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43 Abstract 

44 In plants, a first layer of inducible immunity is conferred by pattern recognition 

45 receptors (PRRs) that bind microbe- and damage-associated molecular 

46 patterns (MAMPs/DAMPs, respectively) to activate pattern-triggered immunity 

47 (PTI). PTI is strengthened or followed by another potent form of immunity when 

48 intracellular receptors recognize pathogen effectors, termed effector-triggered 

49 immunity (ETI). Immunity signaling regulators have been reported to influence 

50 abiotic stress responses as well, yet the governing principles and mechanisms 

51 remain ambiguous. Here, we report that PRRs of a leucine-rich repeat 

52 ectodomain also confer salt tolerance in Arabidopsis thaliana, following 

53 recognition of cognate ligands, such as bacterial flagellin (flg22 epitope) and 

54 EF-Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt 

55 tolerance (PTST) requires authentic PTI signaling components, namely the 

56 PRR-associated kinases BAK1 and BIK1, and the NADPH oxidase RBOHD. 

57 Exposure to salt stress induces the release of Pep precursors, pointing to the 

58 involvement of the endogenous immunogenic peptides in developing plant 

59 tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST 

60 target genes, which increase or acquire salt responsiveness following a pre-

61 exposure to immunogenic patterns. In good accordance, plants challenged with 

62 non-pathogenic bacteria also acquired salt tolerance in a manner dependent on 

63 PRRs. Our findings provide insight into signaling plasticity underlying biotic-

64 abiotic stress cross-tolerance in plants conferred by PRRs.
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65 INTRODUCTION 

66 Like animals, plants have evolved an elaborate immune system to sense 

67 and adapt to disturbance caused by biotic agents. How the immune system 

68 influences abiotic stress responses remains much less understood. Plants 

69 sense and cope with fluctuating environments, while accommodating a rich 

70 diversity of microbial communities that often aid host adaptation. Conversely, 

71 environmental abiotic factors, such as light, temperature and water availability 

72 profoundly influence the mode and outcome of plant-microbe interactions 

73 (Velásquez et al. 2018). This predicts an intimate relationship between biotic 

74 and abiotic stress sensing and signaling in plants. In line with this, it is 

75 becoming apparent that immune receptors and signaling regulators also impact 

76 abiotic stress responses, positively or negatively in a context-dependent 

77 manner (Saijo and Loo 2020). However, the regulatory logic or molecular basis 

78 behind intricate cross-regulations between biotic and abiotic stress signaling 

79 remains poorly understood.

80 Plant immunity largely relies on two classes of innate immune receptors, 

81 namely cell surface-localized PRRs and intracellular nucleotide-binding domain 

82 and leucine-rich repeat (LRR)-containing receptors (NLRs) (Jones and Dangl 

83 2006). Detection of MAMPs and DAMPs by cognate PRRs leads to pattern-

84 triggered immunity (PTI), which is vital in preventing the infection of most non-

85 adapted microbes and in restricting growth of adapted microbes, termed basal 

86 resistance (DeFalco and Zipfel 2021; Saijo et al. 2018). In turn, plant-infecting 

87 microbes, whether pathogenic or non-pathogenic, employ an array of effectors 

88 to manipulate host immunity and other processes for infection. To counter this, 

89 plants employ a repertoire of NLRs that recognize microbial effectors to mount 

90 effector-triggered immunity (ETI) that terminates microbial growth. NLRs are 
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91 classified into two major subclasses, based on their N-terminal domains: the 

92 coiled-coil (CC)-NLRs and the Toll-interleukin1-receptor (TIR)-NLRs. CC-NLR 

93 and TIR-NLR functions typically require the defense regulators NDR1 and 

94 EDS1, respectively (Jones et al, 2016). Compared to PTI, ETI is typically 

95 greater in amplitude and robustness against microbial perturbations, and is 

96 often accompanied by localized cell death called the hypersensitive response 

97 (Cui et al. 2015). Molecular genetic studies in Arabidopsis thaliana interactions 

98 with the bacterial pathogen Pseudomonas syringae pv tomato DC3000 (Pst) 

99 indicate mutual inter-dependence between PTI and ETI (Ngou et al. 2021; Yuan 

100 et al. 2021).

101 A major class of PRRs are the LRR-receptor kinases (RKs), including FLS2, 

102 EFR and PEPR1/PEPR2, which recognize bacterial flagellin (flg22 epitope), 

103 elongation factor Tu (EF-Tu, elf18 epitope) and the endogenous Pep epitopes 

104 embedded in their precursors, PROPEPs, respectively (Gómez ‐Gómez and 

105 Boller 2000; Zipfel et al. 2006; Yamaguchi et al. 2006,  2010; Krol et al. 2010). 

106 Following ligand binding, these PRRs form heteromeric receptor complexes 

107 with the LRR-RK BAK1 (and related SERKs), and then induce dissociation of 

108 receptor-like cytoplasmic kinases (RLCKs) such as BIK1 and PBL1. Their trans-

109 phosphorylation provides a basis for intracellular defense signaling, which 

110 involves Ca2+ release and an RBOHD-dependent reactive oxygen species 

111 (ROS) burst, phosphorylation cascades of Ca2+-dependent protein kinases and 

112 mitogen-activated protein kinases (MAPKs), callose deposition, production of 

113 the phytohormones ethylene and salicylic acid (SA), and extensive 

114 reprogramming of the transcriptome and proteome (Couto & Zipfel, 2016; Yu et 

115 al, 2017; Saijo et al, 2018). These signaling events collectively contribute to 
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116 PTI, and also provide possible internodes for balancing immunity and other 

117 cellular processes. 

118 Activation of PTI is required to potentiate ETI for effective pathogen 

119 resistance (Ngou et al. 2021; Yuan et al. 2021). SA is a key for this process in 

120 biotrophic/hemibiotrophic pathogen resistance, and is produced in large part 

121 through the SA biosynthetic enzyme isochorismate synthase1 (ICS1) during PTI 

122 (Wildermuth et al. 2001; Vlot et al. 2009). SA signaling relies on the SA-binding 

123 transcriptional co-activator NPR1 and co-repressors NPR3/NPR4 (Ding and 

124 Ding 2020), and also on EDS1 and related PAD4 (Wiermer et al. 2005). 

125 EDS1/PAD4 activate ICS1 expression and SA accumulation but also promote 

126 ICS1/SA-independent defenses (Glazebeook et al. 2003; Bartsch et al. 2006; 

127 Cui et al. 2017). Accordingly, EDS1 is required for basal resistance to biotrophic 

128 and hemi-biotrophic pathogens (Dongus and Parker 2021). However, excessive 

129 de-repression of EDS1/PAD4-mediated defenses during osmotic stress results 

130 in a collapse of osmotic stress tolerance (Ariga et al. 2017). Therefore, tight 

131 control of EDS1/PAD4 activity is crucial not only under biotic but also abiotic 

132 stress conditions.

133 Genetic studies have implicated PRRs in salt stress tolerance. In 

134 Arabidopsis thaliana, ectopic expression of fungal chitinase or chitin application 

135 enhances salt tolerance in a manner dependent on the lysin-motif (LysM) RK 

136 CERK1, which mediates the perception of fungal chitin and bacterial 

137 peptidoglycans (Brotman et al. 2012). Even under sterile conditions in the 

138 absence of microbes or MAMPs, cerk1 plants are hypersensitive to salt stress 

139 (Espinoza et al. 2017). These studies suggest that CERK1 has a role in 

140 promoting salt stress tolerance, and that this function is related to an as-yet-

141 unidentified endogenous DAMP(s). Likewise, PROPEP3 overexpression and 
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142 Pep3 application under sterile conditions both enhance salt tolerance through 

143 PEPR1 (Nakaminami et al. 2018). These studies suggest that DAMP sensing 

144 and signaling contribute to salt stress tolerance, yet the underling principles are 

145 not defined. 

146 Here, we report that PTI signaling components promote salt tolerance in A. 

147 thaliana following recognition of various immunogenic patterns. Transcriptome 

148 profiling reveals an inventory of defense/stress-related genes that increase or 

149 acquire salt responsiveness after PRR elicitation. Recognition of non-

150 pathogenic bacteria also leads to salt tolerance through these PRR signaling 

151 components. Our findings indicate that immunogenic pattern sensing of cellular 

152 damage and plant-associated microbes is intimately linked to salt stress 

153 tolerance. 

154

155 RESULTS

156 Recognition of damage/microbe-associated molecular patterns leads to 

157 salt tolerance

158 Whole-genome microarray analysis for Pep2- and elf18-induced 

159 transcriptional reprogramming in Arabidopsis seedlings (Ross et al. 2014) 

160 produced an inventory of Pep2- and elf18-inducible genes (≧4-fold), i.e. 575 

161 and 76 genes with Pep2 at 2 h and 10 h, respectively, and 536 and 380 genes 

162 with elf18 at 2 h and 10 h, respectively. In silico data analysis suggests that the 

163 majority of these PTI-inducible genes are also induced in seedling shoots or 

164 roots in response to salt and osmotic stresses (Supplementary Fig. S1A), as 

165 previously described for chitin (Espinoza et al. 2017). The common target 

166 genes included members of the PROPEP family and PEPR1/PEPR2 

167 (Supplementary Fig. S1A), implying the extensive engagement of this DAMP 
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168 pathway under salt stress. These data prompted us to examine whether 

169 recognition of different MAMPs and DAMPs leads to salt stress tolerance, and if 

170 so, by what mechanism.

171 We first tested whether pretreatment of seedlings with Pep, flg22 and elf18 

172 peptides confers salt stress tolerance. Salt tolerance was determined as the 

173 ratio of viable (green) plants to dead/dying plants with bleached leaves, over the 

174 total number of the tested plants (Fig. 1A, Fig. 3A). In non-elicited plants, the 

175 survival rate declined to 36%, while survival of Pep1-pretreated seedlings was 

176 94%, 7 d after salt stress (Fig. 1B). Pep1-triggered salt stress was effective, at 

177 least up to 200 mM NaCl (Supplementary Fig. S1B). Pep1, Pep2, Pep3 and 

178 Pep4 pretreatments all significantly increased plant tolerance to 175 mM NaCl 

179 (Supplementary Fig. S1C, Table 1). Pep1 pretreatment resulted in increases in 

180 overall seedling fresh weight and chlorophyll contents (Fig. 1C-D), pointing to 

181 enhanced salt stress tolerance (Acosta-Motos et al. 2017). PEPR1 recognizes 

182 all Pep peptides while PEPR2 recognizes only Pep1 and Pep2 (Krol et al. 2010; 

183 Bartels et al. 2013). Although it was previously described that PEPR1, but not 

184 PEPR2, is required for Pep3-triggered salt tolerance (Nakaminami et al. 2018), 

185 our analysis showed that Pep1-triggered salt tolerance was retained in pepr1 or 

186 pepr2 but abolished in pepr1 pepr2 plants (Fig. 1, Table 1). Accordingly, Pep1 

187 effects on shoot fresh weights and chlorophyll contents under salt stress was 

188 absent in pepr1 pepr2 plants (Fig. 1C-D). The results indicate that PEPR1 and 

189 PEPR2 both mediate salt tolerance, despite their differences in Pep ligand 

190 specificity. 

191 PRR signaling activation under sterile conditions typically leads to growth 

192 retardation (Boller and Felix 2009). Conceivably, the lowered metabolic activity 

193 accompanying reduced growth could lower salt uptake into the plant, thereby 
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194 conferring apparent tolerance. However, pepr2 plants acquired salt tolerance 

195 following Pep1 application (Table 1), without discernible growth inhibition (Krol 

196 et al. 2010). Pep3 and Pep4 application also conferred salt tolerance without 

197 significantly inhibiting root growth (Supplementary Fig. S1C, Table 1). This 

198 indicates that plant growth inhibition is not required for pattern-triggered salt 

199 tolerance, which we designate as PTST. 

200 Importantly, pretreatment with flg22 or elf18 also conferred salt tolerance 

201 through cognate PRRs (Fig. 1E-F, Supplementary Fig. S1D). The results 

202 indicate that PTST is not specific to an immunogenic pattern or receptor but is 

203 common to a broad range of MAMPs/DAMPs. This is consistent with the view 

204 established in plant immunity that a wide array of PRRs link the recognition of 

205 diverse cognate ligands to a largely overlapping set of defense outputs (Saijo et 

206 al, 2018). The ligand dose dependence of flg22-induced salt tolerance was 

207 comparable with that of other flg22-induced outputs (Supplementary Fig. S1D) 

208 (Gómez‐Gómez et al. 1999; Aslam et al. 2009). These results suggest that 

209 PTST shares post-recognition signaling mechanisms with PTI across different 

210 PRR pathways. Notably, chitin application did not affect salt tolerance under our 

211 conditions, despite significant induction of a defense marker, CYP71A13, 

212 encoding cytochrome P450 involved in camalexin biosynthesis (Supplementary 

213 Fig. S1E). 

214

215 Pattern-triggered salt tolerance and pattern-triggered immunity share 

216 early signaling steps downstream of the receptor

217 A major branch of PTI signaling triggered by the LRR-domain PRRs occurs 

218 through the receptor complexes with BAK1 and BIK1/PBL1 ((Couto and Zipfel 

219 2016). To test possible BAK1 dependence of PTST, we examined Pep1-
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220 triggered salt tolerance in a null bak1-4 allele, and a hypoactive bak1-5 allele 

221 specifically impaired in PRR-related BAK1 function (Roux et al. 2011; 

222 Schwessinger et al. 2011). We previously described retention of PEPR-

223 mediated defenses in bak1 null mutants, reflecting PEPR1 interactions with 

224 other BAK1-related RKs (Yamada et al. 2016). Consistently, Pep1-induced salt 

225 tolerance was unaffected in bak1-4 (Fig. 2). However, it was severely 

226 compromised in bak1-5 plants and bak1-5 bkk1 plants that additionally lack 

227 BAK1-related RK BKK1, required for PEPR-mediated defenses (Yamada et al. 

228 2016) (Fig. 2). Likewise, Pep1-induced salt tolerance was also impaired in bik1 

229 pbl1 plants (Fig. 2). The results indicate that PTST signaling also occurs 

230 through these BAK1-related RKs and RLCKs.

231 Interestingly, seedling survival rate was also significantly lowered in bak1-5, 

232 bak1-5 bkk1, and bik1 pbl1 plants when exposed to salt stress without 

233 exogenous Pep1 pretreatment (Fig. 2, mock controls), pointing to engagement 

234 of these PRR-associated kinases in salt tolerance. Our data suggest that the 

235 authentic receptor complexes mediate PTST, and that DAMPs or endogenous 

236 ligands generated under salt stress signal via BAK1/BIK1-dependent PRRs or 

237 receptors. 

238 Pep1-triggered salt tolerance was reduced in rbohd plants lacking the PRR-

239 associated NADPH oxidase responsible for a pattern-induced ROS burst (Fig. 

240 2; Kadota et al, 2015), pointing to a critical role also for this PRR output in 

241 PTST. By contrast, callose synthase PMR4/GSL5 mediating callose deposition 

242 during PTI (Kim et al. 2005) was not required for Pep1-triggered salt tolerance 

243 (Fig. 2), demonstrating that PRR-induced callose deposition is dispensable for 

244 PTST. 
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245 FLS2-mediated salt tolerance was also reduced in bak1-5 plants, indicated 

246 by decreases in the survival rate, seedling fresh weight and chlorophyll contents 

247 under salt stress after flg22 pretreatment (Fig. 3A-C). It was also reduced in 

248 bak1-4 plants, indicated by chlorophyll contents (Fig. 3C), although the survival 

249 rate or seedling fresh weight was not significantly reduced (Fig 3A-B). The 

250 partial retention of PTST may be attributed to a BAK1-independent pathway 

251 mobilized by residual FLS2 signaling in the mutant. Nevertheless, the results 

252 indicate that PTST through these LRR-RKs relies on PRR-regulating BAK1 

253 function, and that early signaling steps within and proximal to the PRR 

254 complexes, if not all, are shared between PTI and PTST.

255

256 Pattern-triggered salt tolerance is robust against hormone perturbations

257 PRR signaling involves complex networks of defense-related hormones 

258 including SA, JA and ethylene in PTI (Pieterse et al. 2012). FLS2- and EFR-

259 triggered immunity largely collapses in the simultaneous absence of DDE2 

260 encoding allene oxide synthase (AOS) required for JA biosynthesis, EIN2 

261 encoding the master regulator of ethylene signaling, SID2 (ICS1) and PAD4 

262 (Tsuda et al. 2009). However, in dde2 ein2 pad4 sid2 plants, PTST was 

263 unaffected (Supplementary Fig. S2A), indicating that these defense-related 

264 sectors are all dispensable for PTST. 

265 We also assessed whether PTST is dependent on ABA, which is central to 

266 plant adaptation to salt, osmotic and water-deficit stresses (Cutler et al. 2010; 

267 Finkelstein 2013). PTST was unaffected in aba2-12 plants impaired in ABA 

268 biosynthesis (González-Guzmán et al. 2002) and in areb1 areb2 abf3 plants 

269 lacking key transcription factors mediating ABA responses (Yoshida et al. 2015) 

270 (Supplementary Figs. S2B and S2C), suggesting that ABA is also dispensable 
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271 for PTST. Overall, our findings point to high PTST robustness against 

272 perturbations of these biotic/abiotic stress-related hormone pathways.

273

274 Salt-induced damage sensing and signaling involves the Pep-PEPR 

275 pathway 

276 To test involvement of endogenous DAMPs in salt tolerance, we monitored 

277 endogenous PROPEP-PEPR signaling under salt stress. Given the substantial 

278 induction of PROPEPs and PEPR1/PEPR2 in roots (Supplementary Fig. S1A), 

279 we examined PROPEP3 protein expression in the roots of transgenic plants 

280 expressing PROPEP3-Venus under its native regulatory DNA sequences. A 

281 strong PROPEP3-Venus fluorescence signal was detected 24 h after salt 

282 stress, but not under mock conditions (Fig. 4A). Damage-induced release of 

283 PROPEP1 from the vacuole and that of PROPEP3 to extracellular spaces 

284 (Hander et al. 2019; Yamada et al. 2016) prompted us to test for possible 

285 PROPEP release under salt stress. We traced PROPEP3-Venus accumulation 

286 in the surrounding liquid media, following salt stress and/or Pep1 application. 

287 Immunoblot analysis with PROPEP3-specific antibodies (Ross et al. 2014) 

288 detected specific signals that were close to the predicted full-length size of 

289 PROPEP3-Venus (~10.4 + 27 kDa) (Yamada et al. 2016) following Pep1 

290 application (Fig. 4B), as described for Pep2 application (Yamada et al. 2016). 

291 Apparently shorter forms of PROPEP3-Venus were additionally detected under 

292 salt stress with or without Pep1 application (Fig. 4B), possibly reflecting 

293 PROPEP3 processing that may occur in the intracellular or extracellular spaces. 

294 Under these conditions, endogenous PROPEP3-derived signals were not 

295 detected. Nevertheless, these results validate that PROPEP3 is released under 

296 salt stress.
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297 To assess a possible contribution of the endogenous PEPR pathway to salt 

298 tolerance, we examined salt responses of PEPR1 and PEPR2 over-expressing 

299 lines (PEPR1-OE or PEPR2-OE, respectively) in the pepr1 pepr2 background, 

300 without exogenous application of Peps or MAMPs. PEPR1-OE and PEPR2-OE 

301 plants both exhibited increased survival rates when exposed to 175 mM NaCl 

302 compared to that of pepr1 pepr2 plants (Fig. 4C). Moreover, following 7-d 

303 acclimatization to mild salt stress (100 mM NaCl), PEPR1-OE and PEPR2-OE 

304 plants acquired enhanced tolerance to severe osmotic stress (750 mM sorbitol) 

305 compared to pepr1 pepr2 plants, indicated by the leaf chlorophyll contents (Fig. 

306 4D). These data provide compelling evidence that an endogenous PEPR 

307 pathway contributes to salt and osmotic stress tolerance, in the absence of 

308 exogenous Pep application. Collectively, the results indicate that salt stress 

309 induces the generation and release of PROPEP-derived peptides, which 

310 engages PEPR signaling in salt/osmotic stress tolerance. 

311

312 Pep1 pretreatment strengthens transcriptome dynamics in response to 

313 salt stress

314 To gain a mechanistic insight into PTST, we performed transcriptome 

315 profiling on WT and pepr1 pepr2 plants during the course of PTST. To capture 

316 useful information from the salt-sensitive samples, plants were subjected to 150 

317 mM NaCl after Pep1 application. As salt-induced transcriptional reprogramming 

318 is largely achieved within the first 24 h (Geng et al. 2013), we obtained the data 

319 under salt stress for 3 h and 24 h, after a 3-d Pep1 pretreatment (Fig. 5A). Up- 

320 or down-regulated genes under salt stress in non-elicited plants (mock), with a 

321 cut-off of |log2 (fold change)| ≧1 (p <0.05), were assembled at the indicated 

322 times, defining the salt-responsive differentially expressed genes (DEGs) (Fig. 
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323 5B). Likewise, genes whose expression was significantly altered, both between 

324 Pep1- and mock-pretreated WT plants and between Pep1-pretreated WT plants 

325 and pepr1 pepr2 plants, were assembled at the indicated times under salt 

326 stress, defining PTST-DEGs (exhibiting Pep1/PEPR-dependent alterations in 

327 salt responsiveness) (Fig. 5B). DEGs were scored at the earliest time points 

328 when their expression levels first met these criteria. 

329 In non-elicited plants under salt stress, we detected a total of 1,285 up- vs. 

330 911 down-regulated DEGs, and 1,497 up- vs. 1,363 down-regulated DEGs, at 

331 3h and 24 h, respectively (Fig. 5B). This suggests that salt-induced 

332 transcriptional reprogramming persisted over the tested time window. In Pep1-

333 pretreated plants, we detected 639 up- vs. 416 down-regulated PTST-DEGs 3 h 

334 after salt stress, but merely 32 up- vs. 315 down-regulated PTST-DEGs at 24 h 

335 (Fig. 5B). This suggests that PRR signaling particularly impacts the early 

336 responsiveness of salt-inducible genes.

337 Next, we examined possible overlap and divergence between the obtained 

338 salt-inducible DEGs and the previously described, Pep2- or elf18-responsive 

339 DEGs (2 h and 10 h; Ross et al, 2014). This showed that 599 genes (34.1% of 

340 Pep2/elf18-inducible genes and 22.9% of salt-inducible genes) were commonly 

341 induced between the two types of stimuli, while 1,155 and 2,012 genes were 

342 specifically induced in response to Pep2/elf18 and salt stress, respectively (Fig. 

343 5C). Our analysis indicates a substantial overlap, but also a clear separation in 

344 the transcriptome between the biotic and abiotic stresses, in which a large 

345 portion of pattern-responsive genes is inherently not responsive to salt stress 

346 and vice versa. 

347 Of 1,754 elf18- or Pep2-inducible DEGs and 2,611 salt-inducible DEGs, 

348 281 genes (16.0%) and 222 genes (8.5%) were defined as PTST-DEGs, 
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349 respectively (Fig. 5C). Notably, these included pattern-specific DEGs which 

350 acquired salt inducibility following Pep1 pretreatment but were otherwise not 

351 responsive to salt stress: 3-d Pep1 pretreatment rendered 164 genes (125 + 39 

352 genes in Supplementary Fig. S3A, relative to 1,285 genes, inherently salt-

353 inducible) significantly induced at 3 h, and 24 genes (13 + 11 genes  in 

354 Supplementary Fig. S3A, relative to 2,251 genes, inherently salt-inducible) at 24 

355 h after salt stress. Moreover, PTST-DEGs included 264 genes, which were not 

356 among the elf18/Pep2-DEGs or salt-DEGs, but acquired salt inducibility in 

357 Pep1-pretreated plants (Fig. 5C). These results indicate that pre-activation of 

358 PRR signaling not only sensitizes salt stress responses but also broadens the 

359 range of target genes in salt stress responses, and emphasize that these 

360 effects are prominent early in salt responses.

361 We further dissected all the salt- and PTST-DEGs (Fig. 5B) by hierarchical 

362 clustering. The genes were classified into five clusters (Fig. 5D, Supplementary 

363 Table S1). GO analyses revealed no significant GO term enrichment for cluster 

364 1, presumably due to the low number of genes (20 genes; Supplementary Table 

365 S1). Cluster 2, 3, 4 and 5 were overrepresented with lipid localization. Lipid is 

366 among the major components of the plasma membranes that are important not 

367 only for membrane remodeling i.e. adjusting membrane fluidity and permeability 

368 during salt stress, but also for numerous lipid signaling involved in the 

369 adaptation to salt and osmotic stress (Hou et al. 2016; Guo et al. 2019). Cluster 

370 3 was also overrepresented with negative regulation of photosynthesis, 

371 consistent with the reduction of chlorophyll contents in the absence of Pep1-

372 triggered salt tolerance (Fig. 1E, Fig. 3F). Cluster 4 was also overrepresented 

373 with negative regulation of root development, a hallmark response under salt 

374 stress (Acosta-Motos et al. 2017). 
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375 Notably, cluster 5 (2,194 genes) was over-represented with genes whose 

376 salt induction at 3 h was increased after Pep1 pretreatment (Fig 5D). It included 

377 a set of genes related to both defense and salt stress responses. For example, 

378 PTR3, encoding a putative peptide transporter, promotes both salt tolerance 

379 during seed germination and basal resistance to Pst DC3000 (Karim et al. 

380 2007,  2005). SnRK2.8 encodes an osmotic stress-activated protein kinase, 

381 which promotes drought tolerance (Umezawa et al. 2014) and systemic 

382 immunity by phosphorylating NPR1 (Lee et al. 2015). Interestingly, BON1 that 

383 negatively regulates cell death but positively regulates osmotic stress tolerance 

384 (Chen et al. 2020a) was found in this cluster. Thus, it seems likely that PRR 

385 signaling pre-activation leads to faster establishment of a salt stress-adapted 

386 transcriptome during PTST.

387

388 Transcriptional reprogramming during PTST

389 We then assembled salt-inducible genes that exhibited rapid induction 

390 following Pep1 pretreatment. Of the cluster 5 genes, 343 genes increased their 

391 salt induction at 3 h in Pep1-pretreated plants, while their induction was higher 

392 at 24 h than at 3 h in nontreated plants (Supplementary Fig. S3B). In their 

393 regulatory DNA sequences, within 1000-bp upstream of the transcriptional start 

394 sites, a motif enrichment analysis (CentriMo, Bailey & Machanick, 2012) 

395 revealed over-representation of the W box-containing sequences (58 out of 59 

396 over-represented transcription factor binding sites, Supplementary Table S2). 

397 Four best-represented motifs were all prominent in the proximity to the 

398 transcription starting sites and included WRKY18- and WRKY40-specific DNA 

399 binding motifs (Fig. 5E, Supplementary Table S2), pointing to direct 

400 transcriptional regulation of these genes by WRKY18/WRKY40 during PTST. 
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401 WRKY18/WRKY40 negatively regulate flg22 induction of defense-related genes 

402 during PTI (Birkenbihl et al. 2017). Interestingly, WRKY18/WRKY40 target 

403 genes (Birkenbihl et al. 2017) were more clearly enriched in Cluster 5 genes 

404 displaying faster induction (149 out of 329 loci) compared to all Cluster 5 genes 

405 (471 out of 2083 loci) or PTST-DEGs (720 out of 5844 loci) (Fig. S3C), pointing 

406 to their role in rapid activation of a salt-induced transcriptome.

407 To test how WRKY18/WRKY40 are regulated during PTST, we conducted 

408 immunoblot analyses of functional HA-tagged WRKY18 and WRKY40 proteins 

409 expressed under the control of their native regulatory DNA sequences 

410 (pWRKY18::WRKY18-HA wrky18 and pWRKY40::WRKY40-HA wrky40, 

411 respectively; Birkenbihl et al, 2017a). WRKY18 and WRKY40 accumulation was 

412 shown to be rapidly induced in response to flg22, with a peak of protein 

413 abundance at 1.5 h (Birkenbihl et al. 2017). WRKY18/WRKY40 accumulation 

414 was reduced to nearly background levels 4 d after Pep1 application (0 h NaCl, 

415 Fig. 5F). WRKY40-HA accumulation became strongly induced 1 h after salt 

416 stress, and then diminished (Fig. 5F), indicating that there is transient WRKY40 

417 induction during PTI and salt stress. Importantly, Pep1 pretreatment markedly 

418 elevated and prolonged salt-induced WRKY40-HA accumulation up to 24 h 

419 (Fig. 5F), following its increased mRNA expression (Fig. S3D). A similar Pep1 

420 effect was observed for WRKY18-HA accumulation (Fig. 5F). These results 

421 suggest that PRR signaling pre-activation leads to enhanced and durable 

422 accumulation of both WRKY40 and WRKY18 under salt stress.

423 In contrast to Cluster 5, Cluster 4 was characterized by salt-inducible genes 

424 at 24 h, whose induction was suppressed after Pep1 pretreatment (Fig. S4). 

425 Without PTST, their induction was prominent at 24 h compared to 3h, and may 

426 rather reflect salt stress symptom than salt stress tolerance.  A motif enrichment 
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427 analysis in their regulatory DNA sequences as described above revealed over-

428 representation of three transcription factor binding motifs, namely WRKY31, 

429 ANAC047 and WRKY20 (Fig. S4, Supplementary Table S1), implying that Pep1 

430 sensitization and Pep1 desensitization of salt-inducible genes occur through 

431 distinct sets of transcription factors. Although ANAC047 has been implicated in 

432 waterlogging responses and leaf senescence (Rauf et al., Plant Cell 2013), the 

433 other two have been poorly characterized to date.  

434

435 Non-pathogenic bacteria confer PTST

436 Since bacterial MAMP application confers salt tolerance (Fig. 3), we tested 

437 whether immune recognition of bacteria also leads to salt tolerance. To this 

438 end, we determined the effects of pre-inoculation with different strains of Pst 

439 DC3000 on salt stress tolerance: Pst DC3000 ΔhrpS, impaired in the 

440 expression of the type III effectors (Hutcheson et al. 2001) and conventionally 

441 used as a PTI trigger, and Pst DC3000 AvrRpm1 or Pst DC3000 AvrRps4, 

442 inducing ETI conferred by the CC-NLR RPM1 and the TIR-NLR pair RRS1-

443 S/RPS4, respectively (Grant et al. 1995; Gassmann et al. 1999; Saucet et al. 

444 2015). All of these bacterial strains fail to grow in the WT plants used here, 

445 which harbor the cognate NLRs. Pre-inoculation with Pst DC3000 ΔhrpS 

446 significantly enhanced the survival rate of seedlings under salt stress, whereas 

447 Pst DC3000 AvrRpm1 or Pst DC3000 AvrRps4 did not (Fig. 6A). Without salt 

448 stress, plant survival rates were essentially indistinguishable between these 

449 non-pathogenic and avirulent strains (Supplementary Table S2). These results 

450 suggest that PRR recognition, but not NLR recognition of live bacteria, 

451 effectively confers salt tolerance. 
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452 Notably, bacterium-triggered salt tolerance was strongly reduced in the 

453 PRR mutants and PRR-associated kinase mutants, fls2 efr and bak1-5 bkk1-1, 

454 respectively (Fig. 6B-C), as in MAMP/DAMP-triggered salt tolerance (Fig. 1-3). 

455 Basal salt tolerance under sterile conditions (in mock controls without bacteria) 

456 was significantly lowered in bak1 bkk1 plants but was unaffected in fls2 efr 

457 plants (Fig. 6B-C), pointing to involvement of a BAK1-dependent DAMP 

458 receptor(s) but not MAMP receptors FLS2/EFR in basal salt tolerance. Pre-

459 inoculation with nonpathogenic PTI-triggering bacterium, Pseudomonas simiae 

460 WCS417 (Pfo abbreviated after Pseudomonas fluorescence) also conferred salt 

461 tolerance, which was abolished in bak1-5 bkk1 plants (Fig. 6D). The results 

462 suggest that the PRR signaling module becomes engaged in response to 

463 bacterial challenge, thereby conferring salt tolerance. 

464 Finally, we tested whether bacterial MAMP recognition without live bacteria 

465 is sufficient to acquire salt tolerance. Indeed, pre-inoculation with heat-killed Pfo 

466 enhanced salt tolerance in a BAK1/BKK1-dependent manner (Fig. 6E). 

467 Collectively, these results suggest that PRRs are important for salt stress 

468 sensing and adaptation when recognizing molecular patterns derived from the 

469 host-associated microbes or cellular damage. 

470

471 DISCUSSION

472 Immune receptor activation can positively or negatively influence abiotic 

473 stress responses, yet the molecular logic behind this signaling plasticity remains 

474 poorly understood. Here, we show that PRR signaling triggers an enhanced or 

475 primed state of salt stress tolerance in plants (Fig. 1, Fig. 3, Table 1). Several 

476 lines of evidence indicate that PTST and PTI share previously described key 

477 steps within and proximal to the receptor complexes, at least for three BAK1-
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478 dependent PRR pathways. A failure to mount PTST in the bak1-5 mutant and in 

479 the absence of BIK1/PBL1 or RBOHD indicates that PTST is achieved by 

480 authentic PRR signaling (Fig. 2, Fig. 3, Fig. 6). Effective cross-tolerance to 

481 biotic and salt stresses following PRR signaling may reflect similar cellular 

482 states and requirements in these stress conditions. This notion is supported by 

483 a substantial overlap between the pattern-induced and salt-induced 

484 transcriptomes (Fig. 5, Supplementary Fig. S1). Recent study also reported that 

485 rapidly induced genes in response to different MAMPs/DAMPs tend to be also 

486 induced under various abiotic stresses (Bjornson et al, 2021). Consistently, 

487 pattern recognition leads to the sensitization of salt-responsive genes and 

488 mobilization of otherwise non-responsive genes, most prominently during early 

489 responses to salt stress (Fig. 5, Supplementary Fig. S1 and S3). These findings 

490 indicate rapid activation and expansion of the salt-responsive transcriptome as 

491 an important basis for PTST. By focusing on genes whose salt induction is 

492 strengthened and/or accelerated following Pep1 application, we revealed an 

493 interesting set of PTST-characteristic DEGs (Fig. 5D, Supplementary Table S1). 

494 DAMPs represent a common signature of biotic and abiotic stress 

495 conditions in animals and plants (Gust et al. 2017; De Lorenzo et al. 2018). In 

496 plants, abiotic modulation of cell walls and phospholipid membranes generates 

497 a battery of DAMPs (Chen et al. 2020b; Rui and Dinneny 2020; Herger et al. 

498 2019; Jiang et al. 2019). Although the identity of cognate DAMP ligands 

499 remains elusive, different RKs are involved in mediating PTI-like defense 

500 responses and salt tolerance under salt stress conditions (Feng et al. 2018; 

501 Engelsdorf et al. 2018; van der Does et al. 2017). Here, we show that 

502 PROPEP3, together with short fragments likely containing its C-terminal Pep3 

503 epitope, is released following salt stress, without microbes or exogenous 
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504 MAMP/DAMP application (Fig. 4A-B). PROPEP2/PROPEP3 expression 

505 represents an important preparatory step for positive feedback of defense 

506 signaling through PEPRs (Ross et al, 2014). PROPRP2/PROPEP3 were 

507 among the 343 genes displaying faster salt induction following PRR activation 

508 (Supplementary Fig. S3C), pointing to a role for the PEPR pathway in rapid 

509 mobilization of salt-adaptive responses during PTST. Indeed, PEPRs provide a 

510 rate-limiting step in salt tolerance and salt-induced osmotic stress tolerance, 

511 both under sterile conditions (Fig. 4C-D). Genetic requirements for BAK1 and 

512 BIK1/PBL1 (Fig. 2, Fig. 3, Fig. 6C-E) are consistent with the involvement of 

513 BAK1/BIK1-dependent DAMP receptors, including PEPRs, in salt tolerance. 

514 These findings strengthen the view that PRRs contribute to salt tolerance.

515 Shared use of common signaling components between PTI and salt 

516 tolerance extends beyond BAK1/BIK1-dependent PRR pathways. Glycosyl 

517 inositol phosphorylceramide sphingolipids provide Na+ sensors to induce Ca2+ 

518 influx for SOS signaling under salt stress (Jiang et al. 2019), and also 

519 perception sites for bacterial/fungal/oomycete Necrosis and ethylene-inducing 

520 peptide 1-like (NLP) proteins (Lenarčič et al. 2017). Salt tolerance is dependent 

521 on the Catharanthus roseus RK FER (Feng et al. 2018; Zhao et al. 2018). FER 

522 recognizes immunostimulatory and immunosuppressive members of the 

523 endogenous RALF peptides and also scaffolds different PRR complexes 

524 (Stegmann et al. 2017; Haruta et al. 2014). FER-mediated salt tolerance in part 

525 depends on its ability to bind pectin and protect pectin crosslinking, suggesting 

526 its role in the sensing and management of cell wall integrity under salt stress 

527 (Feng et al. 2018). Following S1P subtilase cleavage, RALF22/RALF23 are 

528 released from LRR-containing extensins LRX3/LRX4/LRX5, thereby lowering 

529 salt tolerance through FER (Zhao et al. 2018). Notably, S1P-cleaved RALF 
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530 members attenuate both FER-mediated salt tolerance and PTI (Zhao et al. 

531 2018; Stegmann et al. 2017). These studies further highlight the resemblance of 

532 PTI and salt stress signaling. Under our conditions, however, chitin signaling 

533 pre-activation failed to confer salt tolerance. The apparent discrepancy between 

534 our and previous studies of chitin/CERK1-mediated salt tolerance 

535 (Supplementary Fig. S1) (Brotman et al, 2012; Espinoza et al, 2017) might 

536 reflect a divergence between different ectodomain classes of PRRs in their 

537 optimal conditions for salt tolerance, as seen in their regulation of immunity 

538 (Saijo et al. 2018). 

539 Successful induction of PTST by PRR recognition of bacterial MAMPs, but 

540 not by NLR recognition of their effectors (Fig. 3, Fig. 6), fits with the idea that 

541 strong activation of immunity negatively influences salt tolerance. This is in line 

542 with previously studies that EDS1/PAD4-mediated defense activation results in 

543 the collapse of osmotic stress tolerance (Ariga et al. 2017). This cross-tolerance 

544 trade-off predicts the existence of a critical threshold beyond which further 

545 immune activation comes at a cost for salt and osmotic stress tolerance. Recent 

546 studies show that PRR signaling provides an integrating basis for ETI, and that 

547 mutual PTI-ETI potentiation is required for effective pathogen resistance (Ngou 

548 et al. 2021; Yuan et al. 2021). At present, how NLR signaling exceeds the 

549 predicted threshold during ETI remains poorly understood. 

550 Mostly from soil microbes, plants selectively recruit and modify their root-

551 associated microbiota during adaptation to different stress conditions (Shilev 

552 2020). It is conceivable that these changes under salt stress are accompanied 

553 by alterations in the presentation of MAMPs/DAMPs in the extracellular milieu, 

554 as shown for PROPEP3 (Fig. 4B), which are sensed and linked by PRRs to 

555 adaptive responses to salt stress. It has been described that non-pathogenic 
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556 microbes serve to alleviate salt stress in the host plant (Egamberdieva et al. 

557 2019; Fan et al. 2020; Zuccaro et al. 2011). In addition to the beneficial 

558 activities of specific plant-associated bacteria, our work indicates that PRR 

559 recognition of bacterial MAMPs, not their live activities, leads to plant salt 

560 tolerance. This study unravels a fraction of plant-microbe-environment 

561 interactions, in which endogenous or microbial immunogenic patterns 

562 generated under salt stress likely engage PRRs in promoting salt/osmotic 

563 stress tolerance, in part by priming the activation of salt-adaptive transcriptome 

564 (Fig. 7). 

565

566

567 MATERIALS AND METHODS 

568 Plant materials and growth conditions 

569 The A. thaliana accession Col-0 was used as WT. Plant materials used are 

570 provided in Supplementary Table S4. Seeds were sterilized with 6% sodium 

571 hypochlorite and 0.1% Triton X-100 for 15 minutes, rinsed 5 times with 

572 autoclaved distilled water and stratified at 4 ̊C for 2-5 days before use. The 

573 growth medium used was Murashige and Skoog (MS) medium (1/2 strength MS 

574 basal salts, 25 mM sucrose, 0.5 g/L MES, pH 5.7) unless otherwise stated. 

575 Plants were grown under 14 h light/ 10 h dark at 22 ̊C unless otherwise stated. 

576 For detection of extracellular PROPEP3-Venus protein, two-week-old seedlings 

577 in liquid growth media were exposed to 0.5 μM Pep1 for 3 days, 150 mM NaCl 

578 for 3 days or 0.5 μM Pep1 for 12 h followed by 150 mM NaCl for 3 days under 

579 standard growth conditions.

580

581 Pattern-triggered salt tolerance assay 
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582 Four-day-old seedlings in the liquid growth media were treated with the 

583 indicated elicitors (0.1 μM Peps/flg22/elf18, 100 μg/ml chitin). For treatment with 

584 heat-killed bacteria, bacteria cultivated (as described below) up to OD590 = 0.2 

585 were collected, suspended and then autoclaved at 121°C for 20 minutes. The 

586 supernatants after centrifugation were recovered for use. Four days after 

587 elicitor/bacterium treatments, seedlings were transferred to the agar growth 

588 media supplemented with 150 or 175 mM NaCl. The number of viable seedlings 

589 was scored every day for the indicated duration. Survival ratio was determined 

590 as the number of viable seedlings relative to the total number of seedlings used. 

591 For fresh weight determination, seedlings were pooled for weighing and the 

592 average weight per seedling was determined by dividing the weight by the 

593 number of seedlings pooled. Chlorophyll contents were determined essentially 

594 as described previously (Porra et al. 1989 Biochimica et Biophysica Acta), 

595 except the chlorophyll contents were normalized by the number of seedlings 

596 used.

597

598 Acquired osmotic tolerance assay 

599 Assays for salt-induced osmotic stress tolerance were performed as described 

600 in Ariga et al, 2017. In brief, 7-d-old seedlings were transferred from agar 

601 growth media to that supplemented with 100 mM NaCl, and further incubated 

602 for 7 days. Seedlings were then transferred to that supplemented with 750 mM 

603 sorbitol, and grown for another 14 days before the determination of chlorophyll 

604 contents.

605

606 Quantitative RT-PCR analysis 

607 Total RNA was extracted from plant samples with Purelink (Nacalai Tesque, 
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608 Japan) and reverse transcribed with PrimeScript Reagent Kit Perfect Real Time 

609 (Takara, Japan) according to manufacturer’s instructions. qRT-PCR was 

610 performed with Power SYBR Green PCR Master Mix (Applied Biosystems, 

611 Japan) using the Thermal Cycler Dice RealTime TP870 (Takara, Japan) under 

612 the following conditions: 50°C 2 min, 95°C 10 min, 95°C 15 s followed by 60°C 

613 1 min for 40 cycles, then 95°C 15 s, 60°C 30 s, and finally 95°C 15 s. The 

614 primers used are provided in Appendix Table 4.

615

616 Protein extraction and immunoblot analysis 

617 Protein extracts were prepared by homogenizing frozen tissues in a lysis buffer 

618 [50 mM Tris- HCl pH7.5, 2% SDS, 2mM DTT, 2.5 mM NaF, P9599 protease 

619 inhibitor cocktail (Sigma)] for 15 min at room temperature. The supernatants 

620 recovered after centrifugation at 13,000 g for 15 minutes were subjected to 

621 immunoblot analysis on 10% SDS-PAGE with the indicated antibodies, enlisted 

622 below. Molecular weight markers used was Protein Ladder One (Triple- color; 

623 Nacalai Tesque, Japan).  Anti-HA (3F10) antibody was purchased from Roche. 

624 Anti-PROPEP3 antibodies raised in rabbits against both N- and C-terminal 

625 fragments of PROPEP3 were described previously (Ross et al., 2014). For 

626 detection of extracellular PROPEP3-Venus pool, protein concentrated from the 

627 liquid media with Strataclean resin (Agilent Technologies) after filtration was 

628 used as an extracellular fraction. 

629

630 RNA sequencing and analysis 

631 Five-day-old seedlings grown as described above were pretreated with 0.1 µM 

632 Pep1 for 3 days and then exposed to 150 mM NaCl for the indicated times. 

633 Three biological replicates were prepared per treatment and genotype. Total 
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634 RNA was extracted with an RNA extraction kit following the manufacturer’s 

635 procedures (NucleoSpin RNA, Machery-Nagel). Each cDNA library was 

636 prepared using a TruSeq RNA Library Prep Kit v2 following the manufacturer’s 

637 procedures (Illumina, USA). High-throughput sequencing was run by single 

638 read 50-bp on a HiSeq2500 platform (Illumina). Raw sequence data were 

639 deposited in the DDBJ Sequence Read Archive (accession number 

640 DRA004299). Reads were mapped to the TAIR9 Arabidopsis transcriptome 

641 database (https://www.arabidopsis.org). The edgeR software package 

642 (bioconductor.org.packages/release/bioc/html/edgeR.html) was used for 

643 estimation of false discovery rate (FDR) for differential gene expression of raw 

644 reads from all 3 biological replicates.

645

646 All mRNA variants detected from a gene locus were defined as separate genes 

647 in RNA-seq analyses, but assembled and scored for the one gene locus in 

648 cross-referencing RNA-seq and ChIP-seq data. For instance, 343 genes were 

649 scored as DEGs displaying faster salt induction after Pep1 pretreatment in our 

650 RNA-seq analysis, while they were scored as 329 genes corresponding to their 

651 loci in the cross-referenced ChIP-seq data. Heatmap was generated with an R-

652 software heat map tool from gplot package (https://cran.r-

653 project.org/web/packages/gplots/) with differentially expressed genes (DEGs) 

654 identified using the following cut-off values: FDR <0.05, expression |log2FC ≥1] 

655 and Student’s t-test p <0.05. Gene read counts were normalized to RPKM 

656 values, and hierarchical clustering was conducted with one minus Pearson 

657 correlation complete linkage. 

658

659 Bacterial inoculation for salt tolerance assay 
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660 Pseudomonas syringae DC3000 Δ hrpS (Jovanovic et al. 2011), AvrRpm1 

661 (Debener et al. 1991), AvrRps4 (Sohn et al. 2009) and Pseudomonas simiae 

662 WCS417 (Berendsen et al. 2015) were grown in NYGB media (5 g/L peptone, 3 

663 g/L yeast extract, 20 mL/L glycerol, pH7.0) supplemented with appropriate 

664 antibiotics (rifampicin 25 mg/mL in DMSO, kanamycin 50 mg/mL in deionized 

665 distilled water (ddH2O), tetracycline 15 mg/L in ethanol, chloramphenicol 30 

666 mg/mL in ethanol). Overnight bacterial cultures were washed at least twice with 

667 10 mM MgCl2 and then adjusted to OD590 = 0.002 for spray inoculation. 

668 Seedlings were transferred from liquid growth media to agar plates 1 day prior 

669 to spray-inoculation. At 6 h after inoculation, seedlings were surface-sterilized 

670 twice with 70% ethanol, rinsed twice with autoclaved H2O and then transferred 

671 to agar media supplemented with or without 175 mM NaCl. 
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960 Figure Legends

961

962 Fig. 1. PRRs confer salt stress tolerance in Arabidopsis thaliana following 

963 recognition of cognate DAMPs. A, Phenotype of A. thaliana seedlings after (left) 

964 6 days of exposure to 150 mM NaCl and (right) 5 days of exposure to 175 mM 

965 NaCl, with or without Pep2 or Pep1 pretreatments. B, Survival rate (mean 

966 ±s.e.m., n ≥ 50, 2 replicates) of seedlings after their exposure to 150 mM NaCl 

967 for the indicated duration, with and without 0.1 µM Pep1 pretreatment. ***p 

968 <0.001 and **p <0.01 using two-tailed t-tests compared to the corresponding 

969 values of the mock-treated plants. C, Average fresh weights (mean ±s.e.m., n ≥ 

970 30, 4 replicates) of seedlings after 5 days of exposure to 150 mM NaCl, with 

971 and without 0.1 µM Pep1 pretreatment. *p <0.05 using two-tailed t-tests 

972 compared to the corresponding values of the mock-treated plants, N.S.- Not 

973 significant. D, Chlorophyll contents (mean ±s.e.m., n ≥ 30, 4 replicates) in 

974 seedlings after 5 days of exposure to 150 mM NaCl, with and without 0.1 µM 

975 Pep1 pretreatment. The letters above bars indicate p <0.05 using Tukey’s HSD 

976 tests. E, Phenotype of seedlings after 5 days of exposure to 175 mM NaCl, with 

977 or without 0.1 µM of flg22 or elf18 pretreatment. F, Survival rate (mean ±s.e.m., 

978 n ≥ 20, 2 replicates) of seedlings after 6 days of exposure to 175 mM NaCl, with 

979 and without 0.1 μM flg22 or elf18 pretreatment. **p <0.01 using Tukey’s HSD 

980 tests compared to the value of mock-treated WT plants.

981

982 Fig. 2. Genetic requirements for PTI signaling components in PTST. Survival 

983 rate (mean ±s.e.m., 3 replicates unless otherwise stated) of seedlings 

984 pretreated with 0.1 µM Pep1/flg22, determined after their exposure to 175 mM 

985 NaCl for the indicated durations: bak1-4 and bak1-5, 9 days (n ≥ 20); bak1-5 
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986 bkk1-1, 8 days (n ≥ 30) ; bik1 pbl1, 5 days (n ≥ 25); rbohd, 8 days (n ≥ 30); 

987 pmr4, 6 days (n ≥ 30, 2 replicates). The letters above bars indicate p < 0.05 

988 using Tukey’s HSD tests. 

989

990 Fig. 3. Recognition of bacterial MAMPs by cognate PRRs confers salt tolerance 

991 in a manner dependent on BAK1 and BIK1. A, Survival rate (mean ±s.e.m.) 

992 seedlings after 7 days (n ≥ 34, 3 replicates) of exposure to 150 mM NaCl, with 

993 and without 0.1 μM flg22 pretreatment. E, Average fresh weights (mean 

994 ±s.e.m., n ≥ 10, 3 replicates) of seedlings after 7 days of exposure to 150 mM 

995 NaCl, with and without 0.1 µM flg22 pretreatment. C, Chlorophyll contents 

996 (mean ±s.e.m., n ≥ 10, 3 replicates) in seedlings after 7 days of exposure to 150 

997 mM NaCl, with and without 0.1 µM flg22 pretreatment. The letters above bars 

998 indicate p <0.05 using Tukey’s HSD tests.

999

1000 Fig. 4. Endogenous PROPEP-PEPR signaling is activated under salt stress. A, 

1001 Live cell imaging of pPROPEP3::PROPEP3-VENUS in A. thaliana roots under 

1002 150 mM NaCl for 24 h. B, Immunoblot analysis for extracellular fractions 

1003 (growth media) of PROPEP3-VENUS seedlings exposed to 0.5 µM Pep1, 150 

1004 mM NaCl or combinations thereof. Positions of the molecular mass markers 

1005 shown on the left. Experiments were repeated twice with the same conclusions. 

1006 C, Survival rate (mean ± s.e.m, n ≥20, 2 replicates) of seedlings after 4 days of 

1007 exposure to 175 mM NaCl, without MAMP/DAMP pretreatment. **p <0.01 and 

1008 *p <0.05 using Tukey’s HSD compared to the values of pepr1 pepr2 plants. D, 

1009 Chlorophyll contents (mean ±s.e.m., 4 replicates) in seedlings after 14 days of  

1010 exposure to 750 mM sorbitol following 7 days of pretreatment with 100 mM 

1011 NaCl. **p <0.01 using Tukey’s HSD tests. 
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1012

1013 Fig. 5. Rapid and heightened activation of salt-induced transcriptional 

1014 reprogramming during PTST. A, Scheme of PTST assay for RNA sequencing 

1015 analysis. B, Number of Pep1- and/or salt-induced DEGs after exposure of 

1016 seedlings to 150 mM NaCl for the indicated durations. C, Venn diagram 

1017 illustrating the overlap between elf18-, Pep2-, salt- and Pep1-PTST-inducible 

1018 DEGs. Numerals represent the numbers of the genes. D, A heatmap depicting 

1019 salt-DEGs and Pep1-PTST DEGs using one minus Pearson correlation 

1020 complete linkage hierarchical clustering. E, Cis-element enrichment analysis 

1021 with CentriMo for the regulatory DNA sequences within 1-kb (from 500 

1022 corresponding to the transcription starting sites to -500 on the X-axis) upstream 

1023 of 343 genes in the Cluster 5, whose salt-induction was sensitized following 

1024 Pep1 pretreatment. The results for the most over-represented 4 transcription 

1025 factors are shown. F, Immunoblot analysis for 9-day-old seedlings exposed to 

1026 175 mM NaCl for the indicated times following 0.1 µM Pep1 pretreatment. 

1027 Positions of the molecular weight markers (left) and Ponceau S-stained loading 

1028 controls (bottom) are shown. Experiments were repeated three times with the 

1029 same conclusions. Numerals below the immunoblots indicate the band 

1030 intensities relative to that of the corresponding loading control in the 

1031 representative blots.

1032

1033 Fig. 6. Non-pathogenic bacteria confer salt tolerance through the host PRRs 

1034 and PTI signaling components. A, Survival rate (mean ± s.e.m., n ≥ 25, 3 

1035 replicates) of WT seedlings after 5 days of exposure to 175 mM NaCl following 

1036 preinoculation with the indicated Pst DC3000 strains. **p <0.01 using Tukey’s 

1037 HSD tests compared to the values of the mock control. B-E, Survival rate 
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1038 (mean ± s.e.m., n ≥ 20, 3 replicates in C-E, and 4 replicates in B) of seedlings 

1039 exposed to 175 mM NaCl for 5 days in B-D, and 4 days in E following 

1040 inoculation with the indicated live or dead bacteria. HK-Pfo: heat-killed Pfo. **p 

1041 < 0.01 and *p < 0.05 using Tukey’s HSD tests compared to the values of mock-

1042 treated WT plants.

1043

1044 Fig.7. A model for PRR signaling cascade during PTST. Following the 

1045 recognition of cognate MAMP/DAMP ligands, PRRs trigger signaling cascades 

1046 through previously described PRR complexes and signaling regulators, which 

1047 lead to primed and rapid activation of the salt-adaptive transcriptome during 

1048 PTST, summarized in a Venn diagram based on the transcriptome profiles in 

1049 Fig. 5C. Our findings propose that DAMPs from cellular damage and MAMPs 

1050 from plant-associated microbes under salt stress involve PRRs in signaling 

1051 toward salt stress tolerance. Dotted lines indicate the actions/links 

1052 hypothesized.  

1053

1054

1055

1056
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Table 1. PEPR1 and PEPR2 both contribute to Pep-induced salt tolerance in A. thaliana.
Survival rate (%) of seedlings 7 days after exposure to 175 mM NaCl. 

Genotype Pretreatment Survivors Total
seedlings

Survival rate
(%)

Fisher’s test Fisher’s test

(vs WT) (vs mock)

WT Mock 5 30 16.6

Pep1 29 30 96.7 p <0.01

Pep3 30 46 65.2 p <0.01

Pep4 40 50 80 p <0.01

Mock 6 136 4.4

Pep2 87 140 62.1 p <0.01

pepr1 Mock 5 35 14.3

Pep1 26 30 86.7 N.S. p <0.01

pepr2 Mock 1 30 3.3

Pep1 30 30 100 N.S. p <0.01
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Fig. 1. PRRs confer salt stress tolerance in Arabidopsis thaliana following recognition of 
cognate DAMPs. A, Phenotype of A. thaliana seedlings after (left) 6 days of exposure to 
150 mM NaCl and (right) 5 days of exposure to 175 mM NaCl, with or without Pep2 or 
Pep1 pretreatments. B, Survival rate (mean ±s.e.m., n ≥ 50, 2 replicates) of seedlings after 
their exposure to 150 mM NaCl for the indicated duration, with and without 0.1 µM Pep1 
pretreatment. ***p <0.001 and **p <0.01 using two-tailed t-tests compared to the 
corresponding values of the mock-treated plants. C, Average fresh weights (mean ±s.e.m., 
n ≥ 30, 4 replicates) of seedlings after 5 days of exposure to 150 mM NaCl, with and 
without 0.1 µM Pep1 pretreatment. *p <0.05 using two-tailed t-tests compared to the 
corresponding values of the mock-treated plants, N.S.- Not significant. D, Chlorophyll 
contents (mean ±s.e.m., n ≥ 30, 4 replicates) in seedlings after 5 days of exposure to 150 
mM NaCl, with and without 0.1 µM Pep1 pretreatment. The letters above bars indicate p 
<0.05 using Tukey’s HSD tests. E, Phenotype of seedlings after 5 days of exposure to 175 
mM NaCl, with or without 0.1 µM of flg22 or elf18 pretreatment. F, Survival rate (mean 
±s.e.m., n ≥ 20, 2 replicates) of seedlings after 6 days of exposure to 175 mM NaCl, with 
and without 0.1 μM flg22 or elf18 pretreatment. **p <0.01 using Tukey’s HSD tests 
compared to the value of mock-treated WT plants.
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Fig. 2. Genetic requirements for PTI signaling components in PTST. Survival rate (mean 
±s.e.m., 3 replicates unless otherwise stated) of seedlings pretreated with 0.1 µM 
Pep1/flg22, determined after their exposure to 175 mM NaCl for the indicated durations: 
bak1-4 and bak1-5, 9 days (n ≥ 20); bak1-5 bkk1-1, 8 days (n ≥ 30) ; bik1 pbl1, 5 days (n ≥ 
25); rbohd, 8 days (n ≥ 30); pmr4, 6 days (n ≥ 30, 2 replicates). The letters above bars 
indicate p < 0.05 using Tukey’s HSD tests. 
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Fig. 3. Recognition of bacterial MAMPs by cognate PRRs confers salt tolerance in a 
manner dependent on BAK1 and BIK1. A, Survival rate (mean ±s.e.m.) seedlings after 7 
days (n ≥ 34, 3 replicates) of exposure to 150 mM NaCl, with and without 0.1 μM flg22 
pretreatment. E, Average fresh weights (mean ±s.e.m., n ≥ 10, 3 replicates) of seedlings 
after 7 days of exposure to 150 mM NaCl, with and without 0.1 µM flg22 pretreatment. C, 
Chlorophyll contents (mean ±s.e.m., n ≥ 10, 3 replicates) in seedlings after 7 days of 
exposure to 150 mM NaCl, with and without 0.1 µM flg22 pretreatment. The letters above 
bars indicate p <0.05 using Tukey’s HSD tests.
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Fig. 4. Endogenous PROPEP-PEPR signaling is activated under salt stress. A, Live cell 
imaging of pPROPEP3::PROPEP3-VENUS in A. thaliana roots under 150 mM NaCl for 24 
h. B, Immunoblot analysis for extracellular fractions (growth media) of PROPEP3-VENUS 
seedlings exposed to 0.5 µM Pep1, 150 mM NaCl or combinations thereof. Positions of the 
molecular mass markers shown on the left. Experiments were repeated twice with the 
same conclusions. C, Survival rate (mean ± s.e.m, n ≥20, 2 replicates) of seedlings after 4 
days of exposure to 175 mM NaCl, without MAMP/DAMP pretreatment. **p <0.01 and *p 
<0.05 using Tukey’s HSD compared to the values of pepr1 pepr2 plants. D, Chlorophyll 
contents (mean ±s.e.m., 4 replicates) in seedlings after 14 days of  exposure to 750 mM 
sorbitol following 7 days of pretreatment with 100 mM NaCl. **p <0.01 using Tukey’s HSD 
tests. 
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Fig. 5. Rapid and heightened activation of salt-induced transcriptional reprogramming during PTST. A, 
Scheme of PTST assay for RNA sequencing analysis. B, Number of Pep1- and/or salt-induced DEGs after 

exposure of seedlings to 150 mM NaCl for the indicated durations. C, Venn diagram illustrating the overlap 
between elf18-, Pep2-, salt- and Pep1-PTST-inducible DEGs. Numerals represent the numbers of the genes. 

D, A heatmap depicting salt-DEGs and Pep1-PTST DEGs using one minus Pearson correlation complete 
linkage hierarchical clustering. E,Cis-element enrichment analysis with CentriMo for the regulatory DNA 
sequences within 1-kb (from 500 corresponding to the transcription starting sites to -500 on the X-axis) 

upstream of 343 genes in the Cluster 5, whose salt-induction was sensitized following Pep1 pretreatment. 
The results for the most over-represented 4 transcription factors are shown. F, Immunoblot analysis for 9-

day-old seedlings exposed to 175 mM NaCl for the indicated times following 0.1 µM Pep1 pretreatment. 
Positions of the molecular weight markers (left) and Ponceau S-stained loading controls (bottom) are shown. 

Experiments were repeated three times with the same conclusions. Numerals below the immunoblots 
indicate the band intensities relative to that of the corresponding loading control in the representative blots. 
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Fig. 6. Non-pathogenic bacteria confer salt tolerance through the host PRRs and PTI 
signaling components. A, Survival rate (mean ± s.e.m., n ≥ 25, 3 replicates) of WT 
seedlings after 5 days of exposure to 175 mM NaCl following preinoculation with the 
indicated Pst DC3000 strains. **p <0.01 using Tukey’s HSD tests compared to the values 
of the mock control. B-E, Survival rate (mean ± s.e.m., n ≥ 20, 3 replicates in C-E, and 4 
replicates in B) of seedlings exposed to 175 mM NaCl for 5 days in B-D, and 4 days in E 
following inoculation with the indicated live or dead bacteria. HK-Pfo: heat-killed Pfo. **p < 
0.01 and *p < 0.05 using Tukey’s HSD tests compared to the values of mock-treated WT 
plants.
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Fig.7. A model for PRR signaling cascade during PTST. Following the recognition of 
cognate MAMP/DAMP ligands, PRRs trigger signaling cascades through previously 
described PRR complexes and signaling regulators, which lead to primed and rapid 
activation of the salt-adaptive transcriptome during PTST, summarized in a Venn diagram 
based on the transcriptome profiles in Fig. 5C. Our findings propose that DAMPs from 
cellular damage and MAMPs from plant-associated microbes under salt stress involve 
PRRs in signaling toward salt stress tolerance. Dotted lines indicate the actions/links 
hypothesized. 
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Supplementary Fig. S2. Defense-related phytohormones and ABA are dispensable in 
PTST. A-C, Survival rate (mean ± s.e.m.) of seedlings after exposure to 175 mM NaCl 
for the indicated duration following 0.1 µM Pep1/Pep2 pretreatment. dde2 ein2 pad4 

sid2, 4 days (n !33, 3 replicates); pad4, 6 days (n ! 30, 3 replicates); areb1 areb2 
abf3, 7 days (n ! 38, 3 replicates); aba-12, 4 days. *p <0.05 and **p <0.01 using 

Tukey’s HSD compared to the corresponding mock-treated WT values.
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Supplementary Fig. S3.  Rapid activation and expansion of salt-adaptive 
transcriptome during PTST. A, Venn diagram illustrating the overlap among salt-
inducible DEGs (WT mock, salt for 0 h < 3 h/24 h), Pep1-inducible DEGs (WT mock < 

WT Pep1 for 3 d), and salt-sensitized genes after Pep1 pretreatment ([WT Pep1 salt 0 
h < 3 h/24 h] & [WT mock salt 3 h/24 h < WT Pep1 salt 3 h/24 h]. Left, salt 3 h; Right: 

salt 24 h. (B) A heatmap illustrating 343 genes in cluster 5, whose salt-induction 
hastened following Pep1 pretreatment. Analyses performed using one minus Pearson 
correlation complete linkage hierarchical clustering C, Gene expression levels (mean ± 

s.d.) for the indicated genes extracted from the transcriptome data used in Figure 5. *p 
<0.05 and **p <0.01 using student’s t-test compared to the values of the corresponding 

mock controls. N.S.- Not Significant. D, Gene expression levels (mean ± s.d.) for the 
indicated genes extracted from the transcriptome data used in Figure 5. *p <0.05 and 
**p <0.01 using Student’s t-test compared to the values of the corresponding mock 

controls. N.S.- Not Significant. 
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