date: 2022-01-10T16:13:22Z pdf:unmappedUnicodeCharsPerPage: 0 pdf:PDFVersion: 1.5 pdf:docinfo:title: Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging xmp:CreatorTool: pdftk 3.0.0 - www.pdftk.com dc:description: One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand?maximize?compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered. access_permission:modify_annotations: true access_permission:can_print_degraded: true description: One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand?maximize?compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered. dcterms:created: 2022-01-11T12:00:00Z Last-Modified: 2022-01-10T16:13:22Z dcterms:modified: 2022-01-10T16:13:22Z dc:format: application/pdf; version=1.5 title: Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging Last-Save-Date: 2022-01-10T16:13:22Z pdf:docinfo:creator_tool: pdftk 3.0.0 - www.pdftk.com access_permission:fill_in_form: true pdf:docinfo:modified: 2022-01-10T16:13:22Z meta:save-date: 2022-01-10T16:13:22Z pdf:encrypted: false dc:title: Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging modified: 2022-01-10T16:13:22Z Content-Type: application/pdf X-Parsed-By: org.apache.tika.parser.DefaultParser meta:creation-date: 2022-01-11T12:00:00Z created: 2022-01-11T12:00:00Z access_permission:extract_for_accessibility: true access_permission:assemble_document: true xmpTPg:NPages: 11 Creation-Date: 2022-01-11T12:00:00Z pdf:charsPerPage: 3963 access_permission:extract_content: true access_permission:can_print: true producer: International Union of Crystallography access_permission:can_modify: true pdf:docinfo:producer: International Union of Crystallography pdf:docinfo:created: 2022-01-11T12:00:00Z