
Supplementary Materials S1 – S5 
S1: Efficiency of robust combination and the Fermi function 
 

Robust combination and two-repeat multi-parameter mapping protocol 

This section elaborates on the sensitivity of the robust combination to outliers and its 

dependence on the k-parameter of the Fermi function. Moreover, the heuristic selection criteria 

that was employed to determine the optimal k-parameter for this study is explained. Both are 

illustrated for the MTsat contrast depicted in Figure S1.1.   

 

 
Figure S1.1: Efficiency of robust combination and how it is modulated by the Fermi-function k-

parameter, exemplified for MTsat. A: Arithmetic mean of the MTsat maps from the two repeat multi-

parameter mapping protocol P1. Region in red box is magnified in subfigures B and C. B (top-left to bottom-

right): MTsat map from each run (𝑀𝑇sat
(1)

, 𝑀𝑇sat
(2)

) and the corresponding error maps (𝑑𝑀𝑇(1), 𝑑𝑀𝑇(2)). The 

yellow numbers are the respective grayscale values at the crosshair position depicted for each map: in the second 

run, the erroneously high MTsat value ( 𝑀𝑇sat
(2)

= 2.25 compared to  𝑀𝑇sat
(1)

= 1.54) is accompanied by a higher 

corresponding error value (𝑑𝑀𝑇(2) = 0.39 compared to 𝑑𝑀𝑇(1) = 0.27). C (top-left to bottom-right): Robust 

combination using three different k-parameters (5%, 10%, and 50%) as well as arithmetic mean combination. 

Again, the grayscale value at the crosshair position is shown in yellow. The effectiveness of robust combination 

was reduced when higher k-parameters were used. D: Depicts the Fermi-function used for robust combination 

(see Eq. (7)) as a function of the ratio of errors from both repeats and for the different k-parameters used in C. 

The higher the k-parameter, the smoother the transition from one to zero in the Fermi function. The curves in 

D are exemplified for the ensemble of errors of the MTsat parameters across an entire slice (z=85, each circle 

represents the error values in one voxel of the slice). 



Figure S1.1 illustrates, for the MTsat map, how the k-parameter in the Fermi function can tune 

the efficiency of the robust combination in reducing a regionally-localized artefact (Fig. S1.1A, 

red box) in a two-repeat multi-parameter mapping dataset. The artefact appeared in the second 

repeat in the form of an unusually high MTsat value (𝑀𝑇sat
(2)

= 2.25 as compared to 𝑀𝑇sat
(1)

=

1.54) that was accompanied by a higher error (Fig. S1.1B, crosshair in second column). The 

biased MTsat value was still present in the arithmetic mean combination (𝑀𝑇sat
AM = 1.90 ) but 

could be substantially reduced with robust combination (𝑀𝑇sat
RO = 1.54 for 𝑘 = 5%). The level 

of artefact reduction in the robust combination (assessed by how close the MTsat value was to 

the repeat without artefact) depended on the k-parameter of the Fermi function: at the lowest k-

parameters (Fig. S1.1C, top-left) the robust combination was the same as the unbiased MTsat 

value of the first run whereas at the highest k-parameter (Fig. S1.1C, bottom-left) the robust 

combined MTsat value was still biased, although to a smaller amount than the arithmetic mean 

combined MTsat.  Another important observation was that the higher accuracy of the robust 

combination at lower k-parameter was accompanied by a higher noise level in the image: the 

robustly combined MTsat image with the lowest k-parameter was noisier than its counterpart 

with the highest k-parameter.  

The reason why the increase in accuracy comes at the price of an increased noise level can be 

seen in Figure S1.1D. This subfigure shows that for a low k-parameter (black curve) the shape 

of the Fermi function becomes almost like a Heaviside function, i.e. it is 1 for the case that the 

error is of the first repeat is smaller than the error of the second repeat and it is 0 of the opposite. 

For this scenario, the robust combination is selecting only the MTsat value of one of the two 

repeats if there is even only a small difference in the error between the two repeats. For a large 

k-parameter (blue curve), the Fermi function shows an almost linear dependence on the ratio of 

errors of the two repeats. In this scenario, both repeats strongly contribute to the robust 

combination also for voxels where the errors are different in the two runs. We conclude that 

outliers are better reduced in robust combination with lower k-parameter but random noise is 

better reduced at higher k-parameter. In this study, we used an intermediate k-parameter 

(k=10%) to profit from both reduced sensitivity to outliers and noise.  

 

Choice of weighting function for two-repeat protocol 

Robust combination (e.g., (Mohammadi et al., 2012)) is a special case of weighted 

combinations that aims to reduce the influence of outliers. While in statistics weighted 

combinations often directly use the fitting residuals as weights (e.g., 
1

𝜎2 in weighted least squares 

fitting (Koay et al., 2006)), robust combination methods often use nonlinear functions of the 

error to determine the weights such as e.g., Gaussian (Zwiers, 2010) or Lorentzian 

(Mohammadi et al., 2012) functions. This enables a more efficient down-weighting of outliers. 

However, they require determining the median of the error in the image as a global reference 

value for normalising the weights. This can be problematic if there is a spatially varying trend 

in the error maps across the brain, as found in the error maps of this study (Fig. S2.1): The error 

in the skull is apparently higher than in the brain, but there are local variations in the brain as 

well (e.g. the error in the cerebellum is higher than in the basal areas).  To circumvent this 

problem, we used the ratio of the errors of the two repeats. As such, it is sensitive to variations 

of the local error across repeats without requiring a global reference value. For the two-repeat 

combination the Fermi function is an intuitive choice because, through the k-parameter (Fig. 

S1.1D), it can be easily varied between two extremes: from a binary weighting function (i.e. a 



Heaviside function that selects one of the two repeats on a voxelwise basis) to an arithmetic 

mean combination (i.e. a constant ½-weight function that weights both repeats equally).     

 

Generalising the robust combination to more than two repeats 

The proposed robust combination can be generalised to an arbitrary number of repeats, N, by 

rewriting Eq. (7) as follows: 
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are the longitudinal relaxation rates and their respective errors from the j-th repeat; and 𝑚𝑤𝑅1 =

 max
𝑟

(𝑓(𝑟)) is defined as the maximum weight across voxels 𝑟.  The same idea can also be used 

to robustly combine the other two MPM parameters (𝑃𝐷 and 𝑀𝑇sat). 

  



S2: How to use the hMRI toolbox to generate uncertainty maps, error 

maps, mSNR maps and robust combinations 
 

To generate uncertainty maps, error maps and mSNR maps, they need to be enabled. This can 

be done via the configuration toolbox module (see Fig. S2.1). An example of a customized 

defaults file which computes error maps and does robust combination can be found in the hMRI 

toolbox subfolder “examples” named as  “hmri_local_defaults_errormaps.m”. 

 
Figure S2.1: Configuration toolbox module. To generate uncertainty maps, error maps, mSNR maps, the 

customized defaults file can be loaded into the configuration toolbox module. The customized defaults file is 

named “hmri_local_defaults_errormaps.m” and can be found in the examples folder. 

 

Robust combination of MPM parameters can be generated using a two-repeat MPM 

measurement and estimating the MPM parameters after enabling the generation of error maps 

(see Fig. S2.1). To this end, the robust combination module is used (Fig. S2.2). The three MPM 

parameters (MTsat, PD, R1) of the first and second repeat are loaded into the first and second 

entry of the robust combination module. Then, the error maps of the first and second repeat are 

loaded into the third and fourth entry of the robust combination module (in the same order as 

the MPM parameters). The fifth entry is optional and allows one to define a reference image to 

which both repeats are resliced when combining them. The last entry is also optional and allows 

to load in a brain mask. 



 
Figure S2.2: Robust combination module. The three MPM parameters (MTsat, PD, R1) of the first and second 

repeat are loaded into the first and second entry. Then, the error maps of the first and second repeat are loaded 

into the third and fourth entry (in the same order as the MPM parameters). The fifth entry is optional and allows 

one to define a reference image to which both repeats are resliced when combining them. The last entry is also 

optional and allows to load in a brain mask. 

 

  



S3: Comparing estimated mSNR against experimental SNR of MPM 

parameters using simulations 

 
Figure S3.1: Relating mSNR to the experimentally assessed SNR (eSNR) in simulations. Depicted is 

𝑆𝑁𝑅sim
𝑚  as a function of 𝑒𝑆𝑁𝑅sim

𝑚  (with 𝑚 ∈ {PD, R1, MT}) using the simulations described in the Materials and 

Methods section, Analysis II. 𝑒𝑆𝑁𝑅sim
𝑚  is defined as the ratio between the ground truth parameter divided by 

the standard deviation of the parameter estimated from noisy data (Eq. (S3.1)). A heuristic linear relation is 

fitted between 𝑆𝑁𝑅sim
𝑚  and 𝑒𝑆𝑁𝑅sim

𝑚  data (see Table S3). In blue, the data in white matter is depicted and in 

black the data in grey matter. The dashed line in magenta is the unity line. 
 

In this section, we use simulations to demonstrate how the proposed mSNR measure is related 

to the experimentally determined SNR (eSNR) of each MPM parameter. To calculate the eSNR, 

we divided the ground-truth of a given MPM parameter by the standard deviation of the 

parameters, estimated from noise data using the simulations in Analysis II:  

 

(S3.1) e𝑆𝑁𝑅sim
𝑚 = 𝑚GT/𝑠𝑡𝑑([𝑚(1), … , 𝑚(𝑁)]), 

 

with 𝑚(𝑘) being the 𝑚 parameter estimated from the simulated MPM dataset with the k-th 

noise realisation, and 𝑚GT being the ground truth parameter (see Table 2), where 𝑚 ∈

{𝑃𝐷, 𝑅1, 𝑀𝑇sat} and 𝑁 is the number of noise realisations, e.g., e𝑆𝑁𝑅sim
R1 =

𝑅1
GT

𝑠𝑡𝑑([𝑅1(1),…,𝑅1(𝑁)])
. 

 

The results are shown in Figure S3.1. We found that mSNR was linearly related to eSNR for 

all three MPM parameters.  The apparent linear relation was assessed by:  

 

(S3.2) 𝑚𝑆𝑁𝑅sim
𝑚 = 𝐴sim

𝑚  𝑒𝑆𝑁𝑅sim
m + 𝐵sim

𝑚 . 

 

The slope 𝐴sim
𝑚  was always smaller than one and varied between 0.5 and 0.7 (Table S3). 

 
 PD - WM PD - GM R1 - WM R1 - GM MT - WM MT - GM 

Offset 𝐵sim
𝑚  0.11 0.24 0.19 0.12 -0.04 -0.02 

Slope 𝐴sim
𝑚  0.72 0.70 0.52 0.52 0.61 0.60 

Table S3: Relation between model-based and experimental SNR of MPM parameters for simulated data.  

The coefficients of the heuristic linear models (Eq. (S3.2)) that relate 𝑒𝑆𝑁𝑅sim
𝑚  to 𝑚𝑆𝑁𝑅sim

𝑚 , with 𝐴𝑚 being the 

slope and 𝐵𝑚 being the intercept (𝑚 ∈ {𝑃𝐷, R1, MT} ). 

The subscript “sim” refers to the simulated data.  

 

  



S4: Spatial sensitivity of mSNR maps to coil configuration and head 

orientation 
 

In this section, we investigate the effect of different head coil configurations and coil 

sensitivity-profiles on the mSNR maps. To this end, we used the protocol P2 to acquire MPMs 

of a fixed human post-mortem brain, embedded into phosphate-buffered saline (PBS) in a 

spherical container. Using a post-mortem brain enabled reoriention of the head by 180° and 

avoided confounding artefacts, e.g., subject motion. To assess the dependence of mSNR on the 

sensitivity profile, we acquired the mSNR maps at two different head positions using two 

different head coils (32 channel coil [32ch] and 64 channel coil [64ch]) and registered the 

second head position to the first for one of the two head coils (32ch). 

 

Figure S4.1 shows the effect of two different head coils on the mSNR maps. The mSNR maps 

varied locally when different head coils were used. The regions highlighted by the black arrow 

in Figure S4.1B differed strongly in mSNR when the 64ch coils was used (top row) as compared 

to the 32ch coil (bottom row). The mSNR was, however, almost independent of the orientation 

of the head (Fig. S4.1B: first column vs. second column). 

 

 

 
Figure S4.1: Effect of head coil configuration on mSNR – illustration for R1 parameter. Depicted is the 

𝑅1 map (A) and the associated 𝑚𝑆𝑁𝑅𝑅1 map (B) for two different head coils (top row: 64 channel head coil 

and bottom row: 32 channel head-neck coil) and two different head orientations (first and second column in A 

and B, see arrow pointing along posterior-anterior direction in top row in A). The black arrows in (B) highlight 

a region where the mSNR strongly varies between the two head coils but is almost independent of the head 

orientations. Note that the dark regions in the mSNR maps are caused by air bubbles in the brain: areas with air 

bubbles have a high error and thus a reduced mSNR. For the presented analysis they can be ignored. 
 

Figure S4.2 depicts the effect of the coil-sensitivity profile on mSNR. After registering the 

brain acquired at orientation 2 to the brain at orientation 1, the two mSNR maps showed 

strong spatial differences, indicating that the mSNR maps are highly sensitive to the 

sensitivity-profile of the head coil.  

 



 
Figure S4.2: Effect of coil-sensitivity profile on mSNR – illustration for R1 parameter. A: Depicted is the 

𝑅1 map (top row) at two different head orientations (see arrow pointing along posterior-anterior direction, A) 

for the 32ch coil. B: Depicted are the 𝑅1 maps (top row) and the associated 𝑚𝑆𝑁𝑅𝑅1 maps (bottom row) after 

registering the brain at orientation 2 to orientation 1. While the registered 𝑅1 maps show a similar contrast to 

the 𝑅1 maps at orientation 1, the mSNR maps show local variation (e.g., region highlighted by white arrow). 

  



S5: Relation between mSNR, error, and uncertainty maps 
 

Figure S5.1 illustrates the relation between mSNR, error, and uncertainty maps for the R1 

parameter across the three protocols P1-P3. Across all protocols, the mSNR was low where the 

error was high. The decline of mSNR was stronger towards the centre of the brain in left-right 

direction when using P1 as compared to P2 (dashed ellipsoids). This decline was accompanied 

by an increased error and an increased uncertainty.  

 

 

 
Figure S5.1: Relation between mSNR, error, and uncertainty maps – illustration for R1 parameter. 

Depicted is the 𝑚𝑆𝑁𝑅R1 maps (top row), the error maps 𝑑𝑅1 (second row from top), the uncertainty map for 

the T1w contrasts 𝜖T1w (third row from top), and the root-mean-square of the uncertainty maps across all three 

contrasts 𝜖rms (bottom row) for the three different protocols P1-P3. The decline of mSNR is stronger towards 

the centre of the brain in left-right direction when using P1 as compared to P2 (dashed ellipsoids) s. 



 
 

  



S6: Illustration of error maps and robust combination in the presence of 

motion 
 

This section is divided in two parts. In the first part, the analysis corresponding to Figure 5 is 

completed, i.e. the same information as in Figure 5 is depicted for the other two MPM 

parameters (i.e., 𝑃𝐷 and 𝑀𝑇sat) for the same subject. In the second part, a subset of the data 

from a previous study (Callaghan et al., 2015) is used to demonstrate that the error maps are 

sensitive to subject motion and that they can be used to mitigate the effect of subject motion on 

the MPM parameters using the robust combination. To this end, the subject was instructed to 

lay still in the first run. In the second run, the person was instructed to move. Additionally, to 

minimize movement artefacts in the first run, a prospective motion correction camera (PMC) 

was used as described in (Callaghan et al., 2015). In this analysis, the MPM parameters from 

the first run (i.e., lay still instruction and PMC on) were used as the reference because they are 

almost free of motion artefacts, whereas the second run is highly corrupted by motion artefacts.   

Figures S6.1 and S6.2 complement Figure 5 in the main manuscript by illustrating regionally 

localized artefacts that were captured by the error maps for the other two MPM parameters (𝑃𝐷 

and 𝑀𝑇sat). They became less pronounced in the arithmetic mean and could be partly removed 

in the robust combination (see, e.g.  red highlighted region).  

 
Figure S6.1: Reduced artefacts in robustly-combined proton density (𝑷𝑫) map. Depicted are: two 

successive repeats of the PD map using protocol 1 with superscript (1) and (2) (top row), the associated error 

maps for each repeat (middle row), and their arithmetic mean and robustly combined average with superscript 

AM and RO (bottom row). An area is magnified (red box, left column), where the error maps were sensitive to 

artefacts (hyper intensities) and the robust combined PD contained less artificially increased values than the 

arithmetic mean (circle) and single-repeat PD maps.  
 



 
Figure S6.2: Reduced artefacts in robustly-combined magnetization transfer saturation rate (𝑴𝑻𝐬𝐚𝐭) 

parameter. Depicted is the same information as in Figure S4.1 for the 𝑀𝑇sat parameter instead of the 𝑃𝐷 

parameter. 
 

Figure S6.3A shows the 𝑅1 parameter and associated error maps for a person who moved in the 

first repeat and laid still in the second repeat. Figure S6.3B shows the arithmetic mean and 

robust combination of these two runs. The results demonstrated that the error map captures 

subject movement relate biases in the 𝑅1 parameter: 𝑑𝑅1 was high where the motion-corrupted 

𝑅1
(1)

 map was biased (red arrows in Fig. S6.3A) and 𝑑𝑅1 was low where 𝑅1
(1)

 was similar to 

gold-standard 𝑅1
(2)

 values (green arrows in Fig. S6.3A). When using the error maps in the robust 

combination 𝑅1
RO, the reference 𝑅1

(2)
 values can be largely retrieved whereas the standard 

arithmetic mean combination 𝑅1
AM remains largely biased (Fig. S6.3B).  

 

 
Figure S6.3: Motion-induced artefacts captured by error maps and reduced by robust combination – 

illustrated for the 𝑹𝟏 parameter. (A): Depicted are two longitudinal relaxation rate maps (𝑅1) and their 



associated error maps (𝑑𝑅1) acquired from two repeats of the MPM protocol. In the first run (superscript (1)), 

the subject was instructed to move and in the second run the person was instructed to lay still (superscript 

(2)). Additionally, to minimize movement artefacts in the second run, a prospective motion correction camera 

was used as described in (Callaghan et al., 2015). (B): Depicted is the whole-brain view of the arithmetic 

mean of both runs (𝑅1
AM) as well as their robust combination (𝑅1

RO). In addition, the highlighted region is 

magnified to better appreciate the reduced artefact level in 𝑅1
RO as compared to 𝑅1

AM. Note that the image-

pixel value at the cross-hair is depicted below the sagittal view. 
  



S7: Reducing artefactual variation at the group level     
 

In this supplementary Figure S7.1, we show how artefactual variations at the group level vary for 

different combinations of a two-repeat MPM acquisition in the grey matter (GM). Variability at the 

group level was assessed by the standard-error-of-the-mean (SEM). The SEM showed higher values 

toward the outer edge, potentially caused by residual inaccuracies in spatial registration.  

 

 
Figure S7.1: Variability across subjects for grey matter. Depicted is the same information as in Fig. 8 but 

for grey matter instead of white matter. 

 

  



S8: Across-group spatial variability of mSNR maps 
 

To assess the spatial variability of the error (Fig. S8.1) and mSNR (Fig. S8.2) maps for protocol 

1 across the group of healthy subjects, we calculated the group average and standard deviation 

of the respective maps after non-linear spatial transformation into MNI space. The spatial 

processing steps were described in the methods section “Map creation and spatial processing”.  

We found the same overall spatial pattern in the group average of the error and mSNR maps as 

depicted for the one-subject example in Figure 4b and 4c (see Results section, Analysis I): a 

strong left-right gradient which appeared as an increase in the error map towards the centre and 

as a decrease in the mSNR maps. The standard deviation of the error maps across the group 

was high in the cerebellum for all three contrasts (white ellipse). Additionally, it was high in 

the CSF for the 𝑃𝐷 parameter, and in focal posterior regions of the brain for the 𝑅1 parameter.  

 

 
Figure S8.1: Spatial variation of error maps across group. Depicted are the group average (top row) and 

standard deviation (bottom) of the error maps for the three MPM parameters: 𝑃𝐷, 𝑅1, and 𝑀𝑇sat. The group 

average shows the same spatial pattern as seen in the one-subject example in Figure 4. In the standard deviation 

map, however, artefacts are revealed that appear inconsistently across the group. For example, all errors show 

high standard deviation in the cerebellum (highlighted with white ellipse). 

 



 
Figure S8.2: Spatial variation of mSNR maps across the group. Depicted are the group average (top row) 

and standard deviation (bottom row) of the mSNR maps for the three MPM parameters: 𝑃𝐷, 𝑅1, and 𝑀𝑇sat. 

The same spatial pattern as in the one-subject example in Figures 3a and 4 can be seen in the group average and 

in the standard deviation across the group. 
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