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Abstract: We propose a novel framework for model-order reduction of hyperbolic differential equations. The
approach combines a relaxation formulation of the hyperbolic equations with a discretization using shifted
base functions.Model-order reduction techniques are then applied to the resulting systemof coupled ordinary
differential equations. On computational examples including in particular the case of shock waves we show
the validity of the approach and the performance of the reduced system.
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1 Introduction
Model-order reduction has been successfully applied to large-scale systems of ordinary differential equations
as well as problems governed by elliptic or parabolic differential equations, see, e.g., [1–7]. There is a large
variety of methods out there for these problem classes, and all of them base on the idea that the solution
space as a subset of either a large finite dimensional space, or possibly an infinite dimensional function
space is well approximated by a finite dimensional linear subspace of relatively low dimension. There are
several different methods to determine a suitable subspace and several methods to use it for a reduced
order model. Some model order reduction methods only take the description of the system, to create the
projection onto that subspace, and some use data created from solving the full system. A crucial point in the
interest and usefulness of a reduced model is, that one is not interested in one single solution for one single
equation, but for a collection of solutions or equations. Sometimes this collection is obtained by a parameter
in the differential equation, sometimes by a varying input function, or by considering different starting
values.

Away toquantifyhowreducibleanequation is canbedonebyunderstanding,howwell the solutionspace
is approximated by the best n-dimensional linear subspace. This concept is referred to as the Kolmogorov n-
width in the literature. This is also studied for specific hyperbolic problems and the best approximation space
in this setting is not satisfying. Therefore, we need to rethink the general strategy for nonlinear hyperbolic
problem.So farageneralmethod isnotavailable. Several approacheshavebeenproposed toprovideasuitable
finite dimensional approximation space. In particular, in the case of linear hyperbolic system the solution
can be expressed as a linear semigroup on suitable spaces. Then, an approximation by finite dimensional
subspaces is feasible [8–12]. For linear hyperbolic problems the transport speed is constant and known a
priori. This allows to exploit the idea of shifted base functions. Several different approaches exist and they
have partially been extended to the nonlinear case [4, 8, 11, 13]. In the nonlinear case, a major obstacle has
been the loss of regularity of the solutions in the presence of shocks. Those also move at a speed determined
throughapossibly nonlinear relation out of the solution itself. This time-dependence in the approximate finite
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dimensional space has been dealt with by time dependent space transformation as part of the reducedmodel.
There is a large body of literature addressing different solutions to this well established problem [14–20].
They all use very different methods to create a possibly nonlinear subspace approximating the solution
space.

We propose a method to treat loss of regularity due to shocks as well as the nonlinear transport speed.
To that end, we first lift the solution space and then find a linear subspace exploiting known techniques.
The lifting is done in two steps, first a hyperbolic relaxation [21–23] and then a discretization using suitable
spacetime Ansatz functions. The hyperbolic relaxationmethods use a suitable reformulation of the nonlinear
flux at the expense of an enlarged system. This in turn allows keeping possible discontinuous solutions,
but reduces the transport part to a linear transport. The linear part ensures further that the new system
formally has fixed transport speeds. The latter system is therefore amendable for treatment within model
order reduction as shown in this work. We propose to capture the movement of discontinuities by suitable
moving approximations. On those approximations we perform a suitable model order reduction. Based on
the continuous formulation, we discuss possible numerical discretizations and show computational results
in the case of shocks.

2 Reducibility of scalar nonlinear hyperbolic equations
We consider a scalar nonlinear hyperbolic differential equation for the unknown U = U(t, x) on the torus
𝕋 = [−1, 1] ⊂ ℝ as solution to

𝜕tU(t, x)+ 𝜕x f (U(t, x)) = 0 (1)

subject to the initial conditions u0: 𝕋 → ℝ
u(0, x) = u0(x). (2)

The flux function f ∈ C2(ℝ;ℝ) is assumed to be nonlinear. Even for smooth initial data (2) u0 the solution u
may exhibit discontinuities in finite time [24]. Therefore, weak entropy solutions to (1) have been introduced
andwe refer to [24] for more details on well-posedness of weak solutions. This presentation is concerned with
finding a reduced model to this system in the sense of approximating the solution on a lower dimensional
manifold. For (linear) elliptic differential equations the lower dimensional manifold can be shown to be
a linear subspace. Then, the model-order reduction can be successfully applied. However, for nonlinear
hyperbolic systems this approach is not straight forward. For general nonlinear problems the typical way to
create a reduced ordermodel is to first solve the systemat certain instances (in time) using a high-dimensional
solution technique. This information is used to define a linear subspace of the solution space. This space
becomes the search space inwhich the equation is solved resulting in a so called reduced system. This in turn,
is used to approximate the solution for different parameters or input functions. In our setting, we assume the
flux function f is given; however, the initial condition u0 could vary. Therefore, a suitable reduced modeling
technique should allow generating a reduced systemwhich is able to approximate the solution to the original
equation for different initial conditions.

In order to derive the discretization with the space-time ansatz function on the relaxation, we consider
as an example the linear case first where we already have a linear transport operator. Let

f (U) = 𝜆U (3)

with coefficient 𝜆 ≠ 0. The explicit solution to (1), (2) on 𝕋 is given by

U(t, x) = u0(x − 𝜆t). (4)

Classical model order reduction of partial differential equations is based on the idea that the numerical
solution is computed as an approximation of the type

U(t, x) ≈
∑

uj(t)𝜙 j(x), (5)
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for a set of basis functions 𝜙j, like for example finite elements. In general reduced solutions to the PDE are
also described in a similar fashion but with different basis functions. Those are chosen in such a way that
we do not need so many basis functions. In other words model reduction tries to extract a lower dimensional
space which represents the solution of the given problemwell. Assuming that we choose u0 to be a compactly
supported local finite element basis function, the solutionU(t, x)which is just the transportedu0 has a support
that moves through the entire space over time. The collection of these functions evaluated at discrete time
instanceswould fast span a large dimensional spacewithin the finite element space. This leaves not toomuch
hope to find a low dimensional subspace. This has been recognized as a problem for hyperbolic systems for
a while [19] and a few techniques have been used to overcome that. The most promising approach being to
use an ansatz is where the basis function contains a time dependent spatial shift. For linear problems as the
speed is fixed, that can be done in a straightforward manner. However, for nonlinear equations the spatial
transformation is part of finding the right reduced systemand it is still awork in progress [25]. In this paper,we
use the idea of the spatial shift not to create the right reduced order model, but to discretize the full model in
order to get a large scale ordinary differential equation that no longer suffers from the transport phenomena.
The large dimensional ansatz space is given by a set of basis function𝜙j but evaluated at a fixed spatial shift:

U(t, x) =
N∑
j=1

uj(t)𝜙 j(x − 𝜆t). (6)

The initial condition u0 is expanded in a truncated series of N coefficients

u0(x) =
N∑
j=1

u0, j𝜙 j(x), (7)

for some functions {𝜙 j}Nj=1. The explicit solution (6) then yields the exact solution for uj(t) = u0,j on the linear
transport problem.

If we choose a function u0(x) as the correct linear combination of a linear subspace as in Eq. (7) and if we
consider the solution u(t, x) within the one-dimensional manifold spanned by u0

{u(x, t) = u0(x − 𝜆t)} (8)

we obtain the exact solution. This approach can be extended to linear transport equations with nonlinear
right-hand side, as e.g.,

𝜕tu(t, x)+ 𝜆𝜕xu(t, x) = g(u(t, x)). (9)

This approach however does not extend to nonlinear equations. It is important to note, that the previous
approach only works if 𝜆 is constant. However, in the case of nonlinear flux U → f (U) the characteristic dx

dt (t)
depends on the value of the initial datum u0 at x0:

dx
dt

= f ′
(
U(t, x(t)), x(0) = x0 andU(t, x(t)) = u0(x0). (10)

In the nonlinear case it is challenging to determine the correct shift. There is a large effort in the literature
and for certain problems this strategy has been applied successfully [15–18, 20]. In the following, we propose
to develop a general method allowing to have a fixed shift in the base functions.

3 Semi-discretization compatible to model order reduction
Our approach is robust with respect to the type of nonlinear flux function and the initial condition used, since
we do not track the speed. To this end, a stiff relaxation approximation (11) is considered, e.g., in [21–23,
26–32]. For the scalar problem (1) a relaxation approximation reads

𝜕tu(t, x)+ 𝜕x𝑣(t, x) = 0 (11a)
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𝜕t𝑣(t, x)+ 𝜆2𝜕xu(t, x) = − 1
𝜖
(𝑣(t, x)− f (u(t, x))). (11b)

Here, 𝜆 > 0 is a positive fixed parameter that fulfills the subcharacteristic condition

𝜆 ≥ max
x∈𝕋

| f ′(u0(x))| (12)

and𝜖 > 0 is the (small) relaxationparameter.At theexpenseofanadditional variable𝑣 = 𝑣(t, x) the relaxation
system (11) introduces a linear, hyperbolic approximation to Eq. (1). Using a Chapman–Enskog expansion in
𝜖 a formal computation shows that

𝜕tu(t, x)+ 𝜕x f (u(t, x)) = 𝜖𝜕x
(
(𝜆2 − f ′(u(t, x))2)𝜕xu(t, x)

)
+ O(𝜖2). (13)

Hence, u given by (11) is a viscous approximation to the solution U of Eq. (1). However, it needs to be pointed
out, that (11) is linear hyperbolic and therefore a similar decomposition as shown above might be possible.

The eigenvalues of the linear part in Eq. (11) are 𝜆 and −𝜆, respectively. For small values of 𝜖 we expect
𝑣 ≈ f (u) and therefore we set the following initial conditions for (u0, 𝑣0)

u(0, x) = u0(x) and 𝑣(0, x) = f (u0(x)). (14)

Diagonalizing system (11) using the variables

𝑤±(t, x) = 𝑣(t, x)± 𝜆 u(t, x) (15)

and
𝑣(t, x) = 1

2 (𝑤
+(t, x)+𝑤−(t, x)), u(t, x) = 1

2𝜆 (𝑤
+(t, x)−𝑤−(t, x)), (16)

respectively, yields the following system

𝜕t𝑤
+ + 𝜆𝜕x𝑤

+ = − 1
𝜖

(
𝑤+ +𝑤−

2 − f
(
𝑤+ −𝑤−

2𝜆

))
, (17)

𝜕t𝑤
− − 𝜆𝜕x𝑤

− = − 1
𝜖

(
𝑤+ +𝑤−

2 − f
(
𝑤+ −𝑤−

2𝜆

))
, (18)

Their corresponding initial conditions are

𝑤+(0, x) = f (u0(x))+ 𝜆u0(x) 𝑤−(0, x) = f (u0(x))− 𝜆u0(x). (19)

Following the procedure of the linear casewe introduce {𝜙 j(⋅)}Nj=1 a set ofN differentiable functions𝜙 j: 𝕋 → ℝ
for j = 1,… ,N. The initial data𝑤±

0 is then expanded using the truncated series

𝑤±
0 (x) =

N∑
j=1

𝛼±
j (0)𝜙 j(x), (20)

and the solution is expanded using the translated base functions

𝑤+(t, x) ≈
N∑
j=1

𝛼+
j (t)𝜙 j(x − 𝜆t) and𝑤−(t, x) ≈

N∑
j=1

𝛼−
j (t)𝜙 j(x + 𝜆t), (21)

respectively. Note that in the case f (u) = 𝜆uwe in fact have that (21) is exact. However, due to the nonlinearity
of the right-hand side of (17) and contrary to the linear case the previous ansatz (21) is in general not the exact
solution to (17) and (19).

A series expansion of the original variables (u, 𝑣) is obtained applying the linear transformation (16).
Hence, using ansatz (21) in Eq. (11) we obtain

𝜕tu+ 𝜕x𝑣 = 1
2𝜆

( N∑
j=1

�̇�+
j (t)𝜙 j(x − 𝜆t)−

N∑
j=1

�̇�−
j (t)𝜙 j(x + 𝜆t)

)
= 0, (22)
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𝜕t𝑣+ 𝜆2𝜕xu =
1
2

( N∑
j=1

�̇�+
j (t)𝜙 j(x − 𝜆t)+

N∑
j=1

�̇�−
j (t)𝜙 j(x + 𝜆t)

)
= − 1

𝜖
(𝑣− f (u)). (23)

Here, we did not expand 𝑣 and u in terms of 𝜙j in the right-hand side of Eq. (23) for the sake of readability.
Define the family of matrices t→M(t) ∈ ℝN,N by

Mjk(t) = ∫
𝕋

𝜙 j(x)𝜙k(x + 2𝜆t)dx, t ≥ 0, (24)

and the projected initial data b±k for k = 1,… ,N as

b±k =
∫
𝕋

𝜙k(x)
(
f
(
u0(x)

)
± 𝜆u0(x)

)
dx. (25)

Then, the following system for the evolution of the coefficients 𝛼± =
(
𝛼±
j

)N
j=1

is obtained

M(0)�̇�+(t)−M(t)�̇�−(t) = 0 (26)

M(0)�̇�+(t)+M(t)�̇�−(t) = − 2
𝜖

( 1
2
(
M(0)𝛼+(t)+M(t)𝛼−(t)

)
− F̃(t, 𝛼±(t))

)
, (27)

where F̃ = (F̃1,… , F̃N) and where

F̃ j(t, 𝛼±(t)) :=
∫
𝕋

𝜙 j(x) f (ũ(t, x + 𝜆t))dx, (28)

ũ(t, x) := 1
2𝜆

( N∑
j=0

𝛼+
j (t)𝜙 j(x − 𝜆t)− 𝛼−

j (t)𝜙 j(x + 𝜆t)
)
. (29)

This is a result of multiplying (23) and (22) by𝜙j(x − 𝜆t) for all j and integrating it over x on 𝕋 . The initial data
is given by

M(0)𝛼+(0) = b+ andM(0)𝛼−(0) = b−, (30)

following from multiplying by basis function and integration. Summarizing, for fixed N and 𝜖 > 0, the stiff
system (26), (27) and (30) determine the coefficients 𝛼±(t) and u given by Eqs. (21) and (16), i.e.,

uN(t, x) = 1
2𝜆

( N∑
j=0

𝛼+
j (t)𝜙 j(x − 𝜆t)− 𝛼−

j (t)𝜙 j(x + 𝜆t)
)
. (31)

Note that it is not clear a priori, if M(t) for t ≥ 0 is invertible, and therefore the governing equations are not
necessarily an ordinary differential equation, but possibly a differential algebraic equation. This point will be
discussed in more detail in the forthcoming section. For the further considerations, assume

(Assumption) ∀t ≥ 0: M(t) is invertible. (32)

Summarizing, under assumption (32) system (26) and (27) with initial conditions (30) yield the approxi-
mation (31) to the solutionU = U(t, x) of the nonlinear conservation law (1) on 𝕋 . The proposed approximation
(31) contains different approximation errors that have to be addressed in a numerical scheme. First, the solu-
tion is projected on the space spanned by the N functions 𝜙j. Since we expect discontinuities, the choice of
suitable functions 𝜙j is critical to the approximation error. Second, the derivation shows that uN given by
(31) in fact approximates the relaxation solution u to system (11) for some fixed 𝜖. However, analytically, the
sequence of weak solution u𝜖 to Eq. (11) converges weakly to the weak solution U to Eq. (1) as 𝜖 → 0 [21]. The
interplay of the obtained numerical errors with the choice of the parameters 𝜖 and N will be investigated in
the numerical results below.
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3.1 Properties of system (26)–(30)
Using the notation 𝛼 = (𝛼+, 𝛼−), we obtain(

M(0) −M(t)
M(0) M(t)

)
d
dt𝛼(t) = − 1

𝜖

(
0

[M(0),M(t)]𝛼(t) − 2F̃(t, 𝛼(t))

)
. (33)

The left hand side of Eq. (33) consists of a 2 × 2 block matrix. This matrix is invertible provided that for all
t ≥ 0M(t) is invertible. In this case the inverse is explicitly given by

1
2

(
M−1(0) M−1(0)
M−1(t) M−1(t)

)
(34)

By suitable choice of {𝜙 j(⋅)} j we can guarantee thatM(0) is invertible. In fact, if for all j, k = 1,… ,N

∫
𝕋

𝜙 j(x)𝜙k(x)dx = 𝛿 j,k (35)

holds true, thenM(0) is the identity matrix. Provided that 𝜙j is continuously differentiable we obtain under
assumption (35) that M(t) is invertible for t > 0 sufficiently small. Then, we obtain local existence and
uniquenessof solutions𝛼. However, the following simple example shows thatM(t) is notnecessarily invertible
for all t > 0. Consider 𝕋 = [−1, 1], N = 2, 2𝜆 = 1, 𝜙1(x) = sin(x𝜋) and 𝜙2(x) = sin(2x𝜋). Then, M(0) = Id and

M( 12 ) =
(
0 0
0 −1

)
.

3.1.1 Case of compactly supported translated base functions

Consider a compactly supported function𝜙0: 𝕋 → ℝ. For fixedΔx = 2
N sufficiently small, define the family of

base functions
𝜙 j(x) :=𝜙0

(
x − ( j− 1)Δx

)
, j = 1,… ,N. (36)

By definition of 𝜙j the base functions fulfill 𝜙 j(x) = 𝜙k
(
x − ( j− k)Δx

)
. For j = 1,… ,N, k = 2,… ,N we have

Mj,k(t) = ∫
𝕋

𝜙 j(x)𝜙k(x + 2𝜆t)dx =
∫
𝕋

𝜙 j(x)𝜙k−1(x + 2𝜆t −Δx)dx = Mj,k−1

(
t − Δx

2𝜆

)
(37)

which implies that

M(t) = Pk M
(
t − kΔx2𝜆

)
, k = 1,… , and t ∈

[
kΔx2𝜆 , (k + 1)Δx2𝜆

]
. (38)

The permutation matrix P is given by

Pi,mod( j+1,N) = 𝛿i, j, i, j = 1,…N. (39)

Hence, the family of matrices M(t) is for all t ≥ 0 uniquely defined by t→M(t) for t ∈ [0, Δx2𝜆 ). Since 𝜙0 is
defined on 𝕋 , we obtain thatM(t) is a circulant matrix, i.e., for i, j = 1,… ,N,

Mi, j(t) = Mmod(i+1,N),mod( j+1,N)(t). (40)

The familyofmatricesM(t) is thereforeuniquelydefinedbya familyof vectors c⃗ = c⃗(t) ∈ ℝN with cj(t) = M1,j(t)
for j = 1,… ,N and t ≥ 0. For circulant matrices the eigenvaluesΛM andm = 0,… ,N − 1 are

Λm(t) =
N−1∑
k=0

ck+1(t) exp
(
−2𝜋i mkN

)
. (41)
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The explicit eigenvalues (41) determine possible t such that M(t) is not invertible. We illustrate this on two
examples. Let 𝜙0(x) = 𝜒[−Δx

2 ,
Δx
2 ](x) and let 𝜙j be defined by Eq. (36). Then, there exists Δx > 0 and N such

that the supportΩj := suppx𝜙j(x) fulfills

Ωi ∩Ω j = ∅, i ≠ j, and∪N
j=1Ω j = 𝕋 . (42)

For this choice of {𝜙 j}Nj=1 the vector c(0) = (Δx,0,… ,0)T and c
(
Δx
4𝜆

)
= Δx

2 (1, 1,0,… ,0)T . Hence, ifN is even,

thenΛm

(
Δx
4𝜆

)
= 0 form = N

2 and henceM
(
Δx
4𝜆

)
is not invertible.

Similarly, if the support of𝜙0 is of sizeΔx, i.e.,𝜙0(x) = 𝜒 [−Δx,Δx](x), then c(0) = (c0, c1, c2,0,… ,0)T with
c0 > cj > 0, j = 2, 3 andM(0) is invertible. However, at time t =

(
Δx
4𝜆

)
and N ≥ 4 even, we obtain Λm = 0 for

m = N
4 . In the following, we discuss properties of the matrixM for the basis functions used in the numerical

results later on.
Hence, from now on we assume that 𝜙0 is given by

𝜙0(x) =
⎧⎪⎨⎪⎩

2x x ∈ [0,Δx]
4Δx − 2x x ∈ [Δx, 2Δx]

0 x ∉ [0, 2Δx]
(43)

and 𝜙j for j ≥ 1 are given by (36). There is equivalence if the circulant matrix is singular.

Theorem 3.1. A circulant matrix obtained from the vector c = [c0, c1,… , cn] is singular if and only if f (x) =∑n−1
i=0cixi and 1− xn have a common zero [33].

The matrix M(t) resulting from the given basis function is nonsingular almost everywhere. It is only
nonsingular at discrete time instances and then there is only one zero eigenvalue:

Theorem 3.2. The matrix M(t) given by (37) for 𝜙 given by (43) is nonsingular on the interval [0, 1
𝜆N ] as long as

t ≠ t∗ = 1
2𝜆N and the nullspace at t∗ is only one-dimensional.

Proof. In order to proof that the matrix is nonsingular we apply Theorem 3.1. The matrix is a circulant matrix
composed of the vector c = [c1,… , cN ], where c j= ∫𝕋𝜙1(x)𝜙 j(x + 2𝜆t)dx. In the given interval we have cj = 0
except for c1, c2, c3, cN . It is well known that the circulant matrix composed by c1,… cN has up to sign the
same determinant as cN , c1,… cN−1. Therefore we can consider this matrix instead. Hence, the polynomial is
given by

cN + c1x + c2x2 + c3x3.

Next, we show that no root of unity is a zero of that polynomial except at time t = t∗. □

Lemma 3.3. For c j(t)= ∫𝕋𝜙1(x)𝜙 j(x + 2𝜆t)dx the polynomial p(x, t) = cN(t)+ c1(t)x + c2(t)x2 + c3(t)x3 has only
a root of unity if t = t∗.

Proof. Assume that 𝜔 is a root of unity and also a root of p(x, t). Then 𝜔 is either complex, equal to 1 or −1.
However, 𝜔 = 1 cannot be a root of p as all cj are positive. If 𝜔 = −1 is a root we have that cN(t)− c1(t)+
c2(t)− c3(t) = 0. It is straightforward by the definition of cj to show that cN(0)− c1(0)+ c2(0)− c3(0) < 0 and
cN(

1
𝜆N )− c1(

1
𝜆N )+ c2(

1
𝜆N )− c3(

1
𝜆N ) > 0. Further, the derivative is positive in the given interval and therefore it

has exactly one zero in this interval. This is at t = t∗. If𝜔 is complex, then also �̄� has to be a root of p(x, t) and
then we obtain

p(x, t) = (x −𝜔)(x − �̄�)(𝛼 + 𝛽x)
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for some 𝛽 and 𝛼. Comparing the coefficients we get that

c1 = 𝛽 − 2𝛼R(𝜔) (44)

c2 = 𝛼 − 2𝛽R(𝜔) (45)

c3 = 𝛽 (46)

cN = 𝛼 (47)

and we obtain
R(𝜔) = c3 − c1

2cN
= cN − c2

2c3
.

This fraction is always less or equal to−1 and therefore 𝜔 can only be−1 which has been treated before. □

3.1.2 Differential algebraic nature of system (33)

As discussed in the previous sectionM(t) could be singular for base functions fulfilling (42). For the choices
discussed above M(t) is singular only at a single point in time t∗ within the interval

[
0, Δx2𝜆

]
, i.e., for the last

example t∗ = Δx
4𝜆 . Furthermore, there exists a vector e such thatM(t∗)e = 0 and for all vectors 𝑣 orthogonal to

that we haveM(t∗)𝑣 ≠ 0 unless 𝑣 = 0
Let V,W be the N × (N − 1) dimensional orthogonal matrices and f the vector orthogonal toW such that

WTM(t)V is invertible and f TM(t)V = 0. Then, decompose 𝛼− into

𝛼−(t) = 𝛼−
0 (t)e+ V�̄�−(t). (48)

For 𝛽 =
(
𝛼+, �̄�−, 𝛼−

0
)
problem (33) reads

⎡⎢⎢⎣
M(0) −M(t)V −M(t)e

WTM(0) WTM(t)V WTM(t)e
f TM(0) 0 f TM(t)e

⎤⎥⎥⎦
d
dt𝛽(t) =

1
𝜖

(
0

[M(0),M(t)]𝛽(t)− 2F̃(t, 𝛽(t))

)
. (49)

This system is not an ordinary differential equation at t = t∗, since M(t∗)e = 0. The resulting system is a
semi–explicit differential algebraic equation. We introduce a small parameter 𝜌 > 0 and regularize Eq. (49)
by ⎡⎢⎢⎣

M(0) −M(t)V −M(t)e
WTM(0) WTM(t)V WTM(t)e
f TM(0) 0 f TM(t)e+ 𝜌

⎤⎥⎥⎦
d
dt𝛽 = 1

𝜖

(
0

[M(0),M(t)]𝛽(t)− 2F̃(t, 𝛽(t))

)
. (50)

or in terms of 𝛼, we have[
M(0) −M(t)
M(0) M(t)+ 𝜌 feT

]
d
dt𝛼 = 1

𝜖

(
0

[M(0),M(t)]𝛼(t) − 2F̃(t, 𝛼(t))

)
. (51)

For 𝜌 > 0 the matrix is invertible and its inverse is given by[
M(0)−1(I +M(t)(2M(t)+ 𝜌 feT)−1) M(0)−1M(t)(2M(t)+ 𝜌 feT)−1

−(2M(t)+ 𝜌 feT)−1 (2M(t)+ 𝜌 feT)−1

]
. (52)

3.2 Temporal discretization and model order reduction
Fix a positive parameter 𝜌 > 0 and consider system (51) subject to initial conditions (30). Consider a temporal
grid tn = Δt n for n = 0,…, where for simplicity we consider an equi-distant grid in time. Denote by 𝛼±

n =
𝛼±(tn). Furthermore, denote by

N(t) :=M(t)+ 𝜌 feT .
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We rewrite (51) as
d
dt (M(0)𝛼+ −M(t)𝛼−) = −Ṁ(t)𝛼−, (53)

d
dt (M(0)𝛼+ + N(t)𝛼−) = Ṁ(t)𝛼− − 2

𝜖

( 1
2 (M(0)𝛼+ +M(t)𝛼−)− F̃(t, 𝛼±(t))

)
, (54)

where F̃ is givenbyEq. (28) and Ṁi, j(t)= ∫𝕋𝜙 j(x)𝜙′
k(x + 2𝜆t)2𝜆dx. An implicit discretizationof (54) is preferable

to resolve small scales of 𝜖. Since the term F̃ is an integral term in both 𝛼+ and 𝛼− a fully implicit discretiaztion
is computationally too costly. We therefore proceed using a semi-implicit discretization, i.e.,(

M0𝛼
+
n+1 −Mn+1𝛼

−
n+1

)
−
(
M0𝛼

+
n −Mn𝛼

−
n
)
= −ΔtṀn𝛼

−
n (55)

(
M0𝛼

+
n+1 + Nn+1𝛼

−
n+1

)
−
(
M0𝛼

+
n + Nn𝛼

−
n
)
= ΔtṀn𝛼

−
n − Δt

𝜖

(
M0𝛼

+
n+1 +Mn+1𝛼

−
n+1 − F̃n

)
, (56)

F̃n = 2F̃
(
tn, 𝛼±

n
)
, (57)

leading to the following system

[
M0 −Mn+1
M0 Nn+1

][
𝛼+
n+1

𝛼−
n+1

]
=

⎡⎢⎢⎣
M0𝛼

+
n −Mn𝛼

−
n −ΔtṀn𝛼

−
n

𝜖

𝜖 +Δt
(
M0𝛼

+
n + Nn𝛼

−
n +ΔtṀn𝛼

−
n
)
+ Δt

𝜖 +Δt F̃n

⎤⎥⎥⎦ (58)

As in Eq. (33) the left-hand side of Eq. (58) consists of a 2 × 2 block matrix

Rn+1 :=
[
M0 −Mn+1
M0 Nn+1

]

which is invertible provided that M(0) is invertible and 𝜌 is non-negative. In this case its inverse is given
by Eq. (52) evaluated at t = tn. Furthermore, F̃n and Ṁn = Ṁ(tn) needs to be discretized using a numerical
quadrature formula of sufficient high-order. Note that the previous formulation can be formally evaluated
for all values of 𝜖 (even 𝜖 = 0). However, since F̃n = F̃

(
tn, 𝛼+

n , 𝛼
−
n
)
the previous scheme requires a time step

restriction of the type
Δt ≤ C𝜖 (59)

for some constant C to be stable. Clearly, this leads to small steps for sufficiently small 𝜖. The only way to
circumvent this restriction is to discretize F̃ implicit. Since our focus is on themodel order reduction for system
(58), we leave the efficient computation of the fully implicit scheme for future investigation. For the sake of
completeness we also state the alternative fully explicit discretization as(

M0𝛼
+
n+1 −Mn+1𝛼

−
n+1

)
−
(
M0𝛼

+
n −Mn𝛼

−
n
)
= −ΔtṀn𝛼

−
n (60)

(
M0𝛼

+
n+1 + Nn+1𝛼

−
n+1

)
−
(
M0𝛼

+
n + Nn𝛼

−
n
)
= ΔtṀn𝛼

−
n − 2Δt

𝜖

( 1
2
(
M0𝛼

+
n +Mn𝛼

−
n
)
− F̃n

)
(61)

F̃n = F̃
(
tn, 𝛼±

n
)
. (62)

The same restriction (59) applies for this discretization.
Note that the original scheme [22] does not require a time step restriction of the order of 𝜖. This has

also been exploited numerically in so-called implicit–explicit schemes (IMEX) where the stiff term has been
discretized implicitly, see, e.g., [31, 34]. However, as in system (11) it is crucial that the nonlinearity is linear in
the underlying variable, here 𝑣. This allows also in the numerical scheme to have an explicit scheme without
time-step restriction even in the stiff case. On the contrary, after expansion in a series system (51) is nonlinear
in the coefficients 𝛼. Hence, an implicit or IMEX discretization cannot be solved analytically. So far, the basis
functions 𝜙, however couple the coefficients and this coupling prevents an analytically evaluation.
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3.3 Projection based model order reduction for system (26) and (27)
The previous formulation (58) is amendable for model order reduction. Hence, we approximate 𝛼±(t) ∈ ℝN

within a lower dimensional linear subspace of ℝN , meaning there exists V+ and V− such that 𝛼±(t) ≈
V±VT

±𝛼
±(t) and therefore an �̂�±(t) exists such that 𝛼±(t) ≈ V±�̂�

±(t).
Using this approximation we get the following

M(0)V+ ̇̂𝛼+(t)−M(t)V− ̇̂𝛼−(t) = 0 (63)

M(0)V+ ̇̂𝛼+(t)+M(t)V− ̇̂𝛼−(t) = − 2
𝜖

( 1
2
(
M(0)V+�̂�

+(t)+M(t)V−�̂�
−(t)

)
− F̃(t,V±�̂�

±(t))
)
, (64)

which is thenprojected toget a systemofordinarydifferential equation ina lowerdimension.WeuseaGalerkin
projection for simplicity. However, we solve for V±�̂�

± and then multiply the equation by the transpose of the
projections matrices V±:

̇̂𝛼+(t) = − 1
2V

T
+M

−1(0) 2
𝜖

( 1
2
(
M(0)V+�̂�

+(t)+M(t)V−�̂�
−(t)

)
− F̃(t,V±�̂�

±(t))
)

(65)

̇̂𝛼−(t) = −VT
−M

−1(t) 1
𝜖

( 1
2
(
M(0)V+�̂�

+(t)+M(t)V−�̂�
−(t)

)
− F̃(t,V±�̂�

±(t))
)
, (66)

As above, ifM(t) is not invertible we replace it by N(t).
In order to gain computation speed solving Eqs. (65) and (66) over the full system (51), we require the

right hand side to be evaluated fast and do not need the computation of vectors of the full size. This can
be done for arbitrary nonlinear flux function and arbitrary basis functions 𝜙, but it is not a trivial problem.
However, this paper is concerned with the proof of concept of the general method, namely the fact that the
solution of 𝛼 inℝ2N lives in a low-dimensional space and this fact can be exploited to create a reduced model
with standard methods for 𝛼.

4 Computational results
The theoretical findings are exemplified on a series of linear and nonlinear numerical examples. All compu-
tational results are obtained on torus 𝕋 = [−1, 1]. The matrixM(t) defined by Eq. (24) and the jth component
of the right-hand side F̃ are given by

Mj,k(t) =
1+𝜆t

∫
−1+𝜆t

𝜙 j(x − 𝜆t)𝜙k(x + 𝜆t)dx, F̃ j(t, 𝛼) =
1+𝜆t

∫
−1+𝜆t

𝜙 j(x − 𝜆t) f (ũ(t, x))dx, (67)

where ũ is given by Eq. (29). As base function we choose compactly supported, piecewise linear functions
fulfilling property (42).We divide the torus in cells [j− 1, j]Δxwhere for fixedN we setΔx = 2

N and j = 1,…N.
Then, the set of base functions {𝜙j: j = 1,… ,N} are defined by
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𝜙 j(x) =
⎧⎪⎨⎪⎩
x − ( j− 1)Δx x ∈ [ j− 1, j]Δx
( j+ 1)Δx − x x ∈ [ j, j+ 1]Δx

0 else
(68)

As shown above, the matrix M(0) is invertible for the previous choice of 𝜙j. Further, M(t) is invertible for
t > 0, except at the discrete time t𝓁 = 2𝓁+1

2𝜆N . The number of time steps is denoted by NΔt.
The further parameters are set as follows:

𝜌 = 𝜖, ; Δt = 1
2𝜖 and T = NΔtΔt. (69)

Since the basis function is only nonzero on a small interval, we exploit this in the numerical implemen-
tation within the MATLAB® built in function integral. At any time t = tn the matrix M is computed, we use
the fact that our basis functions 𝜙 is simply shifted as indicated above. This implies that we have to compute
only a single row of the matrix as the matrix is a circulant matrix. To be more precise, as only four of the
values are potentially nonzero, we only have to compute those. Besides M and N we have to also compute
F̃ at time tn. As 𝛼±

n are given we can define the function ũ(tn, x) and F̃ compute via a quadrature rule, which
we do by using the build in MATLAB® function integral. Once we have the initial values for 𝛼± and the
possibility to evaluate M and F̃ we use (58) to compute further timesteps of 𝛼±. Since we are only interested
in the qualitative behavior, we do not discuss the possibilities for improving this numerical computation In
the numerical results, we will first show that the approach using translated base functions yields qualitative
and quantitative correct solutions in the case of linear transport with and without nonlinear source terms,
showing that this discretization produces feasible solution. We then show, that a linear subspace in the solu-
tion space of 𝛼± produces correct results and with that the reducibility of the ordinary differential equation
in 𝛼. Secondly, we show that also for nonlinear transport the proposed method yields a good qualitative and
quantitative agreementwith standard results byfinite-volumemethods. The latter however are not amendable
formodel order reduction. In the case of strong shocks the reduction in dimension of the reducedmodel order
system is however not as significant as in the linear case. However, the computed reduced order system is
able to correctly reproduce solutions to different initial data. This example shows, that the chosen formu-
lation is amendable for model order reduction even in the nonlinear case and in the case of discontinuous
solutions.

4.1 Linear transport with nonlinear source
In order to validate the Ansatz (21) we present numerical results for linear transport equation with nonlinear
source term:

𝜕t𝑤(t, x)+ 𝜆𝜕x𝑤(t, x) = 𝛾𝑤2(t, x)+ 𝛿𝑤 (70)

𝑤(0, x) = 𝑤0(x) ≠ 0 (71)

Eq. (70) contains three parameters 𝜆 ≠ 0, and 𝛾, 𝛿 ∈ ℝ. The case 𝛾 = 𝛿 = 0 corresponds to a linear transport
equation. On the full space x ∈ ℝ the explicit solution to Eqs. (70) and (71) is given by

𝑤(t, x) = 1
e−𝛿t

𝑤0(x−𝜆t)
− 𝛾

𝛿
(1− e−𝛿t)

. (72)

for t sufficiently small such that (72) is well-defined. Due to the finite speed of propagation a numerical
comparison of approximation errors with the exact solution is possible provided that supp𝑤0(x) ⊂⊂ 𝕋 . In
this case the exact solution 𝑤(t, x) is given by Eq. (72) for x ∈ S(t) where S(t) :={x: x − 𝜆t ∈ suppw0} and
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2 2

2

Figure 1: Simulation result for a linear transport equation with a nonlinear right hand side with a solution ansatz as in Eq. (73)
for two different values of N and also a simulated reduced system arising from the larger system and a reduced order equivalent
to the size of the smaller one.

𝑤 = 0 zero else. The exact solution 𝑤(t, x) is defined for any t such that S(t) ⊂ 𝕋 . In the case of the linear
equation our Ansatz reduces to

𝑤(t, x) =
N∑
i=1

𝛼i(t)𝜙i(x − 𝜆t) (73)

In the numerical test shown in Figure 1 we choose 𝛾 = 2, 𝛿 = 1 and simulate until T = 0.5. We compute
the solution for N = 100 and a reduced model projected on a r = 30 dimensional subspace. We compare the
analytical solution, the solutionon the subspacewithN = 100and the solutionwithN = 30modes. The initial
value is given by𝑤0(x) = e−4x2 − e−1 on (−1∕2, 1∕2) and zero otherwise. Its approximation on the subspace is
also shown. As seen in Figure 1, we observe very good agreement between the reduced basis approximation
and the analytical solution. Clearly, higher-dimensional subspaces provide better agreement than lower
dimensional ones. This example indicates that the use of translate base functions leads to qualitative and
quantitative correct results in the linear case.

4.2 Relaxation approach for a linear problems
Consider the same linear flux as in the previous example. Here, we apply the relaxation formulation with
𝜆 = a and 𝜖 = 10−3 to the linear problem. Clearly, this is not necessary in order to solve the linear problem
but the numerical result following illustrates that no additional numerical approximation error appears.

The initial condition is
u0 = sin(𝜋x)

and the analytical solution is given by u(t, x) = u0(x − t). In Figure 2, we show initial condition and analytical
solution at final time T = 1. Figure 2 shows that using N = 40 basis functions the numerical solution is
indistinguishable from the analytical solution. Further, we observe that in this particular example a reduced
systemofdimension twocanalreadycapture the completebehaviorbecause that there is only linear transport.
For sake of completenesswe also show the result with only a single base function that is equal to zero. The test
case only contains smooth data and solution and as expected the a lowdimensional reduced base formulation
recovers the behavior well.
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2 2

Figure 2: Relaxation formula-
tion applied to a linear flux
f (u) = u and smooth initial data.
Shown are the numerical solu-
tion at time T = 1 with N = 40
piecewise defined basis func-
tion and r = 2 and r = 1 reduced
basis functions, respectively.

4.3 Burgers equation and approximation of Shock solution
We consider the relaxation formulation for Burgers equation, i.e., the flux is given by f (u) = 1

2u
2. Smooth

periodic initial data
u0(x) =

1
2 + sin(𝜋x)

on 𝕋 is considered. It is known that at time T = 1 a shock is formed due to the nonlinear transport. In Figure 3,
we show the quality of the proposed approximation for different numbers of base functions N. We choose 𝜆
larger than the norm of the initial data, i.e.,

𝜆 = 2

and
𝜖 = 10−3

for this test. In the subfigures of Figure 3, initial data and the solution at terminal time T = 1 is shown.
We observe that for N sufficiently large the expected shock is recovered in detail. For small N, we observe
a Gibb’s phenomenon due to the strong discontinuity of the underlying solution. To compare the solution
we also included a figure showing the result of a first-order finite volume scheme applied to the same
relaxation formulation. In particular, we observe that the size of the jump discontinuity is the same for the
proposed approximation and the finite-volume scheme. The latter is taken from reference [22] and the spatial
discretization is given byΔx = 1∕320. Since 𝜖 > 0 we observe in all simulations a slight decay of the maxima
and minima over time. For smaller values of 𝜖 the decay of the extreme values is expected to be smaller.
However, the time step of the proposed method scales with 𝜖 and this leads to inefficiencies in the numerical
scheme. Compared to the method [22], we cannot resolve in the regimeΔt > 𝜖.

In the previous convergence experiment, we left 𝜖 constant and increased only the number of basis
functions N. We also did an experiment with varying parameter 𝜖 shown in Figure 4. Here, we can see that
below 10−3 the results do not yield any qualitative difference. Therefore, we will use 𝜖 = 10−3 in the following
experiments.

In Figure 6 (the red curve), we observe decay of singular values in the solution such that we can derive
efficient model order reduction formulations in the classical sense. As expected the decay is not as significant
as in elliptic or parabolic problems.

4.4 Model order reduction for strong shocks
As a second example with nonsmooth data, we consider Burgers’ equations and initial data of the type

u0(x) = a(𝜒0,1∕2(x)− 1),
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Figure 3: Relaxation approximation to a solution to Burgers equation with smooth initial data (shown in red with circles). At time
T = 1 a shock develops that is captured by the proposed approximation for N sufficiently large (shown as continuous lines). In
red a comparison with a first-order finite volume scheme with N = 320 discretization points in space.

for a parameter a > 0. The value of a controls the size of the jump discontinuity. The solution u to Burgers
equation and the given initial data consists of a shock wave followed by a rarefaction. The latter wave
is a linear function. The parameter a also controls the speed of propagation of the shock wave due to
the Rankine–Hugonoit condition: the speed is s = −a 1

4 . For the numerical test we set 𝜖 = 10−3 and Δt =
𝜖

10 . In Figure 5 the initial condition and its approximation with a discretization of N = 160 are shown in
the left part of the figure. Small oscillations due to the strong discontinuity are visible. On the right we
show the solution for two reduced model order approximations as well as the full model and a reference
solution. The latter is computed as in the previous section using a second-order finite volume scheme
withΔx = 1

160 .
In Figure 6, we investigate the previously observed oscillatory behavior. To this endwe show the absolute

values of the normalized singular values of the reduced solutions in several cases, namely the case of smooth
initial data, the discontinuous case as well as the linear combination of both. The normalized singular values
giveanestimateon the sizeof the reducedproblemnecessary to capture the full dynamics.Here, a strongdecay
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2 2

2
2

Figure 4: Solution of Burgers
equation at time T = 0.2 for
a discretization with N = 80
basis functions and different
values of 𝜖.

2

2

2

2

2

2

Figure 5: Initial data and approximation with N = 160 base functions. The Gibbs phenomenon is observed at the discontinuity
(left). For a small set of base functions this phenomenon is also visible at terminal time T = 0.6 (right). For 80 base functions we
observe agreement with a classical finite-volume solution.

in the singular valueswould allow for a small reduced problem. In the case of a low number of base functions,
i.e., a small number of singular values, almost no decay in their absolute values are observed. However, for
smooth solutions a decrease in the absolute value of the singular values is observed. The decrease is more
pronounced compared with nonsmooth initial data and compared to themixed case. Even so the decay in the
absolute values of the singular values ismild comparedwith examples of parabolic and elliptic equations, the
results of Figure 5 show that model order reduction is still possible. In the forthcoming section, the dominant
modes are the basis of the reduced model.
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22

Figure 6: Singular values of a matrix of solutions u at different time instances computed with N = 160 base functions and for
different initial conditions. Decay. We show the singular values for three examples: the solution to a smooth initial profile
developing a shock (red), a solution to discontinuous initial data and for a linear combination of those initial conditions (green).
In all cases and compared with the distribution of singular values for a solution to parabolic or elliptic problems we observe no
exponential decay.

4.5 Model order reduction for different initial conditions
We use a reduced model obtained from a combination of the above initial conditions to predict model output
for different initial conditions. We consider the solutions to the two different initial conditions given in the
previous section. A reduced model from the dominant basis functions of the first two problems is obtained.
The solution to this reduced system for initial data given by Eq. (74) is compared with classical finite-volume
integration. The initial condition is chosen as a linear combination of two previous initial conditions.

u0 = sin(𝜋x)+ a
(
𝜒0,1∕2(x)− 1

)
(74)

22

Figure 7: Left: Initial condition on the full space and reduced space with r = 80 out of N = 160 base functions. Right: Solution at
time T = 0.3 on full and reduced space.
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with a = 0.2. Note that the solution u(T, x) is not a linear combination of the two previous solutions due to
the nonlinear nature of the problem. Hence, we generate computational efficiency by reducing the size of the
Ansatz space needed to solve for a given initial datum. Results are shown in Figure 7. The initial condition is
sinoidal with additional discontinuities. The reduced system solution at T = 0.3 as well as the finite volume
comparison show good qualitative and quantitative agreement. In this example we set the number of base
functions as N = 160, the dimension of the reduced space r = 80. The further parameters are 𝜖 = 10−3 as
above and Δt = 𝜖

10 . The results confirm that the chosen approach allows to efficiently apply a model order
reduction to hyperbolic problems.

5 Summary
Weproposeda relaxation formulationofhyperbolic conservation laws that allowsusing shiftedbase functions
for a formulation that is amendable for model-order reduction. The resulting discretized scheme is reduced
using snapshots in time and shows qualitative good approximation properties even in the case of shock
waves. The approach has been tested on linear hyperbolic problems with nonlinear source terms, but known
exact solution as well as nonlinear hyperbolic problems with strong shocks. A numerical investigation of the
approximation quality, the singular value decay as well as comparisons with classical finite-volume schemes
have been conducted.
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