Taċ-Ċawla UBA-29835 4032 34 McLaughlin et al (2020) 

Taċ-Ċawla UBA-29836 4182 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30416 4388 34 McLaughlin et al (2020) 

Taċ-Ċawla UBA-31713 4454 38 McLaughlin et al (2020) 

Taċ-Ċawla UBA-29833 4496 41 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37863 4500 36 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37866 4500 33 McLaughlin et al (2020) 

Taċ-Ċawla UBA-40320 4508 45 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37862 4517 38 McLaughlin et al (2020) 

Taċ-Ċawla UBA-31714 4518 41 McLaughlin et al (2020) 
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Taċ-Ċawla UBA-30418 4524 34 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30417 4530 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30419 4540 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30414 4546 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37681 4554 38 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30413 4610 37 McLaughlin et al (2020) 

Taċ-Ċawla UBA-37865 4616 32 McLaughlin et al (2020) 

Taċ-Ċawla UBA-40321 4634 36 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30420 4679 41 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30421 4738 35 McLaughlin et al (2020) 

Taċ-Ċawla UBA-33028 4776 35 McLaughlin et al (2020) 

Taċ-Ċawla UBA-30415 4849 38 McLaughlin et al (2020) 

Tarxien BM-710 3286 72  Malone et al (2009) 

Tarxien BM-711 3354 76  Malone et al (2009) 

Tarxien UBA-35591 3479 30 McLaughlin et al (2020) 

Tarxien UBA-35592 3567 30 McLaughlin et al (2020) 

Xemxija UBA-35296 4068 46 McLaughlin et al (2020) 

Xemxija UBA-35298 4168 38 McLaughlin et al (2020) 

Xemxija UBA-35295 4177 36 McLaughlin et al (2020) 

Xemxija UBA-35297 4442 33 McLaughlin et al (2020) 

Xemxija UBA-35294 4602 31 McLaughlin et al (2020) 

Supplementary table 1. Compilation of uncalibrated radiocarbon dates for Maltese islands for 

period 3500 to 2730 cal. BC. 
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Value Whole sample (n=35) Key contexts (N=20) 

Mean 137.3 137.3 

Minimum 136.4 136.8 

Maximum 137.8 137.6 

25% 137.1 137.1 

75% 137.4 137.4 

Standard deviation 0.3 0.2 

 

Supplementary table 2. Data on vertical distribution (m) of broken statue pieces at Xaghra Circle. 

The key contexts (514, 783, 931, 942) remove contexts where only one or two fragments were found 

 

 

Model Boundary 

1 

Boundary 

2 

A_model A_overall Span_95_L Span_95_U Notes 

1 Boundary Boundary 56.3 53.1 146 363 
Discrete event with abrupt initiation and 

termination. 

 

2 Sigma Boundary 84.3 84.3 187 511 
Some older dates included in an 

otherwise singular event with an abrupt 

termination. 

 

3 Sigma Sigma 83.9 80.5 205 530 
Older and younger dates potentially 

included in the target deposition event, 

but concentrated around a central time. 

4 Tau Boundary 92.7 92.8 196 552 
Gradual accumulation of samples 

included in a final, abruptly terminating 

deposition event with at least a few very 

old samples included. 

 

Supplementary table 3. Summary of chronological models. 
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Supplementary Figures 

 

Supplementary Figure 1. Comparison of age-depth models for Renella Cave. The white line 

indicates the age-depth relationship according to OxCal’s Poisson accumulation model and the steel-

blue envelope indicates the 95% confidence interval for that model. The black dashed line is the 

published age-depth interpolation for the RL4 flowstone d18O record. The mean of the OxCal model 

we produced is very close to the published RL4 age-depth interpolation with the latter contained 

within the 95% confidence interval of the former. 
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Supplementary figure 2. These plots show the MCMC chains for the two main regression 

parameters of the REC models we generated. The top row displays the chains for the analysis 

involving all C14 dates from Malta while the bottom row displays the chains for the analysis 

involving only dates from Xaghra circle. The left column contains the chains for the model intercepts 

(average C14 count when the d18O record is zero) and the right column contains the chains for the 

key regression coefficients pertaining to the d18O record. 
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