Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Biclique extension as an effective approach to identify missing links in metabolic compound-protein interaction networks

MPG-Autoren
/persons/resource/persons268626

Thieme,  S.
BioinformaticsCIG, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97467

Walther,  D.
BioinformaticsCIG, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thieme, S., & Walther, D. (2022). Biclique extension as an effective approach to identify missing links in metabolic compound-protein interaction networks. Bioinformatics advances, 2(1): vbac001. doi:10.1093/bioadv/vbac001.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-C9C1-A
Zusammenfassung
Metabolic networks are complex systems of chemical reactions with physical interactions between metabolites and proteins. We aimed to predict previously unknown compound-protein interactions (CPI) in metabolic networks by applying biclique extension, a network-structure-based prediction method.We developed a workflow, named BiPredict, to predict CPIs based on biclique extension and applied it to E. coli and human using their respective known CPI-networks as input. Depending on the chosen biclique size and using a STITCH-derived E. coli CPI network as input, a sensitivity of 39\% and an associated precision of 59\% was reached. For the larger human STITCH network, a sensitivity of 78\% with a false-positive rate of less than 5\% and precision of 75\% was obtained. High performance was also achieved when using KEGG metabolic reaction networks as input. Prediction performance significantly exceeded that of randomized controls and compared favorably to state-of-the-art deep learning methods. Regarding metabolic process involvement, TCA-cycle and ribosomal processes were found enriched among predicted interactions. BiPredict can be used in network curation, may help increase the efficiency of experimental testing of CPIs, and can readily be applied to other species.BiPredict and related datasets are available at https://github.com/SandraThieme/BiPredictSupplementary data are available at Bioinformatics Advances online.