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A setup of a unique x-ray source is put forward employing a relativistic electron beam interacting with two
counter-propagating laser pulses in the nonlinear few-photon regime. In contrast to Compton scattering (CS)
sources, the envisaged x-ray source exhibits an extremely narrow relative bandwidth of 10−5 to 10−4, comparable
to the x-ray free-electron laser (XFEL). The brilliance of the x-rays can be 2 − 3 orders of magnitude higher
than a state-of-the-art CS source, while the angle spreading of the radiation is much smaller. By tuning the laser
intensities and the electron energy, one can realize either a single peak or a comb-like x-ray source around keV
energy. The laser intensity and the electron energy in the suggested setup are rather moderate, rendering this
scheme compact and table-top size, as opposed to XFEL and synchrotron infrastructures.

Ever since the discovery by W. C. Röntgen in 1895, x-rays
have introduced powerful techniques for determining the struc-
ture of matter at the atomic length scale. Continuous endeav-
ours expanded the capabilities of x-rays over a wide range of
disciplines spanning from physics to chemistry, biology, and
material science [1, 2]. Remarkable advancements have been
achieved with the employment of synchrotron radiation [3–6],
which dramatically increased the brightness of the source, as
well as with the introduction of the 4th generation light sources,
in the form of the x-ray free-electron laser (XFEL) [7–12]. Un-
fortunately, the large size and cost of these facilities, limit their
accessibility to a wide community.
Alternative schemes rely on Thomson- and Compton-

scattering [13–16], and recently also on the radiation from
laser-plasma interactions [17–20]. The advancement of com-
pact and powerful laser systems revived interest to these sources
[21–35]. The Compton scattering (CS) source is based on a
collision of a laser pulse with a relativistic electron beam, as
shown in Fig. 1(a). Though the peak brightness is lower than
what can be obtained from large facilities mentioned above, CS
sources have several advantages. They are relatively compact,
affordable and easy to operate. Furthermore, they provide x-ray
photons at a tunable energy in a broad spectral range.
A compact light source in the x-ray regime with improved

brilliance and narrow bandwidth (BW) is attractive for many
scientific communities, e.g., for x-ray imaging of objects in
biology [36], x-ray scattering diagnostics for nanoscale sam-
ples [37–39] in material science, x-ray spectroscopy of highly
charged ions [40, 41]. Recently a new field of x-ray quantum op-
tics has been advanced aimed at the coherent control of atomic
nuclei using shaped resonant x-rays [42–46], which requires
especially narrow BW x-ray beams. Different schemes for nar-
rowing the x-ray BW have been proposed involving temporal
laser pulse chirping [28–32], or temporally varying polariza-
tion [33] to compensate the non-linear spectrum broadening
due to the high field of the laser. Alternatively, with a low laser
intensity (and low BW), the x-ray photon yield can be enhanced
using a traveling-wave setup which allows an overlap of elec-
tron and laser beams longer than the Rayleigh length [34, 35].
However, all these approaches require the precise control of the
pulse shape, phase or polarization, which is difficult especially

in the high intensity domain.
In this Letter an alternative approach for narrow BW bright

x-rays is put forward. Rather than modifying the laser pulse,
an additional laser beam co-propagating with the electrons is
introduced. Namely, the setup consists of a relativistic electron
beam interacting with two counterpropagating waves (CPW),
see Fig. 1(b). The electron motion features two typical frequen-
cies, separated by orders of magnitude because of the Doppler
effect, ω1 = ω0(1 + vz), ω2 = ω0(1 − vz) where ω0 is the laser
frequency and vz the relativistic average velocity on axis (units
~ = c = 1 are used throughout). Due to the nonlinearity of the
relativistic dynamics the electron absorbs several light quanta
in both frequencies in the considered regime when emitting an
x-ray photon. As a result in the emission spectrum the Doppler-
shifted high frequency ω1 peak is accompanied with satellites
of ω0 separation. While the gross features of the spectrum (the
spectral envelope) are determined by the counterpropagating
laser beam, the subtle features (BW of satellites) arise via the
second co-propagating laser beam. Accordingly, the BW of
satellites scales with the smaller frequency ω2. Consequently,
this scheme allows for an ultra-narrow BW bright emission in
the x-ray regime.
The emitted spectrum has been calculated employing the

semiclassical operators method developed by Baier and Katkov
[47], suitable for calculating QED processes of ultrarelativistic
particles in strong background fields, when the electron dynam-
ics is quasiclassical. The radiation spectrum reads [48, 49]:

dI =
α

(2π)2T

[
−ε
′2 + ε2

2ε′2
|Tµ|2 +

m2ω′2

2ε′2ε2
|I|2

]
d3 k′ , (1)

where I ≡
∫ ∞
−∞ eiψ dt and Tµ ≡

∫ ∞
−∞ vµ(t) eiψ dt with ψ ≡

ε
ε′ k
′·x(t) being the emission phase and xµ(t), vµ(t) , k′µ = (ω′, k′)

the four-vectors of the electron coordinate, the velocity and the
emitted photonmomentum, respectively. τ is the pulse duration,
ε the electron energy in the field, and ε′ = ε −ω′. In our setup
ultrarelativistic electrons with an energy of ε = 40m counter-
propagate with the circularly polarized laser field A1(x, t) =

mξ1[cos(k1 · x)ex + sin(k1 · x)ey], where ξ1 = eE0/(mω0) is
the normalized field strength, E0 and ω0 are the laser field
amplitude and frequency, respectively, k1 = (ω0, 0, 0,−ω0)
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Figure 1. Upper panel: the setup of Compton scattering for a relativistic electron beam colliding with a single laser pulse (a) and colliding with a
CPW (b); Middle panel: the sketch of the emission spectra for CS (c) and for an electron in CPW with ξ1 > ξ2 (d) and ξ1 < ξ2 (e); Lower panel:
the zoom-in spectra for different cases. Panel (f) for CS with the emitted angle θ in an interval of 0.1 mrad around ξ1/γ, and (g) for an electron in
CPW with ξ1 > ξ2 having on-axis emission with θ ≤ 0.1 mrad and (h) with ξ1 < ξ2 having on-axis emission with θ ≤ 1 mrad. For comparison,
the spectrum for an electron in CPW with ξ1 < ξ2 but the emitted angle θ is around ξ2/γ with 1 mrad spreading is shown in panel (i). The field
strength is ξ1 = 0.1 in all cases while ξ2 = 0.02 for (g) and ξ2 = 2 for (h) and (i). The electron energy is ε = 40 m for all cases [(f)-(i)].

is the laser four-wave vector with ω0 = 1.55 eV, and ex =

(0, 1, 0, 0), ey = (0, 0, 1, 0) are the unit vectors, and −e and m
are the electron charge and mass, respectively. The second
laser field co-propagating with the electrons is also circularly
polarized: A2(x, t) = mξ2[cos(k2 · x)ex + sin(k2 · x)ey], with the
wave vector k2 = (ω0, 0, 0, ω0). The two lasers have the same
frequency ω0 in the lab frame. Regarding the field strength, we
keep ξ1 < 1, namely ξ = 0.1 in the considered example in Fig. 1,
while choose either ξ2 < ξ1 (ξ2 = 0.02) or ξ2 > ξ1 (ξ2 = 2).
The corresponding spectra are presented in Fig. 1(d,g) [case I
(indicated with red color)] and (e,h,i) [case II (blue)], respec-
tively. The quantum strong-field parameter e

√
−(FµνPν)2/m3,

with the field tensor Fµν , and four-momentum Pν , is very small
χ ∼ 10−5 for the chosen parameters. As a result, the radiation
reaction due to multiple photon emissions is negligible.

Let us begin the discussion of the features of radiation spectra
from the case of commonCS, ξ2 = 0, see Fig. 1(c) and (f). Since
ξ1 < 1, the spectrum has a very sharp edge corresponding to
absorption of a single photon from the laser field. In order to
obtain a relatively narrow BW, one can restrict the angle range
of the radiation. Such a spectrum is presented in panel (f). The
angle window was centred around θ = ξ1/γ, with the electron
Lorentz factor γ, where the main emission is located [50].
In the considered CWP setup with the two lasers, the nor-

malized acceleration χ is dominated by the first laser field in all
cases, which determines the general shape of all spectra. How-
ever, the zoom-in of the spectra for the CPW case in Fig. 1(g),

(h) and (i) reveal features stemming from the second pulse as
well, which are absent in CS, panel (f). In panel (g) a single
but ultra-narrow harmonic rises with a similar location and
strength as for the CS in panel (f). For case II, the entire spec-
trum becomes oscillatory, panel (e). In most of the energy
domain these oscillations are quite wide, as seen also in panel
(i). The radiation emitted on axis, however, which corresponds
to s2 ∼ 1, exhibits a comb of sharp peaks, shown in panel (h).

The spectra in (g) and (h) are not only very narrow in energy
domain but are also highly collimated, resulting in high bril-
liance. With the same electron beam parameters (1nC charge
and 0.01% spreading at ε . 100 MeV) for the CPW case in
panel (d) the peak brilliance is B ∼ 2.72 × 1023 ph/(s·mrad2·
mm2· 0.1%BW), which is three orders of magnitude larger than
the CS in panel (f). The peak brilliance in panel (h) is also
one order of magnitude larger than a CS even with the location
far away from the main peak. Therefore, the CPW setup is
capable of producing brighter and narrower radiation than a CS.
Furthermore, the comb-like structure produced in the regime
ξ2 > ξ1 [Fig. 1(h)] is very promising. While the state-of-art
technique of frequency comb can achieve the XUV domain
[51–54], the covet is the hard x-ray regime. An attempt in this
direction recently shown in [33] via CS with a polarization
gating, demonstrated a relative BW of 10−2 and the spacing be-
tween peaks of hundreds of keV. In the setup presented here, on
the other hand, we can achieve the comb spacing at an optical
frequency, with a three orders of magnitude smaller relative
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Figure 2. The angle resolved spectrum: (a) case I with ξ1 = 0.1 and
ξ2 = 0.02; (b) and (c) are the spectra for the same parameters but
integrated over different angle spreading, (b) for θ ≤ 0.2 mrad and
(c) for θ ≤ 0.5 mrad. (d) case II with ξ1 = 0.1 and ξ2 = 2; the angle
integrated spectra for this setup are shown in (e) for θ ≤ 1.0 mrad and
(f) for θ ≤ 2.0 mrad. The radiation is symmetric with respect to the
azimuthal angle and the spectra are integrated over it. The electron
energy is ε = 30m for both cases. The pulse length for ξ1 is given by
N1 = 80000.

BW. Moreover, our method has the potential to shrink the comb
spacing using a THz or microwave driving field for the ξ2 wave.
The results in Fig. 1 raise several questions: i) What deter-

mines the peak locations and the spacing between sequential
peaks? ii) What determines the width of a single peak? iii)
What is the role played by the angle window? and iv) How can
we control the number of harmonics contained in the spectrum?
To address them, we turn to analytical estimations. Firstly, the
BK phase can be written as ψ = ψnpt − z1 sinω1t − z2 sinω2t −
z3 sin ∆ω12t where ψnp = εu(1−vz cos θ), z1 = (mξ1u/ω1) sin θ,
z2 = (mξ2u/ω2) sin θ, z3 = 2ω0m2ξ1ξ2u/(ε∆ω2

12), and ∆ω12 =

ω2 − ω1. The integral in Eq. (1) over this phase yields mul-
tiplications of Bessel functions with arguments z1, z2, z3 [55].
From the phase follows the energy-momentum conservation,
determining the emitted photon energy [48, 49]:

ω′ =
ωm

s1,s2

1 + 2γ2∗ (1 − cos θ)
, (2)

where ωm
s1,s2

= 2γ2
∗ (s1ω1 + s2ω2) with s1, s2 being the num-

bers of photons absorbed from the first and second pulses,
respectively, and γ∗ = ε/m∗ with the effective mass m∗ ≡
m

√
1 + ξ2

1 + ξ2
2 in the presence of CPW. The recoil term is suf-

ficiently small in the considered regime and thus is neglected.
The spacing between sequential s2 harmonics, according to
Eq. (2), is ∆ω′ = 2γ2

∗ω2 ≈ ω0, as ω1/ω2 ≈ 4γ2
∗ and ω1 = 2ω0.

To have a full picture of the emission, we depict in Fig. 2
the angle resolved spectra for both case I and II with ε = 30m.
Panel (a) shows the spectrum for case I. Each line represents
the location of a single harmonic with respect to ω2, in accor-
dance with Eq. (2). The spacing between adjacent lines is ω0,
as predicted above. One observes that the larger the angle range
the more harmonics are included. Fig. 2(b) and (c) show the in-
tegration over two different ranges in θ domain of Fig. 2(a). For
the CPW case the emission is nearly on axis (θ ∼ 0)[55], and
can thus be confined to a small range 0 < θ < θw. The resulting
spectrum features a sharp cutoff for each harmonic, rendering
their BW extremely narrow. The width of the harmonic due to
this finite angle window based on Eq. (2) is [55]

δω′w = ωm
s1,s2

(γ∗θw)2 . (3)

For the common CS (s2 = 0 in Eq. (2)), however, the main
radiation is around ξ1/γ [50]. In this region, the dependence on
θ is stronger and thus δω′w is much larger, explaining the wide
spectrum in Fig. 1(f), see also in [55].
Fig. 2(d) for case II is similar to Fig. 2(a). An analogous

behaviour is observed with one obvious difference - the number
of harmonics is significantly larger. We assess the effective
number of harmonics ∆s2 for a given angle window θw by re-
quiring z2/∆s2 = δ, according to the governing Bessel function
properties [55], with a choice of the small number δ ≈ 0.8:

∆s2 ≈ 1
δ

(
θw
θc

)
, θc =

m∗
8mξ2

1
γ3∗

(4)

where θc corresponds to the angle when δω′w(θc) is equal to the
characteristic width of the harmonics discussed below. Accord-
ing to Eq. (4), the number of harmonics for case I is signifi-
cantly lower as m∗/mξ2 ≈ ξ1/ξ2 � 1. It should be mentioned
that whereas the electron energy for both cases is essentially
the same, the velocity along z-axis is larger in case I than that
in case II (because of the different effective mass), rendering
the photon energy ω′ more sensitive to the emitted angle based
on Eq. (2). The integrated spectra over a different angle range
in panel (e) and (f) for case II reveals an interesting trade-off.
On the one hand, the range of the comb can be extended by
increasing the angle window, as also shown analytically above.
On the other hand, it also induces a larger background in the
gap between two sequential harmonics, which could destroy
the comb-like structure. Namely, one should balance between
the width of a single harmonic and the range of the total comb
in an experiment to have an optimized x-ray comb in the keV
regime.
In addition to the finite angle window discussed above, the

width of the harmonics is affected by two other dynamical
factors. The first stems from the characteristics of the electron
dynamics. Relying on the features of the Bessel function in the
spectrum, the width of the harmonics under consideration can
be estimated from the requirement z2 ≈ 1, see [55]. For the
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Figure 3. The spectral line’s BW for different electron energies and
different angle ranges: (upper panel, red curves) case I with ξ1 = 0.1
and ξ2 = 0.02; (lower panel, blue curves) case II with ξ1 = 0.1 and
ξ2 = 2. The pulse length for ξ1 is N1 = 80000.

main peak one arrives at

δω′c =
ω2

8

(
m∗
mξ2

)2

. (5)

This expression exhibits a surprising trend of the width with
respect to the particle energy. In contrast to CS, the harmonics
become narrower for increasing electron energy, confirmed also
with numerical calculations [55]. In the considered parame-
ter regime ω0/δω′c � 1, which results in an enhancement of
satellite peaks over the spectral CS envelope. In fact, adding
the second laser ξ2 to the CS setup, new satellite peaks arise
with a separation of ω0, and the smooth energy distribution
within a large BW of CS, δω′CS ∼ ω0γ

2/ξ2
1 [55], roams into

sharp spikes.
The second contribution to the harmonic width arises from

the finite duration effect of the laser pulse. One should note that
the duration of the first pulse should be much longer, N1 = nN2,
where n = ω1/ω2, and N1,2 are the number of cycles in the
pulses. This is to allow the electron to experience the full
cycles of both pulses. Therefore, the photon uncertainty width
is mostly determined by the second pulse, yielding the BW

δω′f = 2γ2
∗ω2/N2 = ω0/N2 . (6)

Controlling the angle range θw, one can tune δω′w men-
tioned above not to exceed the dynamical width: δω′in =

  

(a) (b)

0 0.2 0.4 0.6 0.8 1.0
103 106104 105

0 0.2 0.4 0.6 0.8 1.0
10−2 10110−1 100

Out[ ]= θop/mradN1

Figure 4. (a) the required pulse length N1 of the ξ1 laser for different
emitted photon energies ω′ with different harmonic peak widths δω′
in the spectrum. (b) the optimized angle range θop for different emitted
photon energies ω′ with different harmonic peak widths δω′ when we
choose the pulse length in panel (b).

max
(
δω′c, δω

′
f

)
.

The interplay between different BW contributions for differ-
ent electron energies and emitted angle ranges is demonstrated
in Fig. 3. In case I, m∗/(mξ2) � 1, and δω′in ≈ ω′c ∼ ω0,
i.e., the dynamical BW δω′in is of the same order of magnitude
of the spacing ∆ω′ = ω0 between two peaks, in the energy
domain we are interested in. Hence, enlarging δω′w (through
the particle energy) results in gradually widening the peak. A
different behaviour is seen for case II [Lower panel in Fig.3],
when δω′in ≈ δω′f � ω0, i.e., the dynamical BW δω′in is much
smaller than the spacing. Since δω′f does not depend on the
energy and angle, the line widths in the lower panel originate
from δω′w ∼ γ2. The latter increases with energy surpassing
δω′in at ε & 30m. As a result, a noisy background emission
appears at the tail of the harmonic line, given by the Bessel
function’s rapid oscillations [55]. By scanning over both ε
and θ, it can be shown that the larger the electron energy, the
smaller the angle should be such that the isolated peaks are
sharp enough for applications, see in [55]. We point out that
for both cases in Fig. 3 the relative BW of the harmonics in the
spectra can be as small as 10−4 for the comb (case II) and 10−5

for the single peak spectrum (case I), which is similar or even
smaller compared with that of the XFEL beam [56].
Summarizing our approach, firstly, configuration I or II is

chosen depending on the preference of the spectral shape: a
single peak or a frequency comb. Then, the desired energy
location and width should be specified. Employing Eq. (2),
the energy ω′ determines the effective relativistic factor γ∗.
Then, from the chosen width δω′ and relation (3), the angle
window θw follows. For case II, where δω′f dominates δω′in, we
also require δω′f = δω′, from which the number of cycles in
the second pulse is evaluated. For a given laser pulse energy
the pulse length fixes the field amplitude. From the latter the
effective mass is evaluated and from γ∗ one finds the electron
beam energy, see Fig. 4. For a given BW, the number of cycles
is determined according to Eq. (6). However, increasing ω′
requires a longer duration of the first pulse, due to increase of
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n = ω1/ω2 ≈ 4γ2
∗ . The optimal angle window θw according to

Eq. (2) is narrower at higher ω′.
In conclusion, the discussed CPW setup allows to generate

an extremely narrow band and collimated x-ray beam in the
range of several hundreds of eV to tens of keV, with brilliance
by orders of magnitude exceeding that for CS corresponding
to the same electron and laser parameters. By tuning the in-
tensity of the two laser pulses, one can produce either a single
peak or a comb-like x-ray source. Simple analytical expres-
sions relating the source parameters (energy location, number
of harmonic in comb, spectral width) to the laser and electron
ones are provided. This radiation source is attractive for several
applications. First, its narrow-band feature allows for resonant
excitation spectroscopy of highly charged ions [40, 41], without
the use of a monochromator as opposed to synchrotron sources.
Second, the flux and BW of this source render it suitable to
operate as an XFEL seeder, thus replacing the complex and
cumbersome self-seeding unit [56–58], which is the only avail-
able seeding technique above energies of 100 eV. Third, owing
to the low angle spread it is favourable as a source for small an-
gle scattering diagnostics [38]. Fourth, the comb-like structure
can be employed for extension of plasma spectroscopy from the
optical and UV range to the hard x-ray domain, and for plasma
diagnostics, e.g., for measuring the density profile of overdense
plasmas. Finally, the achieved unprecedented parameters of the
comb-like structure may pave the way to a hard x-ray frequency
comb for ultrahigh precision metrology.
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I. THE STRUCTURE OF THE HARMONICS

In this section, the details of the analytical estimations re-
garding the structure of harmonics, for example the harmonic
width, the energy range of the x-ray comb and the optimized
emitted anlge, are presented. All the estimations are based
on the analytical formula of the emission spectrum as well as
the energy conservation law, which is well documented in our
previous works [1, 2], and also verified by the numrical results
in the main text.
The explicit formula for the radiation spectrum in general

EM fields reads [3]:

dI =
α

(2π)2τ

[
−ε
′2 + ε2

2ε′2
|Tµ|2 +

m2ω2

2ε′2ε2
|I|2

]
d3k′ , (1)

where I ≡
∫ ∞
−∞ eiψ dt and Tµ ≡

∫ ∞
−∞ vµ(t) eiψ dt with ψ ≡ ε

ε′ k
′ ·

x(t) being the emission phase and xµ, vµ , k′µ = (ω′,k′) the
four-vectors of the electron coordinate, the velocity and the
photon momentum, respectively. τ is the pulse duration. For
simplicity, the average energy is ε, and ε′ = ε − ω′.
Let us first look at the phase ψ of the emission, which is a

crucial parameter in the formalism and determines the structure
of the harmonics of the spectrum,

ψ =
ε

ε′
k′ · x(t)

=ψnpt − z2 sin(ω2t) − z1 sin(ω1t) − z12 sin(∆ω12t) .
(2)

Introducing the definition of u = ω′/ε′, ω1 = (1 + vz)ω0, ω2 =

(1−vz)ω0 and∆ω12 = ω2−ω1 with vz being the average velocity
on axis, we may write

ψnp ≡εu(1 − vz cos θ) , z1 ≡ muξ1

ω1
sin θ ,

z2 ≡muξ2

ω2
sin θ , z3 ≡ 2ω0m2uξ1ξ2

ε∆ω2
12

cos θ .
(3)

With the analytical solution of the time integral in Eq. (1), one
obtains

Tµ = 2π
∑

s1

∑

s1

Mµ(s1, s2, ω
′, cos θ)δ(Ωs1,s1 ) , (4)

where s1 and s2 denote the absorbed photon number from ξ1 and
ξ2 pulse, respectively. The matrix elements can be expressed

∗ qingzheng.lyu@mpi-hd.mpg.de
† erez.raicher@mail.huji.ac.il
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Figure S1. The spectra according to the analytical expressions of
Eq. (1) for ξ1 = 0.1 and ξ2 = 2 with different energies. In order to
show the narrow width of the peaks, the x-axis has been shifted to the
right by 494.928eV for (a), by 1103.835eV for (b) and by 1982.290eV
for (c). Here the spectra are calculated by the analytical formulas in
Ref. [2].

as the multiplication of Bessel functions with arguments z1, z2,
z3 [2]. Furthermore, based on the argument of the δ-function,
the energy conservation can be written as

ω′ =
ε(s1ω1 + s2ω2)

ε(1 − vz cos θ) + (s1ω1 + s2ω2)

≈ 2γ2
∗ (s1ω1 + s2ω2)

1 + 2γ2∗ (1 − cos θ)
,

(5)

The last step is the approximation connected with neglection
of the recoil. The emission is nearly on axis (θ ∼ 0) and can
thus be confined to a small range 0 < θ < θw. The width of
the harmonic due to this finite angle window is δω′w = ω′(θ =

0) − ω′(θ = θw). Employing Eq. (5) and Taylor expanding for
θ � 1 one obtains

δω′w = ωm
s1,s2

(γ∗θw)2 . (6)

where ωm
s1,s2

= 2γ2
∗ (s1ω1 + s2ω2) and γ∗ = ε/m∗ with the effec-

tive mass m∗ ≡ m
√

1 + ξ2
1 + ξ2

2 .
As seen from the main text, the harmonics we are inter-

ested in is dertermined by the ξ2-laser co-propagating with
the electrons. The structure of the harmonics are therefore
related with z2 and the corresponding Bessel functions as
well as the emission angle θ. According to Eq. (5), the cor-
responding sine function is approximately given by sin θ ≈√

1 − 1/v2
z + 2(s1ω1 + s2ω2)/(εuv2

z ). Substituting this expres-
sion into Eq. (3) one obtains

z2 =
ξ2m∗m
ω2ε

√
u(us − u) , (7)

where us ≡ 2ε (s1ω1 + s2.ω2) /m2
∗ . The main harmonics in

Fig. 3 of the paper correspond to s1 = 1 and s2 ∼ 1, which
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Figure S2. (a) the angle resolved spectrum for the common Compton
scattering source with ξ1 = 0.1; (b), (c) and (d) are the spectra for the
same parameters but integrated over different angle spreading, (b) for
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Please note that the radiation is around θ = ξ1/γ ≈ 3.3 mrad. The
other parameters are the same as in Fig. 2 in the paper.

means us ≈ 2εω1/m2
∗. Then, the width δu can be estimated

according to z2 ≈ s2 in this regime and expressed as

δu =
ω2

2ε

2ξ2
2ω1m

. (8)

Therefore, according to u = ω′/ε′, the intrinsic width of the
peak δω′c is approximately

δω′c =
ε2ω2

2

2ξ2
2ω1m2 + εω2

2
≈ ω2

8

(
m∗
mξ2

)2

. (9)

In the last step, we have neglected the photon recoil for sim-
plicity. From this estimation, we can see that the width is
decreasing with the increasing of the electron energy, seen in
Fig. S1. According to Eq. (9), the full width at half maximum
of the peak is 0.00313eV for panel (a), 0.00138eV for panel
(b) and 0.00076eV for panel (c), which is approximately propo-
tional to 1/γ2

∗ . This is in contrast with the width of the harmonic
in the single plane wave case, where δω′ ∼ ω0γ

2/ξ2 increases
with the electron energy.

Meanwhile, we can also estimate the optimized emitted angle
of the photons. Since the emission in the our setup is almost
on axis, the Bessel function arguments in Eq. (3) can thus be
rewritten as z2 ≈ mξ2uθ/ω2. As the main peak appears when
u = us ≈ 2εω1/m2

∗ and z2 ∼ 1, the optimized angle θop is

θop =
m2
∗

8γξ2
2ε

2
, (10)

which also decreases with the electron energy. This coincides
with Fig. 4(b) in the main text. It is also worth to point out
that this optimized angle is different from the scattering of an
electron from circularly polarized plane wave laser pulse with
the optimized emitted angle around ξ1/γ.
From z2 ≈ mξ2uθ/ω2, we can also see that z2 tends to 1 for

the angle θ ∼ 0 as ω2 being rather small. This explains the
almost on axis emission in the CPW setup. In the opposite,
the harmonics in the common CS, which triggered by ξ1 only,
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Figure S3. The signal-to-noise ratio RSN vs ε and θ: (a) for ξ1 = 0.1
and ξ2 = 0.02 and (b) for ξ1 = 0.1 and ξ2 = 2. The pulse length for ξ1
is N1 = 80000 for both cases. The oscillations in the plot stem from
the background emission which induces oscillations in Imin, especially
for case II. The crosses show the parameters considered in Fig. 3 in
the main text.

is determined by z1 and thus the harmonics center for larger
angles according to Eq. (3).
Another interesting property of the spectrum is the energy

range of the x-ray comb for the case of ξ2 > ξ1. As explained
in the paper, the peaks are equally distant with the laser basic
frequency ω0, the estimation of this range is equivalent to es-
timating the number of peaks in the comb-like structure. The
peaks are determined by Bessel functions with the argument of
z2, the same as for the intrinsic width. It is well known that a
Bessel function tends to be zero when the argument is much
larger or smaller than the order of the function. Therefore, the
peak appears only when z2/∆s2 = δ ∼ 1. With a given emitted
angle window 0 < θ < θw as before, z2 can be approximated as
2ξ2θwε(∆s2ω2 + ω1)/(ω2m2

∗). Therefore, we can solve for ∆s2
based on z2 = δ∆s2 and obtain

∆s2 =
2ξ2εω1θw

δω2m2∗ + 2ξ2εω2θw
≈ 1
δ

(
θw
θc

)
. (11)

with θc = m∗/(8mξ2γ
3
∗ ) according to δω′w(θc) = δω′c. From this

formula we can see that the number of peaks is propotional
to the angle spreading θw of the radiation. If we choose the
optimized angle in Eq. (10), ∆s2 is propotional to 1/ξ2, which
means that by lowering the strength of ξ2-laser in the configu-
ration, the range of the comb-like structure can be extended.

II. ANGULAR SPECTRUM FOR THE COMMON
COMPTON SCATTERING SOURCE

In the main text, we have shown that the common Compton
scattering (CS) source has a much wider spectrum compared
to the CPW setup. In order to understand the underlying mech-
anism, the angular spectrum for a CS is displayed in Fig. S2.
Panel (a) shows that the emitted photon energy coincides with
Eq. (5) for s2 = 0, which means the ξ2-laser is absent and the
single harmonic is only according to ξ1 < 1.
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Panel (b) and (c) show the integrated spectrum for two dif-
ferent angle ranges for θ. In panel (b), we confine the angle
in the same range as in Fig. 2(b) in the paper and the emitted
spectrum obtained here is not only less intense but also much
wider compared with Fig. 2(b) in the main text. If we want
to have a similar BW as in Fig. 2(b) in the paper, the angle
window for θ has to be decreased even more, which will make
the intensity negligible. This is because the main radiation for
the common CS is around ξ1/γ and by integrating over a cer-
tain angle region which does not include ξ1/γ = 3.3 mrad will
give us weak radiation. Thus, the angle window in panel (c) is
enlarged to 4 mrad and the intensity of the spectrum is now the
same as in Fig. 2(b) in the paper but the relative width is several
orders of magnitude larger than the one in the CPW setup. This
is because the larger the angle, the stronger the emitted energy
ω′ depends on the angle as in Fig. S2, and thus the wider is
the harmonic for the same angle range. This also explains that
even when we integrate the same angle window as in the CPW
case but around ξ1/γ, the spectrum is still wider than the CPW
spectrum, seen in Panel (d). The brilliance for this emission

is also smaller than the case in the CPW setup, because the
emitted photons for a CS in Panel (d) not only distributes in a
wider energy range but also is collected in a larger solid angle
as θ ∼ ξ1/γ, seen also Fig. 1(f) in the paper.

III. SIGNAL TO NOISY RATIO FOR THE CPW SETUP

In order to have a comprehensive picture of the impact of the
electron energy and the emitted angle on the structure of the
harmonics, we present, in this section, the signal to noise ratio,
RSN = Imax/Imin, for the two cases in Fig. S3(a) and (b). Here
Imax is the intensity at the main peak, while Imin is the intensity
at the middle point between the main peak and the adjacent
one. By scanning over both ε and θ, we can see that the larger
the electron energy, the smaller the angle should be such that
the isolated peaks are sharp enough (RSN > 100). The sudden
jump in RSN for both cases corresponds to the situation where
the angle width reaches the middle point, δω′w = ω0/2.
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