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Abstract

The CONUS experiment, using four 1 kg-sized point-contact high-purity germanium detec-
tors (HPGe), aims to detect coherent elastic neutrino-nucleus scattering (CEνNS) in the
fully coherent regime. It is located close to the reactor core of the nuclear power plant in
Brokdorf, Germany. For the success of the experiment excellent background suppression
is crucial. A new opportunity for further background reduction is the analysis of the pulse
shape of each event. Depending on whether the incoming particle interacts in the fully
depleted bulk region or in an outer layer of the Ge diode, the resulting pulse shapes are
different. In this thesis, a technique will be presented to discriminate the different low
energy interactions based on a rise time fit of their pulses. It will be shown that the
rise time fit analysis can be used down to energies of ∼ 200 eV and that an additional
background reduction of about 25 % in the region of interest for CEνNS is achievable. For
this purpose, a new method will be presented to calculate the efficiencies of a pulse shape
cut, including systematic uncertainties. The universality of the rise time fit is shown by
demonstrating the feasibility of discriminating multi-site events at high energies.

Zusammenfassung

Das CONUS Experiment nutzt vier 1 kg große Punktkontaktdetektoren aus hochreinem
Germanium (HPGe), mit dem Ziel zum ersten Mal kohärente elastische Neutrino-Kern-
Streuung (CEνNS ) im voll kohärenten Bereich zu messen. Aufgebaut ist CONUS in der
Nähe des Reaktorkerns des Kernkraftwerks Brokdorf, Deutschland. Für den Erfolg des
Experiments ist eine hervorragende Hintergrundunterdrückung entscheidend. Die Analyse
der Pulsformen jedes Ereignisses bietet die neue Möglichkeit einer weiteren Reduktion des
Hintergrundes. Abhängig von der Interaktionsposition der einfallenden Teilchen in der Ge-
Diode, werden verschiedene Pulsformen erzeugt. Unterschieden wird zwischen Interaktionen
in dem völlig verarmten Hauptteil oder in einer äußeren Schicht der Diode. In dieser Arbeit
wird eine Analyse präsentiert, welche es erlaubt, die verschiedene niederenergetischen
Interaktionen zu trennen. Dazu wird die Anstiegszeit der Pulse gefittet. Es wird gezeigt,
dass diese Methode bis zu Energien von ∼ 200 eV funktioniert und in dem für die CEνNS
Analyse wichtigem Energiebereich eine zusätzliche Reduktion von ca. 25% ermöglicht.
Zusätzlich wird eine neue Methode präsentiert, welche es ermöglicht, die Effizienz einschließ-
lich der systematischen Unsicherheiten einer Trennung der Pulsformen zu berechnen. Die
Allgemeingültigkeit der Anstiegszeitmethode wird gezeigt, indem die Möglichkeit der Unter-
scheidung von Ereignissen mit mehreren Energiedepositionen bei hohen Energien demon-
striert wird.
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Chapter 1.

Introduction

The neutrino is the only fermion in the standard model (SM) with an electromagnetic
charge equal to zero. It can only interact via the weak interaction and its mass is orders
of magnitude smaller than the lepton masses [57]. Pauli first proposed the existence of
the neutrino in 1930 to explain the energy conservation in the β-decay [48]. After the
postulation by Pauli, it took 26 years until the electron-antineutrino was first detected by
the Reines and Cowan experiment at a nuclear power plant in 1956 [32]. In 1998, neutrino
oscillation was first detected by the Super-Kamiokande experiment [35] and confirmed
by the measurements conducted with the SNO experiment in 2002 [3]. As a result of the
oscillations, it is known that the neutrino has a non zero mass, in contrast to the SM, which
predicts the neutrino as a massless particle. Therefore, neutrinos provide up to now the
only solid evidence for physics beyond the standard model (BSM) [7]. Some of the most
important questions regarding the properties of the neutrinos are the mass ordering, the
absolute mass scale and whether neutrinos are Dirac or Majorana particles [7]. Due to the
small cross-section of the interaction with matter, massive detectors are used to measure
the properties of the neutrinos. As an example, the Super-Kamiokande detector has a
fiducial volume of 22.5 kilotons [35]. In 1974, D. Freedman predicted the existence of a
neutrino-nucleus interaction, the coherent elastic neutrino-nucleus scattering (CEνNS) [34].
Due to the coherency of the interaction, the cross-section is orders of magnitudes larger
than the one from the other neutrino interactions used for neutrino detection, allowing to
build more compact detectors [19]. Detectors aiming to measure this interaction can have
a target mass in the kg range. Expected signals however are very small, in the keV range
typically. Therefore, the interaction eluded detection for more than 40 years until the
COHERENT Collaboration achieved the first detection at a Neutron Spallation Source
in 2017 [4]. The CEνNS interaction allows to probe BSM physics [30] and measure SM
parameters, like the Weinberg angle, at low energies [44, 45]. Several experiments are
currently working towards a first detection in the fully coherent regime at a nuclear power
plant [5, 13, 15, 27–29, 31, 51, 54].
The CONUS experiment is one of the experiments working at a nuclear power plant
aiming at the first detection of CEνNS in the fully coherent regime. CONUS uses four 1
kg high-purity (HP) germanium (Ge) detectors, enclosed in an elaborated shielding. The
experiment is located only at 17.1 m from the reactor core and profits from an electron
antineutrino flux of 2.3 · 1013 s−1cm−2 [19]. In general, to achieve a detection, three main
experimental challenges need to be overcome: a strong neutrino source, a low energy
threshold and a low background [39]. Up to now, the CONUS experiment was able to set
the best current limit for the CEνNS interaction with Ge [17]. However, to achieve the
goal of a detection, the experiment’s sensitivity must be increased. With the new DAQ
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chapter 1. Introduction

system installed at the experimental site for RUN-5 (begin: May 2021), improvements in
terms of the noise threshold are expected. More importantly, the new data acquisition
(DAQ) system allows the recording of pulse shapes. Using the pulse shape, a further
background reduction is possible through pulse shape discrimination (PSD). In general,
PSD can be applied because events occurring in the active volume of the detector have
a different pulse shape compared to events occurring in the so-called transition layer [19].
The transition layer is an outer layer of Ge diode, where the charge collection efficiency is
below 100% [38]. Background events occur in the active volume and the transition layer,
while for the neutrino events, it can be assumed that they only appear in the active volume.
As a result, cutting away events produced in the transition layer will allow for additional
background reduction, while leaving the neutrino signals untouched. Other experiments
working with Ge detectors already showed that a PSD is possible [1, 50]. The goal of this
thesis is to develop a pulse shape analysis for the CONUS experiment from the beginning.
The PSD analysis can be used to suppress the background further and thus tackle one
of the three experimental challenges. In addition, it will help to better understand the
creation of the signals and thus help to better understand the behaviour of the detector.
In this thesis, a PSD analysis to distinguish between events created in the transition layer
or active volume will be developed. To differentiate between the different events, a function
will be fitted to each pulse and one of the fit parameters will be used as a discrimination
variable. The analysis will be implemented such that it can be used by the collaboration in
the analysis chain. Additionally, a new method will be developed to calculate the PSD-cut
efficiencies, including the systematics uncertainties.
The thesis is structured as follows: First, all foundations needed for the understanding of
the PSD analysis are presented (chapter 2). Then, the used methods will be introduced
(chapter 3), including a detailed analysis of the fit function and tests of different fit
functions and methods for PSD. Afterwards, the main results are presented, including an
example cut applied to reactor-ON data of the CONUS experiment (chapter 4). Also, the
chapter will include a description of the method developed to calculate the cut efficiencies.
In the end, the results are summarised, discussed and an outlook into future work is given
(chapter 5).
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Chapter 2.

Foundations

In this chapter, the foundations for this master thesis will be presented. First, coherent
elastic neutrino-nucleus scattering (CEνNS) will be explained (section 2.1) and the CONUS
experiment will be introduced (section 2.2). The CONUS experiment aims to measure this
interaction at a nuclear power plant. Afterwards, the functionality of the used high-purity
(HP) germanium (Ge) detectors will be described (section 2.3). In the end, the different
possible types of signals occurring in the Ge detectors will be introduced and the way on
which the signals are related to the experiment’s background will be explained (section
2.4).

2.1. Coherent Elastic Neutrino-Nucleus Scattering

Coherent elastic neutrino-nucleus scattering (CEνNS) is a standard model (SM) interaction,
which was first predicted in 1974 by D. Freedman [34] and was measured for the first time in
2017 by the COHERENT collaboration [4]. It is a flavour-blind neutral current interaction
of a neutrino scattering off a nucleus as a whole by the exchange of a Z-boson.

ν + NA → ν + NA (2.1)

where ν is the neutrino and NA is the target nucleus with the atomic mass A. Due to
the coherency of the interaction, the corresponding cross-section is orders of magnitude
larger than for other neutrino interactions, like the inverse beta decay (see Fig. 2.1). Even
though the cross-section is larger than for other neutrino interactions, the detection is
very challenging due to the small recoil energy of the nucleus, which is the only observable
quantity [45]. The increase of the cross-section comes from the coherency of the interaction,
which depends on the neutrino energy. For the coherency condition to be fulfilled, the
wavelength of the momentum exchange (Z-boson) needs to be larger than the size of the
nucleus. In terms of neutrino energy Eν , this translates to the following condition [49]:

Eν ≤ 1
2RA

≈ 197
2.5 3√A

[MeV], (2.2)

with RA being the radius of the nucleus. For for a Ge target, the interaction is fully
coherent for neutrino energies below 20 MeV. If the neutrino energy is larger, the cross-
section (see eq. 2.3) is suppressed by the form factor F (Q2). The form factor is a function
of the momentum transfer Q and describes whether the target nucleus is seen as a point-
like or extended object. For energies inside the fully coherent regime, the form factor is
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chapter 2. Foundations

Figure 2.1.: Comparison of the CEνNS cross-section for Ge to the elastic electron
antineutrino-electron scattering and the inverse beta decay channel as a
function of the neutrino energy. Plot by A. Bonhomme

equal to one and for larger energies, it decreases [17, 45].
The differential cross-section of CEνNS is shown below [39]:

dσ

dΩ
=

G2
f

16π2

(
N −

(
1 − 4 sin2 θW

)
Z

)2
E2

ν (1 + cos θ) F 2(Q2) (2.3)

with Gf being the Fermi constant, θW the Weinberg angle and θ the scattering angle. The
cross-section is proportional to the neutrino energy squared E2

ν as well as to the neutron
number squared (σ ∝ E2

νN2). The first proportionality comes from the coherence of the
scattering [39] and the latter comes due to the value of the Weinberg angle at low energy,
which is approximately sin2 θW ≈ 1/4 [57].
A wide range of interesting physics can be probed and investigated via the detection of
the CEνNS interaction. In the following, some examples are listed. A possibility to test
the SM, besides measuring the existence of CEνNS, is to determine the Weinberg angle
via the measurement of the CEνNS cross-section. The Weinberg angle is a fundamental
parameter of the electroweak theory and CEνNS allows measuring this value at a low
momentum transfer [44, 45]. A possibility to test physics beyond the standard model
(BSM) is to look at the neutrino magnetic moment. If a finite value different from zero is
found for a neutrino magnetic moment, this would indicate the existence of new physics
[12]. A neutrino magnetic moment would influence the spectral shape of the CEνNS
signal and can therefore be measured via this channel [44]. Moreover, new non-standard
neutrino quark interactions or new neutral current interactions would change the predicted
number of CEνNS events, allowing to probe these BSM models [30, 45]. Due to the form
factor appearing in the cross-section, CEνNS also offers the opportunity to investigate
the structure of the target nucleus [6]. This can be done by comparing measurements
of the cross-section in the fully coherent and incoherent regime. Furthermore, CEνNS
is interesting for direct detection dark matter (DM) experiments, like XENONnT. Direct
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2.1 Coherent Elastic Neutrino-Nucleus Scattering

detection experiments will soon become sensitive enough to measure the so-called neutrino
floor. The neutrino floor is an unavoidable background of solar neutrinos, atmospheric
neutrinos and neutrinos from the diffuse supernova background, undergoing CEνNS in the
DM detectors. Since the CEνNS interaction is producing the same experimental signature
inside the detector as potential DM (a nuclear recoil), it is important to know this process
precisely [16]. In addition, the knowledge gained by CEνNS experiments can be applied
to astrophysical models. For example, during a stellar collapse, about 99% of the energy
is released in neutrinos, which perform CEνNS while propagating outwards [39]. Last,
a more technical advantage of CEνNS is that due to the larger cross-section, smaller
and thus more practical neutrino detectors can be built. Such detectors could be used to
monitor nuclear power plants at a large distance from the reactor [39]. The examples above
clearly illustrate that it is of large interest to further investigate the CEνNS interaction
and measure it with high precision.
Looking at the cross-section (see eq. 2.3), a heavy nucleus with a high neutron number
seems favourable for the detection of CEνNS. However, the maximum of the observable
quantity, the energy of the nuclear recoil, is inversely proportional to the mass of the
nucleus. Therefore, from this point of view, a light nucleus is favoured. The maximal
recoil energy Tmax of the struck nucleus corresponds to a neutrino, reflected by the nucleus
and can be calculated with the following formula [30]:

Tmax = 2E2
ν

mnuc + 2Eν
, (2.4)

with mnuc being the mass of the nucleus. From both considerations, cross-section and
recoil energy, one finds that nuclei with medium masses are ideal for CEνNS detection.
One example for such a nucleus is germanium (Ge) with a proton number of Z = 32 and
a neutron number of N = 38 − 42 [39].
Considering a neutrino with an energy of 10 MeV hitting a Ge target, a maximal recoil
energy of Tmax ≈ 3 keV is expected. The recoiling nucleus frees charges inside the
Ge detector, which are collected and allow for an energy measurement in the standard
HPGe detectors operated at liquid nitrogen temperature. However, only a fraction of the
energy is converted into ionisation. Some of the other parts are transformed into phonons
and can not be measured by standard HPGe detectors, such as used by the CONUS
experiment. This process is called quenching effect and can be described by the quenching
factor Q, which is the ratio of the observed ionisation energy Eee and the total deposited
nuclear recoil energy Enr [39]. Assuming a quenching factor of Q=0.2 [39], the measurable
ionisation energy Eee from a 10 MeV neutrino is Eee = 600 eV. This illustrates, that a
very low energy threshold is necessary to be able to measure CEνNS in the fully coherent
regime.
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chapter 2. Foundations

Neutrino sources and experimental challenges

The two most promising sources for experiments trying to measure CEνNS are:

1. π decay at rest (π-DAR) sources

2. nuclear reactors

The first type of source was used by the COHERENT collaboration for the first detection
of CEνNS in 2017 [4]. COHERENT is located at the Spallation Neutron Source in Oak
Ridge (USA), where protons are shot at a mercury target. In the collision, fast neutrons
and pions are created. The pions can decay into three neutrinos: νµ, ν̄µ, νe, which have
energies of around 30 MeV. Due to the higher energies of the neutrinos, the scattering is
not completely in the fully coherent regime [39].
In nuclear power plants ν̄e are produced in the β−-decay of the fission products, created
in the nuclear fission chain reaction. Per fission, an average of 7.2 ν̄e are produced and
around ∼ 3 · 1019 fissions happen per second per GWth (thermal power) [39], leading to
an immense flux of neutrinos. The energy of the neutrinos is below 10 MeV, allowing for
a detection of CEνNS in the fully coherent regime [30]. Up to this day, no experiment has
been able to measure CEνNS at a nuclear power plant. Nevertheless, several experiments
are operating or planning to operate at a nuclear power plant with the goal of the first
detection in this energy range [5, 13, 15, 27–29, 31, 51, 54]. The CONUS experiment
introduced in section 2.2 is one of those experiments and is currently holding the best
limit for the detection of CEνNS with a Ge detector at a nuclear power plant [17].
The usage of different neutrino sources to measure CEνNS is complementary [30] and can
e.g. help to measure the nuclear form factor.
Three key requirements need to be achieved to detect CEνNS. First, a very low energy
threshold is necessary. As shown before, the ionisation energy, which can be measured in
Ge resulting from a 10 MeV neutrino is very small. Second, a high flux of neutrinos is
required to gather enough statistics with small compact detectors. Third, a stable and
low background level is necessary [39]. These three points are visualized in Fig. 2.2.

2.2. The CONUS Experiment

The COherent elastic Neutrino-nUcleus Scattering (CONUS) experiment is a reactor
neutrino experiment, aiming at the detection of CEνNS with Ge in the fully coherent
regime. It is carried out by the Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg
and the Nuclear Power plant in Brokdorf (KBR), Germany. The commercial nuclear
power plant, in which the experiment is located, is operated by the Preussen Elektra
GmbH [37]. The experimental site is within the containment sphere of the nuclear power
plant and can be entered at all times, also during the regular operation of the nuclear
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High signal strength

Low noise threshold

Low background

Figure 2.2.: Visualization of the three key experimental challenges needed to be overcome
in order to measure CEνNS. The three challenges are: low threshold, strong
neutrino source (high signal strength) and low background. Plot by W.
Maneschg.

reactor. A schematic overview of the power plant, including the location of the experiment
can be found in Fig. 2.3. Due to the short distance of 17.1 m from the reactor core
center and the maximum thermal power of 3.9 GWth, a ν̄e-flux of 2.3 · 1013 cm−2 s−1 is
available at the experimental site [17]. In addition, the experiment is located directly below
the spent-fuel-storage-pool and therefore an overburden to shield against cosmic rays of
10 − 45 m w.e.1, depending on the azimuth angle is achieved [17]. The reactor has a high
duty cycle, as well as a regular outage of up to a month per year, allowing for the collection
of reactor-OFF data (non-reactor correlated background) [19]. In December of 2021,
the nuclear power plant will be decommissioned, which will allow for a sufficiently long
reactor-OFF data measurement [30]. The conditions at the reactor site are by no means
laboratory conditions, making the site a challenging environment to operate an experiment
in. Examples of difficult conditions are changes in the environmental conditions, no remote
control access, and strict earthquake safety requirements for the experimental setups. Also,
due to safety reasons, no cryogenic liquids are allowed at the experimental site. Therefore,
the Ge detectors are cooled using electric cryocoolers. CONUS uses four 1 kg point contact
(PC) high-purity (HP) Ge detectors with an energy threshold E < 300 eVee

2 and an
excellent pulser resolution < 85 eVee [19]. Considering the dead layer of the detectors, a
total fiducial volume of 3.73 kg can be calculated [17]. The four detectors employed in the
experiment are named CONUS-1 to CONUS-4 and will be denoted in the following as C1
to C4. In addition to the four detectors, an additional detector CONUS-5 (C5) is available

1w.e. is the abbreviation for water equivalent.
2The notation for the unit is a convention to differ between nuclear recoil keVnr and ionisation keVee

energy.

7



chapter 2. Foundations
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Figure 2.3.: Schematic view of the nuclear power plant (KBR) and the position of the
CONUS experiment. Courtesy of construction office of MPIK.

at the Low-Level Laboratory (LLL) (overburden: 15 m w.e. [19]) of the MPIK to conduct
research and development. The detector is similar to C1-C4 and has a performance that
is not significantly worse, but it had a longer exposure to cosmic rays above ground [19].
Before installing the CONUS experiment on-site, a measurement campaign to investigate
the reactor-correlated neutron background was carried out. The campaign started in
December 2016 and was performed in cooperation with the Physikalisch-Technische Bundes-
anstalt (PTB). Afterwards, in the second half of 2017, the CONUS experimental setup
was assembled and tested at the LLL. In the beginning of 2018, the experiment was set up
at the reactor site, which took ∼ 4 weeks and in the subsequent 2 month, the experiment
was commissioned. Data collection started in April 2018 with an outage of the power
plant. Later in 2018, a dedicated campaign to measure the external γ-rays, which are
partly correlated to the reactor power, was conducted [39].
Since the start of data-collection optimizations were possible, for example, a more stable
temperature condition through an AC unit and a tent, which encloses the detector (cold
house) is achieved [19]. In addition, for RUN-5 the DAQ system was upgraded for all
four detectors. Now, the V1782 germanium module built by CAEN is used [26]. The new
DAQ system is capable of recording the pulse shape of each event, allowing for pulse shape
studies. That was not possible with the previously used system.

Background suppression: As explained in the previous section, one of the key require-
ments to be able to measure CEνNS is to have a low and well-understood background.
To suppress the different types of background at the experimental site, the CONUS
experiment has an elaborated shield. This shield is inspired by the GIOVE detector, which
is a material screening detector at LLL [41] and has an onion-like design. In Fig. 2.4, the
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2.2 The CONUS Experiment

Figure 2.4.: The left figure shows the configuration of the CONUS shield. The silver
outside layer is steel, the black layers are lead, the red layers are PE, the
white layers are borated PE and the blue layer is the active muon veto. The
four detectors are inside the Cu cryostats in the middle of the shield and
are connected to the cryocooler (outside) via Cu cool fingers. Courtesy by
construction office of MPIK. The photo on the right shows a picture of the
half-opened CONUS shield. Courtesy of Ralf Lackner (MPIK).

structure of the CONUS shield can be seen, as well as a picture of the experiment with a
half-opened shield and employed germanium detectors. The complete shield has a volume
of 1.65 m3 and weights 11 tons [17]. Therefore, the experiment is extremely compact. The
shield consists of a 25 cm thick layer of lead to shield the environmental γ ray background.
The innermost lead layer has a very high radiopurity to avoid radioactive decays inside the
lead close to the detectors. Moreover, the shield includes layers of borated polyethylene
(PE) (10 cm) and on the top and bottom, an additional layer of PE (5 cm) is added. The
borated and non borated PE can moderate and capture neutrons. The neutrons mainly
come from µ interactions inside the lead shielding and the surrounding concrete. Since
the experiment is operated at shallow depth, a high flux of cosmic muons is present. To
suppress the muon background, an active muon veto is included in the shielding. The
muon veto consists of organic plastic scintillators equipped with photomultiplier tubes
(PMTs). Additionally, these organic plastic scintillators work as a moderator for neutrons.
In the middle of the shield, the chamber for the detectors C1-C4 is located. The complete
shielding is included in a steel cage, which is constantly flushed with air to mitigate radon.
The air used for flushing comes from breathing air bottles, which are stored long enough
at the KBR, such that the radon can decay. In general, and especially close to the Ge
diodes, only materials with a high radiopurity were used to avoid contaminations. More
information about the shielding can be found in [38, 39]. The shield without the muon
veto is called passive shield, while the shield with the muon veto is called active shield.
As mentioned before, in order to get good knowledge about the reactor-correlated background
components, dedicated measurements were performed. The knowledge is very important
because the correlated background only appears if the reactor is running and is correlated
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chapter 2. Foundations

to the thermal power, the same as CEνNS signals would be. One of the reactor-correlated
backgrounds are neutrons, which are produced in the fission reactions inside the reactor
core. Similar to the potential CEνNS signal, these neutrons can produce nuclear recoils
inside the Ge. The second reactor-correlated background are γ-rays from the decays of N16,
produced by neutrons inside the cooling water of the reactor core. Therefore, this isotope
can be transported through the cooling pipe system relatively close to the experimental
site. In both measurements, it was found that the remaining reactor-correlated background
inside the shield is negligible compared to the overall background [38].
Another background is the cosmic activation of the Ge and the copper (Cu). These
materials can be activated through spallation by the hadronic part of cosmic showers
at the earth’s surface. The cosmic showers are created by particles (mostly protons)
from e.g. the sun or extragalactic sources hitting the upper atmosphere. In this process,
electromagnetic and hadronic showers are created. The produced isotopes inside the Ge
or Cu have half-lives of several years and therefore, can be a problematic background
during the lifetime of a CEνNS experiment. To shield this hadronic component at least
∼ 10 m w.e. of overburden are necessary, which is fulfilled at the CONUS experimental
site [39]. In order to minimize the activation during the production process, the materials
were stored underground as much as possible. In total, the Ge only was activated for 98 d
and the Cu for 102 d. Additionally, the activation history is precisely documented, which
allows for a calculation of the activity at any time [19].
In total, a background rate of the order of 10 counts day−1 kg−1 in the sub-keVee [19]
range is achieved. The background is modelled by a Monte-Carlo (MC) simulation and
is well understood. In addition, measurements showed that it is stable [19, 39]. All in
all, a reduction factor of the background without and with the shield of 104 is achieved.
A background spectrum without, with the passive shield and with the active shield can
be found in Fig. 2.5. A more detailed description of the experimental setup and the
background suppression can be found in [19, 39].
The pulse shape discrimination technique presented in this work provides the possibility
for a further background reduction.

First results: In February 2021, the first spectral fit result of the CONUS experiment was
published in a peer-reviewed journal. For the analysis, a total of 248.7 kg · d reactor-ON
and 54.8 kg · d reactor-OFF data from RUN-1 and RUN-2 was used [17]. With this data
set a 90%-confidence level (C.L.) limit for the CEνNS (SM) interaction as a function of the
quenching parameter k was determined. The result is shown in Fig. 2.6. The parameter
k comes from the modified Lindhard theory, which describes the energy dependence of
the quenching factor and roughly corresponds to the quenching factor at 1 keVnr [17]. It
was decided to calculate the limit as a function of the k-parameter because the quenching
effect has the largest influence on the amplitude of the expected CEνNS signal above a
given energy threshold, and the value at low energies was not well known. Therefore, the
CONUS collaboration conducted a dedicated measurement to determine the quenching
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Figure 2.5.: CONUS Background spectrum without any shield (black), with the passive
shield (red) and the active shield (blue). Plot is taken from [18]

.

factor for Ge. The first results give a k parameter of k = 0.164 ± 0.004 [20] and they
were presented in September 2021. Using this k parameter value, a limit for the CEνNS
rate of < 0.4 cts/kg/d can be determined [20]. This limit is a factor of 17 away from the
predicted standard model value. Currently, this is the best limit for CEνNS in the fully
coherent regime obtained from an experiment at a reactor site [17].

2.3. Germanium Detectors

In this section, germanium detectors will be introduced. First, it is explained how germa-
nium detectors work (section 2.3.1). Afterwards, it is discussed how a signal is generated
and processed (section 2.3.2).

2.3.1. Functionality of a Germanium Detector

For the CONUS experiment, low threshold p-type point-contact (PPC) high-purity (HP)
germanium (Ge) detectors are employed [19]. These detectors are semiconductors and
allow for a measurement of electric charges ionized by particle interactions inside the Ge
crystal. In the following, the basic principle of semiconductor detectors will be explained.
A more detailed discussion of semiconductors for the application in spectrometry can be
found in [36].
Regarding their conductivity, solids can be separated into three categories: isolators,
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Figure 2.6.: Limits for CEνNS from the CONUS experiment as a function of the
quenching parameter k. From this measurement, a quenching parameter
of k > 0.27 can be excluded. The figure is taken from [17].

semiconductors and metals. They differ in the structure of the energy bands. The energy
bands are formed from the energy levels of the single atoms inside a solid. Each energy
band can only be populated by a certain number of electrons. The fully populated energy
band with the highest energy is called the valence band. In order to move through the
material, electrons have to jump from the valence band into the next higher energy band
with free occupancy. This band is called the conduction band. If an electron is excited into
the conduction band, it creates a hole in the valence band. The hole can move through
the material and can be seen as a ’positive charge carrier’. Both the electron and the hole
contribute to the conductivity of the material. Between the energy bands are forbidden
regions for the electrons, called band gaps. The size of the band gaps are different for the
three types of solids [36].
For an isolator, the band gap is of the order of Eg ≈ 10 eV [36], meaning that the
energy from thermal excitation is not enough to raise an electron from the valence to
the conduction band. Therefore, no current will flow if an electric field is applied to the
material [36]. In the case of a metal, the valence band is not fully populated, resulting in
a continuous connection of the valence and conduction band. That means no band gap
exists and the electrons can easily be thermally excited into the conduction band, leading
to a good conductivity of the material [36]. For a semiconductor, the valence band is fully
populated, but the energy of the band gap is smaller than for an isolator. For example,
Ge has a band gap of Eg = 0.67 eV at a temperature of T = 77 K [39], which is achievable
for thermal excitations of the electrons into the conduction band [36].
The number of free charge carriers in a semiconductor can be increased by doping. In
this process, single atoms from different elements are implemented into the crystal. If the
implemented element has a valence electron more than the semiconductor material, the
additional electron will be accessible as a free charge carrier after the atom is integrated
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Figure 2.7.: In figure (a) a pn-junction without external voltage is shown and in figure
(b) a pn-junction with external voltage applied in reverse bias is shown. Plot
taken from [39].

into the crystal structure. These atoms are called donor atoms and the resulting semicon-
ductor is a n-type material. For Ge, lithium (Li) can be used as donor atom [39]. If an
element with one valence electron less is introduced into the crystal, a hole is formed. Such
atoms are called acceptors and the resulting semiconductor is a p-type material. For Ge,
boron (B) can be used as an acceptor [39]. If the concentration of acceptor or donor atoms
is very high, the different types of semiconductors are called p+ and n+, respectively. Due
to natural impurities, Ge semiconductors can be categorized into p- and n-type materials
[36].
To be able to use a semiconductor as a particle detector, a high voltage (HV) needs to
be applied to collect the free charges created in an interaction. Applying a high voltage
to the Ge semiconductor will result in a current called leakage current. That makes the
intrinsic semiconductor unsuitable to use as a detector. However, a detector can be built by
creating a pn-junction. For a pn-junction, a n-type and p-type semiconductor are brought
into contact. Through diffusion, some excess holes from the p-type material may diffuse
into the n-type material and some excess electrons from the n-type material diffuse into the
p-type material. Through this process, recombination of excess charge carriers happens,
forming at the interface a region without free charge carriers, called the depletion region.
The region can be extended by applying a high voltage in reverse bias [36]. A schematic
view of a pn-junction can be seen in Fig. 2.7. Charge carriers created in this depleted
region through interactions are collected by the cathode and anode. The depletion region
is the active part of the detector and the HV is chosen such that this region extends over
the whole Ge volume. In conclusion, the pn-junction reduces the leakage current and thus
makes a suitable ionisation detector [36].
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Figure 2.8.: Schematic view of a PPC HPGe detector as used in the CONUS experiment.
The dead layer has a thickness of the order of 1 mm, the transition layer of
the order of 0.2 mm and the passivation layer of the order of 100 nm [39].
The HV is applied between the p+ and n+ contact. Plot taken from [19].

Using Ge as a semiconductor detector for high-resolution spectroscopy is ideal due to the
available intrinsic high purity material. A high purity material allows to fully deplete the
detector with a HV that can be provided realistically and it minimizes the risk of charge
trapping. Thus a high charge collection efficiency can be achieved. Moreover, the energy
needed to create electron-hole pairs inside Ge is small. That leads to a large number
of free charge carriers per interaction and a better energy resolution. Due to the small
band gap, the Ge detectors are normally operated at temperatures around 77 K (liquid
nitrogen temperature, normally used for cooling) to reduce the leakage current due to
thermal excitation [39].
For the CONUS detectors, a p-type point contact configuration is used. A schematic view
of such a detector can be seen in Fig. 2.8. The n+ contact is on the outside of the p-type
material, forming the bulk part of the detector, except for the bottom side. On the bottom
side, the point-like p+ contact (used for readout) is located. The p+ contact is made by
B implantation and has only a diameter of a few millimetres. Between the p+ and n+
contact is the so-called passivation layer as isolation between the two contacts [19]. The
n+ layer is created by Li diffusion and has a thickness of the order of 1 mm [39]. On
the contrary, the passivation layer has a thickness of the order of 100 nm [39]. The outer
layer of the detector, the n+ contact, is called ”dead layer”. The dead layer has a charge
collection efficiency of ϵ = 0 and therefore, interactions inside this layer are not seen by
the detector. In contrast, the active volume (fully depleted region) has a charge collection
efficiency of ϵ = 1. In between these two parts of the detector is the ’transition layer’. This
layer has a charge collection efficiency of 0 < ϵ < 1 and increases gradually from 0 at the
dead layer to 1 at the active volume. The transition layer is created due to the diffusion of
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lithium atoms from the dead layer into the active volume and has a thickness of the order
0.2 mm [39]. If an interaction happens in this layer, the resulting pulse looks different
from the active volume events. These pulses are called ’slow pulses’ and are explained in
more detail in section 2.4.2.
The complete Ge diode is enclosed in a vacuum cryostat, connected via a cooling finger to
an electric cryocooler, able to cool down the diode to liquid nitrogen temperatures [19].

2.3.2. Signal Creation and Processing

This section describes the process from creating a signal inside the Ge detector until its
processing in the data acquisition (DAQ) system.

Signal creation: In the interaction of a particle with the detector, energy is deposited
inside the Ge crystal. If the deposited energy is large enough, an electron can be moved
from the valence band into the conduction band, leaving behind a hole in the valence band.
The number of electron-hole pairs Neh created in an interaction can be calculated with
the average energy needed to create an electron-hole pair ϵ [36]:

Neh = Edep
ϵ

, (2.5)

with the deposited energy EDEP. It means that the created charge in this interaction is
proportional to the deposited energy. For Ge, the average energy needed for electron-hole
creation is ϵ = 2.96 eV at a temperature of 77 K [36]. Without the presence of an electric
field, the electrons in the conduction band will de-excite and recombine with the hole
in the valence band. However, if an electric field is present, the holes and electrons will
drift towards the p+ and n+ electrodes of the diode, respectively. The drift of the charge
carriers induces a charge at the electrode, which can be measured. If the charge carriers
reach the electrodes, they do not further contribute to the signal [22]. To understand
the structure of the resulting pulse, we need to understand the time development of the
induced charge. The induced charge Q and induced current I created by a moving charge
q at a certain time t can be calculated with the Shockley-Ramo theorem [40]:

Q(t) = −qW
(
x(t)

)
, (2.6)

I(t) = qv · E(x(t)), (2.7)

where x(t) is the trajectory of the moving charge inside the detector, W (x) is the weighting
potential, v is the velocity of the moving charge and E(x) = −∇W (x) is the weighting
field. The weighting potential is a dimensionless form of the electric potential, calculated
by setting the considered electrode to unit potential, all other electrodes to zero potential,
and removing all charges from inside the detector [40]. In the case of the PPC Ge detectors,
the p+ contact is set to unit potential and the n+ contact to zero potential. The induced
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charge at the readout electrode, induced by the electron (e) and hole (h) cluster is [22]:

Q(t) = −qe · W
(
x(t)

)
− qh · W

(
x(t)

)
. (2.8)

That means that the induced charge will increase until all charges are collected at the
electrodes. At this time, the total induced charge is equal to the collected charge at
the readout electrode (qh). This observation can be confirmed by inserting unity for the
weighting potential at the readout electrode and zero at the other electrode into eq. 2.8
[22]. Under the assumption that no charge is lost during the drift process, the total
measured induced charge is directly proportional to the created charge and thus to the
deposited energy. However, some charges can be lost during the drift due to impurities or
defects of the crystal. There are two different mechanisms of charge loss. In the first case,
electrons and holes are trapped together, leading to recombination. Such a trap is called
”recombination centre”. In the second case, the charge carriers are trapped until they are
released through thermal excitation. This trap is called ”charge traps” [22]. If charge
loss appears, the collected charge is not proportional to the deposited energy anymore.
Therefore, for good energy reconstruction and resolution, detectors with high purity and
very few defects are necessary. For the CONUS Ge detectors, a net impurity concentration
of around 1012 Ge atoms per impurity is achieved [39]
The charge collection time depends on the velocity of the charge carriers and the position
where they are created. For low electric fields, the drift velocity depends on the electric
field strength. If the electric field is increased, the drift velocity increases as well. The
increase is roughly linearly until the drift velocity reaches a saturation velocity at high
electric fields and becomes independent of the electric field [36]. For holes and electrons,
the saturation velocity is v ∼ 107 cm s−1 and is reached at an electric field strength of
∼ 1000 V cm−1 [36]. In addition, also the drift direction relative to the crystal axes
influences the drift velocity [22]. Under the assumption that the saturation velocity is
reached and for a one-dimensional case, the charge collection time te/h can be calculated
as [36]:

th = x0/v and te = (xn+ − x0)/v, (2.9)

where x0 is the interaction position, xn+ is the position of the n+ contact and the position
of the p+ contact is set to zero.
The charge collection times for holes (th) and electrons (te) are different and depend on
the position of the interaction. Therefore, in general, the shape of the induced charge
signal depends on the interaction position. For the CONUS PPC detectors, the weighting
potential is sharply peaked at the readout electrode (p+ contact). In the rest of the
detector, the potential is rather small. A plot of the simulated weighting potential of C1
can be seen in Fig. 2.9. Since the induced charge is proportional to the weighting potential,
mainly the charges moving to areas with high potential will contribute to the signal. The
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Figure 2.9.: Simulated weighting potential of the C1 detector. The plot is kindly
provided by J. Hakenmüller and J. Hempfling.

created hole drifts to the p+ contact and thus will always drift through regions with a
high weighting potential. The electrons drift to the n+ contact and will mostly experience
a very low potential. Only if the interaction takes place close to the readout electrode,
the electrons will also see the high weighting potential. In conclusion, for most of the
interactions in a p-type detector (like in CONUS), the contribution from holes will be the
dominant part of the signal and the electrons will contribute little to nothing. Moreover,
the position dependence of the signal will be rather weak because the major part of the
signal is created close to the readout point.

Signal processing: The induced charge, collected at the readout point, is transformed
into a voltage by a charge sensitive preamplifier (CSP), coming directly after the detector
in the electronics readout chain. A representation of the CONUS signal detection and
amplification electronics chain can be found in [19]. The voltage created by the CSP is
directly proportional to the induced charge and, therefore, to the deposited energy. Events
are characterized by an increase relative to the lowest voltage level of the CSP, called the
baseline [39]. The baseline is not flat but is characterized by noise fluctuations. In order
for the CSP to continuously collect charges, the previous collected charges need to leak
away. Otherwise, the CSP will reach the maximal amount of charges it can accumulate
(dynamic range) and thus cannot detect further events [36]. A commonly used type of
preamplifier for HPGe detectors is the resistive feedback preamplifier (RC preamplifier).
Such a preamplifier has an additional resistor built in parallel to the charge collection
capacitor. That allows the capacitor to discharge, resulting in an exponential decay of
the pulse back to the baseline. The CONUS detectors have a transistor reset preamplifier
(TRP). The TRP adds up all events coming in until the dynamic range is reached. If
this is the case, a transistor reset circuit brings the voltage level back to the baseline. A
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Figure 2.10.: Schematic view of the signal created by a transistor reset preamplifier
(TRP). The plot is taken from [39].

schematic view of this process is shown in Fig. 2.10. During the reset, no pulses should
be recorded to avoid spurious events. Therefore, the reset time will be vetoed and add up
to the dead time3 of the detector. In general, the reset takes O(10 µs) [39], however, the
TRP veto time window has been chosen to be longer (for RUN-5: O(800 µs)) to ensure
that a stable baseline is recovered. Comparing both preamplifiers, the TRP has two main
advantages. First, the RC preamplifier has an intrinsic noise, coming from the resistor
and adding up to the overall noise budget. In contrast, the TRP does not have this noise
and is therefore preferred for low threshold measurements. Secondly, the TRP does not
lock up in the case of a high count rate. The RC preamplifier instead will lock up for high
count rates. That will happen if the time between two pulses is so short that the first
pulse does not decay far enough, such that the second pulse reaches the dynamic range
[36]. For the CONUS experiment, the count rates from physical events are rather low,
but high count rates are necessary to study the noise in detail [39]. To minimize thermal
noise, the TRP is close to the Ge diode inside the cryostat and therefore cooled down to
cryogenic temperatures [39].
After the preamplifier, the signal is feed into the DAQ, where it is amplified and the
energy is extracted. For the CONUS experiment, the signal is split after the preamplifier
and processed by two different DAQ systems. In the experiment’s first data runs (RUN-1
to RUN-4), only one DAQ, the Canberra Lynx Digital Signal Analyzer (in the following
named Lynx), was used. This DAQ system extracts the signal energy via shaping filters
and gives as an output the energy and timestamp of each event [39]. For the last data
run (RUN-5, begin: May 2021), an additional DAQ system, the Ge module V1782 from
CAEN [26] (in the following named CAEN) is added. With this DAQ, not only the time
and energy information can be extracted but also the shape of the recorded signal. That
enables a pulse shape analysis. In addition to the module V1782, the module V1725 from

3The dead time is the time of the measurement, where no events can be recorded. That can, e.g., happen
due to TRP resets.
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Figure 2.11.: Example pulse recorded with the CAEN and the C1 detector. The blue
region marks the part of the pulse, where the baseline is visible, the rise
time of the pulse is marked with orange and the green region marks the
exponential decay of the pulse. The shown pulse has an energy of E =
28.9 keV.

CAEN [25] is added for RUN-5. The module V1725 records the timestamp of the TRP
reset and of the µ-veto, allowing for an offline TRP reset veto cut and µ-veto cut. The
input channels of the CAEN are AC coupled creating an exponential decay for the input
signal back to the baseline. The exponential decay is created for each single event and
the decay constant is determined by the electronic components of the AC filter inside the
CAEN. For energy reconstruction, a shaping algorithm based on the Jordanov trapezoidal
filter [42] is used. The algorithm produces a trapezoid, where the height of the flat top
is proportional to the height of the input pulse and, therefore, proportional to the energy
of the event. In order to extract the energy, the height of the trapezoid is measured in
the flat top region and saved in ADC channels. The number of ADC channels is fixed
and corresponds to the dynamic range of the DAQ. For the conversion of the energy in
eV, a calibration needs to be performed, relating the channel number to an energy in
eV. Changing settings of the CAEN, monitoring the data acquisition and collecting the
data is done with the CoMPASS software [24]. CoMPASS enables the user to change
a variety of different settings. An explanation of all the different settings is beyond the
scope of this work. However, two interesting settings for recording the pulse shapes are
the recorded time window ∆twindow and the recorded time before the pulse tpre−trig. The
first setting sets the length of the time window around the pulse. As a standard, a value
of ∆twindow = 20000 ns is chosen. A discussion of different window sizes can be found in
appendix A.2. Using this time window a part of the baseline, the complete increase and
a major part of the exponential decay are visible. For the second setting, which sets the
time recorded before the trigger, a standard value of tpre−trig = 5000 ns is chosen. A plot
of an example pulse recorded with the CAEN is shown in Fig. 2.11.
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2.4. Pulse Shapes of the CONUS Detectors

In this section, characteristics and features of the pulses measured with the CONUS
detectors will be discussed (section 2.4.1) and the different signal types will be classified
(section 2.4.2). Afterwards, the different possible particle interactions in Ge are explained
and what kind of signals they produce will be discussed (section 2.4.3). In the end, it will
be explained why the pulse shape discrimination can be used in the CONUS experiment
for additional background suppression (section 2.4.4).

2.4.1. Characteristics and Features

In this section, the most important characteristics of the recorded pulses are introduced.
In addition, two features appearing in the recorded pulses are discussed. An example of a
recorded pulse with the C1 detector can be seen in Fig. 2.11.

Rise time: The rise time is defined as the time needed for the pulse to rise from 10%
to 90% of its height [36]. The quantity is energy independent because the time structure
of the pulse purely depends on the electric field inside the detector through which the
charges are drifting (see section 2.3.2). Instead, the deposited energy or created charge q
is only a scaling factor for the pulse (see eq. 2.6). That means, with increasing energy, the
rise time stays the same, but the slope of the rising edge and the amplitude of the pulse
is changing. The rise time of the recorded pulse shown in Fig. 2.11 is marked in orange.

Exponential decay: In order for the next pulse to be processed correctly by the DAQ
system, the exponential decay created by the AC coupling of the DAQ system brings the
pulse back to the baseline. Since the decay is created by the DAQ system, the decay
constant is equal for all recorded pulses. The time range where the shown pulse in Fig.
2.11 decays exponentially is marked in green.

Baseline: The baseline is the lowest voltage level coming from the preamplifier without
any increase due to physics events [39]. In the recorded data, the baseline can be seen in
the first few 100 ns of the pulse. The time range where the baseline of the pulse shown in
Fig. 2.11 is visible is marked in blue.

Next, two features will be discussed, appearing not in all events or detectors. For inves-
tigating these features, mean pulses are used. In this work, a ’mean pulse’ will always be
a pulse, calculated by taking the mean of all pulses of a certain type (for example: all
pulses with an energy between 29-30 keV). A plot showing different mean pulses can be
found in Fig. 2.12. The plot shows three mean pulses coming from a Th-228 measurement
with the C1 detector (green/red/violet). A short explanation of the most frequently used
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Figure 2.12.: Different mean pulses for the C1 detector. For the mean pulse ’pulse 100’
(’pulse 1300’) the pulser measurement with an input rise time for the pulser
of 100 ns (1300 ns) was used (pulse 100: blue, pulse 1300: orange). For the
other three mean pulses, physical events are used, with energies around
E ≈ 15 keV. The used populations for the calculation are the slow pulse
population (violet), the normal pulse population with a pre-increase (red)
and the normal pulse population without a pre-increase (green).

measurements can be found in Appendix A.1. These pulses are calculated using normal
and slow pulses (the difference between normal and slow pulses will be explained in section
2.4.2), while the normal pulses are further split into two populations, showing a different
behaviour in the functional form of the pulse. All three populations are obtained by
applying the rise time fit to the data (the rise time fit will be explained in section 3.1.3).

Bump: At the highest point of the normal pulses, a small ’bump’ is visible. The bump
appears only in the detectors C1 and C4. To check if this feature comes from the electronics
or the Ge diode, a measurement with a pulser was conducted. The pulser can be used
to test the electronics chain independent from the Ge crystal by sending generated pulses
through the electronics chain. In order to test if the bump comes from the electronics,
pulses with different rise times were sent through the electronic chain and were recorded
with the DAQ. The Tektronix AFG 3252 [52] was used for the measurement, operated in
the Pulse mode. In this mode, the generated pulses have a linear increase and the rise
time of the leading edge of this increase can be chosen. Two different rise times for the
pulses were selected, for the measurement: 100 ns (pulse 100) to mimic normal pulses and
1300 ns (pulse 1300) to mimic slow pulses. For this measurement, the C1 detector was
used. The resulting mean pulses of these measurements are also shown in Fig. 2.12. In
this figure, it is visible that the pulses with a leading edge of 100 ns have the same bump
as the normal pulses coming from the Ge crystal. In conclusion, the bump seen on top of
the normal pulses is an effect coming from the electronics chain of the detector and not
from the Ge crystal.

21



chapter 2. Foundations

0 10 20 30 40 50 60
distance to p+ contact [mm]

0.0

0.2

0.4

0.6

0.8

1.0

we
ig

ht
in

g 
po

te
nt

ia
l

Figure 2.13.: Simulated 1D weighting potential of the C1 detector. Plot made by J.
Hakenmüller and J. Hempfling

Pre-increase: The second feature can be seen by comparing the two normal pulses from
Fig. 2.12. It can be seen that one of them (red) has a small increase before the main
increase of the pulse (pre-increase), while the other pulse (green) stays mostly flat in this
part. The feature appears in all four detectors (C1-C4). Since the normal pulse from the
pulser does not show a pre-increase, we can conclude that the effect must come from the
Ge crystal. The pre-increase could come from the interaction position inside the Ge diode.
To investigate this possibility, a simple one-dimensional example calculation of the pulses
can be performed. Equation 2.8 can be used for the calculation and a one-dimensional
version of the weighting potential is needed. The weighting potential for C1 (see Fig. 2.13)
is kindly provided by J. Hakenmüller and J. Hempfling and comes from an electric field
simulation. The time-dependent position of the holes xh(t) and electrons xe(t) inside the
Ge diode is calculated assuming that both charge carriers reach their saturation velocity
of v ∼ 107 cm s−1 [36]

xh(t) = x0 − vt and xe(t) = x0 + vt (2.10)

with x0 being the interaction position. In the calculation, the x-axis is chosen such that
the p+ contact is at x = 0 mm. Combing all this into eq. 2.8 pulse shapes can be
calculated. Figure 2.14 shows the result of these calculation with starting positions at
different interaction points. The pulses are shifted in time such that the increase overlays
(replicating the effect of the pre-trigger of the DAQ). All pulses are created with a charge
of the charge carrier clusters equal to |qe| = |qh| = 1. From Fig. 2.14 we can conclude
that interactions close to the p+ contact (small x0 value) will create pulses with a weaker
or close to no pre-increase, depending on their distance to the read-out contact. The
interactions happening farther away from the p+ contact (larger x0 value) will create
pulses with a pre-increase, similar for different positions inside the diode.
Also, in Fig. 2.14, it can be seen that the pulses differ shortly before they reach their
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Figure 2.14.: Calculated pulses using eq. 2.8 and the weighting potential from Fig. 2.13.
For the calculation, different interaction positions are chosen. The x0 gives
the interaction position, which is the distance from the p+ contact. The
calculation is done in one dimension only.

maximum. Responsible for the effect is, that for events close to the p+ contact, the
electrons shortly drift through an area with a high weighting potential. Therefore, the
electrons will contribute to the signal as well. In contrast, for events happening further
away from the contact, only the holes drift through areas of high weighting potential and
contribute to the pulses.
In conclusion, we could show based on a simple simulation that this pre-increase is an
effect coming from the interaction position of the event inside the Ge diode.

2.4.2. Classification

In the following, the different signal types occurring in the detector will be introduced
and classified. A signal can be assigned to more than one category. For example, the
single-site events are also either normal or slow pulses.

Normal pulses: Signals produced by interactions inside the active volume of the detector
are categorised as normal pulses. The pulse shape can be slightly different depending on
where the interaction happens in the detector, but the major part of the pulse is expected
to be similar for all normal pulses. To be more precise, pulses with and without a pre-
increase (see section 2.4.1) are expected. The rise time of the normal pulses is relatively
short and of the order of O(200 − 300 ns). An example of a normal pulse can be seen in
Fig. 2.15 a).

Slow pulses: Interactions happening inside the transition layer of the Ge diode are
called ’slow pulses’. In this case, the created holes need to diffuse out of the transition
layer, before drifting towards the p+ contact. Due to this process, the rise time of the
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Figure 2.15.: Different signal types (section 2.4.2). The pulses are all recorded with the
C1 detector. Figure a) shows a normal pulse, figure b) shows a slow pulse,
figure c) shows a MSE, figure d) shows a TRP reset event, figure e) shows
a saturation event and figure f) shows an exponential decay event.

pulse will be longer than for normal pulses. ’Slow’ refers to the larger rise time compared
to the normal pulses. In addition, the Li atoms inside the transition layer can trap charges,
leading to an incomplete charge collection. Therefore, the energy of a slow pulse event
is not reconstructed correctly and is smaller than the deposited energy [19, 39]. The rise
time for slow pulses is of the order of O(1000 − 2000 ns). An example of a slow pulse can
be seen in Fig. 2.15 b).

Single-site events: All events where only one energy deposition is detected are classified
as single-site events (SSE). That means all normal pulses and slow pulses with only one
energy deposition are SSE. If the distance between two energy depositions is smaller than
the spatial resolution of the detector, they will also be classified as SSE.

Multi-site events: In a multi-site event (MSE), multiple energy depositions are detected
inside the detector within a single event. If the event is classified as a MSE, the distance
between the two energy depositions is larger than the spatial resolution of the detector.
An example of an interaction creating MSE is Compton scattering, where the same γ can
scatter multiple times inside the crystal. In Fig. 2.15 c), an example for a recorded MSE is
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2.4 Pulse Shapes of the CONUS Detectors

shown. A MSE can consist of multiple normal, multiple slow pulses and from the mixture
of normal and slow pulses.

Unphysical events: All events that did not arise from physical interactions or have
features that make a correct energy reconstruction impossible are classified as unphysical.
A first example of an unphysical event is a saturation event. In a saturation event, the
voltage created by the preamplifier is larger than the dynamic range of the DAQ or
preamplifier. Therefore, the system saturates and the pulse becomes artificially flat at the
point of saturation. Saturation makes the energy reconstruction for the event impossible.
An example of a saturation event can be seen in Fig. 2.15 e). The DAQ system can
identify the majority of these events and flag them. Using the flags, it is possible to cut
away most of these events. A second example are pile-up events. In the case of pile up,
the time difference between two events is so short, that the energy of the second event
cannot be reconstructed correctly [39]. Most of these events can also be identified by the
DAQ system, such that they can be cut. Another type of unphysical signals are events
happening during the TRP reset. An example of how such an event can look like is shown
in Fig. 2.15 d). Due to the reset of the preamplifier, the recorded signal gets distorted,
making a correct energy reconstruction impossible. Moreover, the time of the TRP reset
is recorded, making it possible to cut such events. The last example are events where
only the exponential decay of the pulse is visible (see Fig. 2.15 f)). In this case, it clearly
makes no sense to reconstruct the energy. Overall, this kind of events need to be filtered
out, otherwise, they can falsely contribute to the spectrum. A possibility to cut the events
with an exponential decay is discussed in section 3.2.4 (quality cuts).

2.4.3. Sources of Different Pulse Shapes

In the following, the interactions of different particles with Ge and the resulting pulse
shapes will be introduced. That is necessary to understand why pulse shape discrimination
(PSD) can be employed for background reduction.

Electromagnetic radiation: In general, the intensity of incoming γ-rays follows the
Beer-Lambert law when travelling through matter. The Beer-Lambert law is [36]:

I(x) = I0e−µ(E)x, (2.11)

with µ(E) being the attenuation coefficient, E being the energy of the incoming γ-ray, x
is the length over which the attenuation takes place and I0 is the starting intensity. The
value of the attenuation coefficient depends on the energy of the incoming particle. A plot
of the energy dependence of the mass attenuation coefficient for γ-rays in Ge can be found
in Fig. 2.16. For the conversion to the attenuation coefficient from eq. 2.11, the mass
attenuation coefficient has to be multiplied by the density of the absorber material [36].
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Figure 2.16.: Mass attenuation coefficient µ(E) for γ-rays in Ge. Taken from [14].

There are three main interactions of γ-rays with matter (summarized in Tab. 2.1).
Photoelectric absorption: During photoelectric absorption, the photon is absorbed
by an electron in the shell of the atom. The electron is kicked out of the shell, having
the energy of the photon minus the binding energy. In principle, the nucleus performs a
small recoil, but the energy going into the recoil is small, such that it can be neglected
for all practical reasons. The vacancy left in the electron shell is filled by an electron
falling down from a higher shell. During this process, a characteristic X-ray is emitted
(X-ray fluorescence). Alternatively, the energy from the electron filling the vacancy can
be transferred to another electron in the shell, which leaves the atom (Auger cascade) [36].
Electrons on the K-shell are most likely to be ejected from the atom if the photon energy
is high enough. Due to the fact that different electronic shells become available at different
energies, it results in the characteristic form of the attenuation coefficient for photoelectric
absorption. Going towards higher energies, a jump in the attenuation coefficient appears
if a binding energy of the next atomic shell is reached and thus becomes available [36].
In the case of X-ray fluorescence, the ejected X-ray will undergo photoelectric absorption
again until the complete energy is deposited. If the event occurs close to the surface or in
a small detector, the X-ray can scatter out of the detector [36]. Overall, it can be assumed
that the complete energy is deposited inside the detector and that the resulting event is a
SSE. The photoelectric absorption is dominant for energies below E . 100 keV [14]
Compton scattering: Compton scattering is dominant for energies from 100 keV to
several MeV [14]. If a γ-ray performs Compton scattering, part of its energy is transferred
to an electron. The amount of transferred energy depends on the scattering angle and the
γ-ray can scatter multiple times until the complete energy is deposited or until leaving
the detector. Therefore, due to Compton scattering, SSE and MSE are expected. If
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2.4 Pulse Shapes of the CONUS Detectors

Table 2.1.: Summary of the different electromagnetic interactions and their resulting
pulse type.

dominant energy range resulting pulse type
photoelectric absorption . 100 keV SSE
Compton scattering ∼ 100 keV − several MeV SSE and MSE

FEP: MSE
pair production & several MeV SEP: MSE

DEP: SSE

the complete energy is deposited inside the detector, the event contributes to the full
energy peak (FEP) and if only part of the energy is deposited, it appears in the Compton
continuum below the peak [36, 39].
Pair production: In this process, the incoming γ-ray creates an electron-positron pair
inside the detector. The interaction can only happen in the Coulomb field of an atomic
nucleus or an electron. If the interaction occurs in the vicinity of a nucleus, the energetic
threshold is at least twice the electron’s rest mass E ≥ 1022 keV. For the interaction
in the Coulomb field of an electron, the threshold is at least four times the electron’s
rest mass [36]. In both cases, the energy of the created electron and positron is half the
energy of the incoming γ-ray. After the positron is slowed down in the detector material,
it will recombine with an electron. During this process, two photons with an energy of
E = 511 keV are emitted back-to-back. Since the time needed for the positron to slow
down is very short (O(1 ns)) relative to the charge collection time, the recombination
after the pair production can be seen as immediate [36]. The two photons created during
recombination can deposit their energy or escape the detector, leading to three observable
peaks. First, if both photons deposit their energy inside the detector, the event contributes
to the FEP. Events contributing to the FEP have a high probability of being MSE because
the interaction produces a localized energy deposition from the electron and positron and
at least one energy deposition from each recombination photon [22]. For events in the
second peak, one of the two photons escapes the detector without scattering, resulting
in an energy reduced by 511 keV relative to the FEP. The resulting peak is called single
escape peak (SEP). Again, the event is with a high probability a MSE [22]. If both
photons leave the detector without scattering, the event contributes to the double escape
peak (DEP). The DEP is located at an energy of 1022 keV below the FEP. In contrast
to the first two peaks, the DEP events have a high probability of being SSE because only
the localized energy deposition of the electron and positron contributes to the pulse [22].
Pair production is the dominant interaction for energies higher than several MeV [14].
The mean free path λ of γ-rays inside Ge depends on their energy. For photons with an
energy of O(1 MeV), the mean free path is several cm and for an energy of E ≈ 100 keV,
it is O(0.1 cm) [39]. From the mean free path, it can be deduced that depending on their
energy, γ-rays will interact more or less in the transition layer or active volume, producing
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slow and normal pulses. Since the mean free path gets smaller for lower energies, it is
expected that the fraction of slow pulses increases for lower energies.

Neutrinos: There are several different possible interactions of neutrinos with matter.
However, for this thesis, we will concentrate on CEνNS. If a neutrino scatters off a nucleus,
the nucleus performs a small recoil. The recoil creates free charges inside the Ge, leading to
a measurable pulse. Even though the cross-section of CEνNS is orders of magnitude larger
than the cross-section of other neutrino interactions, it is still very small in comparison to
the one of other particles. Therefore, it is expected that neutrinos only interact once in the
detector and produce SSE. In addition, due to the small cross-section, it can be assumed
that the neutrinos are interacting homogeneously throughout the whole detector. Together
with the fact that the active volume makes up around 91-95% of the crystal, depending
on the detector [19], we can assume that neutrinos are producing normal pulses (SSE)
predominantly.

Neutrons: For the CONUS experiment, there are three important interactions of neutrons
with matter: neutron capture, elastic and inelastic scattering. Depending on the energy
of the neutron, a different interaction is dominant. At the CONUS experimental site,
neutrons with energies of 10−9 MeV up to several MeV are present [39].
Neutron capture is dominant for energies between 10−9 − 4 · 10−7 MeV. In the process,
a neutron is absorbed by the nucleus, leaving the nucleus in an excited state. During
de-excitation of the nucleus, mono-energetic γ-rays are ejected. These γ-rays can have
energies up to several MeV and the ground state of the nucleus after neutron capture can
be meta-stable. The decay of these meta-stable nuclei inside the Ge can be seen in the
background spectrum. In principle, the nucleus performs a recoil during neutron capture,
but the recoil can be neglected because of the neutrons’ low energy. Additionally, the
emission of the γ-rays creates a recoil of the Ge nucleus. However, taking the quenching
effect (see section 2.1) into account and assuming a threshold of 300 eV, one finds that the
recoils are not visible. Events from γ-rays created by the capture of µ-induced neutrons
inside the detector can be cut due to the muon-veto. Furthermore, neutrons coming from
the reactor are negligible inside the shield [38, 39].
Elastic scattering is dominant up to energies of ∼ 1 MeV and is the second possible
interaction. The process leads to a recoil of the Ge nucleus. In contrast to neutrinos,
the cross-section of this interaction is larger and therefore, it is assumed that the neutron
scatters multiple times in the detector [39].
The last important process is the inelastic scattering of neutrons of the Ge nuclei and is
dominant for energies larger than 1 MeV. Again, the process produces a recoil of the
nucleus, but additional γ-rays are created. If the additional γ-rays leave the detector, the
deposited energy from the recoil is large enough to contribute to the low energy part of
the spectrum. In the case where the γ-rays are detected, the recoil together with the γ-ray
will create a characteristic tail above the corresponding γ-ray peak [39].
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All three interactions produce nuclear recoils and can mimic a CEνNS interaction. In
addition, the mean free path of neutrons in Ge is large enough, such that mostly normal
pulses will be expected. Therefore, it is essential to have a good understanding of the
neutron background.

Electrons: Electrons with an energy of 1 MeV are stopped within a few mm in Ge
and for electrons with energies of 100 keV, the mean free path is already several orders
of magnitude smaller [39]. Therefore, it can be assumed that electrons deposit their total
energy in the outer layers of the detector and that they will produce normal and slow
pulses. The energy loss happens via bremsstrahlung or ionisation [53].

α-particles: Since α-particles are shielded by the copper cryostat of the CONUS detectors,
the decay needs to happen inside the cryostat for the α-particles to reach the Ge diode. A
possible source of α-particles inside the cryostat is 210Pb (see section 2.4.4). In the 210Pb
decay chain, α-particles with an energy of E = 5.2 MeV (outside of the possible CONUS
energy range) are produced [39]. These particles are absorbed in Ge within < 20 µm [39].
Therefore, they are shielded by the dead layer of the diode (O(1 mm)). However, they
can penetrate the passivation layer (O(100 nm)) and reach the active volume [39]. As a
result, α-particles will produce normal pulses close to the p+ contact.

2.4.4. Potential Background Suppression

In section 2.4.3, it is shown that different particles will produce different kinds of signals in
the detector. For CEνNS neutrinos, the assumption is that they interact homogeneously
and therefore mainly produce normal pulses, while electrons and γ-rays will produce
normal and slow pulses. Consequently, this means that a PSD, able to differentiate
between normal and slow pulses, can cut events generated by electrons and γ-rays while
neutrino events stay untouched. Therefore, a background reduction with a PSD-cut is
possible in principle.
If the potential impact of a PSD-cut on the CONUS background is rewarding, depends on
the physical composition of the background. In Fig. 2.17, the Monte-Carlo (MC) model
of the CONUS background below E = 14 keVee is shown. The MC model shows that
the dominant background comes from the decay of 210Pb and from µ-induced neutrons
produced inside the shield [39]. The background coming from µ-induced neutrons cannot
be suppressed by a PSD-cut because neutrons mainly produce normal pulses. However, a
reduction of the background coming from the decay of 210Pb is possible. The lead isotope
decays via β-decay into 210Bi producing β-electrons. In addition, Auger electrons and
γ-rays with energies below E < 65 keV are emitted. 210Bi also decays via β-decay [39].
To minimize background from 210Pb, lead with a very high purity was used from the
innermost lead shielding close to the cryostat. From this layer, only the decay of 210Bi
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Figure 2.17.: MC model for the background of the CONUS experiment and the different
dominant contributions. It can be seen that the two backgrounds
contributing most come from µ-induced neutrons and from the decay of
210Pb inside the shield and cryostat. Plot taken from [18].

is energetic enough to reach the detector. Instead, the decay radiation from 210Pb will
not reach the Ge diode. However, the 46.5 keV line from the decay of 210Pb is visible in
the spectra of all four detectors, implying that additional contamination with 210Pb inside
the cryostat is present [39]. The electrons and low energy γ-rays produced in the decay
of 210Pb will mostly interact in the outer layers of the diode. Therefore, they produce a
non-negligible amount of slow pulses, which can be rejected by a PSD-cut.
As a result, the PSD as an additional background suppression is promising for the CONUS
experiment since it has the potential to suppress one of the two dominant backgrounds.
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Methods

In this chapter, different techniques to discriminate between normal and slow pulses will
be introduced and discussed (section 3.1). After an overview of the different methods, a
more detailed analysis of the best working method, the rise time fit, is presented (section
3.2). For the complete chapter, detector C1 is used as a benchmark detector.

3.1. Different Methods for Pulse Shape Discrimination

In this section, different methods to distinguish between normal and slow pulses are
presented. First, the A/E method is explained (section 3.1.1), followed by the integral
ratio method (section 3.1.3). Afterwards, the rise time fit is introduced (section 3.1.2).
Moreover, a overview of the three most frequently used measurements can be found in
appendix A.1.

3.1.1. A/E Method

The A/E method is based on the findings of [46] and it was shown by [8] that using these
findings, a SSE and MSE discrimination is possible. The GERDA Collaboration further
developed the method and applied it for background suppression [22, 23]. The idea behind
this method is to compare the energy per charge cluster in the Ge diode to the total energy
of the event [22]. For a SSE, the total energy E is contained in one charge cluster and the
height A of the single peak of the detector current pulse is proportional to the deposited
energy. In contrast, for a MSE, the energy will be distributed over several charge clusters,
leading to multiple overlapping pulses and a detector current pulse with multiple peaks.
The energy of each charge cluster can be calculated from the height of each peak of the
detector current pulse [22]. Since for MSE, the energy is distributed over several peaks,
the amplitude A of the largest peak of the detector current pulse will be smaller than for
SSE. The ratio A/E is therefore smaller for MSE than for SSE and thus can be used as
discriminating variable [22, 23]. A derivative of the pulse coming from the preamplifier
can be used to reconstruct the detector current pulse [23]. In Fig. 3.1, a visualization
of this idea is shown. For simplicity, the exponential decay of the pulses is neglected in
the visualization. If the exponential decay is included, a small deformation appears in the
peak of the reconstructed detector current pulse, but the conclusion stays the same. In
the following, two PSD methods arising from the considerations above will be introduced.
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Figure 3.1.: Visualization of the A/E method and how it can be used to distinguish
between SSE in the bulk (’normal pulses’), SSE in the transition layer (’slow
pulses’) and MSE in the bulk. The upper plots show the charge pulse and
the lower plots show their derivative, i.e. current pulse. While the pulse
amplitude is the same for all three pulses, the amplitude A of the derivative
is the largest for the normal pulse. The plot is inspired by [22].

A/E method (amplitude based):
The GERDA Collaboration showed that this method could be used to discriminate MSE
and SSE successfully [22, 23]. Moreover, Fig. 3.1 shows that the height A also varies
for normal and slow pulses, making it in theory possible to use this method for slow and
normal pulse discrimination.
The principle of this method can also be described qualitatively. We assume that the
pulse coming from the preamplifier can be described by an error function:

f(t) = A0
2

1 + erf
(

t − t0√
2τ

) , (3.1)

with t0 being the shift along the time axis, τ proportional to the pulses’ rise time and A0 the
pulse height. If the pulse reaches its maximum, all charges created in the interaction are
collected and thus, the pulse height is proportional to the energy of the event. Calculating
the amplitude of the derivative of eq. 3.1, which is called A, gives the following expression:

A = A0√
2πτ

(3.2)

Equation 3.2 shows that if the rise time of the pulse increases, like is the case for slow
pulses, the amplitude A of the derivative of the pulse decreases. This makes it possible
for the A/E method to be used for discriminating normal and slow pulses.
The method was implemented and applied to CONUS data. In the following, a short
explanation of the implementation is given. First, the recorded pulses are differentiated to
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Figure 3.2.: Application of the A/E method to a Th-228 measurement conducted with
the C1 detector. The colour bar indicates the number of events per bin.

reconstruct the detector current pulse. Then, a function to find all peaks of this derivative
is applied and the found peaks are fitted by Gaussian functions. If no peaks are found,
the fit parameters for this event will be set to zero. The resulting fit parameters of the
Gaussian fit to the peak with the highest amplitude are saved and can be used to calculate
the ratio A/E. A plot showing A/E vs. the energy for a Th-228 measurement with the C1
detector can be found in Fig. 3.2. For the calculation of the A/E values, the reconstructed
energy in ADC channels is used. In this plot, two populations are clearly visible, one
population is at a value of A/E ≈ 1 and the second population is at a smaller A/E value
(A/E ≈ 0.2). We expect that the higher population (A/E ≈ 1) mainly consist of normal
pulses, while the lower population consist mainly of slow pulses, since slow pulses have a
smaller amplitude A compared to normal pulses (compare eq. 3.2). A visual inspection
of the pulses in the different populations supports this expectation. In conclusion, this
means that the method could be used for slow and normal pulse discrimination.
However, in Fig. 3.2, a significant disadvantage of this method is visible: it does not work
for sub-keV energies. The reason for this will be discussed later in this section.

Sigma method (rise time based):
A second sub-method of the A/E approach arising from the considerations above consists
in using the width of the fitted Gaussian as the discriminating variable. The derivative of
the pulse, which is assumed to be described by eq. 3.1 is:

f(t) = A0√
2πτ

exp
(

−(t − t0)2

2τ2

)
(3.3)

If the derivative is fitted with a Gaussian distribution, the width σ will be equal to the
τ parameter of the pulse and thus proportional to the rise time. As a result, the width
of this peak should be smaller for normal pulses compared to slow pulses. Again, if the
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Figure 3.3.: Application of the sigma method to a Th-228 measurement conducted with
the C1 detector. The small blob (marked by the red rectangle) consists
purely of unphysical events. The colour bar indicates the number of events
per bin. The range of the colour bar is different compared to Fig. 3.2
because the failed fits, which are saved in the 0th bin, are cut away for this
plot.

exponential decay is included, the relation would change slightly, but the conclusion stays
the same.
The method is similar to the rise time fit described in section 3.1.3. However, for the rise
time fit, the rise time will be extracted directly from the pulse and not from its derivative.
Figure 3.3 shows a plot of the width σ plotted against the energy of each event. In this
figure, two main populations are visible, one at larger σ values and the second one at lower
values of σ. It is expected that the lower population consists of normal pulses and the
higher population consist of slow pulses. A visual inspection of the pulses in the different
populations confirm this. Between the two populations, pulses with a rise time between
the two populations and some slow pulses with a higher rise time are found. That the
slow pulses with a higher rise time are located here is an effect of the fit routine. In the fit
routine, noisy peaks are sometimes wrongly fitted by multiple peaks, leading to a smaller
σ values than expected for the slow pulse. The small blob (marked by the red rectangle)
visible in Fig. 3.3 consist purely of unphysical events. All in all, this method could also
be used for normal and slow pulse discrimination. However, the same major disadvantage
as for the A/E method is visible in Fig. 3.3.

Disadvantages:
The major disadvantage of the two methods described above is that they do not work at
sub-keV energies. An explanation for this can be found for both methods by looking at eq.
3.2. Equation 3.2 shows that the amplitude of the derivative A decreases if the amplitude
of the original pulse A0 decreases. Since A0 is proportional to the energy of the event,
the amplitude A will decrease with the energy. If the amplitude is similar to the noise
height, peaks are not found and the two above described methods do not work anymore.
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Figure 3.4.: Example pulse for an energy of E ≈ 1 keV (top plot) and its derivative
(bottom plot). This illustrates why the A/E and sigma method fails at
low energies. Both methods rely on the fit of the derivative, but at small
energies, the peak in the derivative cannot be distinguished from noise.

The effect happens earlier for the slow pulses than for the normal pulses because A is anti-
proportional to the rise time parameter τ (see eq. 3.2). As a result, the two methods can
only be used to discriminate normal and slow pulses down to energies of around E ≈ 4 keV.
Since for the CEνNS analysis of the CONUS experiment, the region of interest (ROI) is
around 300 eV, these methods cannot be applied in the ROI. Therefore, these methods
will not be investigated further in this work. In Fig. 3.4, an example pulse and derivative
are shown for an energy E ≈ 1 keV, where the A/E and sigma method failed. It can be
seen that the pulse is still clearly visible, even if the derivative is not. This shows that a
method fitting the pulse directly, as the rise time fit, potentially works at these energies.

3.1.2. Integral Ratio Method

The idea behind the method is to compare the integral over a certain region of the pulses
for different events. Due to the different shapes of the normal and slow pulses, the integral
should give different values if appropriate regions are chosen. In addition, the integral
over the complete pulse is used as a normalization. If the beginning of the integral is the
time tA and the end of the integral is at the time tB, the discriminating variable R can be
written as:

R =
∫ tB

tA
f(t)dt∫ 20000 ns

0 ns f(t)dt
(3.4)

with f(t) describing the pulse. A visualization of this method can be seen in Fig. 3.5.
Since the integral A is normalized by the total area of the pulse, the values for R should
be between zero and one.
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Figure 3.5.: Visualization of the integral ratio method. The blue curve is a normal pulse
and the orange curve is a slow pulse of an event with the same energy,
recreated with the pulser. The method is visualized with the blue curve,
while the orange curve is just for comparison. The calculated ratio for the
blue curve is R = A

B and the start and endpoint of the integral A are chosen
arbitrarily.

Pulser data: First, the starting point of the integral is fixed to tA = 0 ns and a scan over
tB, between 1000 ns and 6000 ns, was performed. Larger times for the endpoint are not
interesting because the exponential decay for normal and slow pulses is quite similar. The
scan was performed for an energy of E ≈ 32 keV and was conducted to find a value, such
that the difference between the values of R for slow and normal pulses is maximal. For
the scan, a pulser measurement with forced trigger1 and with the C5 detector was used,
allowing to artificially generate slow and normal pulses. The best discrimination of R was
found for a value tB = 3370 ns, corresponding to the crossing point of the normal and slow
pulse (see Fig. 3.5). After the scan, the found value for tB was used to apply the method to
all energy points measured with C5 and the result is shown in Fig. 3.6. It can be seen that
R has a discrimination power for normal and slow pulses, especially for higher energies.
However, for energies below E ≃ 5000 ADC (∼ 5.5 keV), the two populations start to mix
and below E ≃ 1000 ADC (∼ 1 keV), the two populations cannot be distinguished by eye
anymore. In general, the separation of the normal and slow pulse population is for all
energies not large.
Also, it is interesting that the values of R decrease with increasing energies. It is expected
that the value of R is constant for all energies, assuming that the pulses scale with a global
scaling factor. In the implementation of the method, the baseline is not subtracted from
the pulse and thus the complete pulse cannot be scaled by a global factor. As a result, the
relative contribution of the baseline increases for low energies, leading to a non-constant
behaviour of R. A smaller R value for larger energies can be explained by the fact that
only the first part of the pulse is used for the partial integral. If we go to higher energies,
the major increase of the pulse happens after the crossing point. As a result, the integral

1The idea of this measurement is explained in detail in section 4.4, but the pulser was used in Pulse mode.
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3.1 Different Methods for Pulse Shape Discrimination

Figure 3.6.: Parameter R plotted vs. the energy of each event. The blue points are
measured with a rise time for the pulser of 100 ns and the orange ones with
1300 ns. The energy range goes up to ∼ 39 keV.

in the numerator, only going to the crossing point, is not changing as much as the integral
in the denominator, going over the whole pulse.
Reactor-ON data: Also, the method is applied to a reactor-ON data from the C1
detector before the application of the µ-veto. Before this is possible, the integral start and
endpoint has been adjusted, by considering the physical mean pulses presented in Fig. 3.7.
The difference between the mean normal and slow pulse is bigger for the times after the
crossing point and thus, this region will be used for the calculation of R. As a result, the
starting point of the integral is at tA = 3650 ns (crossing point) and the endpoint is chosen
to be tB = 6000 ns. The integral ratio method was applied with the new parameters to
reactor-ON data and the resulting plot can be found in Fig. 3.8. A main band and a
population below the band is visible. The main band should consist of normal pulses,
while the events below should be slow pulses. Furthermore, the number of events below
the main band for high energies is compatible with the number of slow pulses found by
the rise time fit (see section 3.1.3).
In contrast to the R variable in Fig. 3.6, it is visible in Fig. 3.8 that the R value gets
larger for higher energies. An explanation for this is that the integral is calculated over
the part of the pulses, which increases the most for higher energies. Therefore, the mean
increase in this interval is higher than the mean increase over the whole pulse (for the
entire pulse, also the baseline is included, which does not increase for higher energies).
The result shows that a discrimination between normal and slow pulses based on the
integral ratio method can be achieved. However, the discriminating power of R is not
very large, the R parameter has no physical meaning and the method can not distinguish
between pulses with and without a pre-increase. In conclusion, we decided not to use this
method for the CONUS analysis.

Noise rejection: Another idea for an application of this method is based on the fact that
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Figure 3.7.: Three mean pulses to illustrate the chosen start and endpoint of the integral
ratio method for physical data. Two of them have the form of a normal pulse,
one with (orange) and the other without (blue) a pre-increase. The third
mean pulse shows the form of a slow pulse (green).

the R parameter has a theoretical lower limit and thus could be used for noise suppression.
The lower limit can be calculated under the assumption that the noise fluctuates perfectly
random around a mean value µ. With this assumption, the integral over a certain time
period can be substituted by this mean value µ multiplied with the time period, leading
to the following form of the R parameter for a purely noise event:

Rtheo
noise = µ (tB − tA)

µ
(
∆Tacq

) = (tB − tA)
∆Tacq

, (3.5)

with ∆Tacq = 20000 ns. For perfect random noise, one would expect a Gaussian distribution
of R values with the mean Rtheo

noise.
For the calculation of the R parameter, we will write the integral over a specific time
interval as the mean value in this interval µ multiplied with the time interval [56]:

∫ t2

t1
f(t)dt = µ (t2 − t1) (3.6)

Using this relation, the formula of the R parameter of a pulse event is:

Rpulse = µ1 (tB − tA)
µ2 (20000 ns − 0 ns)

, (3.7)

with µ1 and µ2 being the mean values in the different intervals used for the calculation.
The formula looks very similar to the theoretical noise value (eq. 3.5), with the difference
that µ1 ̸= µ2. Combing the formula for the Rpulse value and the one for the theoretical
noise value, we find the following relation:

Rpulse = µ1
µ2

Rtheo
noise. (3.8)
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Figure 3.8.: Parameter R plotted against the energy of each event for reactor-ON data
before the application of the µ-veto. For the beginning of the integral tA =
3650 ns and for the ending tB = 6000 ns was used. Both curved populations
can be related to normal (upper) and slow (lower) pulses. The horizontal
line between values of 0.15 ≤ R ≤ 0.17 comes from events where only an
exponential decay is visible (see Fig. 2.15 f). The population below values
of R ≤ 0.14 arise from ”wrongly triggered” events (events with a longer
pre-trigger, see section 3.2.4 t0 parameter). The energy range goes up to
∼ 33 keVee. The colour bar indicates the number of events per bin.

Next, we can study the relationship between the Rpulse parameter of a pulse event and
the theoretical noise value for the parameter case with tA ̸= 0. In this case, the µ1 value
is only calculated in a region where the pulse has its maximum, leading to a higher value
of µ1 compared to µ2. The latter value is calculated over the complete pulse and thus,
the baseline will decrease the value relative to µ1. From these considerations, we can
conclude µ1 > µ2, meaning that the theoretical noise value will be a lower boundary for
the physical Rpulse distribution. In Fig. 3.9 distributions for different pulser amplitudes
and a noise distribution recorded with a random trigger are shown. It is clearly observable
that the noise distribution is centred around the theoretical value Rtheo

noise = 0.1175, while
all measurements with pulses lie above this value. By setting a cut at the theoretical value
Rtheo

noise and discarding all events with a lower R value, it is expected to reject about half of
the noise.
The noise cut described above can be applied to reactor-ON data. In Fig. 3.10, the R
distribution for the reactor-ON data, including the noise cut (Rtheo

noise = 0.1175), is shown.
With the noise cut, 7.5% of all events in the noise peak can be rejected. The noise cut
rejects events for all bins within the noise peak. Furthermore, events in the physical
region are discarded by the cut, as well. In total, 1.3% of the physical events (events with
E & 0.2 keV) are cut (signal loss). Therefore, more noise compared to signal is discarded.
The rejected physical events are primarily events with a longer pre-trigger, meaning that
the trigger was not working correctly and the time before the pulse is larger. That makes
sense because, in this case, the used interval will not fit the pulse any longer. In addition,
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Figure 3.9.: R distributions for different measurements with different pulser amplitudes
and a R distribution for random triggered noise. All pulser measurements
are performed with rise times compatible with normal pulses and for C1.
It can be seen that the noise peak is centred around the theoretical value
(Rtheo

noise = 0.1175), while all other peaks lie above this value.

it is interesting to note that the noise peak is not centred around Rtheo
noise, in contrast to the

noise peak for the random trigger measurement. Due to the shift of the R distribution,
only a reduction of 7.5% of the noise events is possible and not 50% as in the study case
with the pulser. The shift can be explained by the trigger. For a normal measurement,
the DAQ uses an onboard trigger algorithm. Only if the noise has a large enough over
or under fluctuation, the trigger will fire. Therefore, the basic assumption of perfectly
random noise around the baseline is not valid. These fluctuations lead to R values larger
than the theoretical value, resulting in a noise peak shift. Contrarily, for the noise peak
measurement, a random trigger was used. With the random trigger, the assumption of
random fluctuations is appropriate for the recorded noise, leading to a R distribution
centred around the theoretical value.
All cut noise events have energies below E ≃ 200 ADC (∼ 0.2 keV). However, the trigger
efficiency of the CAEN is quite small at these energies, such that the energy region around
and below E ≃ 200 ADC probably will not be included in the analysis. In addition, the
noise reduction of this method is not really large. Therefore, we decided to not focus on
further studies regarding the shown noise cut.

In summary, it was shown that the integral ratio method could be used for normal and
slow pulse discrimination. Furthermore, it was demonstrated that it is possible to use this
method for noise rejection. The noise rejection is especially good if the recorded noise
fluctuations are purely random. The integral ratio method will not be further used in this
thesis.
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Figure 3.10.: R distribution for reactor-ON data measured with C1. The dashed line is
the theoretical lower limit of the R values.

3.1.3. Rise Time Fit

The last technique for pulse shape discrimination presented in this work uses a fit with an
appropriate function to describe each pulse and one fit parameter is used as a discriminating
variable. As the fit function, a combination of a hyperbolic tangent and an exponential
function is chosen, based on the function used by the Texono experiment [50, 55]. The fit
function is given by:

f(t) = A0

[
tanh

(
t − t0

τ

)
+ 1

]
exp

(
−τc (t − t0)

)
+ P0. (3.9)

The fit function has five free fit parameters, which are: A0, t0, τ, τc, P0. A0 is an energy
estimate and P0 is an estimate for the baseline level of the fitted pulse. The parameters t0

and τc are DAQ dependant, with t0 being proportional to the pre-trigger and τc describing
the exponential decay of the pulse. Of physical relevance is the τ parameter, being
proportional to the rise time of the pulse. The parameter will be used in the rest of this
thesis as the discriminating parameter. For a normal pulse, a smaller rise time parameter
than for the slow pulse is expected. In Fig. 3.11, a plot of the fit function for different
τ values can be found for illustration. A more detailed discussion of the different fit
parameters can be found in section 3.2.4.
As a standard figure for the pulse shape discrimination, the logarithm of the rise time
parameter is plotted against the energy of the event. An example of a low energy
Th-228 measurement with the C1 detector is shown in Fig. 3.12a. In this plot, two
distinct separated populations are visible. As expected, for normal and slow pulses, one
population has a high τ value around 630 ns and the other one has a lower value around
130 ns. The lower population is split into two sub-populations since a main population
between 2.12 log10 (ns) < log10 (τ) < 2.17 log10 (ns) and a smaller population between
2 log10 (ns) < log10 (τ) < 2.12 log10 (ns) is visible. The mean pulses for each population
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Figure 3.11.: Rise time fit function with different values of τ . The smallest and highest
values shown for τ are typical values for normal and slow pulses of the
C1 detector, respectively. For the other fit parameters the following
values were chosen:A0 = 4500 a.u., t0 = 3500 ns, τc = 0.000133 1/ns,
P0 = 950 a.u.. These values are similar to the values of the physical pulses.

can be found in Fig. 3.12b. For the calculation of these mean pulses, the energy region
of E ≈ 24 − 25 keV was used. The mean pulse from the upper population shows the
form of a slow pulse, while the two mean pulses from the lower populations show the
form of a normal pulse. From the visual inspection, it seems like the upper population
consists mainly of slow and the two lower populations consist mainly of normal pulses.
A comparison of the different populations to MC simulation will follow in section 4.3.
The only difference between the two normal pulse sub-populations is the pre-increase (see
section 2.4.1). In the following, the subpopulation with larger τ values and pre-increase
will be called higher population and the subpopulation without the pre-increase will be
called lower population.
The rise time fit shows the best discrimination power between normal and slow pulses,
compared to the other techniques introduced in this section. Moreover, the method allows
distinguishing features of the normal pulses. As a result, we will continue in this work
with the rise time fit. A detailed evaluation of this technique will follow in section 3.2.

3.2. Rise Time Fit

In this section, the performance of the rise time fit method will be studied in more
detail. Different fit functions are presented and compared (section 3.2.1), the influence
of smoothing (section 3.2.2) on the fit results is described and the possibility to fix one
fit parameter is discussed (section 3.2.3). In addition, the different fit parameters are
analysed in more detail (section 3.2.4).
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Figure 3.12.: Figure a) shows the result of a Th-228 measurement performed with the
C1 detector at KBR. The logarithm of the rise time parameter τ (y-axis) is
plotted against the energy (x-axis) and the colour bar indicates the number
of events per bin. In addition, the coloured rectangles mark the regions
used to calculate the mean pulses, shown in figure b). The colour of the
mean pulses corresponds to the colour of the rectangles.

3.2.1. Different Fit Functions

A limitation of the fit function presented as the third method in section 3.1.3 is that it is
not able to describe all features of the pulses. This becomes clearly visible when looking
at the fit result of high energy events. An example of a high energy normal and slow pulse
with the corresponding best fit function can be found in Fig. 3.13. Both pulses are taken
from a high energy measurement with C1 at KBR. Looking at the normal pulse, two main
features not described by the fit can be seen. These two features are the ’bump’ at the
highest point of the pulse and the pre-increase. Both features are already described in
section 2.4.1. In contrast, the slow pulses seems to have a different functional form than
a hyperbolic tangent. Therefore, other fit functions were tested with the goal to describe
the form of the normal pulses (without the features) and of the slow pulses simultaneously.
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Figure 3.13.: Two high energy examples for a normal and slow pulses with the
corresponding fit function. The upper figure shows a normal pulse and
the lower figure shows a slow pulse. The black data points describe the
recorded pulse and the red curve represents the corresponding best fit.
Both pulses are recorded with the C1 detector.

The normal pulse features are not included in the new functions because they do not
appear in all detectors (bump) and not for every event (pre-increase). In total, three
different functions were tested against the normal function with a hyperbolic tangent. For
the three functions, only the part describing the physically interesting part, the rise of the
pulse, is changed. The description for the exponential decay and baseline stays the same.
All functions are tested on the same data set to allow a better cross-function comparison.
As the test data set, a LLL background measurement conducted with the C5 detector was
chosen. In the following, each fit function and its performances on the physical data will
be presented shortly. As notation, the original fit function with the hyperbolic tangent
will be called the ’hyperbolic tangent function’.

Error function

The fit function, including an error function (in the following called ’error function’), has
a similar form compared to the hyperbolic tangent function. The full error function is
shown below:

f(t) = A0
2

1 + erf
[

t − t0√
2τ

] exp
(
−τc (t − t0)

)
+ P0. (3.10)

Similar to the hyperbolic tangent function, the error function has five free fit parameters.
The meaning of the different parameters are the same as for the hyperbolic tangent
function and are described in section 3.1.3. An example for a normal and slow pulse
fitted with the error function can be found in Fig. 3.14. This function does not describe
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Table 3.1.: The table shows the run time and the percentage of failed fits for the tested
fit function.

fit function run time (per 10MB) percentage of failed fits [%]
hyperbolic tangent function 57 s 0.007
error function 1 min 8 s 0.015
skew normal function 1 h 28 min 2.3
lognormal function 2 min 0.017

correctly the form of the slow pulses and looks similar to the hyperbolic tangent function.
Also, for the normal pulse, no significant differences between the two functions are found.
Looking at the rise time vs. energy distribution of the fit with the error function (Fig.
3.15b), a small shift towards lower values for both populations is visible in contrast to
the result of the hyperbolic tangent function (Fig. 3.15a). But overall, no significant
improvement regarding the discrimination power of normal and slow pulses is found.
Therefore, additional practical criteria were introduced to determine the performance and
decide which function should be used. These criteria are: the run time of the fit and the
percentage of failed fits. As a failed fit, an event is classified if the fit did not converge after
ten tries and the percentage of failed fits gives an idea of how well the function performs
in total on a physics dataset. The run time is a rough estimate of the time needed on
the cluster to fit a certain amount of data. A data subset of roughly 150000 events,
corresponding to ∼ 1 GB of data was used to determine these values. The values for the
run time and the failed fit percentage can be found in Tab. 3.1. Both criteria are better
for the hyperbolic tangent function compared to the error function. In addition, both
functions show equally good results for the fit of normal and slow pulses. Consequentially,
the hyperbolic tangent function has been preferred over the error function.

Lognormal function

For this function, the cumulative distribution function (CDF) of the lognormal distribution
is used. In the following, the function will be called the ’lognormal function’. The complete
fit function is shown below:

f(t) = A0

1
2

+ 1
2

erf
[

ln t − t0√
2τ

] exp
(
−τc

(
t − exp (t0)

))
+ P0, t > 0 (3.11)

Again, this function has five free fit parameters that have the same meanings as described
in section 3.1.3. In this function, the t0 parameter in the error function is defined as a
logarithmic value and therefore, in the exponential part of the function, the exponential
value of t0 needs to be taken. An example of the function fitted to a normal and slow
pulse can be found in Fig. 3.14. The example plots show that the lognormal and
the hyperbolic tangent function describe the normal pulses equally good. Only minor
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Figure 3.14.: Example fit of different functions to a normal and slow pulse. Both example
pulses are taken from a background measurement with C5. Upper plot:
The different fit functions compared to a normal pulse are shown. The
normal pulse has an energy of E = 119 keV. Lower plot: The different
fit functions compared to a slow pulse are shown. The slow pulse has an
energy of E = 164 keV.

deviations between the two functions were observed. In contrast, the slow pulse is slightly
better described with the lognormal function. However, no significantly improvement
regarding the discrimination power of normal and slow pulses was found. A rise time vs.
energy distribution for the lognormal function can be found in Fig. 3.15c. The percentage
of failed fits and the run time can be found in Tab. 3.1. Again, both values are not as
good compared to the hyperbolic tangent function. As a result, the lognormal function
will not be used instead of the hyperbolic tangent function.

Skew normal function

For the last function, the CDF of the skew normal distribution is chosen. In the following,
the function will be called ’skew normal function’. The complete fit function, including
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(d) skew normal function

Figure 3.15.: Rise time parameter vs. energy plots for the different fit functions
compared in section 3.2.1. The ”blob” visible in every plot at τ values
above the slow pulse population and for energies below E . 20 keV consist
mainly of TRP events. The colour bar indicates for each plot the number
of events per bin. For figure c), more events are visible because the failed
fits are included at τ = 0 ns.

the exponential decay, is shown below:

f(t) = A0

1
2

1 + erf
[

t − t0√
2τ

]− 2T

[
t − t0

τ
, α

] exp
(
−τc (t − t0)

)
+ P0, (3.12)

with T being Owen’s T function [47]. The function has six free fit parameters. Five of
the parameters have the same meaning as described in section 3.1.3 and the parameter α

represents the skewness of the function. For α = 0, the skew normal function reduces to
the error function. An example of the function fitted to a normal and a slow pulse can be
found in Fig. 3.14. These figures show that the function can describe the normal pulse
equally well compared to the other functions discussed above. That makes sense since the
fit function reduces to the error function if the α parameter is set to zero. In contrast
to the other functions, the slow pulses are described way better by this function. Due
to the better description of the slow pulses, a better discrimination of normal and slow
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pulses is achieved. A plot showing the rise time parameter τ vs. the energy can be seen in
Fig. 3.15d. In this figure, it is visible that the slow pulse population is shifted to a larger
and the normal pulse population to a lower τ value compared to the hyperbolic tangent
function (see Fig. 3.15a). However, a major disadvantage of the skew normal function is
the percentage of failed fits and the run time, both can be found in Tab. 3.1. In both
cases, the value of the criteria is way larger compared to the other functions and thus
unpractical. As a result, we decided not to continue using this fit function, even though
it describes the form of slow pulses better.

In this section, we compared three different fit functions with the hyperbolic tangent
function. It was shown that with the skew normal function, a better description of the
slow pulses could be achieved, resulting in a better discrimination power of τ . However, the
skew normal function has drawbacks regarding the run time and percentage of failed fits.
As a result, the hyperbolic tangent function will be used for the PSD. The function already
provides a satisfactory discrimination power and shows the best performance regarding the
two practical criteria. In the following, this function will be called ’rise time fit function’.

3.2.2. Influence of Smoothing

An idea to reduce the influence of noise on the fit is to apply some kind of smoothing.
Especially at low energies, a reduced influence of the noise could help fit the pulses better
and increase the discriminating power of τ . As a smoothing technique, a low pass frequency
filter was applied. First, the discrete Fourier transform [33] of the pulse was taken. In the
frequency space, a low pass filter is applied and afterwards, the inverse discrete Fourier
transform is taken. A low pass filter was chosen because it was assumed the noise has a
higher frequency (frequency of the dominant noise above order kHz) than the pulse itself.
Therefore, theoretically, by cutting away the high frequencies, we should reduce the noise
of the pulse. From the Nyquist–Shannon sampling theorem, we can calculate the maximal
frequency fmax we can see in the pulses given the sampling rate of the CAEN Rsampling.
The theorem states that [33]

fmax = Rsampling
2

. (3.13)

With a sampling rate of 1 sample every 10 ns [26], a maximal frequency of fmax = 50 MHz
can be seen in the recorded pulses. In order to start seeing an improvement by eye due
to the smoothing, the cut frequency of the low pass filter needs to be about O(1 MHz).
An example pulse recorded with the CAEN and the resulting smoothed pulse can be
seen in Fig. 3.16. For the shown pulse, the cut frequency of the low pass filter was
set to fcut = 250 kHz. Figure 3.16 shows a significant disadvantage of smoothing. It
can be seen that the slope of the smooth pulse is different from the slope of the original
pulse, meaning that the smoothing changes the rise time of the pulse. For the example
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Figure 3.16.: Example pulse from a Th-228 measurement with and without smoothing,
recorded with the C1 detector. The pulse has an energy of E ≈ 930 eV.
The black pulse is the original pulse coming out of the DAQ and the red
pulse is the smoothed version.

of the smoothed pulse, an aggressive cut frequency was chosen to better illustrate this
disadvantage. Subsequently, a cut frequency of fcut = 500 kHz will be used. In order to
see the influence of the effect, we applied the rise time fit to a small subset of a Th-228
measurement, once using original (raw) and once using smooth pulses. As the subset, all
pulses of the measurement with an energy between E = 700−1000 ADC (E ≈ 0.7−1 keV)
are chosen. The energy range is selected because the noise has a large influence on the
pulse and the normal and slow pulse population can be distinguished by eye. The resulting
log10(τ)-distributions for both cases are shown in Fig. 3.17. It is clearly visible that for
the smooth pulses, the normal and slow pulse populations are closer together compared
to raw pulses. That can be explained by an increase in the rise time due to smoothing.
An increase in the rise time can be explained by the low pass filter. High frequencies are
not only responsible for the noise but also for the ”sharp edges” of the pulse. Cutting
away the high frequencies will reduce the noise and the ”sharp edges”, leading to higher
rise times. For the PSD, that is a large disadvantage because it lowers the discriminating
power of the τ -parameter. Therefore, no smoothing will be applied to the pulses in the
analysis chain.

3.2.3. Fixed τc Parameter

In this section, the idea to fix the τc parameter in the rise time fit function at low energies
to a predefined value will be discussed. If the parameter is fixed at low energies, it can
help the fit to find and correctly fit the low energy pulses. In general, this idea is possible
due to the fact that the exponential decay of the pulse comes from the AC coupling of
the CAEN and should be equal for all pulses. Subsequent, the τc parameter, the decay
constant should be equal for all energies and does not have a physical meaning. Figure 3.18
shows the τc-distribution for a Th-228 measurement in the energy range up to E ≈ 32 keV
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Figure 3.17.: Two log10(τ)-distributions estimated with and without smoothing. For
the blue distribution, original (raw) pulses are used for the fitting and for
the orange distribution, smooth pulses are used. For smoothing, a cut
frequency of the low pass filter of fcut = 500 kHz was used. The pulses
come from a Th-228 measurement, recorded with C1 and all events have
an energy between E = 700 − 1000 ADC (E ≈ 0.7 − 1 keV).

performed with the C1 detector. It is clearly visible that the distribution has two peaks in
contradiction to the assumption of an equal exponential decay for all events. Looking at
the same measurement in the τc-log10(τ) space (see Fig. 3.18), we see that the left peak of
the τc-distribution comes mostly from slow pulses, while the right peak comes from normal
pulses. Also, it can be seen that the two sub-peaks in the right peak of the τc-distribution
are correlated with the rise time. The left sub-peak mainly comes from events with shorter
rise time, meaning from events with no pre-increase, while the left sub-peak comes mainly
from normal pulses with pre-increase.
Next, it needs to be checked if the difference in τc corresponds to an effect of the fit
routine or to a physical effect from the data. To check the latter hypotheses, a mean
normal and a mean slow pulse can be laid on top of each other. For calculating the mean
pulses, boundaries for the slow and normal pulse population are estimated by eye from
the log10(τ)-distribution. A plot with the superimposed mean pulses can be seen in Fig.
3.19. The normal pulse is shifted slightly (+5 a.u. up and +208 ns to the right), such that
the two exponential decays overlay. It is clearly visible that the two exponential decays
are quite similar, as expected. In conclusion, that means the two different peaks are an
artefact from the fit itself. An explanation could be that the fitting function is unable to
describe completely the form of the slow pulses well. Due to the misfit, an adjustment of
the other fit parameters is necessary, leading to a slightly different τc value. Since the fit
describes the functional form of the normal pulse best, we expect that the τc value of the
normal pulse is closest to the ’original’ value from the CAEN. Moreover, the normal pulse
should survive the PSD-cut, making it more important to get precise fit parameters for
this pulse type. Therefore, the τc will be fixed at low energies to the value estimated from
normal pulses at high energies.
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Figure 3.18.: The left plot shows the τc-distribution for a Th-228 measurement
performed with the C1 detector. The right plot shows for the same
measurement a τc vs. log10(τ) plot. From this plot, it can be seen that the
left peak in the upper plot comes from slow pulses, while the right peak
comes from normal pulses. The colour bar indicates for the right plot the
number of events per bin.
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Figure 3.19.: Comparison of the exponential decay for a mean normal (2.13 ≤ log10(τ) ≤
2.16) and a mean slow pulse (2.75 ≤ log10(τ) ≤ 2.85). The pulses are taken
from a Th-228 measurement conducted with C1.

Furthermore, it needs to be checked how the discriminating power of the rise time parameter
is affected if the τc parameter is fixed. To do so, the log10(τ)-distribution for a Th-228
measurement with a fixed τc is compared to the same measurement fitted with a free τc

parameter. The result is shown in Fig. 3.20. The normal pulse peak (left) looks very
similar for the fixed and free parameter case, while the slow pulse peak (right) moved
a little bit towards higher τ values for the fixed case. No significant reduction of the
discriminating power of the rise time is visible when using a fixed τc value at low energies.
It makes sense that the slow pulse peak changes a bit because all slow pulses are fitted
with the fixed τc value obtained from the normal pulse population. The change in the
log10(τ)-distribution is minimal and as a result, no discontinuity will be seen in the log10(τ)
vs. E plot at the boundary between free and fixed τc (for example, see Fig. 3.12a, where
the boundary is at E = 7.8 keV).
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Figure 3.20.: Comparison of a log10(τ)-distribution with a free and fixed τc parameter.
The blue distribution is obtained by using τc as a free fit parameter, while
for the orange distribution, τc was fixed. For both distributions, a Th-228
measurement performed with C1 was used.

Table 3.2.: Values used as fixed value for the τc parameter. They are obtained in the
energy region E ≈ 15 − 31 keV of a reactor-ON spectrum, fitted with τc as a
free parameter.

detector τc [1/ns]

C1 0.000131
C2 0.000131
C3 0.000125
C4 0.000132

Next, the values used to fix the τc parameters need to be estimated. For this, the reactor-
ON data is used. The energy range used for the τc estimation is E ≈ 15 − 32 keV and the
τc value is estimated by fitting a Gaussian distribution to the normal pulse peak of the
τc -distribution. In Tab. 3.2, the corresponding values for all four detectors are given. The
errors of the estimated values are negligible. In addition, these values were compared to τc

values estimated in the same way from a Th-228 measurement. For all detectors, except
C2, the values are the same. In the case of C2, the value from the Th-228 measurement
is τc = 0.000130 1/ns, which agrees at the percent level with the value obtained from
the reactor-ON data and was considered negligible. The residual difference between the
detectors could arise from differences in the electronic components of the CAEN or could
be an effect of the performance of the rise time fit on the slightly different pulse shapes
for each detector. The stability of the τc values over time is investigated in section 4.1.
The energy region in which the τc parameter is used as a fixed parameter is estimated
from the reactor-ON spectrum. For low energies, the two populations visible in the τc-
distribution start to mix. The approximated starting of this mixing is chosen as the
boundary point between a fixed and free τc parameter. For all four detectors, the value
was selected to be E = 8000 ADC (E ≈ 7.8 keV).
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3.2 Rise Time Fit

In conclusion, for events with an energy below E = 8000 ADC, the pulse is fitted with τc

as a fixed parameter. The τc parameter is fixed to the value shown in Tab. 3.2, depending
on the detector. The idea behind fixing this parameter is to use information obtained at
high energies to help the fit converge and correctly fit the pulses at low energies.

3.2.4. Analysis of the Different Fit Parameters

In this section, the different fit parameters will be explained in more detail. Moreover,
the features arising in the distributions of the parameters coming from the fit to physical
data will be discussed. In the end, the possibility of applying quality cuts to the fit
parameters, except the τ parameter, will be evaluated. For this section, ’low energy’ will
refer to an energy range from 0 ADC to 8000 ADC (∼ 0 − 7.8 keV) and the range from
8000−32000 ADC (∼ 7.8−31 keV) will be called ’high energy’. The separation into these
regions comes from the boundary, where the τc parameter changes from a free to a fixed
parameter.

Rise time: τ

The τ parameter is an estimate for the rise time of the pulse. As the rise time, the time
difference between the point of 10% and 90% of the pulse’s maximal height is defined [36].
We can calculate the relation of the τ parameter to the rise time for a simplified version
of the fit function. For the simplified version, we neglect the exponential decay (or set
τc = 0), which results in the following function:

f(t) = A0

[
tanh

(
t − t0

τ

)
+ 1

]
. (3.14)

Also, the P0 parameter is set to zero, because the baseline is assumed to be zero for the
definition of the rise time. With this function, we found that the relation between the τ

parameter and the rise time of the function is the following:

τ = t90 − t10
2 artanh(0.8)

, (3.15)

where t90 (t10) is the time when the function is at 90% (10%) of its maximal height. The
calculation for this relationship can be found in the appendix C.1. In this simplified case,
the τ parameter is directly proportional to the rise time of the function. It is interesting to
note that this relation is independent of the pulse’s height, meaning that the τ parameter
is independent of the energy of the event. The actual pulses have an exponential decay
and thus are more similar to the complete fit function (see eq. 3.9). For the complete fit
function, a correction will be introduced in the relation, which scales with the strength of
the τc parameter. Unfortunately, it is not trivial to calculate the relation for the complete
fit function.
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Table 3.3.: Estimate of the typical ranges of the rise times at energies around ∼ 15 keV for
the four different detectors. These values are obtained by a rough estimation
of the ranges of the normal and slow pulse population from a log10(τ)-
distribution.

detector normal pulse: τ [ns] slow pulse: τ [ns]

C1 100 - 150 450 - 1000
C2 140 - 195 355 - 800
C3 145 - 215 445 - 1000
C4 125 - 190 355 - 1120

Also, the τ parameter is at the point t = t0 related to the slope of the pulse. The relation
can be calculated for the complete fit function and is:

f ′(t0) = A0( 1
τ

− τc) (3.16)

Again, the calculation of the relation can be found in the appendix C.1. In the case
of the simplified function, the τc parameter is set to zero and the relation reduces to
an anti-proportional behaviour between the slope and the τ parameter. It makes sense
that the relation depends on the pulse’s height A0 because either the time interval of
the increase or the slope needs to change for different pulse heights and the rise time-τ
relation is height independent already. In addition, the relation shows that the correction
introduced by the exponential decay is relatively small. For realistic values of τ = 150 ns
and τc = 0.000131 1/ns, the correction due to the exponential decay is of the order of 2%.
Example plots showing log10(τ)-distributions can be seen in Fig. 4.6 and examples for
log10(τ) vs. energy plots can be seen in Fig. 3.15a and 3.12a. Typically, two peaks can
be seen in the log10(τ)-distribution, one at lower and one at higher τ values. These two
peaks can be assigned to normal and slow pulses, respectively. Both peaks are clearly
separated at higher energies, while they start to fuse to one peak at lower energy. The
typical rise times of normal and slow pulses at energies around ∼ 15 keV for the four
different detectors are shown in Tab. 3.3
Artefacts can appear in the log10(τ)-distribution. These artefacts usually are clearly visible
and can be assigned to unphysical pulses. An example of an artefact can be seen in Fig.
3.15a at an energy of E = 5 − 10 keV. The artefact in Fig. 3.15a comes from events
happening during the TRP reset and thus can be rejected by the TRP veto.

Energy estimate: A0

The A0 parameter is an estimate of the energy of the pulse. In the case of the simplified fit
function (see eq. 3.14), the maximum of the pulse is proportional to the A0 parameter:

fmax = 2A0, (3.17)
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Figure 3.21.: In figure a), the A0-distribution for a Th-228 measurement with the C1
detector is shown. In figure b) the same measurement is shown in an A0
vs. energy plot. The colour bar indicates the number of events per bin.

with the baseline set to zero. However, including the exponential decay makes this relation
more complex. The relation can be derived by calculating the derivative of the fit function
and setting the result equal to zero. More details can be found in the appendix C.1. The
relation for the complete fit function is:

fmax = f(tmax) = A0(2 − ττc)
(

ττc
2 − ττc

) ττc
2

+ P0, (3.18)

tmax = t0 − τ log
(√

ττc
2 − ττc

)
. (3.19)

Equation 3.18 shows that a correction term reduces the maximal pulse height relative to
the A0 parameter. The correction term is a function of the rise time parameter τ and
the exponential decay parameter τc. As a result, the A0 parameter is not an estimate
for the maximal point of the pulse but for the height the pulse would have reached if the
exponential decay parameter was zero or very small. Meaning, the A0 parameter estimates
the reached pulse height if the complete charge would be collected before the exponential
decay starts. Therefore, A0 is proportional to the total created charge and thus is an
energy estimate. The effect that pulses with a longer rise time have a smaller amplitude
due to the exponential decay is called ballistic deficit [36] and can lead to problems in
the energy reconstruction. However, the trapezoidal filter used by the CAEN effectively
eliminates this effect if the flat top of the trapezoidal filter is large enough [42]. That
explains why the mean slow pulse in Fig. 3.12b has a different amplitude than the normal
mean pulse, even though they were calculated from the same energy range. Also, the
ballistic deficit plays no role if the deficit is constant for all energies (for example, only
considering normal pulses) because the spectrum is calibrated with physical lines.
The time when the pulse reaches its maximum is shown in eq. 3.19. In this equation, it is
shown that the position does not depend on the energy of the event but only on the rise
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Figure 3.22.: Comparison of the Am-241 energy spectrum created by the CAEN (blue)
with the energy spectrum created by the fit with the A0 parameter (red).
Both spectra are calibrated with the Am-241 lines at 59.54 keV, 98.97 keV
and 102.98 keV [9]. For the measurement, the C5 detector was used and
the measurement was conducted in the LLL.

time parameter τ , the exponential decay parameter τc and the shift of the pulse along the
time axis t0.
In Fig. 3.21a, an A0-distribution for a Th-228 measurement is shown. Due to a lack of
physical lines in the recorded energy range of the Th-228 spectrum, only a continuum is
expected. The continuum is visible for the A0 parameter, too. It can be seen that for
values larger than the continuum, single events are visible in the A0-distribution. The
events have values larger than A0 > 4700 a.u.. Looking at these events, we found that
they are saturation events and a few events happening during the exponential decay of
a previous pulse. In addition, a strong increase at low A0 values is visible, which is
dominated by noise from energies below 200 eV. The same A0-distribution is shown in
Fig. 3.21b as a function of the energy of each event. No artefact is seen in the plot at
the energy of E ≈ 7.8 keV, where the τc parameter is fixed. Since the parameter is an
estimate for the height, the pulse would have reached without the exponential decay, this
is what we would expect.
In Fig. 3.22, another A0 spectrum is shown. For the measurement, an Am-241 source
was used and the energy range goes up to E = 180 keV. Also, the measurement was
done in the LLL at MPIK with the C5 detector without any shielding. That explains
why background lines next to the Am-241 lines are visible in the spectrum. The A0

spectrum is superimposed with the energy spectrum created by the CAEN. Comparing
both, it is visible that they match quite good. The maximal deviation of two peaks
is of the order of 50 eV and lies completely in the range of the error coming from the
calibration of the two spectra. Again, this shows that the A0 parameter is an estimate
of the energy of an event. In addition, the resolution (FWHM) of some peaks is a
little bit, but significantly better (smaller FWHM) for the spectrum created with the
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A0 (E = 59.54 keV, FWHM = 0.294 ± 0.004 keV) parameter compared to the spectrum
created by the CAEN (E = 59.54 keV, FWHM = 0.325 ± 0.005 keV). A reason for this
improvement of the resolution is not found yet. However, before the A0 parameter can be
used as the default energy-reconstruction parameter, more investigations and consistency
checks are necessary. Below an energy of 12 keV, the spectrum is not shown in the plot
because TRP reset artefacts are visible.

Pre-trigger: t0

The t0 parameter is proportional to the time recorded before the actual pulse appears,
meaning t0 is proportional to the pre-trigger. Since the pre-trigger is a setting from the
DAQ, we would expect that t0 is equal for all pulses. The trigger fires at the zero crossing
of the second derivative of the pulse. With this information, we can calculate the time
when the trigger fired for a certain pulse by taking the second derivative of the fit function
and setting it to zero. For the simplified fit function (see eq. 3.14), the calculation is
straightforward and the second derivative is:

d2

dt2 f(t) =
2A0

(
1 − tanh2

(
t−t0

τ

))
tanh

(
t−t0

τ

)
τ2 (3.20)

Since the hyperbolic tangent becomes zero if the argument is zero, the second derivative
is zero for t = t0. The result shows that the trigger time is equal to t0 for the simplified fit
function; therefore, t0 should be an estimate for the pre-trigger. In addition, the trigger
time does not depend on other parameters, meaning that the t0 parameter should be
equal for normal and slow pulses. However, for the complete fit function (see eq. 3.9), the
relation between the trigger time and t0 is more complicated. The time is calculated in
the same way and the resulting relation is:

t = t0 − τ log
(

−
√

−τ2τ2
c + 2ττc + 1 + 1
ττc − 2

)
. (3.21)

The second derivative of the complete fit function can be found in eq. C.2. In the limit
where τc = 0, we obtain the relation for the simplified fit function again. The pre-trigger
(trigger time) is fixed for all pulses by the CAEN. If we calculate the t0 parameter for
different rise times but the same trigger times, we get different values for t0. The relation
shows that if the trigger time is fixed, a higher value of t0 is expected for larger rise times
(slow pulses). As a result, two different peaks for normal and slow pulses are expected in
the t0-distribution.
In Fig. 3.23, a t0 vs. energy plot is shown. The plot shows two clearly distinguishable
populations. The upper population consists of slow pulses and the lower population consist
of normal pulses. In the slow pulse population (higher t0 values), a discontinuity is visible
at the energy E ≈ 7.8 keV, which corresponds to the point where τc changes from a free
to a fixed parameter. Contrarily, the normal pulse population shows no effect due to the
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Figure 3.23.: Plot showing the t0 parameter of the fit, plotted against the energy of each
event. The colour bar indicates the number of events per bin. The plot
is produced from a Th-228 measurement, which was recorded with the C1
detector.

fixing of τc. Only the slow pulse population is affected because, for the slow pulses, the
mean τc value changes when the parameter gets fixed. Therefore, the other fit parameter
needs to be adjusted in order to fit the pulse, leading to a slightly different t0 value.
high energy t0-distribution: In Fig. 3.24a, a plot of the t0-distribution for the high
energy case can be seen. The distribution can be divided into four areas, which are marked
in the plot. The first area goes from t0 ≈ 3600 − 3700 ns and contains all events inside the
main (left) peak. This peak contains most of the events and corresponds mainly to normal
pulses. Also, the peak has an asymmetry, which can be explained with the superposition
of two peaks, one from the higher and one from the lower population. The sub-peak of the
lower population has slightly lower t0 values than the peak from the higher population,
resulting in an asymmetric peak if both are combined. With the effect from the pre-trigger
explained above, not the complete difference of the two sub-peaks can be explained. An
explanation for the rest of the difference could be that the fit is not able to describe the
pre-increase, which could result in slightly different values for the fit parameters. The
second area of the t0-distribution, going from t0 ≈ 3700−3900 ns, contains the right peak.
Events inside this peak can be mainly assigned to the slow pulses. The difference between
the normal and slow pulse peak can be explained with two effects. First, a part of the
deviation can be explained with the pre-trigger effect. From eq. 3.21, the deviation of
the two peaks from this effect can be estimated to be around 50 ns. That is not enough
to explain the complete measured difference. Secondly, as shown in Fig. 3.13, the fit
function does not fit the form of slow pulses well. Using the function to fit the slow
pulse can lead to larger t0 fit parameters than expected if the function would be fitting
well. The third area of the distribution is a small peak at higher t0 values and goes from
4800 ns to 5800 ns. Only a few events have a t0 parameter inside this area and they are
normal and slow pulses. These events have a longer pre-trigger than the majority of the
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Figure 3.24.: t0-distribution for the same Th-228 measurement recorded with the C1
detector as shown in Fig. 3.23. In figure a), the distribution for the high
energy range and in figure b) the distribution for the low energy range is
shown.

events, resulting in a larger t0 value. Otherwise, the recorded pulses are looking normal
and also, the reconstructed energy seems to be correct. The last area of the distribution
contains the events between the different peaks, meaning events with parameters between
t0 ≈ 3900 − 4800 ns and t0 ≈ 5800 − 10000 ns. First of all, the number of events in this
area is very small. The events in the lower of the two regions are mostly events looking
like MSE, with one of the two pulses being a slow pulse. The events in the upper region
are mostly wrongly triggered events like in area three and some few saturation events.
low energy t0-distribution: A t0-distribution for the low energy range can be found in
Fig. 3.24b. The distribution is separated into five areas, which are marked in the plot.
The first area contains the main peak and goes from t0 ≈ 3600 − 3720 ns. Similar to
the high energy case, this peak contains mainly events from the normal pulse population.
However, in contrast to the high energy case, the peak has a weaker asymmetry. That
makes sense because the noise weakens or erases the differences between the pulses from
the higher and lower population and therefore, the difference of the fit parameter becomes
weaker or disappear. The second area of the distribution goes from t0 ≈ 3720 − 4000 ns
and contains mostly events from the slow pulse population. In the third area, going from
t0 ≈ 2400 − 3600 ns, no events are visible for the high energy case. Looking at these
events more closely shows that most of the events come from energies below E ≈ 200 eV.
Most of these events look like fitted noise. However, it is hard for some events with higher
energies to distinguish by eye if they are noise or physical events. Also, the fourth area of
the distribution, going from t0 ≈ 4000 − 10000 ns, contains many of the fitted noise with
energies below E ≈ 200 eV. In addition to the noise, wrongly triggered events, similar to
the high energy case, are included in this region. The wrongly triggered events are mainly
concentrated around t0 ≈ 5000 ns. In the last area of the distribution, only fitted noise
events are visible. The region goes from t0 ≈ 0 − 2400 ns. All in all, the distribution for
the low energy range looks quite similar to the high energy case, with the difference that
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Figure 3.25.: Figure a) shows a τc vs. energy plot. For energies below E ≈ 7.8 keV, the
τc value is fixed to a specific value. The colour bar indicates the number of
events per bin. Figure b) shows a τc-distribution for the high energy region.
For both plots, a Th-228 measurement recorded with the C1 detector is
used.

fitted noise is now included.
The pre-trigger of the DAQ is set for all measurements to a value of 5000 ns. Therefore,
from a naive point of view, we would expect that the fitted t0 values should be around
this value. However, looking at the t0-distributions, we find that the normal pulse events
are located in the region of t0 ≈ 3600 − 3720 ns. A speculation is that the difference
is connected to the shaping applied to the signal for the trigger, but this needs further
investigation. Interestingly, few events are centred around a value of t0 ≈ 5000 ns. A
reason for these ’wrongly’ triggered events has not been found yet.

Exponential decay time: τc

The τc parameter describes the exponential decay of the pulse created by the DAQ
system. As explained before, the parameter is fixed to a certain value for energies blow
E = 8000 ADC. More details about the procedure to fix the parameter and the fixed
τc values for the different detectors can be found in section 3.2.3. In Fig. 3.25a, a τc vs.
energy plot for a Th-228 measurement is shown. Two populations are visible, as well as
two subpopulations for the normal pulse population. A possible reason for the different
τc values is investigated in section 3.2.3.
high energy τc-distribution: In Fig. 3.25b, a τc-distribution for the high energy case is
shown. Since the two large peaks are explained already, only two interesting regions of the
distribution are left. The first region contains events with values of τc ≈ 0−0.000117 1/ns
and the second region includes events with τc ≈ 0.000135−0.0005 1/ns. In the first region,
two kinds of events appear. First, saturation events contribute in this region, mainly below
values of τc ≈ 0.00006 1/ns. Events with a value higher than τc ≈ 0.00006 1/ns mostly
have a second peak visible, located in the exponential decay of the first pulse. Also, the
second region can be split into two parts. For values below τc ≈ 0.00016 1/ns, different
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Figure 3.26.: P0 parameter of the fit, plotted against the energy of each event. The
colour bar indicates the number of events per bin. The plot is produced
from a Th-228 measurement which was recorded with the C1 detector.

types of events contribute. Some of the events, especially at the lower part of this area,
are normal looking pulses. Another type are events with two peaks visible, similar to MSE.
The last type are events happening at the very end of the exponential decay of a previous
pulse. Pulses appearing in the exponential decay of an event prior contribute to the events
above τc ≈ 0.00016 1/ns, as well. In addition, saturation events are located in this region,
too.

Baseline estimate: P0

The P0 parameter is an estimate for the baseline of the pulse. Therefore, the parameter
should be equal for all measured events. A plot showing the parameter P0 plotted against
the energy of each event is shown in Fig. 3.26. Multiple interesting effects are visible in
this plot. Most noticeable is that P0 splits up into three different populations at an energy
of E ≈ 7.8 keV and that these populations diverge for higher energies. Other visible effects
are that the single population at smaller energies has a small drift towards lower P0 values
and a small artefact at E . 1 keV. First, the split into three populations at high energies
will be discussed. The upper two populations only have a relatively small separation at
the highest energy and seem to merge earlier than the lowest population. The lowest
population has a higher difference to the middle population at the highest energy and is
separated from the other two populations until the τc parameter is fixed. In addition, the
upper and lowest population both diverge from the middle population, meaning that the
effect is energy-dependent and increases with higher energy. By looking at the events inside
the three populations, it can be seen that the upper population mainly consists of normal
pulses with a pre-increase, the middle population contains mainly normal pulses without
a pre-increase and the lowest population contains mostly slow pulses. For slow pulses,
the τc parameter changes most when it is fixed, explaining the abrupt cut of the slow
pulse population at the point where τc is fixed. The questions are why the three different
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Figure 3.27.: Figure a) shows different mean baselines calculated for different energies
and different P0 parameter populations. Figure b) shows the mean pre-
increase for three different energies. For both plots, a Th-228 measurement
recorded with the C1 detector is used.

populations exist and why they diverge. Looking at the mean baseline of these populations
at different energies, we find that the baselines are similar for all populations and have a
very similar value at different energies. Accordingly, the effect comes from the fit and not
from the data. A plot showing the mean baselines can be found in Fig. 3.27a. The middle
population (normal pulse without pre-increase) seems to be the population, matching with
the single population at low energy. That makes sense because the fit function does not
describe the pre-increase. Therefore, the events in the middle population are described
best by the fit, leading to the best possible fit of the baseline. Also, the fixed τc parameter
is estimated from the normal pulses, meaning that a change of the fit parameter is not
expected when τc is fixed. A possible explanation for the two normal pulse populations
merging before E ≈ 7.8 keV could be that at lower energies, the pre-increase is hidden by
the noise, making the two normal pulses indistinguishable for the fit. The rise in the P0

parameter towards higher energies could be connected to the pre-increase. As said before,
the pre-increase is not modelled with the fit function. Consequently, the pre-increase can
pull the baseline parameter of the fit towards higher values in order to compensate for
the pre-increase. That would explain the higher P0 parameter compared to the baseline
estimated from the data. Also, the drift towards higher P0 values can be explained by
this effect. For higher energies, the pre-increase reaches larger values. As a result, the
P0 parameter could be pulled towards larger values than at lower energies, where the
pre-increase is not as strong. In Fig. 3.27b, three mean pulses, estimated from the same
log10(τ) range, but different energies are shown. The figure shows that for roughly the
same rise time, the pre-increase is larger for the pulses at higher energies. For the slow
pulses, in order to fit the main part of the pulse and exponential decay better, the P0

parameter is set by the fit to a value lower than the data baseline. The effect should come
from the misfit of the fit function to the slow pulse and seems to be mainly driven by
the exponential decay because after τc is fixed, the effect disappears. Also, due to the
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Figure 3.28.: P0-distribution for the same Th-228 measurement recorded with C1 as
shown in Fig. 3.26. In figure a) the distribution for the high energy and
figure b) for the low energy case is shown.

decreasing P0 value at higher energies, it seems that the effect is getting larger for higher
energies.
In the low energy range, only one population is visible. This population has a weak drift
towards lower P0 values. In total, the population drifts around ∆P0 ≈ 5 a.u. over an
energy range of ∆E ≈ 7.3 keV. An explanation for this effect has not been found yet.
The last effect visible in Fig. 3.26 is an artefact for energies below E . 1 keV. At these
energies, a small vertical band goes towards larger P0 values. The band mainly contains
fitted noise and very few low energy pulses. Due to larger over fluctuations, the noise can
reach higher energy, such that it appears in this artefact.
high energy P0-distribution: In Fig. 3.28a, a P0-distribution for the high energy region
is shown. The distribution can be separated into three areas, which are marked in the
plot. The first region contains the main peak and goes from P0 ≈ 910 − 1050 a.u.. Mainly
normal pulses make up this peak. As seen before in the P0 vs. energy plot, the normal
pulse population splits into two diverging populations. Accordingly, the main peak is the
superposition of both populations, resulting in an asymmetric peak. The second region
goes from P0 ≈ 700 − 910 a.u. and contains mostly slow pulses. The last region goes
from P0 ≈ 1050 − 4000 a.u.. Only very few events are in this region and they are mostly
saturation events, events happening during the exponential decay of a previous pulse and
events with multiple peaks. However, few normal pulses are contained in this region, too.
low energy P0-distribution: A plot of the P0-distribution at low energies is shown in
Fig. 3.28b. Again, the distribution can be separated into three regions, which are marked
in the plot. The first region covers P0 ≈ 900−970 a.u. and only one main peak is visible. In
this region, normal, slow pulses and also some noise from below E < 200 eV are included.
The second population, located left from the main peak, goes from P0 ≈ 300 − 900 a.u..
Most of the events in this region come from energies below E < 150 ADC and are noise
events. The last region covers the range of P0 ≈ 970 − 1500 a.u. and mainly contains the
events of the artefact, which was discussed before.
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Quality Cuts

In general, the fit parameters can be used to apply quality cuts2 to the data to cut artefacts,
unphysical pulses and noise. For this thesis, only quality cuts where no signal is cut are
chosen. For some parameters, more aggressive quality cuts could be applied. However,
an additional efficiency calculation would be needed for these cuts. In the following, we
shortly discuss the possible cuts for each fit parameter and how much they influence the
spectrum.
First, the ”error bins” can be cut. These are two bins where events are stored, which have
a non-converging fit, are below a specific energy or are unphysical of the type shown in
Fig. 2.15 f). How these events are encoded in the parameter distributions is explained in
section A.3. Cutting the error bins is parameter independent and can be performed for
one of the fit parameters.
No quality cut is investigated for the τ parameter because this parameter is used for the
PSD later. Therefore, no other cuts will be applied to this parameter.
A cut applied for the parameters A0 and τc can reduce the number of saturation events
that are not flagged by the DAQ and events happening in the exponential decay of a
previous pulse. For A0, the cut should be applied to the spectrum above A0 = 4700 a.u.

and for τc, only events within 0.00006 1/ns < τc < 0.00016 1/ns should be kept. The
number of events rejected by these two cuts will be smaller than expected from Th-228
measurements. For the reactor data, the count rate is lower than for Th-228 and therefore,
the number of events happening in the exponential decay will be smaller, too. In addition,
after applying the µ-veto, the number of saturation events will be smaller since µ events
contribute to the saturation events. Nevertheless, these cuts can be applied to the data.
For the parameters t0 and P0, it is harder to define quality cuts without the necessity
to calculate a corresponding cut efficiency. No obvious cuts can be found for the high
energy part of the parameters. In the low energy part, cuts could be applied to reject
noise. However, the energy of the noise is mainly below E < 200 eV. Below this energy,
the fit does not work anyway (see section 4.4.3) and thus, these cuts are unnecessary.
Especially, for t0 one needs to be careful because also wrongly triggered events appear in
the noise regions. All in all, no quality cuts will be applied for these two parameters. For
the long term, one could think of possible cuts for these two parameters and calculate the
corresponding efficiencies.
The reduction power of these quality cuts is estimated for Th-228 and reactor-ON data.
For the Th-228 measurement, the energy spectrum before and after the quality cuts can
be seen in Fig. 3.29. It can be seen that the reduction is quite large, especially for lower
energies. By far, the largest contribution of the cut comes from the error bins. For the
reactor-ON data, a total of ∼ 88 days is used. The reduction power of this cut for different
energy regions can be found in Tab. 3.4. It can be seen that the reduction is relatively

2Quality cuts are used to ’clean’ the data from artefacts, etc. In contrast, a PSD-cut is based on the
different topologies of the pulse, which have a physical origin.
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Table 3.4.: Possible reduction due to the application of the quality cuts. The used
measurement is done with the C1 detector and contains ∼ 88 days of reactor-
ON data.

energy range [keVee] reduction due to quality cut [%]
0 − 0.3 3.4
0.3 − 2 1.2
2 − 10.1 1.4

10.1 − 10.6 0.12
10.6 − 20 3.9
20 − 32 0.7
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Figure 3.29.: Th-228 spectrum before (red) and after (blue) the quality cuts. For this
spectrum, multiple calibration measurements for C1 during RUN-5 are
used.

small and between 0.12% and 3.9%. Nevertheless, this cut will be applied to the data.
Moreover, it can be seen in this table that the reduction for the last two energy ranges is
quite different. A reason for this observation is not found yet.
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Chapter 4.

Results and Application

In this chapter, the application of the rise time fit to Th-228 and reactor-ON data is
shown and a new method to calculate the PSD-cut efficiencies will be introduced. For
the reactor-ON data, the first three month of data collection in RUN-5 (May - August
2021) are used. As before, the C1 detector is used as a benchmark detector. First, the
stability of the τ and τc parameter is investigated (section 4.1), and the possibility to
use the pulse shape analysis as a monitoring tool for the performance of the preamplifier
is demonstrated (section 4.2). Then, the application of the rise time fit to a Th-228
measurement is shown, including a comparison of the results to a MC simulation (section
4.3). Afterwards, a detailed pulser study is described, allowing to determine the lower
threshold of the rise time fit in the sub-keV region (section 4.4). The method for the PSD-
cut efficiency calculation, including the systematic uncertainties, is explained (section 4.5),
and the rise time fit and PSD-cut is applied to reactor-ON data (section 4.6). In the end,
the ”by-product” of the rise time fit, the discrimination between SSE and MSE above 100
keV, is shown (section 4.7).

4.1. Stability of the τ and τc Parameter

In this section, we investigate the time stability of the τ and τc parameter, which is
crucial for the PSD. First, we will look at the τc parameter. The parameter is fixed to
a certain value for energies below E < 8000 ADC (see section 3.2.3). In order to be able
to use the same value for τc over the complete measurement period, stability over time
is necessary. Reactor-ON data in the energy range of E = 15 − 32 keV will be used to
check if the parameter is stable. For the energy, the same range is chosen as for the
initial calculation of the fixed τc values. Only the TRP veto and not the µ-veto is applied
for the estimation of τc, to increase the statistics per measurement. The normal pulse
peak of the τc-distribution is fitted by a Gaussian function for each measurement and the
mean value of the fit is plotted against the time. For the error bars, only the statistical
uncertainties are used. The stability plot for the C1 detector can be seen in Fig. 4.1.
Figure 4.1 shows that the τc value for C1 is very stable over time. In addition, the τc

value is always compatible with the value used as the fixed τc parameter at low energies,
τc = 0.000131 1/ns. The stability plots of the other three detectors can be found in the
appendix in Fig. B.1. Also, for C3 and C4, the τc value is stable and always compatible
with the fixed values at low energy (see Tab. 3.2). The τc values for the C2 detector are
stable, too. However, in the C2 case, the τc value is closer to a value of τc = 0.000130 1/ns
than to the value estimated in section 3.2.3 (τc = 0.000131 1/ns) for some measurements.

67



chapter 4. Results and Application

2021-05-13 2021-05-27 2021-06-10 2021-06-24 2021-07-08 2021-07-22 2021-08-05 2021-08-19

date

0.13115

0.1312

0.13125

0.1313

0.13135

0.1314

0.13145

3−10×

 [1
/n

s]
cτ

Figure 4.1.: Stability of the τc parameter over time for the C1 detector. For the
estimation of the parameter, reactor-ON data is used. On the x-axis, the
starting date of each measurement is plotted.

The deviation is on the percent level and was considered to be negligible. The stability of
the τc parameter should be monitored in the future, as well.
Next, we will have a look at the stability of the τ parameter. The stability of the τ

parameter over time is important to be able to apply the same PSD-cut to the complete
reactor-ON and reactor-OFF data. Therefore, the parameter needs to be stable for the
time of around 1.5 years. If this were not the case, the PSD-cut would need a time
dependence, introducing new systematic uncertainties. Since the normal pulse population
should survive the PSD-cut, the stability of this population will be monitored. The bi-
weakly performed Th-228 calibration measurements are ideal for the τ stability monitoring.
As before, the TRP veto is applied to the data. For the estimation of the τ parameter
stability, the energy range of 25 keV ≤ E ≤ 32 keV is used. In this energy range, the higher
and lower normal populations can be distinguished. The higher population is closer to the
PSD-cut and thus is more interesting for stability monitoring. In the τ -distribution, the
peak corresponding to the higher normal pulse population is fitted by a Gaussian function
and the mean value is plotted against the date of the calibration measurement. For the
error bar, only the statistical uncertainty is used. A plot showing the stability of τ for the
C1 detector can be seen in Fig. 4.2. The plot shows that for C1, the τ value is stable and
only variates in a range of around 0.4 ns, corresponding to a variation of approximately
0.3% relative to the mean value. The stability plots for the other detectors can be found
in the appendix in Fig. B.2. Also, the detectors C3 and C4 show only small variations.
The C3 detector shows a variation in the range of 1.6 ns, corresponding to a variation of
around 0.8% relative to the mean value and the C4 detector has a variation of about 0.6
ns or 0.4% relative to the mean value. However, for both detectors, it slightly looks like
the τ parameter drifts towards larger values. The C2 detector shows a clear drift towards
larger τ values, going over a region of around 1.5 ns, corresponding to 0.8% relative to the
first data point. In general, monitoring the stability of the τ parameter is of paramount
importance for the success of the PSD method.
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Figure 4.2.: Stability of the τ parameter over time for the C1 detector. For the estimation
of the parameter, Th-228 calibration data is used. On the x-axis, the date
of each measurement is plotted.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

time [ns]

1000

2000

3000

4000

5000

6000

7000

8000

9000

am
pl

itu
de

 [a
.u

.]

without step

with step

Figure 4.3.: Two example pulses of the C2 detector before the pumping of the cryostat
and preamplifier tuning. The blue pulse is a regular normal pulse and the
orange one is a normal pulse with a step included.

4.2. Rise Time Fit as Analysis Tool for Preamplifier and
Detector Performance

The rise time fit can be utilized as a tool for monitoring the performance of the preamplifier
and of the Ge diode, in addition to the main usage for PSD. In general, this can be done
by looking for anomalies in the fit parameter distributions and especially by looking at
the τ vs. energy plots. In this section, two examples from the commissioning of RUN-5
are shown to illustrate this application.
Example C2: Before the start of RUN-5, some normal pulses from the C2 detector had a
step in the recorded pulse shape. This feature is unwanted and should not be confused with
the pre-increase (see section 2.4.1). In Fig. 4.3, two example pulses from C2 are shown.
One of the pulses is a regular normal pulse and the other one has a step included in the
pulse shape. The pulses with an additional step are visible as an additional population
in the τ vs. energy plot. An example plot can be found in Fig. 4.4a. In this figure,
four populations are visible. The population with the highest rise time (values around
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Figure 4.4.: Two τ vs. energy plots for Th-228 measurements with the C2 detector in the
low energy range E . 32 keV. The measurement in figure a) was recorded
before the pumping of the cryostat and the preamplifier tuning. Therefore,
some normal pulses have an unwanted additional step. The measurement
in figure b) was recorded after the pumping of the cryostat and preamplifier
tuning and looks acceptable again. The colour bar indicates for each plot
the number of events per bin.

log10(τ) = 3.1 log10(ns)) contains mostly saturation events. Slow pulses are collected in
the population around values of log10(τ) = 2.7 − 2.8 log10(ns) and the two populations
with the lowest rise times contain normal pulses with and without the additional steps.
The normal pulses with additional step are included in the population with the larger τ

values. This does not only show that normal pulses with an additional step exist, but it
also allows quantifying the ratio of normal pulses with and without the step. The ratio
could be used to understand the origin of the step by comparing it to theoretical values
for possible origins. However, no explanation was found. After a pumping of the cryostat
and preamplifier tuning for C2, the additional step mainly disappeared. Also, the τ vs.
energy plot looks normal again. In Fig. 4.4b, the normal-looking τ vs. energy plot is
shown.
Example C3: During the commissioning of RUN-5, it was observed that the pulses of the
C3 detector look different compared to pulses of the C1 detector. A rise time vs. energy
plot of the C3 detector can be found in Fig. 4.5a. The used measurement is recorded
in the high energy regime E . 900 keV. The high energy measurement is used due to
the lack of low energy data before the preamplifier tuning of C3. However, the effect of
the preamplifier tuning can also be seen by using this measurement. In this figure, three
horizontal populations are visible. The normal and slow pulse population are located
around a value of log10(τ) = 3 log10(ns). Especially, the normal pulse population has way
larger τ values than expected and is very close to the slow pulse population. Therefore, the
figure shows that something is not working correctly. In order to change the performance,
the preamplifier settings were changed. After these changes, the rise time distribution
looks normal again and is shown in Fig. 4.5b. The measurement shown in this figure is
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Figure 4.5.: Two τ vs. energy plots for Th-228 measurements with the C3 detector.
Figure a) shows a high energy measurement E . 900 keV before the
preamplifier tuning of C3. Figure b) shows a low energy measurement
E . 32 keV after the preamplifier tuning. The ’blob’ visible at energies
below E < 5000 ADC and rise time values around log10(τ) = 1.5 log10(ns)
comes from events correlated to the TRP resets and can be rejected by the
TRP veto. The vertical band at energies of E ≈ 2500 ADC and rise time
values of log10(τ) ≥ 3.3 log10(ns) mainly contains saturation events and
events happening in the exponential decay of a previous pulse. The colour
bar indicates for each plot the number of events per bin.

conducted in the low energy range (E . 32 keV). Nonetheless, the position of the normal
pulse population can be compared to the one from the high energy range because it is
assumed that τ is energy-independent. Overall, the τ vs. energy plot shows that the
preamplifier is working correctly again and the plot helped determine if the settings were
chosen properly.
In addition to the usual visual inspection of a few selected pulses, the rise time fit can help
to identify and quantify unusual behaviour of the preamplifier and the detector. Moreover,
the parameter distributions can help monitor the changes in time.

4.3. Application of the Rise Time Fit to Th-228 Data

In section 3.1.3, a visual inspection of the τ vs. energy plot showed that the two main
populations could be assigned to normal and slow pulses. Now, in this section, these
findings are cross-checked by looking at a simple estimation based on the attenuation law
(see eq. 2.11) and a comparison with a MC simulation. Afterwards, τ -distributions for
Th-228 measurements will be shown and discussed.

Estimation based on the attenuation law: In the following, we will perform a rough
estimation for the percentage of normal and slow pulses expected in the detector by using
the attenuation law. The theoretical estimate will then be compared to the percentage
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Table 4.1.: The results of the rough estimation for the expected percentage of normal
(btheo) and slow pulses (stheo) for the C1 detector using the attenuation law.
The energy ranges (E) and attenuation coefficient (µ) used in the analysis
are also shown. In [14], the mass attenuation coefficient is given, meaning
that the values need to be multiplied by the density of germanium (ρGe =
5.32 g/cm3 [36]) to get the attenuation coefficient. For the estimation of the
experimentally determined percentage of normal (bexp) and slow pulses (sexp),
a Th-228 measurement performed with the C1 detector was used.

E [keV] µ [1/cm] btheo stheo bexp sexp

57 − 63 10.7684 0.806 0.194 0.768 0.232
76 − 84 5.0574 0.904 0.096 0.819 0.181

estimated from a Th-228 measurement. For the estimation, we assume, that all γ-rays
from the same source deposit their total energy in the bulk volume or in the transition
layer, and only interact once. The percentage btheo of γ-rays reaching the bulk volume
and the percentage stheo of γ-rays stopped in the transition layer can be calculated with
the attenuation law (see eq. 2.11) as follows:

btheo = I(λtrans)
I0

= e−µ(E)λtrans (4.1)

stheo = 1 − btheo, (4.2)

where λtrans is the thickness of the transition layer and I0 the intensity of γ-rays after the
dead layer. The starting intensity I0 is set after the dead layer because all γ-rays being
detected in the transition layer or in the active volume need to pass through the dead layer
first. For the thickness of the transition layer, the value of λtrans = 0.20 mm [39] is used.
The attenuation coefficient is taken from [14] at the energies used for the comparison. In
order to avoid a too significant influence from Compton scattering and thus from multiple
scattering, only two energy regions below 100 keV are used. Another criterion is that
the energy range is above E ≈ 50 keV, such that the γ-rays from the Th-228 source can
penetrate the Cu Cryostat and reach the detector. The energy regions are considered in a
5% range around the values of E = 60 keV and E = 80 keV. Only a small energy region
is used to justify the assumption of a constant attenuation coefficient in the region. The
energy regions, corresponding attenuation coefficients and theoretically calculated value
for stheo and btheo are reported in Tab. 4.1.
For the estimation of the experimental values, a Th-228 measurement after the application
of the TRP veto is used. The number of normal and slow pulses is estimated by counting
the events in specific τ regions. The normal pulse region is chosen as 1 log10(ns) <

log10(τ) < 2.1 log10(ns) and the slow pulse region is 2.1 log10(ns) < log10(τ) < 4 log10(ns).
From the number of events, the percentages of normal bexp and slow pulses sexp are
calculated. Both values are shown in Tab. 4.1
Comparing the experimental and theoretical calculated values, one finds that they are
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Table 4.2.: All quantities necessary for the MC simulation comparison. N and S are the
number of normal and slow pulses extracted from the Th-228 measurement
and ’total’ means all events between 1 log10(ns) < log10(τ) < 4 log10(ns). The
MC values are kindly provided by J. Hakenmüller and give the ratio of slow
pulse to normal plus slow pulses.

E [keV] ∆ log10(τ) [log10(ns)] ∆ log10(τ) [log10(ns)]
(

S
S+N

)
exp

(
S

total

)
exp

(
S

S+N

)
MC

normal pulses slow pulses
2 − 6 1 − 2.2580 2.6410 − 2.9937 0.472 0.455 0.45
6 − 12 1 − 2.1909 2.6666 − 2.9627 0.347 0.325 0.29
15 − 20 1 − 2.1687 2.6528 − 2.9630 0.245 0.224 0.21
25 − 30 1 − 2.1603 2.6139 − 2.9790 0.213 0.191 0.19

in the same ballpark. Some possible problems and simplifications of this estimation are
described below. First, the attenuation coefficient is a function of energy and in the
calculation, it was assumed to be constant in the energy range. From [14], it can be
estimated that the change of the attenuation coefficient is about ∼ 28−31% over the chosen
5% energy region. Another simplification is that the possibility of multiple interactions is
completely neglected. The influence of multiple scattering could explain why the deviation
for the higher energy region is larger. Additionally, the uncertainty of the transition layer
thickness is neglected in the calculation as well. Also, it was assumed that the γ-rays
only interact once and deposit their complete energy. Lastly, the normal and slow pulse
regions for the experimental values were only estimated by eye.
All in all, the simple estimate supports the hypotheses from the visual inspection that the
population with the larger rise time comes from slow pulses, while the population with
the shorter rise time comes from normal pulses.

MC comparison: A more refined cross-check, accounting for example for the energy
dependence of the attenuation coefficient, is a comparison of the number of normal and slow
pulse events with a MC simulation. For the comparison, J. Hakenmüller kindly provided
the ratio of slow pulses to the sum of normal and slow pulses from a MC simulation for a Th-
228 measurement with C1. These numbers can be found in Tab. 4.2. Before starting with
the comparison, we need to check if the background of the experiment can be neglected
for a Th-228 measurement. To do so, the ratio of the number of background to Th-228
events can be used. Since the reactor is running during all Th-228 calibrations, reactor-ON
data is the ’background data’ in the current analysis. The ratio is smaller than 0.001 for
energies above 10 keV and below 0.002 for energies between 500 eV and 10 keV. As a result,
the background events can be neglected for the MC comparison. For the comparison, all
low energy Th-228 calibration measurements performed with C1 between 01.06.2021 and
17.08.2021 are used. To be able to separate the normal and slow pulse population clearly,
the comparison is only performed down to energies of 2 keV. The normal and slow pulse
regions in the τ -distributions are estimated by fitting a Gaussian function to each peak for
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every energy region. For the slow pulse population, the τ region is defined by µ ± 3σ. In
the case of the normal pulse population, only the higher population is fitted and from this,
the upper bound of the region is calculated by µ + 3σ. The lower bound is set to one for
the complete comparison. The energy ranges and τ regions are listed in Tab. 4.2. For the
comparison with the MC simulation, the ratio of slow pulses S to the sum of normal and
slow pulses (N+S) is calculated and are summarized in Tab. 4.2. Comparing the values to
the MC simulation, we can see that the experimentally determined values already agree
at the 15% level with the MC predicted values. However, in this case, all events between
the normal and slow pulse population are neglected. If the ratio of slow pulses to the total
number of pulses (all events within 1 log10(ns) < log10(τ) < 4 log10(ns)) is used for the
comparison, the numbers fit even better to the MC simulation (. 5% level, except 6-12
keV: 10% level). All in all, the numbers fit good according to this first comparison attempt.
The energy range from 6-12 keV shows the largest deviation from the MC simulation.
In the following, possible explanations for the difference between data and MC are described.
First, events in the bulk volume with more than one energy deposition will have a larger τ

parameter than the SSE events (see section: 4.7). Therefore, they will be above the normal
pulse population in τ space and thus will be not counted as a normal pulse. However, the
MC simulation will classify such an event as a normal pulse and thus it can introduce
a difference. Another problem could be that the MC simulation will classify an event
as slow pulse if a small energy deposition (e.g. 5 eV) takes place in the transition layer.
Such an event might appear in the normal pulse population of the τ parameter if the
energy deposition in the transition layer is so small that it does not influence the pulse
shape significantly. Also, the transition layer is implemented in the MC simulation as a
rectangle with sharp corners. However, in reality, it could be that the transition layer is a
bit thicker in the corners, leading to differences between the MC simulation and the data.
In general, more investigations are needed to determine where the differences between the
MC simulation and the data comes from.
In conclusion, the values from the MC simulation and the measured data agree well for
a first comparison. Therefore, the MC simulation supports the assumption that the rise
time fit allows the separation of physical events, generated either in the transition layer
or in the bulk of the Ge diode. More investigations are needed to resolve the differences
between simulation and measurement.

In the following, distributions of the rise time parameter τ for Th-228 measurements
are shown and discussed. In Fig. 4.6, τ distributions for different energies for the C1
detector are shown. It is clearly visible that the two peaks can still be separated in the
energy range of 1-2 keV. At lower energies, these two peaks mix stronger and it is more
challenging to separate them. Figure 4.6 shows that the fit is still able to work and can
be used to discriminate normal and slow pulses around energies of 1 keV, which is very
important since the region of interest for the CEνNS analysis goes down to ∼ 300 keV. A
determination of the lower energy threshold of the fit is shown in section 4.4.3.
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4.3 Application of the Rise Time Fit to Th-228 Data

Figure 4.6.: log10(τ)-distributions for the C1 detector at different energies. For the plots,
all Th-228 calibration measurements between 01.06.2021 and 17.08.2021 are
used.

In Fig. B.3, B.4 and B.5, multiple τ -distributions are shown at different energies for C2-C4.
The position of the populations in τ space depends on the geometry, on the electric field
configuration of the detector (see section 2.3.2) and on the preamplifier settings (see section
4.2). Moreover, the discriminating power of τ is different. For example, comparing the τ -
distribution of C1 and C2 in the energy range of 0.5 - 1 keV shows that the discriminating
power of τ is larger for C1.
In the high energy τ -distribution (15-20 keV, Fig. 4.6), one can see the two subpopulations
of the normal pulse peak. The lower population looks like a tail towards lower τ values,
while the higher population is a clear peak. From a simple simulation (see section 2.4.1), we
know that the two subpopulations probably come from different interaction points inside
the bulk of the Ge diode. Events in the lower population occur closer to the p+ contact
of the diode, in contrast to events from the higher population. It would be interesting to
calculate the volume ratio of the areas inside the diode where the interaction happens by
taking the ratio of events from the higher and lower population. The ratio could, e.g. help
to validate a pulse shape simulation. However, the estimation cannot be done with the
Th-228 data shown in Fig. 4.6 since the γ-rays do not interact homogeneously inside the
diode, but more events happen in the outer layers, especially at low energies. In addition,
the Th-228 source is located centred above all four detectors, with the p+ contact of
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the detectors pointing towards the source. These two points lead to more events in the
lower population, making it impossible to use the low energy Th-228 measurement for the
calculation. A more homogenous distribution of the interactions in the diode could be
achieved by going to higher energies because then the γ-rays are penetrating deeper into
the diode. Another option is to use a pulse shape simulation or the ∼ 10.4 keV Ge line to
determine this volume ratio. An estimation of this ratio using the latter option is shown
in section 4.5.1.

4.4. Pulser Studies

In order to estimate a lower threshold for the rise time fit and to calculate the cut
efficiency of a PSD-cut and its associated systematic uncertainty, extensive pulser studies
were performed. Again, the C1 detector is used as a benchmark detector. The analysis
described in this section can be applied to the other detectors in a similar way. First, the
experimental setup of the pulser studies is described (section 4.4.1). Then, the resulting
parameter distributions are shown and limitations of these measurements are discussed
(section 4.4.2). In the end, the lower energy threshold of the rise time fit is determined
(section 4.4.3). The calculation of the cut efficiency and systematic uncertainty is shown
in the next section (section 4.5.1).

4.4.1. Setup

For the pulser studies, a forced trigger is used, meaning an ’external trigger’ signal
generated by the pulser forces the recording of an event by the DAQ. The forced trigger
allows investigating pulses with a similar amplitude compared to the height of the noise.
With a free trigger, the analysis would not be possible because it is hard to tell if the
recorded data shows a pulse or noise, at very low energies. In contrast, the setup with a
forced trigger can be chosen in a way that all recorded events correspond to an injected
test pulse, also at very low energies.
For the pulser studies, the Tektronix AFG 3252 Dual Channel Arbitrary/Function Generator
[52] was used. The pulser has two output channels, which were both used for the forced
trigger configuration. Both channels can be coupled in frequency, such that they send out
signals at the same time. A schematic view of the measurement setup can be found in
Fig. 4.7. The signal coming from the second pulser channel was used as the trigger signal,
meaning that the signal goes directly to the CAEN without going through the detector.
An oscilloscope was used to monitor the input pulse shape and frequency. Additionally,
the CAEN was set up in a way that if CH5 triggers, it forces the acquisition of the physical
channel 0-3 (CH0, CH1, CH2, CH3). Channel 0-3 were used as the signal channels. The
signal from the first pulser channel was split and sent through the electronic chain of
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Figure 4.7.: Schematic view of the configuration used for the pulser studies. The dotted
lines represent signal cables.
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Figure 4.8.: Example of the pulses used as an input for the pulser studies. The shown
pulse is created from the mean pulse of the slow pulse population from a
Th-228 measurement with the C1 detector.

the four detectors C1-C4. Since the two different pulser channels were used for different
purposes, the amplitudes of the trigger and signal pulses can have different amplitudes.
As a result, the trigger signal can always have a large amplitude, ensuring that the trigger
efficiency of the CAEN is 100%, while the amplitude of the signal pulse can be lowered to
very small energies (amplitudes). Due to the forced trigger configuration, we know that
in each recorded event, a pulse and not noise is shown.
In order to mimic the physical signal as good as possible, real pulses were used as an
input pulse shape for the pulser. These pulses were used for the trigger and signal. In the
following, it will be shortly explained how these real pulses are generated. First, mean
pulses in the energy range of E ≈ 15 − 16 keV were calculated for the three physical
populations (slow pulse, higher normal pulse and lower normal pulse). A relatively high
energy range was chosen for the mean pulses to minimize the influence of noise on the
pulses shape. Afterwards, the three pulses are transformed such that the pulses stay flat
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Figure 4.9.: Result of the pulser measurement with a forced trigger performed with C1.
The input pulses of the pulser are generated from a Th-228 measurement.
Figure a) shows the complete measurement and figure b) shows the same
measurement zoomed into the low energy range.

after they reach their maximum and go slowly back to the baseline after a total time of
t = 25000 ns. This replaces exponential decay of the mean pulses. Otherwise, the AC
coupling response would be accounted twice, resulting in an overall different pulse shape
compared to the physical pulses. The decay back to the baseline is chosen relatively long
to avoid the CAEN triggering on this decay. An example of such a pulse can be seen in
Fig. 4.8. These modified mean pulses were inserted into the pulser and used as the input
pulses for the pulser studies. Since the pulses were created with one fixed height only, they
are scaled by the pulser to simulate different energies. It was checked that the physical
pulses scale in the same way. As a result, it was found that this is the case. Also, this
was expected (see section 2.3.2) because the charge (proportional to the energy) is only a
scaling factor.

4.4.2. Results

Even though all detectors were connected and measuring during the pulser studies, only the
results of the C1 detector are shown here. There are two main reasons for this. First, the
measured energy points were optimized for the C1 detector. For the other three detectors,
the measured points are at slightly different energies. Secondly, the input pulses for the
pulser were calculated from a measurement with the C1 detector.
An overview of the measured energy points can be seen in Fig. 4.9a and 4.9b in the form of
a τ vs. energy plot. The blue and orange data points correspond to the measurement where
the mean pulse from the higher and lower normal population was used as an input and for
the green data points, the mean slow pulse was used. It can be seen that the populations
are in the same ordering as one would expect (slow pulses largest τ parameter and pulses
from the lower normal population smallest τ parameter) and that the normal and slow
populations are clearly separated until energies of around 1.5 keV. In addition, it is visible
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Figure 4.10.: In figure a) a comparison of the mean pulse used to calculate the input pulse
for the pulser to the resulting mean pulse from the pulser measurement
is shown. Figure b) shows the resulting mean pulses from the pulser
measurement for all three populations. The C1 detector was used for the
shown measurements and for the calculation of the mean pulses, events
with an energy around ∼ 15 keV were taken.

that the two normal pulse populations mix for lower energies. That makes sense because,
at lower energies, the pre-increase is hidden in the noise. However, the three populations
are not centred around the same τ values as expected from the input pulses. The normal
pulse populations are shifted to a bit larger values, while the slow pulse population is
shifted to smaller values. For example, the mean pulse for the lower normal population is
calculated from pulses with a τ parameter between log10(τ) = 2.0−2.12 log10(ns). But the
corresponding pulser population has a mean value of log10(τ) = 2.19 log10(ns). Comparing
a mean pulse from the Th-228 measurement (used to create the pulser pulses) to a mean
pulse from the pulser measurement shows that the problem does not come from the fit
but the data. The comparison is shown in Fig. 4.10a. In this figure, the normal higher
population was chosen as an example. It is clearly visible that the rise time of the pulse
from the pulser is larger, leading to larger τ values. The difference can be explained by the
electronic response of the preamplifier and DAQ. The input pulses created for the pulser
already include the electronic response. Since they are sent through the preamplifier and
DAQ, the electronic response is added again. It would be interesting to calculate the
input pulse without the electronic response to mimic the physical measurements better.
In order to find a description of the electronic response, more investigations are needed.
Another option to achieve a better description is to use pulses from a simulation as an
input for the pulser. Nevertheless, looking at a comparison of the mean pulses from all
three populations from the pulser measurement, it can be seen that the important features
are recreated: different rise times for normal and slow pulses, a pre-increase for the higher
normal population, the same form for the lower and higher population, except the pre-
increase. The comparison is shown in Fig. 4.10b.
Most of the other fit parameters show no peculiarities. In addition, features of the
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Figure 4.11.: Parameter distribution for P0 and A0 in the high energy range of the pulser
measurement. In figure a) the P0-distribution and in figure b) the A0-
distribution is shown. Both distributions are at an energy of E ≈ 15 keV
and are recorded with the C1 detector.

parameter distributions discussed in section 3.2.4 are reproduced with the pulser measurement.
As an example, Fig. 4.11a shows a P0-distribution for a high energy point (∼ 15 keV). In
the plot, it can be seen that the distributions of the three populations have different mean
values. The ordering of the peaks is the same, as discussed in section 3.2.4 for the high
energy case. At lower energies, the peaks have a similar mean value, as expected from the
low energy case discussed in section 3.2.4. For the measurement at an energy of ∼ 15 keV,
the A0 parameter shows a peculiarity. The corresponding plot is shown in Fig. 4.11b.
The A0-distribution for the higher population has a smaller mean value than for the lower
population. A possible reason could be related to the different P0 values. The maximal
point the fit function would reach without the exponential decay is fmax = 2A0 +P0. Since
the maximal amplitude fmax is fixed by the energy of the event, a larger or smaller P0

parameter would lead to a smaller or larger A0 parameter. The difference seen in the P0

parameter has the correct order to make up the majority of the A0 difference, but it is not
large enough to completely explain it. Additionally, it is interesting that the lower and slow
populations have nearly the same mean value. Following the argument above, the slow
pulse peak should have a higher mean value than the lower population. An explanation
for this peculiarity is not found yet. However, the slow pulse has the strongest influence
from the electronic response on the shape. Maybe, some effect regarding the electronic
response cancels the effect described above.

4.4.3. Lower Energy Threshold for the Rise Time Fit

The pulser measurement can be used to determine the lowest energy up to which the fit
method can be used to distinguish between normal and slow pulses. In the forced trigger
configuration, we are able to reduce the pulse height without losing trigger efficiency,
making it possible to study pulses with a similar height compared to the noise. Moreover,
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Figure 4.12.: τ -distributions of all three populations at different energies for the pulser
measurement with C1. Only distributions at low energies are shown to
find the lower threshold of the fit.

with the pulser, we know if an injected event is a normal or slow pulse. In order to
determine the lower threshold, the τ distributions of the lowest energy points are used.
The distributions for the energy points at E ≈ 310, 255, 220, 140 eV are shown in Fig.
4.12. In this figure, the τ -distributions of the three different populations are compared
for each energy point. At all shown energies, the distribution of the lower and higher
population look very similar. That makes sense because the only difference, the pre-
increase, disappears for low energies due to the noise. As a result, the two normal pulse
populations are basically the same at lower energies. More interesting is the comparison
of the slow and normal distribution. In all shown plots, the two distributions overlap.
However, for all energies except E ≈ 140 eV, the form of the two distributions is different.
It means that until energies of E ≈ 200 eV, there is enough information in the data for the
fit to create differently shaped τ -distributions. Of course, this will not allow discriminating
normal and slow pulses with an efficiency of 100% and event by event, but a statistical
separation is still possible. At lower energies, like, e.g. E ≈ 140 eV, the fit method fails
completely and it is impossible to distinguish between normal and slow pulses, the three
populations basically look the same.
In conclusion, the rise time fit can be used down to energies of E ≈ 200 eV. This fully
includes the region of interest for the CEνNS analysis.
In the plot with the lowest energy shown in Fig. 4.12, two populations are still visible.
These two populations come from events with a failed fit. The peak at lower τ values
is created by the fit of noise. In this case, a small fluctuation of the noise is fitted. An
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(a)

(b)

Figure 4.13.: Two examples for failed fits from the pulser measurement with the C1
detector. In figure a), a pulse is shown, where the increase of noise is fitted.
Figure b) shows a pulse, where a function with a too large rise time is
fitted to the data.

example pulse for fitted noise is shown in Fig. 4.13a. The peak with higher τ values
mainly contains events, where a function with a very long rise time is fitted to the data.
Again, this is a failed fit because the fitted pulse is definitely not what was sent in by the
pulser. An example can be seen in Fig. 4.13b.
Also, in the distributions with energies above 200 eV, some events with a failed fit can
be seen. For example, at the energies of E ≈ 255 eV and E ≈ 220 eV, the slow pulse
population has a small contribution at low τ values, coming from events where noise is
fitted. It shows that the fit starts to get problems at low energies but has not yet failed
completely.
To illustrate why it is difficult to distinguish the pulses at these low energies, two example
pulses are shown in the appendix in Fig. B.6. In this figure, it is visible that at low
energies, the amplitude of the pulses has a similar height compared to the noise, making it
hard to distinguish them from the noise. Moreover, the noise will wash out the difference
between normal and slow pulses and thus decrease the discriminating power of τ .

4.5. Discrimination of Normal and Slow Pulses

The main goal of the pulse shape analysis is to reduce the background further by discriminat-
ing normal and slow pulses. At high energies, the normal and slow populations are clearly
separated such that a full discrimination is possible. In contrast, at lower energies, the
two populations start to mix and it is getting harder to distinguish them. The region of
interest of the CONUS experiment is below 1 keV and thus lies in the region where the two
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Figure 4.14.: Two example pulses from the low energy regime. The left pulse is a normal
pulse, with a rise time of τ = (109 ± 9) ns and an energy of E ≈ 0.72 keV.
The right pulse is a slow pulse with a rise time of τ = (589 ± 27) ns and an
energy of E ≈ 0.75 keV. Both pulses are recorded with the C1 detector.

populations are hard to distinguish. Two example pulses, a normal and a slow pulse, with
an energy below 1 keV, are shown in Fig. 4.14. Comparing the two pulses to high energy
pulses (see Fig. 3.13) illustrates why it is harder to distinguish the two populations at low
energies. In the low energy regime, the resulting rise time parameter τ can be influenced
by the noise, meaning that the differences between normal and slow pulses are washed out.
Additionally, at very low energies, the noise makes it harder for the fit to find the pulses.
In the following, a method is described, developed to define a PSD-cut in the region of
interest and calculate the associated cut efficiencies, including the systematic uncertainties
(section 4.5.1). Afterwards, a procedure to identify the most beneficial cut efficiency for
each energy will be introduced (section 4.5.2). Furthermore, an overview of the PSD-
cut efficiency calculation implementation will be given in the appendix (section A.4). As
before, the C1 detector is used as a benchmark detector.

4.5.1. Cut Efficiencies and Systematic Uncertainties

In this section, a newly developed method to calculate the efficiencies and systematic
uncertainties for a PSD-cut is described. For this method, the pulser measurement with
the forced trigger configuration, Th-228 data and the ∼ 10.4 keV line in the reactor data is
used. First, the working principle of the method will be described. Then, the used model
functions are introduced and the estimation of each model parameter will be explained.
In the end, the calculation of the efficiency curves and systematic uncertainties will be
presented.
The calculated cut efficiency is defined as the percentage of neutrino events surviving the
PSD-cut. Consequentially, the cut efficiency makes no statement about the number of
slow or normal pulses cut. However, neutrino events are assumed to be all normal pulses
and thus, mostly slow pulses are rejected by the PSD-cut, especially at higher energies.
The definition of the efficiency was chosen because one parameter is estimated under the
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assumption that the interactions are happening homogeneously throughout the Ge diode.
That is true for neutrino events but not for all interactions creating normal pulses.

Method

In the following, an overview of the method to calculate the systematic uncertainties and
cut efficiencies will be given.
First, the forced trigger pulser measurement is used to find a model function describing the
τ -distribution for each measured energy point. The pulser measurement is used because it
allows recording pulses at very low energies. Additionally, we have control over the input
pulse and can record a separate τ -distribution for each physical population. Also, other
experiments use pulser measurements to define a PSD-cut [1]. Only the two normal pulse
distributions are considered because it is assumed that neutrino events only contribute
to the normal pulse populations. Therefore, we need a model for the higher and one for
the lower population for each energy point. These models describe the broadening of the
τ -distribution due to the noise. Due to the discrepancy observed between the pulser and
physical data arising from the electronic response of the DAQ and the preamplifier, the
model parameters from the pulser measurement can not be used for further calculation.
For example, the mean value obtained from the pulser measurement is too large (see
section 4.4.2). As a consequence, the model parameters and errors are estimated from
Th-228 and reactor-ON data. Also, reactor-OFF data could be used, but only reactor-ON
data was available at the time of writing. The estimation of the model parameters from
Th-228 data results in large uncertainties for the parameters. These large uncertainties
will propagate into the systematic uncertainties of the cut efficiency. After the estimation
of the parameters, the models are used to calculate the cut efficiency. For this, a scan
over different efficiencies is performed and for each efficiency, the corresponding τcut value
is calculated. The τcut value gives the point of the model τ -distribution at which it
needs to be cut in order to achieve the intended efficiency. A systematic error for the
efficiency is calculated by error propagation. In the end, we obtain for each energy point
a list containing all scanned cut efficiency, including the systematic uncertainty and the
corresponding τcut value.
To summarize the method: First, the pulser measurement is used to find models for the
τ -distributions. Second, the models are anchored to physical data. Third, the anchored
models are used to calculate the cut efficiency.

Model

The model functions are determined by fitting different functions to the τ -distribution
and taking the simplest best-fitting function. Moreover, the function should obey the
following two requirements. First, the model function should have as few free parameters

84



4.5 Discrimination of Normal and Slow Pulses

as possible and the parameters should be related to ”physical” quantities, for example, to
the full width half maximum (FWHM) of the distribution. Otherwise, it would be difficult
to estimate the parameters from the physical data. Second, the parameters should be
independent of each other. For simplicity, the log10(τ) parameter will be substituted by
x for this part of the thesis.
In total, three model functions are used for three different energy ranges. In the following,
they are presented.
Gauss: In the energy range of E ≈ 7.5 − 32 keV, a Gaussian function is used for the
higher population and the model of the lower population is fixed.

fhigher(x) = 1√
2πσ

e− (x−µ)2

2σ2 , (4.3)

For these high energies, the higher and lower distribution can be distinguished well. Since
the cut will be set somewhere in the higher population, the model function of the lower
population does not matter. For simplicity, the model of the lower population will fixed.
That should be justified because at higher energies, the pre-increase is not hidden by
noise and thus, the rise time parameter from lower population events will be smaller
than from higher population events. In contrast, for lower energies, the noise plays a
more significant role, and thus the lower and higher distribution mix and can not be
distinguished. Therefore, at lower energies, the lower population is modelled by a function
again. In order to be more compatible with other functions, not the mean value µ and
standard deviation σ are estimated from the physical data, but the mode M and the
FWHM of the model. The relations between the parameters for the Gauss function are
shown below [57]:

M = µ, (4.4)

FWHM = 2
√

2 log(2)σ. (4.5)

The gauss model describes the τ -distributions quite good, at these energies. For example,
the reduced χ2 (χ2

red) for the higher population model at E ≈ 9.8 keV is χ2
red = 1.07. A

summary plot with all distributions and the corresponding model included can be found
in Fig. B.7 for the higher population and in Fig. B.8 for the lower population.
Loggauss: In the energy range of E ≈ 0.3 − 7.5 keV, the distributions develop an
asymmetry, such that the Gauss is not the best fitting model anymore. The used model
for this energy range is the function shown below and will be called in the following
’loggauss’:

fi(x) = 1√
2πσ

e− σ2
2 e− log(x−µ)2

2σ2 , i ∈ {higher, lower}, (4.6)
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The relation between the value µ and σ and the mode M and FWHM are:

M = µ + 1, (4.7)

FWHM = 2 sinh
(√

2 log(2)σ
)

. (4.8)

The calculation of the FWHM can be found in the appendix C.2. In this energy range,
the model is used for the higher and lower population. It is interesting to note that the
Gauss model is a limit of the loggauss model in the case of a small σ. For small σ also the
difference x − µ will be small, allowing to take the Taylor expansion of the logarithm and
obtain the gauss model as the limit. The full calculation can be found in the appendix C.3.
Since σ becomes smaller for higher energies, the gauss model is the limit of the loggauss
model for the high energy case. Again, all distributions and the corresponding model
functions can be found in Fig. B.7 and B.8. The best fit for the higher population is at an
energy of E ≈ 1 keV with χ2

red = 1.06 and the worst fit is at E ≈ 310 eV with χ2
red = 2.60.

For the lower population, the fits are slightly better, with, e.g. a χ2
red = 2.05 at an energy

of E ≈ 310 eV.
Loggauss gauss: In the last energy range, from E ≈ 0.2 − 0.3 keV, a combination of a
loggauss and a Gauss model can be used:

fi(x) = 1
1 + Ri

 Ri√
2πσ1

e−
σ2

1
2 e

− − log(x−((µ−∆µ)−1))2

2σ2
1 + 1√

2πσ2
e

− (x−(µ+∆µ))2

2σ2
2

 , (4.9)

i ∈ {higher, lower},

with Ri being the relative amplitude between the loggauss and gauss part of the function.
Some assumptions need to be made to estimate some parameters of the function, which
cannot be estimated from physical data. The first assumption is that the peak described
by the gauss function purely arises from noise effects. If this is true, the parameters σ2

and Ri can be estimated directly from the pulser measurement because the noise effect
should be the same for physical and pulser data. Another assumption is that the outwards
drift of the two peaks, described by ∆µ, is purely noise driven. In this case, the parameter
can be estimated from the pulser measurement, too. The last assumption is that the peak
described by the loggauss function comes from the physical signal, allowing to estimate the
parameters σ1 and µ from the Th-228 measurement. Before using the model for efficiency
calculations, more investigations are necessary to check if the assumptions hold true. Due
to time constraints, the investigations were not carried out and in this thesis, we will
restrict ourselves to the energy range of E ≈ 0.3 − 32 keV. As before, the τ -distributions
and corresponding model functions can be found in Fig. B.7 and B.8. The model fits
quite well, with χ2

red values between χ2
red = 0.929 − 1.29, for both populations.

Total model: The total model for each energy point used for the efficiency calculations
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is the sum of the model for each population.

ftotal(x) = Ahigherfhigher(x) + Alowerflower(x). (4.10)

with Ai, i ∈ {higher, lower} being the relative amplitude of the higher or lower population.
All model functions are normalized to unity. As a result, the integral of the total model is
equal to Ahigher + Alower. Since the area of the total model should be unity, the sum over
the relative amplitudes needs to be one (Ahigher + Alower = 1).

Parameter Estimation

In total, three parameters need to be estimated for each energy point: mode M, FWHM,
relative amplitude A. The first two parameters are estimated from the Th-228 calibration
measurements and the latter is estimated from the ∼ 10.4 keV line of the reactor-ON data.
In the following, it will be discussed how the different parameters and the corresponding
errors are estimated.
Relative amplitude A:
The parameter A is the relative amplitude of the higher or lower population. From the
first simulations, we know that the events in the lower population come from interactions
close to the p+ contact of the Ge diode (see section 2.4.1). Furthermore, the attenuation
coefficient is a function of energy and thus, some background particles will have a different
penetration depth depending on their energy. As a result, at low energies, more background
events occur close to the p+ contact than at higher energies, leading to an energy dependence
of the parameter A. In addition, the relative amplitudes can change if the µ-veto is
applied (see section 4.6.1). Therefore, this parameter can not be estimated from a Th-
228 measurement and will be calculated assuming that the incoming particle interacts
homogeneously throughout the detector for all energies. The assumption of homogenous
interactions is valid for neutrinos and the parameter A is energy independent. Accordingly,
the cut efficiency needs to be defined as the number of neutrinos surviving the PSD-cut.
The efficiency can not be defined as normal pulses surviving the cut because not all normal
pulses are created homogeneously in the detector. For the estimation of the parameter,
the ∼ 10.4 keV is chosen. The line comes from the decay of the Ge isotopes 68Ge and
71Ge. The latter isotope is continuously activated by muon induced neutrons created
inside the lead shielding. In addition, the isotope was activated by a 252Cf source since
the line is used for the energy calibration of the experiment [19, 39]. It can be assumed
that the interactions from the decay of the ∼ 10.4 keV happen homogeneously throughout
the active volume of the detector [19]. Therefore, the line is suitable for the amplitude
estimation.
The amplitude is estimated by calculating the percentage of events inside the higher or
lower population relative to the complete normal population. In order to define the energy
region in which the amplitude is calculated, the ∼ 10.4 keV line is fitted with a Gaussian
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Figure 4.15.: τ -distribution used for the estimation of the parameter A. The used energy
range is E = 10.14−10.59 keV and a total of ∼ 88 days of reactor-ON data
is used. For this distribution, the C1 detector was used.

Table 4.3.: Estimate values for the relative amplitudes A for the C1 detector. In addition,
the estimated background counts in the used energy region are shown. The
used energy range is E = 10.14 − 10.59 keV and a total of ∼ 88 days of
reactor-ON data is used.

population background counts counts (background reduced) A
higher 131+4

−3 1230+34
−46 0.918+0.025

−0.03
lower 134+3

−4 110+46
−34 0.082+0.03

−0.025

function with mean µ and standard deviation σ and the energy region is defined as µ±3σ.
For the calculation, reactor-ON data is used. A plot of the τ -distribution for this energy
range is shown in Fig. 4.15. The boundary between higher and lower populations is chosen
by eye and for the uncertainty estimation, this boundary is moved to higher and lower τ

values. For the higher population, the interval of log10(τ) = 2.117 − 2.200 log10(ns) and
for the lower population, the interval log10(τ) = 2.000 − 2.117 log10(ns) is chosen. Before
calculating the number of events from the ∼ 10.4 keV line, the background events from
other sources are estimated in this energy range. To calculate the background events, the
number of events in the energy range before (E = 9−10 keV) and after (E = 11−12 keV)
the line are estimated. The mean of these two values is used as the number of background
events and is subtracted from the number of the ∼ 10.4 keV line events. All numbers for
both populations and the final parameters A are shown in Tab. 4.3.
Furthermore, the amplitudes of the lower and higher population are fully correlated
because the sum of both values is imposed to be one. Therefore, only the higher amplitude
is used in the final calculation of the efficiencies, and the lower amplitude is substituted
by Alower = 1 − Ahigher.
Under the assumption that the interaction happens homogeneously inside the detector,
the amplitudes should reflect the relative volume of the Ge diode in which the type of
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interaction occurs. In other words, Alower should correspond to the relative volume for
which the resulting pulses have no or a slight pre-increase. If we assume that the volume
in which the lower interactions occurs is a half-sphere around the p+ contact, we can
calculate the radius rl of this volume Vl. With the total volume of the detector Vtot

assumed to be a cylinder, we can find the following relation:

Alower = Vl
Vtot

=
2
3πr3

l
πr2

tothtot
→ rl = 3

√
3
2

Alowerr
2
tothtot (4.11)

Using the value for Alower from Tab. 4.3 and for the other values rtot = 31 mm and
htot = 62 mm [19], a value of rl ≈ 19.4 mm is found for the radius. Another way to
estimate this value would be to use a pulse shape simulation or Th-228 data at higher
energies.
Mode M:
The mode parameter is the anchoring point of the model functions in τ space. In section
3.2.4, it was shown that the rise time parameter τ should be energy independent and thus,
the mode parameter should be the same for all energies. Looking at the τ vs. energy
plots, we can confirm that there is no strong energy dependency for the τ parameter.
Therefore, the mode parameter only needs to be estimated for a high energy point and
the other mode values are fixed to this value. In order to obtain the parameters for the
two populations, the mode value is calculated from a Th-228 measurement in the energy
range of E = 29 − 31 keV. For the higher population, a Gauss function is fitted to the
peak in the τ -distribution and the mean value of the fit is used as the mode parameter (see
eq. 4.4). With this method, a value of log10(τ) = 2.14235 ± 0.00011 log10(ns) is estimated.
At high energies, the lower population does not have a Gaussian shape. Therefore, for
the mode value, the mean value and for the mode error, the standard deviation of this
population is used. For the lower population, a value of log10(τ) = 2.090 ± 0.026 log10(ns)
is calculated.
Moreover, we can look at the mode values from the pulser measurement. A plot showing
the mode value vs. the energy for both populations is shown in Fig. 4.16. In this figure,
a deviation from the anchoring point can be seen for the values above E ≈ 2.5 keV. To
account for this, the relative deviation is used as symmetric uncertainty for these energy
points. The highest energy point is the reference and thus, only the rescaled model fit
error is used for the mode uncertainty. The deviation could be an effect coming from the
pulser. If this is the case, the deviation should be ignored. Therefore, looking into the
effect is necessary to reduce the uncertainty of the mode value and thus of the cut efficiency.
Additionally, for the energy points below E ≈ 2.5 keV, a systematic drift towards lower
τ values can be observed for both populations until the model changed to the loggauss
gauss model for E < 300 eV. Since the loggauss gauss model is not used, we will ignore
these data points for now. An assumption is that the systematic drift is an effect coming
from the noise. Consequently, the effect should be visible in the data as well and included
in the model parameter. To do that, the size of the drift is scaled down to the anchoring
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Figure 4.16.: The left figure shows the mode values from the pulser measurement for
both populations. The right figure shows the mode parameters used for
the models. The uncertainty due to the stability of τ is not included in
the plot. For both plots, the C1 detector was used.

value of the Th-228 measurement and the mode values are redefined as the estimated
values from above minus the relative drift. In order to still cover the range of the high
energy value, i.e. allow an energy-independent τ , the size of the scaled drift is used as
the positive mode uncertainty. For the negative uncertainty, the rescaled fit error from
the pulser measurement is used. A summary plot showing the mode values, including the
uncertainties for all measured energy points, can be found in Fig. 4.16.
In addition to the uncertainty discussed above, the stability of the τ parameter over time
has to be taken into account. The stability was already discussed in section 4.1 and it
was shown that the τ distribution for C1 is relatively stable over time. Nevertheless,
a systematic uncertainty is taken as the standard deviation of the data points of Fig.
4.2. It is calculated to be σlog10(τ) = 0.0003 log10(ns) and is added quadratically to the
uncertainties described above. Figure 4.17 shows the relative contribution of the parameter
uncertainty and the stability uncertainty to the total mode uncertainty. It can be seen
that the stability uncertainty is for all data points subdominant, except for the highest
data point. That makes sense because the parameter uncertainty for the highest data
point is the rescaled model fit error which is very small.
Full width half maximum FWHM:
For the estimation of the FWHM parameter, two different methods are used. At high
energies (E ≈ 7.5−32 keV), the lower and higher population are distinguishable. Therefore,
the FWHM can be estimated directly from the Th-228 measurement by fitting a gaussian
function to the higher population. The fit parameter and error of the gaussian function
are translated into an FWHM with equations 4.5 and C.35 and the FWHM is used as
the model parameter. Since the lower population model is fixed at these energies, it is
unnecessary to estimate the FWHM for this population. At energies below E ≈ 7.5 keV,
the estimation is more complicated because the lower and higher populations are not
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Figure 4.17.: Relative contribution of the parameter uncertainty (solid lines) and the
stability uncertainty (dashed lines) to the total mode uncertainty.

distinguishable. The combination of both populations is fitted by a gaussian function to
estimate the FWHM of the combined peak. However, this is not possible for all energies
because, at energies below E ≈ 600 eV, the mixing of the normal and slow pulse population
is too strong. For the energies below 600 eV, the values are extrapolated by fitting the
following function to the data points:

f(E) = p0(E + 1)p1 + p2, (4.12)

with the resulting best fit parameters: p0 = 1.4 ± 0.3, p1 = −2.68 ± 0.29 and p2 =
0.065 ± 0.005. The parameters are strongly correlated (correlation coefficients: 0.6-0.96)
and thus, the correlation coefficients are taken into account for the calculation of the error
bands of the function. With the fit parameters and the correlation coefficients, the 3σ

error band of the fit function can be calculated via the error propagation formula for
correlated errors. The calculation can be found in the appendix C.4. The 3σ error band is
chosen conservatively instead of the 1σ band such that all estimated values from the Th-
228 measurement lie inside the error band. For each lower and higher population model
below an energy of E ≈ 7.5 keV, the values obtained from the fit function and the 3σ error
band are used as values for the FWHM and the parameter uncertainty. A summary plot
showing the estimated FWHM values for all measured energies as well as the fit function
can be found in Fig. 4.18.
A problem of the described method above is that the FWHM for one population is
estimated by fitting both populations at the same time. Therefore, a consistency check
needs to be performed. For the consistency check, it is tested if the FWHM of the total
model (the sum of the model for the lower and higher population) is compatible with the
estimated value of the combined peak from the Th-228 measurements. The inspection
showed that the FWHM of the total model is systematically larger than the one estimated
from the physical data. However, for all models, the deviation is within the 1σ band of
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Figure 4.18.: Summary of all FWHM parameters used for the lower and higher
population models. At high energy, the values and errors of the fit to
the higher population are used. For lower energies, the values from the fit
function and the 3σ error band are used.

the fit. As a result, the FWHM of the total model is compatible with the estimated values
and thus, this discrepancy will be neglected. A possible explanation for the FWHM of the
total model being compatible with the estimated values is that the variance of the two
models is larger than the difference of their mean values. Moreover, the major contribution
to the total model only comes from one population (see Tab. 4.3).

Calculation of the Efficiency and Systematic Uncertainties

After the models are defined and the model parameters, including uncertainties, are
estimated, the cut efficiency can be calculated. First, the log10(τcut) values will be
determined, at which the τ spectrum needs to be cut, in order to reach a given cut
efficiency. The total models are all normalized to one, such that the integral over the total
model until a log10(τcut) value will give the percentage of events surviving the PSD-cut
and, thus, the cut efficiency ϵcut.∫ log10(τcut)

log10(τmin)
ftotal(log10(τ)) d log10(τ) = ϵcut (4.13)

The lower boundary of the integral is chosen depending on the model. For a gauss model,
unity is arbitrarily chosen because all models are basically zero reaching this value. In the
case of the loggauss model, log10(τmin) = M − 1 is chosen since the model function is only
defined for higher values. Also, the loggauss model is basically zero for this value. For a
given cut efficiency, the corresponding log10(τcut) value is found by an iterative process. In
each step, the log10(τcut) value is increased by 10−5 log10(ns) and equation 4.13 is solved
numerically with ROOT [21] until the desired cut efficiency is reached. Afterwards, the
log10(τcut) value is fixed and the systematic uncertainties of the cut efficiency are calculated
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Table 4.4.: Example cut efficiencies ϵcut for the model at an energy of E = 1 keV. The
calculation is performed for the C1 detector.

log10(τcut) [log10(ns)] cut efficiency ϵcut [%] -∆ ϵcut [%] +∆ ϵcut [%]
2.13683 50.0 1.3 5.4
2.15186 55.0 2.1 5.5
2.16735 60.0 2.7 5.6
2.18361 65.0 3.3 5.7
2.20101 70.0 3.9 5.8
2.22011 75.0 4.3 5.8
2.24177 80.0 4.5 5.6
2.26756 85.0 4.4 5.2
2.30084 90.0 4.0 4.5
2.35195 95.0 2.9 3.1
2.45385 99.0 1.0 1.0

by standard error propagation. The error propagation formulas and their derivation can be
found in appendix C.5. If the uncertainties are too large, it can happen that the uncertainty
added to the efficiency is artificially larger than one. In this case, the uncertainty is reduced
to a value such that the sum is equal to unity. For each input efficiency, the output is a
log10(τcut) value and systematic uncertainties for the efficiency. An example output for
the model at an energy of E = 1 keV is shown in Tab. 4.4. In this example, a scan over
possible cut efficiencies between 50% and 99% was performed. The table shows, e.g. if
a cut is applied at a value of log10(τcut) = 2.35195 log10(ns), a resulting cut efficiency of
95.0+2.9

−3.1% is reached. In Fig. 4.19a, the calculated cut values and efficiencies from Tab.
4.4 are plotted as an efficiency curve. The efficiency curves for all measured energy points
can be found in Fig. B.9.
Furthermore, the relative contribution of each model parameter to the total systematic
uncertainty can be plotted. An example is shown in Fig. 4.19b for the model at an energy
of E = 1 keV. This kind of plot can be used to visualize the dominant contribution to the
systematic uncertainty. In Fig. B.10, the relative uncertainty contribution plots for all
measured energy points can be found. Figure B.10 shows that the systematic uncertainty
is dominated in the region of interest for high cut efficiency values by the contribution
of the FWHM. For low cut efficiency values, the contribution of the mode parameter
dominates the positive systematic uncertainty.
Another systematic uncertainty that can contribute to the overall uncertainty is related
to the model choice. For example, at the energy E = 9.8 keV, the gaussian function is
chosen as the model, but a loggaus function could also describe the distribution. Another
example is the distribution at an energy of E = 0.31 keV. A loggauss function was used
for the model instead of the loggauss gauss function. How the systematic uncertainty is
included for these models will be explained for the model at E = 0.31 keV.
First step: The cut efficiency for the nominal model is calculated. In Fig. 4.20a, the cut
efficiency for the loggauss model is shown in blue. Second step: The cut efficiency for
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Figure 4.19.: Figure a) shows a cut efficiency curve for the C1 detector at an energy of
E = 1 keV. Figure b) shows the contribution of the different parameter
uncertainties to the overall uncertainty for the model at this energy.

the alternative model function will be calculated (shown in Fig. 4.20a in orange). Third
step: The difference between the two efficiency curves is taken as uncertainty and is added
quadratically to the overall uncertainty.
In Fig. 4.20a, the efficiency curve with the updated uncertainties is shown in green.
Additionally, the model uncertainty is included in the relative uncertainty contribution
plot, shown in Fig. 4.20b. The uncertainty contribution plots in Fig. B.10 show that the
model uncertainty is subdominant for all models where this uncertainty contributes.
In conclusion, the method described above allows to calculate for each cut efficiency, a
log10(τcut) value and the corresponding systematic uncertainties of the efficiency. The
systematic uncertainties contributing to the overall uncertainty are listed below:

1. Systematic uncertainty from the model parameter

2. Stability of the τ parameter over time

3. Correct choice of the model function

The dominant contribution of the total systematic uncertainty comes from the model
parameter and thus, from the anchoring to physical data. Therefore, it is of interest to
find a description of the electronic response, to correct the pulses and be able to estimate
the model parameters directly from the pulser measurement. That will lead to smaller
model errors and thus will decrease the systematic uncertainty of the cut efficiencies.

4.5.2. Method to Find the Best Cut Efficiency

In order to apply the PSD-cut to physics reactor data, a cut efficiency needs to be chosen
at each measured energy. The cut efficiency should be chosen in a way that the benefit of
the cut is maximal. To describe the benefit, a figure of merit should be defined. A scan
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Figure 4.20.: Figure a) shows a cut efficiency curve for the C1 detector at an energy
of E = 0.31 keV. The blue curve shows the efficiency without the model
uncertainty included, while the green curve shows the efficiency with the
model uncertainty included. The orange curve describes the efficiency
calculated with an alternative model to estimate the model uncertainty.
Figure b) shows the contribution of the different parameter uncertainties
and the model uncertainty to the overall systematic uncertainty. The
dashed lines show the positive and solid line the negative uncertainties.

over different cut efficiencies can be performed to maximize this figure of merit. This can
be repeated for each measured energy point to obtain an efficiency curve as a function
of the energy. A factor describing the comparison of the signal and background after the
cut should be included in the figure of merit, because the cut should ideally reduce the
background as much as possible while leaving the signal untouched. For the calculation of
the background after the cut, the PSD-cut can be applied to reactor-OFF data. Since the
efficiency is defined as the number of neutrino events surviving the PSD-cut, the signal
after the cut can be calculated by multiplying the cut efficiency to the signal prediction.
Moreover, the figure of merit should include a factor reflecting the systematic uncertainty
of the cut efficiency. More investigations are needed to find the ideal figure of merit for each
specific physics case. This will be done in the future analysis of the CONUS experiment.

4.6. Application of the Rise Time Fit to Reactor-ON Data

In this chapter, the rise time fit will be applied to reactor-ON data. First, the τ -distributions
for ∼ 88 days of reactor-ON data will be shown and discussed (section 4.6.1). Afterwards,
an example PSD-cut will be applied to the reactor-ON data and the resulting background
reduction will be quantified (section 4.6.2). As before, the C1 detector will be used in this
section as a benchmark detector.
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Figure 4.21.: Figure a) shows a τ vs. energy plot for the C1 detector for a total of
88.5 days of reactor-ON data before the application of the µ-veto. The
∼ 10.4 keV line is marked with the red rectangle. The colour bar indicates
the number of events per bin. Figure b) shows a τ vs. energy plot from
the TEXONO collaboration. The plot is taken from [50]

4.6.1. Reactor-ON Spectrum

In Fig. 4.21a, a τ vs. energy plot for a total of 88.5 days of reactor-ON data before the
application of the µ-veto is shown. As before, two major populations, one for slow and one
for normal pulses, are visible and therefore, a PSD-cut will be possible. The ∼ 10.4 keV
line is visible as a ’blob’ in the normal pulses population, as expected since the decay of
the Ge isotope happens homogeneously inside the detector [19] and the majority of the
events occur inside the bulk volume, producing normal pulses. Therefore, the presence of
the ∼ 10.4 keV line in the normal pulse population validates the rise time fit.
An interesting effect can be seen when comparing the log10 τ -distribution before and after
the µ-veto (see Fig. 4.22). It can be observed that the ratio of events in the higher
population relative to the lower population changes. Before applying the µ-veto, 64% of
all normal pulse events are part of the higher population. After the application of the
µ-veto, only 43% are part of the higher population. This has to be connected to the
background cut away by the µ-veto. If the timespan between the muons triggering the µ-
veto and the µ induced neutrons interacting with the Ge diode lies within the time window
of the µ-veto, the events created by the µ induced neutrons are cut. These neutrons can
be assumed to interact homogeneously throughout the detector. As a result, more events
will be cut by the µ-veto in the higher than in the lower population because the higher
population is related to the larger part of the active volume. The effect could lead to or
contribute to the observed difference before and after the veto. Further investigations can
help to understand this difference in more detail. It is interesting to look into the effect
because it changes the shape of the normal pulse distribution.
Also, other experiments working with Ge detectors use PSD to discard events in the
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Figure 4.22.: log10(τ)-distribution before and after the application of the µ-veto
integrated over the energy range [0.5 keV, 20keV]. The distributions are
created from 88.5 days reactor-ON data recorded with the C1 detector,
and arbitrarily renormalized for visibility.

transition layer [1, 50]. As an example, in Fig., 4.21b a τ vs. energy plot from the
TEXONO Collaboration is shown. For the shown plot, a Ge detector with a p+ point
contact was used, similar to the CONUS detectors. When comparing the result from
TEXONO and CONUS, it can be seen that with the CONUS detectors and the new DAQ
system, a similar discrimination between normal and slow pulses is reached.

4.6.2. Example PSD-Cut

In this section, an estimation of the background reduction thanks to a PSD-cut is shown
and quantified. At the time of writing, no reactor-OFF data with pulse shape information
is available. Therefore, the background reduction will be estimated by applying the PSD-
cut to reactor-ON data. That is justified because the signal over background ratio S/B is
tiny for the used energy ranges. The ratio is S/B ≈ 10−2 at an energy of E = 0.31 keV
and S/B ≈ 10−5 at an energy of E = 0.39 keV. For higher energies, the ratio becomes
even smaller and thus, the signal contribution is negligible. The estimated number of the
S/B for C1 RUN-5 under the assumption of a quenching parameter of k = 0.16 are kindly
provided by A. Bonhomme. Moreover, due to time constraints, it was not possible to
obtain the most beneficial cut efficiency using a figure of merit. As a result, an example
cut function was estimated by eye. The used efficiency values at each energy are shown
in Tab. 4.5 and the resulting efficiency curve can be seen in Fig. 4.23a. In Fig. 4.23b,
the reactor-ON data is shown with the PSD-cut function included. The cut was chosen to
keep a 99% cut efficiency until an energy of 1.5 keV. The small kink in the corresponding
log10(τcut) values at around E ≈ 7 − 10 keV could be a consequence of the method used
to determine the FWHM of the model function (see section 4.5.1 and Fig. 4.18).
An interpolation is used between the different pulser points to create a continuous function.
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Table 4.5.: Cut efficiencies for the example PSD-cut. For each energy point, the efficiency
and the corresponding log10(τcut) value is listed.

energy [keV] log10(τcut) [log10(ns)] cut efficiency ϵcut [%] -∆ϵcut [%] +∆ϵcut [%]
29 2.15442 99.0 0.3 0.3
14.6 2.16301 99.0 1.9 1.0
9.8 2.17406 99.0 0.6 0.6
7.3 2.21309 99.0 0.9 0.9
4.9 2.22074 99.0 0.7 0.7
2.9 2.24595 99.0 0.7 0.7
2.0 2.28597 99.0 0.7 0.7
1.7 2.30617 99.0 0.6 0.7
1.5 2.33761 99.0 0.6 0.7
1.2 2.35290 98.0 1.2 1.3
1.0 2.38632 97.0 2.2 2.3
0.8 2.43051 96.0 4.0 4.0
0.6 2.45927 93.0 7.0 7.0
0.4 2.48728 88 12 12
0.3 2.48549 85 19 15

In order to avoid large interpolation errors, more energy points could be measured. Appling
the PSD-cut, all events above the cut function are discarded and to quantify the possible
background reduction, the percentage of rejected events is calculated. The percentage is
calculated by taking the ratio of events before and after the cut and subtracting it from
unity. The energy spectrum before and after the PSD-cut can be found in Fig. 4.24
and the possible background reduction is listed in Tab. 4.6 for different energy ranges.
All results of the PSD-cut shown here also include the reduction due to the quality cut
explained in section 3.2.4.
In Tab. 4.6, it can be seen that the achieved reduction is larger at higher energies. That
is in contrast to what we would expect. The penetration depth of the particles becomes
smaller for lower energies and thus, more particles will interact in the transition layer. As
a result, we would expect a stronger reduction at lower energies. A possible explanation
for the larger reduction at higher energies could be related to the change of the calculation
method for the FWHM. For higher energies, it looks like the cut function is closer to the
higher population than for lower energies, resulting in a stronger cut and larger reduction.
All in all, in this section, a pulse shape discrimination down to energies of E ≈ 300 eV
is shown. Until energies of 1.5 keV, a cut efficiency of 99% can be used and below this
energy, the minimal cut efficiency is 85+15

−19%. The maximal reduction of 35.9% is reached
in the energy range of E = 10.6 − 20 keV and in the region of interest (E = 0.3 − 2 keV),
the achieved reduction is 23.3%.
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Figure 4.23.: Figure a) shows the chosen cut efficiency as a function of energy, for the
example PSD-cut. In figure b), a τ vs. energy plot for a total of ∼ 88 days
of reactor-ON data for the C1 detector before the application of the µ-veto
is shown. The red function shows the example PSD-cut and the colour bar
indicates the number of events per bin.

Table 4.6.: Background reduction achieved with the chosen PSD-cut for different energy
ranges. The reduction is calculated for reactor-ON data measured with
C1, assuming that the signal contribution is negligible for the ∼ 88 days of
measurement time. The used cut function is only exemplary. The reduction
is defined as the percentage of rejected events. For the results shown in this
table, the reduction due to the quality cut (see section 3.2.4) is also included.

energy [keV] reduction
(
1 − cts with PSD

cts without PSD

)
0.3 − 2 0.233
2 − 10.1 0.218

10.1 − 10.6 0.041
10.6 − 20 0.359
20 − 32 0.275

4.7. Discrimination of SSE and MSE

In this section, a by-product of the rise time fit, the discrimination of SSE and MSE is
demonstrated. Multi-site events play a significant role at higher energies, i.e. at MeV
scale, when γ-rays can interact via Compton scattering and pair production. As a result,
energy ranges up to several hundred keV are investigated in this section.
If the rise time fit is applied to a MSE, the function describing a single pulse is fitted
to the sum of multiple pulses recorded by the DAQ. In order to describe the recorded
pulse as best as possible, a function with a larger rise time, compared to the rise time of
each single sub pulse, is fitted to the MSE. An example of a fitted MSE is shown in Fig.
4.25a. Therefore, all MSE will have a larger τ value than the SSE, allowing for SSE and
MSE discrimination. A τ vs. energy plot for a Th-228 measurement recorded with C1 up
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Figure 4.24.: Energy spectrum for 88.5 days of reactor-ON data before and after the
PSD cut.

to energies of 900 keV is shown in Fig. 4.25b. In this figure, a normal pulse population
containing SSE can be seen around a value of log10(τ) ≈ 2 log10(ns). The MSE lie in
the region above the SSE band. For energies below 100 keV, a contribution to the region
above the SSE band from slow pulses can be seen as well. Slow pulses do not contribute
significantly at higher energies because the γ-rays can penetrate the detector far enough
to reach the active volume and produce normal pulses. Most interesting are the vertical
lines visible in Fig. 4.25b. Events inside the lines with a τ parameter above the SSE band
are mainly MSE. These lines appear at the energies of the Th-228 spectral lines because
more γ-rays are produced with this energy than for the Compton continuum. The events
contained in the vertical lines with a τ value inside or below the SSE band are SSE. Events
inside the SSE band have a pre-increase and the events below have only a slight or no pre-
increase. Besides a visual inspection of the data, more tests can be performed to confirm
the findings described above. In the following, some tests will be discussed.
First test: The photoelectric absorption is dominant for energies below E . 100 keV
and mainly SSE are produced in the interaction. In contrast, through Compton scattering
SSE and MSE events can be produced and the interaction becomes dominant for energies
larger than E ≈ 100 keV (see section 2.4.3). If the vertical lines come from MSE, it is
expected that peaks above 100 keV show the MSE lines, while peaks below 100 keV do not
show them. A Ba-133 measurement can be used to check this hypothesis. Ba-133 has a
peak at E = 80.9979 ± 0.0011 keV and four peaks at energies of E > 250 keV [11]. In Fig.
4.26, a τ vs. energy plot for Ba-133 conducted with the C5 detector in the LLL is shown.
It is visible that the peak at E ≈ 80 keV does not show a vertical line and the four peaks
above 250 keV show them. Exactly that is what we would expect and thus, supports the
hypothesis that the vertical lines consist of MSE.
Second test: Events contributing to the double escape peak (DEP) of pair production
are with a high probability SSE (see section 2.4.3). Therefore, the DEP should not show
a MSE line in a τ vs. energy plot, although the peaks around the DEP show such a line.
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(a)

(b)

Figure 4.25.: In figure a), an example for a MSE, including the rise time fit function is
shown. In figure b), a log10(τ) vs. energy plot for a high energy Th-228
measurement conducted with C1 is shown. The colour bar indicates the
number of events per bin.

As a radioactive source, Th-228 can be used to probe the DEP. Thorium-228 has a strong
line at an energy of E = 2614.511 ± 0.010 keV [10], resulting in a DEP at an energy of
E = 1592.511 keV. Figure 4.27 shows a τ vs. energy plot for a Th-228 measurement
conducted with C5, zoomed into the energy region around the DEP. In this figure, the
DEP (marked with a red circle) can be seen and no vertical line is visible for the peak. In
contrast, the two Th-228 lines around the DEP show the MSE lines. Again, exactly that
is what we would expect for the vertical lines consisting of MSE.
Moreover, a horizontal line can be seen below the SSE band, in Fig. 4.27. These events
arise from artefacts coming from an external attenuator. The attenuator was used for the
measurement in order to reach high enough energies to observe the DEP. The conclusion
should not be affected by these artefacts.

The two tests described above and the visual inspection confirm the origin of the vertical
lines visible in the τ vs. energy plots. In conclusion, it was shown that MSE have a larger
rise time parameter τ , giving the possibility to use the rise time information for MSE and
SSE discrimination. The discrimination is interesting for the CONUS experiment to help
better understand the high energy background. Furthermore, it can help to learn more
about the low energy background because background sources visible in the high energy
part can also contribute to the low energy background.
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Figure 4.26.: τ vs. energy plot of a high energy Ba-133 measurement recorded with C5.
The E = 80.9979 ± 0.0011 keV [11] peak is marked with a red circle. The
colour bar indicates the number of events per bin.

Figure 4.27.: τ vs. energy plot for a high energy Th-228 measurement. Only the region
around the DEP (marked with a red circle) of the E = 2614.511±0.010 keV
[10] line is shown. The colour bar indicates the number of events per bin.

Other experiments profit from using the MSE and SSE discrimination for background
reduction. An example is the GERDA experiment, aiming to observe neutrinoless double
beta decay (0νββ). The GERDA Collaboration developed and refined the A/E method
[22, 23] introduced in section 3.1.1 as a method for MSE and slow pulse discrimination
in a similar point-contact detector design as used in CONUS. With the A/E method, the
GERDA experiment reaches an average MSE reduction of 86.2 ± 0.2% for an average SSE
survival probability of 90.0 ± 0.2% [2]. The MSE reduction is calculated for the 1620
keV Th-228 FEP and the SSE survival probability is estimated from the 1593 keV Th-228
DEP. In the following, the MSE reduction achieved by GERDA with the A/E method is
compared to the possible reduction with the here presented rise time fit. For the detectors
C1-C4, no pulse shape data is available at these high energies. Therefore, the peak at
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E = 860.56 ± 0.03 keV [36] in the Th-228 spectrum of C1 is used to compare the MSE
reduction from the rise time fit to the one achieved with the A/E method. For both
peaks, the Compton scattering is the dominant interaction [14], making it as compatible
as possible. The used energy range around the 860 keV peak is estimated from the 99.7%
interval of a Gaussian distribution fitted to the peak. Since no method to calculate a
MSE cut and the corresponding efficiencies is developed yet, a cut with 90% SSE survival
probability is only roughly estimated. At an energy before the peak, where no MSE band
is visible, the MSE cut is determined by estimating the log10(τ) value at which the SSE
distribution needs to be cut to get 90% of the events from the distribution. With this
rough estimate, a value of log10(τ) = 2.003 is determined. All events in the 860 keV peak
with a larger rise time parameter than the cut value will be rejected. As a result, we get a
84.7% MSE reduction for the C1 detector. The number is relatively close to the average
value from the GERDA Collaboration. This is only a rough comparison and to do it more
precisely, a proper MSE cut, including calculated efficiencies is necessary. However, the
rough comparison already shows that a similar SSE and MSE discrimination is possible
with the rise time fit compared to the A/E method. That demonstrates the universality
of the rise time method. The technique can be employed, from sub-keV to several MeV,
to efficiently separate SSE created in the active volume of the Ge diode (normal pulse)
from SSE created in the transition layer (slow pulses) and from MSE events. Slow pulses
contribute dominantly in the sub-keV and keV energy regime, wile MSE mainly contribute
for energies above 100 keV.
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Chapter 5.

Conclusions and Outlook

Up to now, no detection of the CEνNS interaction with the CONUS experiment was
possible. Therefore, improvements regarding the three experimental challenges are necessary.
The challenges are: (1) a high neutrino flux, (2) a very low energy threshold, (3) a low
and stable background level.
With the new DAQ system installed at the experimental site for RUN-5 (begin: May 2021),
first it has become possible to lower the energy threshold of the experiment. That is very
beneficial and illustrated as follows: If the threshold would be lowered from the previously
achieved around 310 eV to 210 eV, an increase from approx. 1 to 10 neutrino interactions
per day is expected 1. Second, with the new DAQ system the recording of pulse shapes
has become possible. The goal of this thesis was to develop a analysis to further reduce
the background of the experiment by examining these pulse shapes of single events on an
event-by-events basis. In this thesis, it was possible to show that a background reduction
through pulse shape discrimination (PSD) is possible for the CONUS experiment via the
discrimination of so-called ’slow pulses’ down to the sub-keV energy regime. The slow
pulses are produced by interactions in the outer layer of the HPGe diode (transition layer)
with a charge collection efficiency below 100%. For the purpose of PSD, a new method was
developed, allowing also to calculate efficiencies and systematic uncertainties of a PSD-cut.
In the following, the impact of the PSD analysis will be discussed. Afterwards, the main
contributions of this thesis will be summarised and an outlook into future work will be
given. In the end, the main results are summarised and presented.

Impact of the PSD analysis
A pulse shape analysis gives the possibility for a further background reduction and, therefore,
can increase the experiment’s sensitivity for CEνNS or BSM signals. For the CEνNS
analysis, the energy region around and below 300 eV is most important. That is illustrated
by the expected increase of CEνNS events due to lowering the threshold as described
above. Therefore, lowering the threshold would be most beneficial for the CEνNS analysis.
However, reducing the background will have a positive benefit, too. For the BSM analysis,
we have to distinguish between two detection channels. First, BSM models can change
either the shape or the expected count rate of the CEνNS signal. For these models,
the same applies as mentioned above for the CEνNS analysis. An example of such a
BSM model are non-standard neutrino interactions (NSI) in the neutrino-quark sector.
Secondly, BSM models can be investigated via the neutrino-electron scattering channel,
like, for example, the neutrino magnetic moment. For the electron recoil, measured in

1The numbers of expected neutrinos are kindly provided by A. Bonhomme.
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neutrino-electron scattering, the quenching effect plays no role. The region of interest for
the electron scattering is between E ≈ 2 − 8 keV and can profit from the 99% PSD-cut
efficiency and the resulting good background reduction in this energy range.
If the detectors are not cooled during storage, the transition and dead layer can grow
over time (i.e. 0.1 mm/y ([2] and references therein)) and with it the number of slow
pulses. Therefore, a good understanding of the pulses created in the transition layer and
an effective PSD-cut to suppress these events can get even more important over time.
Moreover, an enhancement of the sensitivity can be achieved by improving the background
model, because the background model is an input of the likelihood analyses. The pulse
shape analysis can help to strengthen the predicted decomposition of the background
model and, therefore, can help to reduce the systematic uncertainties of the MC background
model itself. An example of this are cosmogenic lines. Events occurring in the transition
layer, will have lower reconstructed energies and thus will contribute to the continuum
below the lines. If the slow pulses are cut, the line should not be affected and the
continuum should change, allowing to analyse if the contribution of the cosmogenic lines
is implemented correctly. Furthermore, cutting the slow pulses will reduce the uncertainty
related to the implementation of the transition layer and its charge collection efficiency
and, therefore, will improve the MC background model [39].
Even though CEνNS events will only produce SSE, a background reduction due to SSE
and MSE discrimination is not interesting for the CONUS experiment, because MSE plays
no significant role in the region of interest. However, background sources identifiable at
high energies can contribute to the low energy part of the spectrum. A pulse shape
analysis can help to understand the experiment’s high energy background by looking at
the SSE and MSE. Vice versa, this will improve our understanding of the background at
low energies.
Pulse shape analyses are interesting for other experiments or are already used by them, for
example, to discriminate MSE or slow pulse events from normal pulse SSE. This makes
the method presented in this thesis interesting for other experiments working with Ge
detectors. However, it is important to mention that the here presented technique cannot
be applied to other experiments one to one. The pulse shape depends on the geometry
and electric field configuration of the Ge detector, meaning that the methods described
might only work for the point-contact design.

Main contributions of this thesis & open points
The main goal of this thesis was the development of a PSD analysis applicable to the
sub-keV energy regime, important for the CONUS physics analyses. It was shown that a
discrimination of normal and slow pulses is possible with the here introduced rise time fit.
Furthermore, a method was developed, to calculate the efficiency of a PSD-cut, including
the determination of the systematic uncertainties. As far as we know, it is the first time
a pulse shape discrimination was performed using the CAEN DAQ and the CoMPASS
software with Ge ionisation detectors. In the following, the main contributions of this
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thesis are listed and the necessary future work is discussed.
(i) Test of different PSD methods: In the beginning of this thesis, three different
techniques to differentiate between normal and slow pulses are presented. The first method,
the traditionally used A/E method, developed by the GERDA Collaboration has been used
and tested at the MeV scale to discriminate MSE and slow pulses from SSE. However,
the method uses the derivative of the pulse shape. At sub-keV energies, the derivative
disappears completely in the noise, making it impossible to use this method for sub-keV
energies. As a result, the A/E method does not fulfil the requirements for the CEνNS
analysis. The second newly developed method uses the ratio of two integrals calculated
over different regions of the pulses as a discriminating variable. Again, especially in the
sub-keV region, the discriminating power of this method is not very strong. Finally, a
third method, the rise time method was employed in this thesis. In this method, each raw
event is fitted by a function describing the original form of the pulses. This method works
indeed also in the sub-keV range. As the discriminating variable, the rise time parameter
τ is used. A small τ parameter is associated with a normal pulse and a large parameter
with a slow pulse. Different fit functions were tried out. As a result, it was found that the
function using a hyperbolic tangent gives the best performance. In addition, the relation
between the fit parameters of the function and quantities of the recorded pulse, e.g. the
rise time or pre-trigger, were analysed. Furthermore, the distributions of the different fit
parameters were studied. Not all peculiarities found in the analysis could be explained
within this work and further work is necessary to fully understand them.
(ii) Validation of the rise time fit: Multiple checks were performed during this thesis
in order to validate the rise time method. First, a visual inspection of the different event
populations was carried out. Afterwards, a rough analytical estimation of the relative
contribution of normal and slow pulses (SSE) to the total number of events was performed
based on the attenuation law. As a result, a 10% agreement is obtained compared to
the estimated numbers from the experimental data. In addition, a comparison of the
relative number of normal and slow pulses (SSE) with a MC simulation was performed.
An agreement at the few percent level was found. The differences between the data
and the MC simulation are not fully explained yet and require further work, but some
possible explanations are given. It will be interesting to investigate the differences to
further validate the rise time method and improve the background model. Additionally,
as a further indication of the robustness of the method, it is found that the ∼ 10.4 keV
line from internal activation appears mainly in the normal pulse (SSE) population, as
expected.
(iii) Pulse features: The normal pulse population (SSE) has two sub-populations. With
a preliminary simulation, it was possible to show that the difference comes from events
happening at different positions inside the bulk of the diode. A full pulse simulation can
help verify this hypothesis and can be used to calculate the ratio between the volumes of
the detector, in which the events are sorted in different sub-populations. In addition, a
pulse simulation will contribute to a better understanding of the pulse shapes and gives
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the opportunity to improve the method to calculate the cut efficiencies due to a better
knowledge of the relative contribution of both sub-populations. Vice versa, the recorded
pulse shapes will help to validate the full pulse simulation.
(iv) Pulse shape as monitoring tool: Also, it was shown that the pulse shape analysis
and the related τ parameter can be used as a monitoring tool for the performance of the
diode and preamplifier. For example, if the preamplifier is not tuned correctly, artefacts
can be immediately identified from the τ vs. energy plots. Therefore, one can benefit
from monitoring, e.g. the stability of the mean τ position of the normal pulse (SSE)
population. Furthermore, it is essential that this quantity stays stable over time to apply
the same PSD-cut to the complete ON and OFF data, recorded over more than 1.5 years.
It was shown that the τ parameter is stable within 0.8% relative to the mean value for all
detectors, except for C2, over a period of three months. For C2, a slight drift of 0.8% is
observable and thus, further monitoring is required.
(v) Pulser studies and cut efficiencies: Extensive pulser studies were performed for
this thesis. To mimic physical pulses in the keV and sub-keV region as good as possible,
input pulses for the pulser were modelled according to real pulses provided from a Th-228
calibration measurement. However, the electronic response of the preamplifier and DAQ
has not yet been considered, leading to small differences in the rise time between the Th-
228 and pulser measurement. In future work, the electronic response will be taken into
account to reproduce the data correctly. The pulser studies were used to study the very low
energy range and to determine the energy until the fit can distinguish physical pulses from
noise, resulting in a determination of a lower threshold of ∼ 200 eV. Moreover, the pulser
measurements are used in a newly developed method to calculate the PSD-cut efficiencies,
including the associated systematic uncertainties. For this method, pulser measurements
at different energies are conducted and for each energy point, the τ distribution is modelled
by a function. Next, the model parameters are estimated from physical data. A cut in
terms of a log10(τcut) value can be derived from these models for any desired efficiency. The
systematic uncertainties are calculated by propagating the uncertainties of the model into
the efficiency calculation. As systematic uncertainties, the model parameter uncertainties
estimated from the physical data, the stability of the τ distribution and the uncertainty
due to the model choice are included. The uncertainties regarding the model parameters
are dominant and are coming from the calibration with physical data. The anchoring of
the model to physical data was required due to the missing modelling of the electronic
response. By including the electronic response, a better knowledge of the distributions
will be reached in the future, allowing to get rid of the anchoring to physical data and thus
drastically reducing the model parameter uncertainties. In addition, the calculation of the
cut efficiency is only performed down to energies of 300 eV. The reason for this is that
the assumptions, related to the impact of the noise, to use the models at lower energies
have not been validated yet. Future work will investigate if these assumptions hold true
to allow the calculation of the cut efficiency for energies below 300 eV. In the end of the
thesis, an example PSD-cut applied to CONUS reactor-ON data is shown. In future work,

108



a figure of merit could be defined and maximized or minimized in a scan over different cut
efficiency values in order to find the most advantageous efficiency for each energy.
(vi) SSE and MSE discrimination: As a by-product, the rise time method can be
used at MeV scale to discriminate between SSE and MSE. Several tests were performed to
confirm that the vertical bands visible in the τ vs. energy plots at high energy consist of
MSE. A first exemplary cut showed that similar MSE rejection efficiencies can be achieved
with the rise time method, as with the A/E method. In contrast to the A/E method, the
rise time fit works at MeV and sub-keV energies and enables simultaneously a slow pulse
and MSE rejection. This shows the universality of this method. However, further work is
necessary to use the rise time method for SSE and MSE discrimination and the comparison
with the A/E method needs to be done more carefully. Also, if the rise time fit should be
used for MSE discrimination, a method to define a cut and calculate the efficiencies has
still to be developed.
(vii) Implementation: The rise time method is implemented as a mixture of Python
and ROOT (ROOT libraries in C++) code and is used by the CONUS collaboration
in the data processing chain. Also, the pulser method to calculate the cut efficiency is
implemented as a ROOT macro, only taking as an input a setup file with the model names
and parameters. The collaboration can use the macro to update the efficiency calculation
after the electronic response is included or to calculate the efficiencies for the detectors
C2-C4. Within this thesis, the calculation of the cut efficiencies was only done for C1 as a
benchmark detector, meaning that the pulser studies and calculation of the cut efficiencies
still need to be repeated for the detectors C2-C4. Furthermore, the PSD-cut needs to be
included in the analysis chain of RUN-5 data.

Besides the further work mentioned above, other interesting investigations can be done in
the future. It would be interesting to study the influence of the PSD-cut on the shape
of the spectrum. If the shape of the background and CEνNS spectrum are similar, the
likelihood used for the analysis is degenerated, resulting in a worse sensitivity than for a
non-degenerated likelihood. Therefore, it will be interesting to investigate if the PSD-cut
will create a significant shape difference and thus, increases the sensitivity. Furthermore,
the interaction of neutrinos in the active volume close to the transition layer could be
studied. In this case, some charge carriers can also be created inside the transition layer,
leading to a potential change of the pulse shape. It would be of interest to investigate if this
border effect can be neglected or needs to be taken into account for the PSD-cut efficiency.
In general, an improvement regarding the discriminating power of the pulse shape analysis
at low energies could be achieved by reducing the noise level. With a lower noise level, the
pulses can be better distinguished by the fit, leading to a better discrimination.

Summary of the main results
The pulse shape analysis presented in this thesis helped to build a better understanding of
the pulses created in the Ge detectors. It was shown that with the here introduced rise time
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method, a differentiation of normal and slow pulses is possible down to energies of ∼ 200 eV.
This includes the complete region of interest of the CONUS CEνNS analysis. Lower
energies are not of interest because the trigger efficiency of the used DAQ becomes very
small for lower energies and noise events largely dominate over physical events. Moreover,
in the thesis, a new method was presented to define a PSD-cut and calculate the efficiencies
and corresponding systematic uncertainties. With a realistic PSD-cut, it was shown that
a cut efficiency of 99% down to energies of 1.5 keV is achievable for the bulk/normal
signals while rejecting the majority of the slow pulses. In addition, it was shown that an
additional background suppression of around 23% in the region of interest for the CEνNS
and neutrino nucleus scattering BSM analysis (0.3 − 2 keV) can be achieved through PSD.
For the region of interest used in the electron neutrino scattering BSM analyses (2−8 keV),
a reduction of around 22% is possible. In order to apply the PSD-cut at energies below
300 eV, where the noise has a non-negligible contribution, it has been shown that a good
knowledge of the DAQ chain response is necessary. Furthermore, the rise time fit can be
used at keV and sub-keV energies for slow pulse, and at the MeV scale for MSE and slow
pulse discrimination, demonstrating the universality of this approach.
However, the possible background reduction from the application of the PSD-cut is intrinsi-
cally limited by the background composition. Not all background events occur inside
the transition layer and thus cannot be distinguished from neutrino induced events. An
example are neutrons, which interact in the detector nearly homogeneously. For the
CONUS experiment, the dominant background contributions come from µ-induced neutrons
in the shield and from the decay of 210Pb in the cryostat and shield. The latter dominant
contribution can be reduced by the PSD-cut. Moreover, the PSD helps to improve the
understanding of the background model and to reduce its systematic uncertainties.
In conclusion, the introduced PSD will increase the sensitivity for CEνNS and brings the
CONUS experiment one step closer to a possible detection of this interaction.
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Appendix A.

Additional Information

In this chapter, additional information and analyses are presented. First, an overview
of the frequently used measurements will be given (section A.1). Then, the influence of
different data window sizes on the rise time fit results will be discussed (section A.2).
Afterwards, the implementation of the fit routine (section A.3) and the calculation of the
PSD-cut efficiencies, including the systematic uncertainties (section A.4), will be described
briefly.

A.1. Frequently Used Measurements

In this section, the mainly used measurement are shortly explained. An overview of
important facts about the three measurements can be found in Tab. A.1.
Pulser: For this measurement, the Tektronix AFG 3252 Dual Channel Arbitrary/Function
Generator [52] is connected to the test input of the preamplifier. The test input allows to
send generated pulses through the electronic processing chain. As a result, it enables to
test the electronic response. Due to the Pulser, we have control over the input pulse shapes,
the energies of each event and the frequency in which the pulses are generated. Therefore,
we know what kind of pulses and how many of them are expected in the measurement.
Moreover, the measurements are not statistically limited.

Th-228: During every shift at the experimental site, a calibration measurement with
a Th-228 source is performed. The calibration is used to measure the stability of a Th-228
peak position over time in the high energy regime with the Lynx. The CAEN is operated in
the low energy regime, allowing to use these measurements to study, e.g. the distribution
of the fit parameters (see section 3.2.4). Due to the Th-228 source, the measurement is
dominated by γ-rays. The measured pulses come from the Ge diode such that we have
no control over the pulse shapes. In comparison to the pulser measurements, the Th-228
measurements are statistically limited.

Reactor: Until the time of writing, only reactor-ON data from RUN-5 with pulse shape
information is available. After the shut down of the power plant at the end of December
2021, reactor-OFF data will be collected as well. These measurements are used for the
physical analyses and are running continuously between the shifts. Both the reactor-ON
and OFF data is dominated by two background contributions: µ-induce neutrons and
210Pb decay products (see section 2.4.4). Due to the low background level, the count rate
is very low and of the order of 10 counts day−1 kg−1 in the sub-keVee region [19]. Therefore,
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Table A.1.: Summary of important facts about the frequently used measurements.
Pulser Th-228 Reactor

on demand each shift running between shifts

control over input pulses physical pulses physical pulses

statistically unlimited statistically limited statistically limited

dominated by γ-rays dominated by µ-induce neutrons
and 210Pb decay products

Table A.2.: Used time segment of the recorded pulses to test the influence of different
data window sizes on the fit result.

start point [ns] end point [ns]

first part 1000 20000
2000 20000

second part
0 19000
0 15000
0 10000

uncut pulse 0 20000

these measurements are statistically limited. Like the Th-228 measurement, the pulses are
created inside the Ge diode and we have no control over the pulse shapes.

A.2. Influence of Different Window Sizes on the Rise Time Fit

Looking at the size of the output files created by the fit, we see that the recorded pulse
shapes contribute the most. Due to limited space on the hard drive at KBR, it was
investigated if it is possible to reduce the window size of the recorded pulse in order to
save storage. For this investigation, a Th-228 measurement recorded with C1 was fitted
multiple times. Each time the fit was applied, the used time span of the fitted pulse was
changed to simulate a different recorded time window. From the fits, we can extract how
much of the recorded time window can be neglected until the fit results change significantly.
The investigation is split into two parts. For the first part, the data window is reduced at
the beginning, while for the second part, the window is reduced at the end of the pulse.
The unreduced data window has a recorded time length of twindow = 20000 ns. For the first
part, two reduced cases and the unreduced case are compared. The used start and end
points of the reduced pulses can be found in Tab. A.2. More reduction is not considered
because, in the most aggressive case already the majority of the baseline is cut. Since only
the baseline is cut for the first comparison, the most meaningful parameter to look at is
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Figure A.1.: P0-distributions for the same Th-228 measurement, recorded with C1, but
different data windows were used for the fit. For this plot, two cases where
the pre-trigger is reduced are compared to the uncut case.

the baseline estimate P0. A plot of the P0-distribution for the three different cases can be
seen in Fig. A.1. Figure A.1 shows exactly what we would expect. The P0-distribution
gets wider if a larger fraction of the baseline is cut because important information about
the baseline is lost. For the most extreme cut with a starting point of t = 2000 ns, some
events cluster at P0 values around 200 a.u. and smaller. These events come from fits
of unphysical events and appear only for the maximally reduced pulse because for pulses
with a longer baseline, the fit of these events does not converge. Also, these events lead
to an artefact in the rise time and A0-distribution and are correlated to the TRP reset.
Figure A.1 shows that a certain baseline is needed to get enough information about the
P0 parameter. In conclusion, the pre-trigger should not be shortened.
For the second part, the exponential decay is reduced. Three cases are compared to the
uncut pulse. The used start and end points of the reduced pulses can be found in Tab.
A.2. Only some part of the exponential decay is cut. Therefore, it is most interesting to
look at the τc parameter. A τc-distribution for the three cases is shown in Fig. A.2. The
figure shows that the largest change in the τc-distribution occurs for the pulse with the
largest cut. In this case, the peak, mainly containing slow pulses, move further to the left.
Due to the reduced exponential decay, the fit prefers a different τc value for slow pulses.
For the other two cases, only minor changes are observed.
For both parts described above, the discriminating power of the rise time parameter did
not deteriorate significantly. However, some significant changes in other fit parameters can
be observed. In conclusion, in principle, the exponential decay could be shortened a bit
but not as extreme as tested with the largest cut shown in Fig. A.2. But, the pre-trigger
should not be shortened. Especially for the lower energy pulses, all information available
can help to constrain the fit. Therefore, we decided not to reduce the recording time and
leave the time window recorded by the CAEN at 20000 ns.
For the CONUS experiment, the storage issue was solved by writing a program, which
deletes the recorded pulse shapes of the noise events.
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Figure A.2.: τc-distribution for the same Th-228 measurement, recorded with C1, but
different data window sizes were used for the fit. For this plot, three cases
where the exponential decay is reduced are compared to the uncut pulse.

A.3. Implementation of the Fit Routine

In this section, an overview of the implemented rise time fit routine is given. A schematic
overview of the implementation can be seen in Fig. A.3. The fit routine is started with the
python program risetime.py, which takes 6 mandatory and one optional argument as an
input. The mandatory arguments are: ’path’, ’filename’, ’min’, ’max’, ’files per job’ and
’energy cut’. As the input ’path’, the directory where the data is stored must be specified.
In order to lose as little amount of data as possible if the DAQ crashes, several data files
are produced during data taking. Therefore, if the DAQ crashes, only the current file is
lost. Each file has the same file name and only the ending is changing. After the zeroth
file, the ending changes from ’.root’ to ’_n.root’, where n is the number of the saved file.
For the argument ’filename’, the name of the data file with the ’.root’ ending needs to be
taken. The input arguments ’min’ and ’max’ specify the lowest and highest file number
of the recorded data, which should be fitted. In order to decrease the run time of the
rise time fit on the cluster, the job can be split. With the mandatory argument ’files per
job’, the splitting in multiple cluster jobs is managed. For the argument, the number of
files processed per cluster job should be given. The last mandatory argument defines the
event’s energy for which the fit is applied, meaning that events with a lower energy will
not be fitted. Also, this can be used to decrease the run time of the fit by avoiding fitting
too much noise. The optional argument gives the possibility to decide if the τc parameter
is used as a fixed or free parameter. If an optional argument is provided, all events with
an energy below E = 8000 ADC are fitted with τc as a fixed parameter (see section 3.2.3).
First, the python program checks if the output folder exists. If this is the case, the
program checks if the data is already fitted to avoid overwriting the existing files. In
the case where the folder does not exist, an output folder with the name Risetime is
automatically created. The output folder is located in the directory where the rest of the
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Figure A.3.: Schematic overview of the implemented fit routine. The input parameters
are the path where the data is stored (path), the name of the data files
(filename), the minimal and maximal number of data files which should
be fitted (min, max), the number of files per cluster job (files per job),
the lowest energy for which the events are still fitted (energy cut) and the
optional argument which determines if τc is fixed in the fit or not (fix τc).
If the optional argument is not given, the fit will be performed with τc as a
free parameter.

data is stored. Afterwards, the program starts the fit routine on the cluster. The actual
fit routine is written as a ROOT [21] macro. If τc is used as a free parameter, the macro
fit_risetime.C is used; otherwise, the macro fit_risetime_fix_tauc.C will be selected. The
fit results are saved in a separate output file, with the same name as the data file, but the
ending changes to ’_risetime.root’. All output files are stored in the output folder. In the
following, the fit routine and output file will be described in more detail.

Fit routine: The program loads one file and processes the file before the next one is
loaded. After loading a file, the program goes through each event separately. First, two
checks are applied to the events to decide if the current event should be fitted or not. The
first check is an energy scale cut, which is defined by an input parameter. The second check
controls if the maximal height of the pulse appears before a time of 1000 ns and is applied
to avoid fitting events like shown in Fig. 2.15 f). Only events passing these two checks are
fitted. For the failed events, all fit parameters are set to -1 and are saved in the output file.
By looking at events with fit parameters equal to -1, it can be seen that the two cuts are
working well. After the two checks, the starting fit values for the different fit parameters
are estimated. For all parameters except τc, the starting values are estimated from the
pulse. The starting value for the τc parameter is set to a specific value for all pulses. Then,
the fit is performed and the program checks automatically if the fit converged. Measures
to ensure a covered fit are, e.g. checking the fit status given by ROOT and if the errors of
the fit parameter are ’NAN’. If the fit does not converge, the procedure is repeated up to
10 times. After being repeated 10 times, a value of -2 will be saved for all fit parameters.
An estimation for the percentage of events with the fit parameters equal to ’-2’ can be
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Figure A.4.: Schematic overview of the structure of the output file created by the fit
routine. For n>0, the filename becomes:
Data_CH0@V1782_45_20210601_alldets_lowE_th228_n_risetime.root.
The branch Timestamp contains the timestamps of the events, Board
contains the board ID, Channel contains the numbers of the channels used
for recording the event, Flags contains numbers, e.g. marking saturation
or pile-up events, Energy contains the energy of each event, Event_ID
contains two numbers, making it possible to identify the event and Risetime
contains the fit parameters and errors of each event.

found in Tab. 3.1. Events with a non-converging fit are mainly looking like noise events
and unphysical pulses. The unphysical pulses are correlated to the TRP reset. In the
end, together with more information about the event, the fit parameters are saved in a
separated output file. All fit parameters per event are saved in one array in the following
ordering: A0, t0, τ, τc, P0, with value and fit error alternating. A separate output file is
created such that the original data stays untouched.

Output file: A schematic overview of the output file structure can be seen in Fig. A.4.
Similar to the data files, the output files are in the .root data format and have the same
structure. The information is saved in the tree Data. All information from the data file,
except the pulse shape, are saved in the same way in the output file. The pulse shape is
not saved again to reduce the size of the files. In addition, to the information from the
data file, the arrays with the fit parameters and an event ID are saved in the output file.
The event IDs are two numbers corresponding to the file number and event number inside
the file. These two numbers allow to relate the fit parameters to a pulse shape. If the data
is calibrated, an additional branch can be added, including the calibrated energies.
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A.4. Implementation of the Efficiency Calculation

In this section, a short explanation of the implementation of the efficiency calculation
will be given. The calculation of the cut efficiency, including the systematic uncertainties
(without the model uncertainty), is done with the ROOT [21] Macro cut_efficieny.C. As
an input for the macro, a setup file containing information about the models is needed.
The information included in the setup file is the type of the model, the energy of the pulser
point and the model parameter, including the uncertainties. The structure of such a setup
file is shown in Fig. A.5. With the macro five output files can be generated per model
included in the setup file. Three files are plots showing the efficiency curve, the relative
uncertainty contribution and the lower and higher population model. Another file (.csv)
contains a table with the cut efficiency, the systematic uncertainty and the log10(τcut)
value. In addition, the header of the table includes information about the model and
the energy of the measurement. In the last file, the relative uncertainty plot is stored
in the .root format. The file is necessary to update the relative uncertainty contribution
plot after the model uncertainty is calculated. Another input of the macro is the location
where these files are saved.
In order to calculate the model uncertainty, a second ROOT macro is necessary
(model_error.C). Again, the macro takes a setup file as an input. The setup file needs to
have the same format as the previous one. If a model uncertainty should be calculated for
a measured energy, the setup file needs to include the information about the alternative
model. In addition, the path where the old efficiency curve and relative uncertainty plot
are saved is necessary as an input to load and update the table and plots. As the output,
three files are created, the updated versions of the table including the data, the efficiency
curve and the relative uncertainty plot.

Figure A.5.: Schematic overview of the setup file’s structure needed for the cut efficiency
calculation. In the branch ’Model name’, the name of the models (’gauss’,
loggauss’ or ’loggaussgauss’) are stored.
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Appendix B.

Additional Plots

Figure B.1.: Stability of the τc parameter in time for all four CONUS detectors. From
top to bottom, the stability plot of the detectors C1 to C4 are shown. For
the estimation of the parameter, reactor-ON data is used. On the x-axis,
the starting date of each measurement is plotted.
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Figure B.2.: Stability of the τ parameter in time for all four CONUS detectors. From
top to bottom, the stability plot of the detectors C1 to C4 are shown. For
the estimation of the parameter, Th-228 data is used. On the x-axis, the
date of each measurement is plotted.
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Figure B.3.: log10(τ)-distributions for the C2 detector at different energies. For the
shown plots, all Th-228 calibration measurements between 01.06.2021 and
17.08.2021 are used.

Figure B.4.: log10(τ)-distributions for the C3 detector at different energies. For the
shown plots, all Th-228 calibration measurements between 01.06.2021 and
17.08.2021 are used.
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Figure B.5.: log10(τ)-distributions for the C4 detector at different energies. For the
shown plots, all Th-228 calibration measurements between 01.06.2021 and
17.08.2021 are used.
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Figure B.6.: Two example pulses at low energy, recorded with the C1 detector. In figure
a), the pulse has an energy of E ≈ 370 eV and in figure b), the pulse has
an energy of E ≈ 215 eV.
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Figure B.7.: τ -distribution with the corresponding fitted model for the higher population
of the pulser measurement for all measured energy points. For the two
energies where a model uncertainty is calculated, the fit of both models is
shown. All shown plots are for the C1 detector.
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Figure B.8.: τ -distribution with the corresponding fitted model for the lower population
of the pulser measurement for all measured energy points. For the two
energies where a model uncertainty is calculated, the fit of both models is
shown. For the three highest energy points, the model is fixed and therefore,
the three models are not shown in this plot. All shown plots are for the C1
detector.
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Figure B.9.: PSD-cut efficiency curves for all measured energy points. All shown plots
are for the C1 detector.
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Figure B.10.: The relative contribution from the systematic uncertainties used for the
efficiency calculation for all measured energy points. The uncertainty
regarding the stability of the τ -distribution is included in the mode
uncertainty. A comparison of this uncertainty relative to the uncertainty
of the mode parameter can be found in Fig. 4.17. All shown plots are for
the C1 detector.
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Appendix C.

Supplementary Calculations

In the following, all calculations necessary to the understand formulas discussed in the
main part of the thesis are shown.

C.1. Relations Between the Fit Parameters

Before the relations of the different fit parameters are calculated, the first and second
derivative of the fit function is shown. Both derivatives will be needed for further calculations.
The first derivative is:

d
dt

f(t) = A0

1
τ

[
1 − tanh2

(
t − t0

τ

)]
−
[
tanh

(
t − t0

τ

)
+ 1

]
τc

 exp
(
−τc (t − t0)

)
.

(C.1)

The second derivative is:

d2

dt2 f(t) = A0

−
2tanh

(
t−t0

τ

)(
1 − tanh2

(
t−t0

τ

))
τ2 + τ2

c

(
tanh

(
t − t0

τ

)
+ 1

)
(C.2)

−2τc
τ

(
1 − tanh2

(
t − t0

τ

)) exp
(
−τc (t − t0)

)
.

relation between rise time and τ :
Next, the relation between the rise time and the τ parameter of the simplified fit function
(see eq. 3.14) is calculated. The maximal value of the simplified fit function is 2A0.
Therefore, we can define the time t10 when the pulse reaches 10% of the maximal height
as:

f(t10) = A0

[
tanh

(
t10 − t0

τ

)]
= 0.1 × (2A0) (C.3)

The parameter A0 can be cancelled on both sides of the equation and the resulting function
can be solved for t10:

t10 = τartanh(−0.8) + t0 (C.4)
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chapter C. Supplementary Calculations

The same calculation can be done for the time t90 when the function reaches 90% of its
maximal height. The resulting formula for t90 is:

t90 = τartanh(0.8) + t0 (C.5)

The rise time of a pulse is defined as the time needed to raise from 10% to 90% of its
maximal height. As a result, we can take the difference of the times t90 and t10 and get
the following relation between the rise time and the τ parameter:

t90 − t10 = τ(artanh(0.8) − artanh(−0.8)) = τ(artanh(0.8) + artanh(0.8)) = 2τartanh(0.8)
(C.6)

Solving the equation above for τ gives the relation shown in section 3.2.4.
relation between slope and τ :
Next, we calculate the relation between the τ parameter and the slope at the point t0 for
the complete fit function (see eq. 3.9). The derivative of the fit function is shown in eq.
C.2. If we insert t = t0 into this equation, it reduces to:

d
dt

f(t0) = A0

(1
τ

− τc

)
. (C.7)

That is the relation shown in section 3.2.4.
relation between fmax and A0:
Next, the relation between A0 and the maximal point of the fit function is calculated.
First, the time when the maximal point is reached must be calculated. This is done by
setting the first derivative equal to zero and solving the equation for t. The calculation is
done with Mathematica and the result is:

tmax = t0 − τ log
(√

ττc
2 − ττc

)
(C.8)

Also, this result is shown in eq. 3.18. After that, the calculated time is inserted into the
fit function and the resulting function is simplified. The simplification is done in small
steps. First, the result is inserted in the hyperbolic tangent:

tanh
(

tmax − t0
τ

)
+ 1 = tanh

− log
(√

ττc
2 − ττc

)+ 1 (C.9)

To simplify this equation further, the following relation is used:

tanh(x) = e2x − 1
e2x + 1

(C.10)
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Additionally, the relation exp
(
a log(x)

)
= xa is used. With these two relations, the

equation simplifies to:

tanh
(

tmax − t0
τ

)
+ 1 =

2−ττc
ττc

− 1
2−ττc

ττc
+ 1

+ 1 = 2 − ττc (C.11)

Second, the time tmax is inserted into the exponential part of the fit function and the result
is simplified:

exp
(
−τc (tmax − t0)

)
= exp

ττc log
(√

ττc
2 − ττc

) =
(√

ττc
2 − ττc

)ττc

=
(

ττc
2 − ττc

) ττc
2

(C.12)

Combining the simplified hyperbolic tangent part and the exponential part to the fit
function, we find the final relation between the A0 parameter and the maximal point of
the fit function. The final result is shown in eq. 3.18.

C.2. FWHM for Loggauss Model

In this section, the FWHM for the loggaus model (see eq. 4.6) will be calculated. The
calculation is similar to the calculation of the FWHM for a Gaussian function. First, the
maximum of the loggaus model fmax needs to be calculated:

fmax = 1√
2πσ

e− σ2
2 (C.13)

Afterwards, the two x-values x1,2 need to be found for which the function reaches half of
its maximum.

1
2

fmax = f(x1,2) (C.14)

1
2

= e−
log(x1,2−µ)2

2σ2 (C.15)

±
√

2 log(2)σ = log
(
x1,2 − µ

)
(C.16)

x1 = µ + e+
√

2 log(2)σ (C.17)

x2 = µ + e−
√

2 log(2)σ (C.18)

The FWHM is the difference of the two x-values calculated above and thus, the FWHM
of the loggaus model is:

FWHM = x1 − x2 = e+
√

2 log(2)σ − e−
√

2 log(2)σ = 2sinh(
√

2 log(2)σ) (C.19)

129



chapter C. Supplementary Calculations

C.3. Relation Between the Gauss and Loggauss Model

In this section, it will be shown that the gauss function (see eq. 4.3) is only the small σ

limit of the loggauss function (see eq. 4.6). If the σ parameter of the loggaus model is
small, also x − M is small, with M = µ + 1 being the Mode value. Therefore, we can use
the Taylor expansion for the logarithm, but first, we rewrite the argument of the logarithm
as follows.

log(x − µ) = log(x − M + 1) = log(1 + ∆x), with ∆x = x − M (C.20)

For small σ values, ∆x is small and the Taylor expansion of the logarithm is:

log(1 + ∆x) = ∆x + O(∆x2) (C.21)

The Taylor expansion can be inserted into the loggauss function and ∆x can be transformed
back into µ.

f(x) = 1√
2πσ

e− σ2
2 e− (x−(µ+1))2

2σ2 (C.22)

Since σ is very small, the prefactor e− σ2
2 is approximately one. In addition, by redefining

the µ parameter to µ′ = µ + 1, the function shown above is a gaussian distribution.

C.4. Error Propagation Formula for the FWHM Estimation

In this section, the error propagation formula for the fit function of the FWHM (see eq.
4.12) is shown. The formula is needed in order to calculate the error band of the fit. Since
the parameters are strongly correlated, the error propagation formula for correlated errors
is used. The general formula for the error of y = f(xi), with xi being correlated, is [43]:

∆y =

√√√√√ m∑
i=0

(
∂y

∂xi
∆xi

)2

+ 2
m−1∑
i=1

m∑
k=i+1

∂y

∂xi

∂y

∂xk
cov(xi, xk), (C.23)

with the covariance matrix being related to the correlation matrix (correlation coefficients)
as follows [43]:

corr(xi, xj) = cov(xi, xj)
∆xi∆xj

(C.24)
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The derivatives of the fit function with respect to the different parameters are:

∂f(x)
∂p0

= (x + 1)p1 (C.25)

∂f(x)
∂p1

= p0 log(x + 1)(x + 1)p1 (C.26)

∂f(x)
∂p2

= 1 (C.27)

Together with the values from the covariant matrix, the error band can be calculated.

C.5. Error Propagation Formulas for the Model Functions

In this section, the error propagation formulas for the different models regarding the cut
efficiencies will be calculated. For the calculation, the standard error propagation formula
is applied. The error propagation formula for the function y = f(x1, x2) is [43]:

∆y =

√√√√(∂f(x1, x2)
∂x1

∆x1

)2

+
(

∂f(x1, x2)
∂x2

∆x2

)2

(C.28)

First, the cut efficiency ϵ is calculated analytically for the corresponding model with the
following function:

ϵ =
∫ log10(τcut)

−∞
ftotal(log10(τ)) d log10(τ) (C.29)

Then, the resulting function can be inserted in the error propagation formula.
In the following, the formulas for the three different models are derived. For simplification,
the rise time values will be renamed to log10(τcut) = xcut and log10(τ) = x for the rest of
this section.

Gauss: The solution of the integral shown in eq. C.29 for the gauss model is:

ϵ(xcut) = AH
2

1 − erf
(

µH − xcut√
2σH

)+ (1 − AH)
2

1 − erf
(

µL − xcut√
2σL

) , (C.30)

where the indices ’H’(’L’) mark the higher (lower) population model parameter. With
this formula, all terms needed for the error propagation formula can be calculated and the
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resulting terms are shown below:

∂ϵ(xcut)
∂AH

= 1
2

1 − erf
(

µH − xcut√
2σH

)− 1
2

1 − erf
(

µL − xcut√
2σL

) (C.31)

∂ϵ(xcut)
∂µi

= − Ai√
2πσi

exp
[
−(µi − xcut)2

2σ2
i

]
(C.32)

∂ϵ(xcut)
∂σi

= Ai(µi − xcut)√
2πσ2

i

exp
[
−(µi − xcut)2

2σ2
i

]
(C.33)

with i ∈ {H, L} and AL = 1 − AH. Using eq. C.28, the terms above can be combined to
the final formula for the efficiency error ∆ϵ:

∆ϵ =

(∂ϵ(xcut)
∂AH

∆AH

)2

+
(

∂ϵ(xcut)
∂µH

∆µH

)2

+
(

∂ϵ(xcut)
∂σH

∆σH

)2

(C.34)

+
(

∂ϵ(xcut)
∂µL

∆µL

)2

+
(

∂ϵ(xcut)
∂σL

∆σL

)2
 1

2

In addition, not σ is estimated from the Th-228 measurement but the FWHM. Therefore,
the relation between the error of σ and the FWHM is also needed.

∆σ = ∆FWHM

2
√

2 log(2)
(C.35)

Loggauss: The solution of eq. C.29 for the loggauss model is shown below:

ϵ(xcut) = AH
2

1 − erf
(

σ2
H − log(xcut − µH)√

2σH

)+ (1 − AH)
2

1 − erf
(

σ2
L − log(xcut − µL)√

2σL

)
(C.36)

The terms needed for the error propagation formula are shown below:

∂ϵ(xcut)
∂AH

= 1
2

1 − erf
(

σ2
H − log(xcut − µH)√

2σH

)− 1
2

1 − erf
(

σ2
L − log(xcut − µL)√

2σL

)
(C.37)

∂ϵ(xcut)
∂µi

= − Ai√
2πσ

exp
[
−(σ2

i − log(xcut − µi))2

2σ2
i

]
1

xcut − µi
(C.38)

∂ϵ(xcut)
∂σi

= − Ai√
2π

exp
[
−(σ2

i − log(xcut − µi))2

2σ2
i

](
1 + log(xcut − µi)

σ2
i

)
(C.39)

with i ∈ {H, L} and AL = 1 − AH. The final error propagation formula is equal to eq.
C.34, but the terms shown above for the loggaus model are inserted. Again, the relation
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between the error of σ and the FWHM is also needed and given below:

∆σ = ∆FWHM

2
√

2 log(2)
√(

F W HM
2

)2
+ 1

(C.40)

loggauss + gauss: The solution of eq. C.29 for the loggauss gauss model is shown
below:

ϵ(xcut) = AH
1 + RH

RH
2

1 − erf
(

σ2
1 H − log

(
xcut − ((µH − ∆µH) − 1)

)
√

2σ1 H

) (C.41)

+ 1
2

1 − erf
(

(µH + ∆µH) − xcut√
2σ2 H

)


+ 1 − AH
1 + RL

RL
2

1 − erf
(

σ2
1 L − log

(
xcut − ((µL − ∆µL) − 1)

)
√

2σ1 L

)

+ 1
2

1 − erf
(

(µL + ∆µL) − xcut√
2σ2 L

)


Since the model has 11 free parameters, the resulting error propagation formula is:

∆ϵ =

(∂ϵ(xcut)
∂AH

∆AH

)2

+
(

∂ϵ(xcut)
∂RH

∆RH

)2

+
(

∂ϵ(xcut)
∂µH

∆µH

)2

+
(

∂ϵ(xcut)
∂∆µH

∆∆µH

)2

(C.42)

+
(

∂ϵ(xcut)
∂σ1 H

∆σ1 H

)2

+
(

∂ϵ(xcut)
∂σ2 H

∆σ2 H

)2

+
(

∂ϵ(xcut)
∂RL

∆RL

)2

+
(

∂ϵ(xcut)
∂µL

∆µL

)2

+
(

∂ϵ(xcut)
∂∆µL

∆∆µL

)2

+
(

∂ϵ(xcut)
∂σ1 L

∆σ1 L

)2

+
(

∂ϵ(xcut)
∂σ2 L

∆σ2 L

)2
 1

2

The terms needed for the error propagation formula are listed below:

∂ϵ(xcut)
∂σ1 i

= − AiRi

1 + Ri

1√
2π

exp
[
−(σ2

1 i − log
(
xcut − ((µi − ∆µi) − 1)

)
)2

2σ2
1 i

]
(C.43)

·
(

1 + log
(
xcut − ((µi − ∆µi) − 1)

)
σ2

1 i

)
∂ϵ(xcut)

∂σ2 i
= Ai

1 + Ri

((µi + ∆µi) − xcut)√
2πσ2

2 i

exp
[
−((µi + ∆µi) − xcut)2

2σ2
2 i

]
(C.44)
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∂ϵ(xcut)
∂AH

= 1
1 + RH

RH
2

1 − erf
(

σ2
1 H − log

(
xcut − ((µH − ∆µH) − 1)

)
√

2σ1 H

) (C.45)

+ 1
2

1 − erf
(

(µH + ∆µH) − xcut√
2σ2 H

)


− 1
1 + RL

RL
2

1 − erf
(

σ2
1 L − log

(
xcut − ((µL − ∆µL) − 1)

)
√

2σ1 L

)

+ 1
2

1 − erf
(

(µL + ∆µL) − xcut√
2σ2 L

)


∂ϵ(xcut)
∂Ri

= − Ai

(1 + Ri)2

Ri

2

1 − erf
(

σ2
1 i − log

(
xcut − ((µi − ∆µi) − 1)

)
√

2σ1 i

) (C.46)

+ 1
2

1 − erf
(

(µi + ∆µi) − xcut√
2σ2 i

)


+ Ai

1 + Ri

1
2

1 − erf
(

σ2
1 i − log

(
xcut − ((µi − ∆µi) − 1)

)
√

2σ1 i

)
∂ϵ(xcut)

∂µi
= Ai

1 + Ri

− Ri√
2πσ1 i

exp
[
−(σ2

1 i − log
(
xcut − ((µi − ∆µi) − 1)

)
)2

2σ2
1 i

]
(C.47)

· 1
xcut − ((µi − ∆µi) − 1)

− 1√
2πσ2 i

exp
[
−((µi + ∆µi) − xcut)2

2σ2
2 i

]
∂ϵ(xcut)

∂∆µi
= Ai

1 + Ri

 Ri√
2πσ1 i

exp
[
−(σ2

1 i − log
(
xcut − ((µi − ∆µi) − 1)

)
)2

2σ2
1 i

]
(C.48)

· 1
xcut − ((µi − ∆µi) − 1)

− 1√
2πσ2 i

exp
[
−((µi + ∆µi) − xcut)2

2σ2
2 i

]
with i ∈ {H, L} and AL = 1 − AH. For the relation between σ1,2 and the FWHM1,2, the
relation from the loggauss and gauss model can be used, respectively.
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