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This paper presents a novel scheme to improve the statistics of simulated fast-ion
loss signals and power loads to plasma-facing components in fusion devices. With the
so-called Backward Monte Carlo method, the probabilities of marker particles reach-
ing a chosen target surface can be approximately traced from the target back into
the plasma. Utilizing the probabilities as a priori information for the well-established
Forward Monte Carlo method, statistics in fast-ion simulations are significantly im-
proved. For testing purposes, the scheme has been implemented to the ASCOT
suite of codes and applied to a realistic ASDEX Upgrade configuration of beam-ion
distributions.

I. INTRODUCTION

In fusion devices, the fast-ion population plays a crucial role in the plasma performance
as it provides one of the primary sources of plasma heating. This is of special importance
for future devices such as ITER, where fusion-born alpha particles are to ensure the self-
sufficiency of the burning plasma. Moreover, a degradation in the fast-ion confinement
can lead to substantial damage in the plasma-facing components in the form of incident
heat fluxes, risking the integrity of the device. The behaviour of fast ions therefore calls
for careful assessment, especially due to the sensitivity of fast-ion physics to complex 3D
magnetic background credited to the relatively long mean-free-path and slowing-down times
of fast ions [1–3]. In this regard, it is of vital interest to predict the behaviour and the
possible confinement losses of such particles with tested and validated models.

The standard approach to fast-ion-loss simulations is based on the so-called forward
Monte Carlo method (FMC): a population of fast-ions is initialized and then followed until
particles either reach thermal energies or hit a first-wall element. The method, although
well-established and straightforward to implement, is commonly burdened with statistics
problems which may lead to low accuracy in analyzing small targets. Often only a fraction
of the initialized markers contribute to the signal that is being calculated, such as the number
of ions lost to a fast-ion-loss detector attached to the first wall.

As a remedy, the so-called Backward Monte Carlo (BMC) algorithm can be adopted.
While perhaps less known within the fast-ion fusion-physics community, Backward Monte
Carlo schemes are commonly used, e.g., in quantitative finance to price options [4]. In
plasma physics, the method has been successfully applied to compute escape probabilities of
runaway electrons in the velocity space [5] and the closely related idea of studying the adjoint
of the Fokker-Planck equation linked to the stochastic particle motion has been extensively
used in studying current drive (see, e.g., [6]). The idea of applying it to fast-ion simulations
has, however, been floated only recently [7]. In the BMC approach, instead of starting
with a given birth marker population, the probability of a marker reaching a specific area is
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tracked backwards in time starting at the region of interest. The backwards calculation of the
probability involves an iterative process in which, during every step, points in phase-space
are advanced according to their forward equations of motion and the statistical spread from
the Monte Carlo collision operator is taken into account deterministically. Mathematically,
the forward and backward methods provide identical results for the probability.

In the present work, we propose a novel 5D guiding-center BMC-based scheme for sim-
ulation of fast-ion losses, integrated into the existing and established Monte Carlo orbit-
following code ASCOT [8, 9]. Instead of directly utilizing the escape probability obtained
with the BMC-scheme, the computed probability is used as a priori information for impor-
tance sampling of marker particles from the birth distribution. This combined scheme we
refer to as BMC-IS and it enables an optimally efficient FMC execution, mitigating the error
from numerical diffusion unavoidably present in the standard BMC-scheme, an issue that
was demonstrated in [7] and also discussed here. The proposed BMC-IS scheme alleviates
the statistics problem of the standard FMC scheme, providing a more accurate algorithm
to estimate the fast-ion fluxes on small targets. We expect this tool to be especially useful
in accelerating computational studies regarding heat loading of any particular wall element
or estimating the velocity-space distribution of fast ions observed in fast-ion-loss detectors.

The rest of this paper is organized as follows. In section II, the theory behind fast-
ion simulations is briefly reviewed and the connection to stochastic differential equations
of Itô kind established. Section III first introduces the Backward Monte Carlo scheme
with a simple toy problem, then generalizes it for the Itô processes describing the fast-
ions, and finally explains the discretization of the equations involved and how they are
used to develop a numerical scheme. The section also discusses the issue of numerical
diffusion, how to minimize it, how to avoid it entirely via combining the BMC and FMC
methods via importance sampling, and briefly also the memory and CPU optimizations used
in the present implementation. Section IV then provides numerical examples applying the
novel scheme to a realistic ASDEX Upgrade case and compares the results to the standard
FMC-scheme. Finally, in section V, the main results are summarized and future prospects
discussed.

II. THEORETICAL BACKGROUND FOR FAST-ION SIMULATIONS

The distribution function of charged particles in a magnetized plasma is traditionally
studied with the Vlasov equation coupled to the Landau collision operator. The collisional
evolution only affects the velocity part of the distribution function and can be expressed in
the Fokker-Planck form
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where z = (x,v) is a phase space point and the coefficients K and D are functionals of the
distribution functions of different plasma species fβ. In studying fast ions, the background
plasma distributions are typically approximated as Maxwellians and the self-collisions ne-
glected. The kinetic equation (1) then becomes linear, and the collisional evolution of an
individual sample particle from f obeys the following stochastic differential equation of Itô
kind

dvc
t = K (zt, t) dt+ σ (zt, t) · dWt, (2)
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where dWt represent the differential of a standard Wiener process Wt ∼ N (0, tI) with
N being a multivariate normal distribution. The coefficients K and σ have the explicit
expressions in Cartesian coordinates

Ki(x,v, t) = νvi, (3)
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with D‖, D⊥ and ν defined in terms of the function Ψ(y) = π−1/2 exp (−y2) + (y +
1/(2y)) erf(y) and evaluated at the particle speed normalized to the thermal velocities
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with cβ = q2q2β ln Λ/(8πǫ
2
0).

In many plasmas relevant for fusion physics, the variations of the electromagnetic fields
occur at length scales longer than the gyroradius and time scales slower than the gyrofre-
quency. In this case, the rapid gyromotion of a charged particle can be decoupled from the
guiding-center motion. The sample particles from the distribution f under such conditions
still obey an Itô-like equation

dzct = Kdt+Σ · dW , (8)

where the guiding center coordinates z = (X, u, ξ) are the position, X, the magnitude of the
velocity, v, and the pitch with respect to the magnetic field direction, ξ = v · b/v. Written
component-wise, the collision operator (8) takes the form
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The spatial diffusion coefficient DX is defined by the expression
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where ωc = qB/m is the cyclotron frequency, and the momentum drift Kv is
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For details, the reader is referred to [9, 10]. In this paper, the Backward Monte Carlo scheme
is presented by referring to the guiding center coordinates only and hence to the collisional
operator equations (9)–(11).

The full equation of motion for the guiding center includes the collisional part as well as
the Hamiltonian guiding-center vector field, labelled as U (z, t). The stochastic differential
equation to be solved for guiding-center motion is then

dzt = U (zt, t)dt+ dzC
t . (14)

In the FMC approach, ASCOT integrates the Hamiltonian vector field U with an adaptive
fourth order Runge-Kutta Cash-Karp scheme, denoted by the map

z 7→ ϕ∆t,t
U

(z), (15)

and the collisional part with the Euler-Mariyama scheme

z 7→ ϕ∆t,t
C

(z,R) = z +K(z, t)∆t+Σ(z, t) ·R
√
∆t, (16)

where R ∼ N (0, I) is a random variable following a standard normal multivariate distribu-
tion and ∆t the time step length.

III. BACKWARD MONTE CARLO METHOD

Throughout the rest of this paper the target domain Ω refers to the subset of the phase
space boundary domain, typically a small portion of the wall, which mimics the function of
a loss-detector.

If charged particles hit the target domain with a relatively low rate compared to the
temporal scales of the system, it is typically difficult for standard FMC methods to reach
good statistics for hits and at the same time keep the total number of simulated markers
to a reasonable value. Countering this, the idea of the BMC scheme is to reconstruct the
probability of the markers to hit the target backwards in time using an iterative algorithm.
To do so, the phase space is discretized on a mesh and, at each time step, the particle tra-
jectories, normally randomized with the collision operators, are deterministically branched
and composed using conditional probabilities and probability measures.

A. Theory

To intuitively visualize the method, consider the simplified one dimensional problem
depicted in Fig. 1, where the aim is to determine the probability of particles to reach a certain
end condition in a given time. At the final time 3∆t, the probability is trivially vanishing
everywhere except at the target domain, in this case represented by the point z = 2. Going
backwards in time, assuming, e.g., that a marker at a point has equal probability to jump to
any nearest points or to stay put, the probability to reach the target from a specific initial
location in the given total time interval is built recursively, utilizing the probabilities of the
marker particles to move forward in time. The generalization to a realistic 5D guiding center
case follows the same philosophy with some additional subtleties, for example the fact that
the particle trajectory is continuous and needs to be suitably discretized, and that boundary
conditions are handled correctly.
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FIG. 1. Backwards evolution of probability for an example, discrete one-dimensional problem. A
particle at each discrete point zi has equal probability to jump to any possible nearest location
on the ordered set {1, 2, 3, 4}, including staying put. At every step, the probability is evolved
backwards in time, yet constructed from the probabilities for a marker to move forward in time.

Discretizing time as the regularly spaced ordered set {0,∆t, ...,m∆t, ...,M∆t}, the func-
tion Φ is used to describe the probability of a particle at phase-space position z and time
index m to reach the target domain Ω during a time interval τ ∈ [m∆t,M∆t]. In other
words,

Φ(z,m) = E [P (zτ ; Ω,M∆t) | zm∆t = z] , (17)

where the expression P (zτ ; Ω,M∆t) denotes a statement of the end condition and could
read “a marker starting from the position z at time m∆t has intersected the domain Ω
boundary before the time M∆t”. For the end point in time, the probability function Φ is
clearly the indicator function of the target domain

Φ(z,M) = 1Ω(z), (18)

as the particles have effectively zero time to reach the end condition, while Φ(z, 0) gives
the probability for markers to reach the end condition during the interval t ∈ [0,M∆t], the
quantity one is interested in. For times other than the final one, [5, 7] showed that the
probability can be evaluated with the following recursive formula

Φ(z,m− 1) =

∫

Rd

Φ
(

ϕ∆t,(m−1)∆t(z, r),m
) exp [−r2/2]

(2π)d/2
dr, (19)

where (z, t) 7→ (ϕ∆t,t(z,R), t + ∆t) is the particle integrator map combining both the

Hamiltonian motion ϕ∆t,t
U

(z) and the collisional contribution ϕ∆t,t
C

(z,R). The combined

map is constructed as the composition ϕ∆t,t(z,R) = ϕ∆t,t
C

(ϕ∆t,t
U

(z),R), moving a particle
from a point z and time t to a new point ϕ∆t,t(z,R) and time t + ∆t, taking in also
the multivariate random numbers R needed in the Euler-Maryama step (16). In (19), the
random sampling of the trajectories normally done with R is replaced by the deterministic
integration over r, weighted with the distribution of the random numbers R.

B. Numerical implementation

In order to test the Backward Monte Carlo theory, a numerical scheme has been devel-
oped and integrated with the orbit-following code ASCOT, which is able to follow minority
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particles, such as fast ions, in realistic plasmas and magnetic field profiles. These properties,
along with the extensive use of modern parallelization techniques, such as multithreading,
SIMD vectorization, and MPI, constitutes an ideal test bed for the BMC scheme. For the
test case, the implementation focuses on time-independent plasma backgrounds only. This
effectively drops the t dependency of the diffusion coefficients and integrator maps, and
enables pre-computing some of the necessary expressions leading to quick evaluations. Also
a time-dependent version has been implemented but, here, only the time-independent case
will be discussed explicitly.

The BMC algorithm is structured as follows. First, a phase-space mesh is constructed to
represent the function Φ, making sure that it covers the whole domain of interest, including
the plasma region and the wall. For now, regular rectangular meshes have been used for
simplicity and for software engineering reasons, even though the scheme does not rely on any
particular mesh structures and can therefore be generalized directly to unstructured meshes.
The mesh nodes are distributed accross all the threads and MPI nodes, and they are further
divided into SIMD blocks for vectorization, so that one computational unit will have to
compute the probability of a specific subgroup of nodes. Given the fact that the recursive
computation of the probability in (19) for a specific time step m depends on the probabilities
of other mesh nodes, but only on the m + 1 time step, each MPI node, at every time step,
needs to allocate and have access to the entire probability mesh for two consecutive time
steps. This could be relaxed somewhat by implementing domain decomposition but it is left
for future work.

After the mesh initialization procedure, the main time loop is initiated, starting from the
end time t = Tmax and proceeding backwards to the initial time t = 0 with steps of ∆t. The
process is as follows:

1. Markers starting from the mesh nodes zi are evolved forward in time for one time step
∆t, using the adaptive Runge-Kutta Cash-Karp method for the Hamiltonian part ϕ∆t

U
.

In case of fast ions, the pitch part of the diffusion tensor is dominant, and consequently
the stochastic part can be simplified. The diffusion in X and v is neglected, resulting
in a simple scheme which first pushes all of the guiding-center coordinates with the
mapping

zi 7→ ϕ∆t
U
(zi) +K(zi)∆t, (20)

where K, defined in (8), models the friction part of the collision operator, and then
only adds the pitch diffusion according to the map

ξi 7→ ξi + r

√

2 (1− ξ2i )
D⊥(Xi, vi, )

v2i
∆t. (21)

Here the collisional coefficients are defined in (3)–(7), and r is the parameter which
in FMC method would be replaced with a random variable following a normal dis-
tribution. We note that it is possible to include also the diffusion in X and v but
here computational performance is favoured on the basis of the pitch diffusion being
the dominant stochastic effect for fast ions. For time-independent backgrounds, the
map consisting of the steps (20) and (21), is precomputed, stored in the memory, and
denoted as

zi 7→ ϕ∆t(zi, r) ≡ ϕ∆t
i (r), (22)

Storing of this map is possible as it depends linearly on the parameter r.
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2. The markers in step 1, although starting from the mesh nodes, in general evolve to
arbitrary phase-space position. Hence, interpolation of the probability function Φ is
required. In this paper, the probability is represented as a linear interpolant

Φ(z,m) =
∑

i

Φm
i Λ

i(z) (23)

and, with 5D guiding-center coordinates, each degree-of-freedom Φi, associated with
a mesh node zi, will require information from 32 nearest surrounding mesh nodes.
In the end, the probability function Φ at the mesh nodes is evaluated from (19),
computing the now one-dimensional integral over pitch scattering numerically with a
Gauss-Hermite quadrature of desired order K. This results in an explicit formula for
the update rule

Φm−1
i = π−1/2

∑

k

wk

∑

j

Φm
j Λ

j(ϕ∆t
i (

√
2rk)), (24)

where rk and wk are the standard nodes and weights for the Gauss-Hermite integration
of the type

∫∞

−∞
exp(−r2)f(r)dr ≈ ∑

k wkf(rk). If the trajectory zi 7→ ϕ∆t
i (

√
2rk) hits

the wall, then its probability contribution to the summation is recorded as 1 or 0
depending on whether the trajectory hits the desired target or not.

3. At this point, each MPI node is keeping a partial copy of the probability for the
current time step. The nodes are then synchronized and the probabilities merged with
the MPI built-in function MPI_Allreduce.

4. The time-step index m is decreased by one and the process repeated from the step 1.

Pre-computing the values ϕ∆t
i (

√
2rk), one identifies that (24) constitutes an explicit

sparse-matrix–vector multiplication to update Φm
i . Pre-computing the maps, the scheme

is fast and avoids the expensive repetitive evaluations of the background magnetic field and
plasma profiles required in the FMC scheme. Different choices of the quantities to be pre-
computed lead to different memory and arithmetic performances, however. Pre-computing
the expressions ϕ∆t

i (
√
2rk) requires 32×K maps to be stored for each mesh node zi, with K

the number of points in the Gauss-Hermite integration. Treating instead the map as ϕ∆t
i (r),

i.e., allowing it to depend on the r as a linear function, requires storing only 32 × 2 maps
per mesh node and likely leads to higher arithmetic intensity.

C. Numerical diffusion, importance sampling

The introduction of interpolation to evaluate the probability at an arbitrary phase-space
point results in small error every time the interpolant is evaluated: markers that normally
would continue from the position they end up after a time step, are “rewound” back to the
mesh nodes and the probability transmitted via the interpolation. This results in numerical
diffusion effect in the probability evolution. The underlying issue is effectively the same as
in using the so-called semi-Lagrangian methods to solve pure advection equations. In the
current case, the issue is emphasized by the low collisionality, which nevertheless is critical to
obtain, e.g., a slowing-down distribution. Given the recursive nature of the algorithm, this
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error will accumulate over the time steps and may end up affecting the pure BMC solution,
even drastically.

While this issue of numerical diffusion cannot be erased completely, its effect can be
reduced by increasing the time step ∆t to reduce the number of interpolant evaluations. On
the other hand, increasing the time step will decrease the precision of the integrator, i.e.,
the mapping of the mesh nodes. For example, the pitch update (21) sets an upper limit to
the time step of the stochastic part of the Euler-Maryama equation for the numerical error
to remain acceptable:

D⊥

v2
∆t / 1. (25)

This limitation has been checked in practical simulations making sure the pitch error is small
enough. For example, in the test scenarios that are described in the following section, a time
step in the range of 1× 10−4s–1× 10−3s usually produces good results.

With such limit set, the precision of the deterministic part, namely the push along the
Hamiltonian flow ϕ∆t

U
and the friction term in (20), is then recovered by sub-cycling, i.e. by

dividing further the time step into N shorter steps and pushing the markers through the
deterministic part only. Since the deterministic part is computed only once per mesh node,
this sub-stepping has insignificant impact on the global computational time. In fact, each
marker is followed forward in time through its equations of motion for a total N minor time
steps. For what has just been said, an optimal time step ∆t is expected to exist, being a
trade-off between the numerical diffusion error and the error of the stochastic collision term.

If the efforts to mitigate the numerical diffusion are not having sufficient effect, the final
possibility, the one this paper exploits, is to use the possibly inaccurate, yet informative
estimate of the probability Φ as a priori information and to perform importance sampling
of the birth marker distribution on the basis of this information. As the BMC solution
can only smooth out away from the correct solution, it should not create artificial peaks of
probability. As such, it should form a robust way to sample the marker-particle population
for initializing the FMC method, which then doesn’t suffer from numerical diffusion and can
be performed exactly in the same manner as standard FMC simulations. When the BMC and
FMC are combined, we refer to the scheme as the Backward Monte Carlo with Importance
Sampling or BMC-IS for short. The re-sampling is performed by first evaluating the BMC
hit probability at the existent marker position. Each marker of the birth distribution is then
assigned a new weight based on the BMC probability, and finally the weights are normalized
in order to respect the total desired number of markers. The weights need to be rounded
to the closest integer values and the markers are duplicated accordingly. This means that
markers with a weight that is too low are completely discarded. The development of a
more refined and production ready algorithm able to sample birth markers continuously in
phase-space is left for a future study.

Next we demonstrate how the BMC-IS method can provide significant statistics improve-
ments compared to only performing the standard FMC simulations.

IV. TEST CASES FOR THE NEW ALGORITHM

In this section, the BMC scheme is applied to an ASDEX Upgrade (AUG) H-mode
discharge where the fast-ion source is introduced by means of the neutral beam injection
(NBI) system. In particular, the magnetic equilibrium and kinetic profiles used for this test
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correspond to the shot AUG#33143, with a high βN = 2.4, low collisionallity ν∗ = 0.2
and toroidal magnetic field Bt = −1.8T. Figure 2(a) shows the safety factor profile and
figure 2(b) presents the density profiles of electrons and ions. For this case, the ion species
included are D as the main component and N as the impurity ions using an effective charge
of Zeff = 2. Figure 2(c) shows the electron temperature profile and it has been assumed
that the temperature of ions and electrons is the same.

The AUG NBI system consists of 8 beams providing different injection geometries and
energies. For this analysis, the birth distributions of beams Q7 and Q8 were calculated with
the BBNBI code [11] assuming a D injection of energy 93 keV and power 2.5 MW for each
beam.
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FIG. 2. Plasma profiles including safety factor (a); electron, main ion species and impurity densities
(b) and electron density (c) as a function of the normalized poloidal flux coordinate ρpol.

The birth distribution, corresponding to the neutral beams Q7 and Q8 is illustrated in
Fig. 3. In particular, the beam Q8 is tested with a target domain corresponding to the entire
wall, while the beam Q7 is tested with a target domain corresponding to a small subset of
the wall located near the divertor. Both cases are equally interesting as they allow estimates
of the total loss of fast ions and the numerical simulations of specific fast-ion loss detectors.
The mesh physical ranges are kept fixed and they are listed in Table I, while the number of
mesh nodes has been varied to reveal the effect of the mesh density on the end result.

min max
R 0.75m 2.5m

φ 0 2π
z −1.5m 1.5m

p‖ −1× 10−20kg m s−1 6× 10−21kg m s−1

p⊥ 1× 10−24kg m s−1 1× 10−20kg m s−1

TABLE I. Mesh parameters.

For each numerical test, the BMC-scheme is used to compute the target hit probability
on a regular rectangular mesh, using a fifth order Gauss-Hermite integration, and the result
is compared with the probability generated by the standard FMC-method with markers
placed on the same mesh. A convergence analysis is presented at the end of this section
to assess precisely how the BMC scheme differs from a true solution and how it converges
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FIG. 3. 2D histograms showing the surface density of the birth distribution of beams Q7 and Q8
projected onto the poloidal (a) and toroidal (b) cross sections. The red lines indicate the separatrix
and the white lines the vacuum vessel.

with respect to the mesh density. Once this comparison is done. The information obtained
from the BMC calculation is utilized in importance sampling of the birth distribution and
FMC performed with respect to the new marker-particle distribution. The statistics of this
combined BMC-IS calculation are then compared with the FMC scheme with respect to the
number of markers reaching the target and the resulting velocity distributions at the target.

In the examples studied below, the time-independent version of the BMC scheme is used,
which, as explained in the previous section, requires the computation of one major time step
only and is trivially fast for the remaining steps. As long as the mesh size is reasonable, the
running time of the BMC part in the BMC-IS scheme is negligible compared to the main
FMC integration.

A. Neutral beam Q7: entire wall target domain

The first example considers the fast-ion birth distribution originating from the Q7 neu-
tral beam, with the target domain being the entire wall. Figure 4 illustrates the probability,
averaged over the velocity space and toroidal direction, for a particle to reach the target
domain from any phase-space point on the mesh during the given time T . The same prob-
ability is then computed with the standard FMC scheme by placing markers on the same
mesh and tracking their evolution. The major time step ∆t = 4 × 10−6s and the number
of sub-cycles 40 are chosen for the BMC. The two methods are in good agreement until
about T = 1 × 10−4s when the diffusion error in the BMC method eventually appears and
critically changes the solution in comparison to the FMC solution. This happens despite
the relatively high-mesh density of 64 nodes in each of the five dimensions.
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f) FMC, T = 5× 10−4s

FIG. 4. Comparison of the probability from BMC and FMC for different total times T with target
domain set as the entire wall. Major time step is ∆t = 4 × 10−6s with 40 subcycles. Grid size is
64 nodes in all dimensions. The illustrated quantity is the mean value of Φ over the φ, p‖ and p⊥

dimensions.

Regardless of the apparent error in the BMC wall-hit probability, the combined approach
of BMC-IS does succeed in improving the wall-hit statistics as demonstrated in the Table II
and Fig. 5. As expected, the improvement increases with increasing mesh density. Table II
also displays the behaviour of the BMC solution as the total time for particles to reach the
target is increased: for short periods, the BMC provides an accurate a priori information
for sampling while for longer periods the information suffers from numerical diffusion and
begins to lose its value. From Table II, it is also evident that increasing the mesh density
clearly is able to address some of the deterioration as the numerical diffusion is reduced:
between T = 1.2× 10−5s and T = 5× 10−4s the number of wall hits with a mesh containing
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1285 nodes is reduced by a factor of 4 whereas with a mesh containing only 165 nodes a
reduction by a factor of 50 occurs.

In Table II, the number of wall hits computed with the FMC shows a saturation tendency
from T = 2 × 10−5s. This behaviour can be explained by comparing the total simulation
times with the bounce period of the ions, which is in the range of 1.0 − 2.5 × 10−5 s. This
comparison indicates that most of the escaping ions are prompt losses and that longer
simulation times are required to observe collision effects.

Finally, Figure 6 shows the energy–pitch histogram of markers of the main NBI source
hitting the wall for FMC and for the BMC-IS using 64 points per dimension, with a total
integration time of T = 5 × 10−4s and a total of 105 input markers. The results agree
qualitatively, with the FMC simulation resulting in somewhat more noise. It is important
to note that even though the BMC estimate for the probability maybe off, this does not
pollute the final signal computed with the BMC-IS scheme.

Mesh elements T=1.2×10−5s T=2×10−5s T=1×10−4s T=5×10−4s
FMC — 410 463 464 467

BMC-IS 165 13699 7744 1106 685
BMC-IS 325 45135 34472 5419 984
BMC-IS 645 70047 63545 24130 3759
BMC-IS 1285 81968 81281 51968 18580

TABLE II. Number of wall hits as function of T for AUG NBI Q7 configuration, using 105 input
markers. Major time step for BMC is ∆t = 4× 10−6s with 40 sub-cycles.
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FIG. 5. Histogram of the number of wall hits as recorded in Table II.

B. Neutral beam Q8: small target domain

The second test considers the fast-ion birth distribution originating from the Q8 neutral
beam, and the target domain consists of a small strip of the wall near the divertor, having



13

0.7 0.8 0.9
ξ

40

50

60

70

80

90

E
k
[K
eV

]

#ions/s

0.00

0.25

0.50

0.75

1.00

1.25

1.50
×1017

a) FMC

0.7 0.8 0.9
ξ

92.0

92.5

93.0

93.5

94.0

E
k
[K
eV

]

#ions/s

0

1

2

3

4

×1016

b) Zoomed-in view on FMC

0.7 0.8 0.9
ξ

40

50

60

70

80

90

E
k
[K
eV

]

#ions/s

0.00

0.25

0.50

0.75

1.00

1.25

1.50
×1017

c) BMC-IS

0.7 0.8 0.9
ξ

92.0

92.5

93.0

93.5

94.0

E
k
[K
eV

]

#ions/s

0

1

2

3

4

×1016

d) Zoomed-in view on BMC-IS

FIG. 6. Energy–pitch histogram for the FMC and BMC-IS schemes with the AUG NBI Q7 con-
figuration. The number of input markers used is 105 in both cases with total time T = 5× 10−4s.
BMC-IS is using a 645 mesh and major time step ∆t = 4× 10−6s

coordinates defined by the intervals R ∈ [1.2343m, 1.2355m] and z ∈ [−1.1026m,−1.1073m],
and spanning the entire torus. The purpose of this test is to illustrate what happens when the
FMC scheme has difficulties accumulating enough target hits and the limits of the BMC-IS
scheme are tested by extending the simulation time significantly.

For the Q8 case, the target hit probability from the BMC scheme is illustrated in Fig. 7,
up to a total integration time T = 2× 10−2s. The simulations were run with a major time
∆t = 8 × 10−4s with 8000 syb-cycling steps to compute the deterministic motion, and the
mesh includes 64 nodes in each coordinate direction, similarly as in the earlier Q7 case. In
contrary to the Q7 case, here the significantly longer total time prevented performing the
direct computation of the probability with the pure FMC method: the computational costs
would have been too high for running a number of markers in the order of 1010 possibly up
to 2×−2 s with a time step of 1× 10−7s.

The recorded hit-rate statistics are summarized in Table III and visualized in Fig. 8. The
BMC-IS provides larger number of recorded target hits than the pure FMC, for all mesh
densities. Similarly as in the case of Q7, the number of target hits again decreases with
respect to increasing the total time for the particles to reach the target. The advantage
from the BMC-IS scheme nevertheless remains significant. The reduction over time is not as
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FIG. 7. Comparison of the probability from BMC and FMC for different total times T with a
small target domain, positioned inside the green box. Major time step is ∆t = 8× 10−4s with 8000

sub-cycles. Grid size is 64 nodes in all dimensions. The illustrated quantity is the mean value of Φ
over the φ, p‖ and p⊥ dimensions.

severe as in the Q7 case, which is likely credited to there being more losses from neoclassical
physics than in the case of Q7 with a significantly shorter total simulation time and losses
being primarily from the first orbits. This is reflected also in the number of target hits
recorded by the FMC now clearly increasing over time.

Mesh elements T=5×10−3s T=1×10−2s T=2×10−2s
FMC - 11 26 65

BMC-IS 165 517 395 348
BMC-IS 325 837 575 562
BMC-IS 645 1488 1071 885
BMC-IS 1285 5217 3445 2128

TABLE III. Number of hits on the small target as a function of T for FMC and BMC-IS in AUG
NBI Q8 configuration, using 105 input markers. Major time step is ∆t = 8 × 10−4s with 8000

sub-cycles.

Although we do not have the direct comparison of the target hit probabilities produced
with BMC and FMC available due to the extensive computational cost of the FMC, the
quality of the BMC-IS scheme can still be assessed from the energy–pitch histograms of
the recorded target hits, similarly as was performed for the Q7 case. The energy–pitch
histograms produced with 105 input markers in this manner are illustrated in Figure 9.
From the colors in the figure, one can observe that the FMC effectively manages to record
only one or two markers per histogram cell (see the zoomed-in view), essentially making
it rather difficult to consider the results to enjoy statistical accuracy. This is made more
apparent by the zoomed-in view. The BMC-IS, on the other hand, clearly performs better,
also agreeing qualitatively with the results from the FMC.
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FIG. 9. Energy–pitch histogram for the FMC and BMC-IS schemes with the AUG NBI Q8 con-
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C. Convergence test

In order to check quantitatively the consistency of the BMC scheme, the target hit proba-
bility has been computed for different mesh densities by recursively refining an initial sparse
mesh, so that all the nodes of the initial mesh are common to the subsequent ones. The
mean error of each mesh can be computed by comparing the mean absolute difference on the
common nodes. The initial mesh is also small enough that the probability can be computed
easily to high precision also with the FMC scheme which can therefore be used as a reference
solution. Figure 10 shows the resulting mean error of each mesh refinement after 5 major
time steps with respect to a benchmark FMC solution. The error is consistently reduced
by increasing the mesh density, indicating that the probability from the BMC calculation
appears to converge consistently towards the reference solution.
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FIG. 10. Convergence test for the BMC scheme.

V. SUMMARY AND CONCLUSIONS

This paper introduced a novel Backward Monte Carlo scheme to improve statistics in
simulations of fast-ion losses, especially to small targets. The method was implemented
within the ASCOT suite of codes and tested in realistic AUG configurations using NBI
particle distributions. In the test cases considered, the approximate target hit probability
from the fast Backward Monte Carlo calculation was used to perform importance sampling
of the birth marker population. Using the re-sampled markers in Forward Monte Carlo
simulations then significantly improved the statistics of target hits in comparison to not using
the information from the Backward Monte Carlo calculation. These encouraging results are
anticipated to improve further if meshes, that adapt to target and plasma geometry, are
explored.

Although not studied here, the model can incorporate the effects of neoclassical tearing
modes without any changes and even the Alfvénic perturbations if the time-dependent ver-
sion is used. In principle, any Fokker-Planck operator could be studied within the BMC
formalism. Future work includes, e.g., investigating the possibilities of incorporating ICRH
operators into the Backward Monte Carlo framework.
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