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Matched filtering is a traditional method used to search a data stream for signals. If the source (and hence
its n parameters) are unknown, many filters must be employed. These form a grid in the n-dimensional
parameter space, known as a template bank. It is often convenient to construct these grids as lattices. The
simplest of these, Zn, is used in both continuous gravitational-wave and gamma-ray pulsar searches; we
wanted to investigate how much might be gained by replacing it with the more elaborate A�

n lattice. To
determine this, we calculate the distribution of the mismatch function, both in the traditional quadratic
approximation and with the recently proposed spherical ansatz. The fraction of signals which are lost is
determined by the even moments of this distribution, which we find. Many of these quantities have a simple
and well-defined n → ∞ limit, which often gives an accurate estimate even for small n. Our main
conclusions are the following: (i) a fairly effective template-based search can be constructed at mismatch
values that are shockingly high in the quadratic approximation; (ii) the minor advantage offered by an A�

n

template bank (compared to Zn) at small template separation becomes even less significant for large
template spacings. In most cases, the gain from employing an A�

n lattice is not enough to justify the increase
in complexity.

DOI: 10.1103/PhysRevD.104.122007

I. INTRODUCTION

Matched filtering is a standard technique [1,2] used to
search for weak gravitational-wave signals from the binary
inspiral of black holes and/or neutron stars. This compares
the data (suitably weighted in frequency space) to a
template of the expected waveform [3–14]. Matched filter-
ing is also used to search for weak electromagnetic (radio
and gamma-ray) [15] and gravitational-wave signals from
rapidly rotating neutron stars (pulsars) [16] and has many
other applications across a broad range of fields and topics.
Because these searches are typically looking for new

events and/or unknown sources, the parameters of the
signals are not known. Some examples of these parameters
include sky position, mass, and spin or chirp frequency.
Thus, a collection of templates must be employed. The grid
of these templates in parameter space is generally referred
to as a “template bank.”
If the parameter space is low dimensional and the volume

of interest is not too large, one can simply “overcover” the

space, by putting many redundant templates close together.
However, if the parameter-space dimension and/or volume
is large, this quickly becomes (computationally speaking)
very expensive. On the other hand, if the templates are
spaced too far apart, then it is possible that some signals
could be missed, because there are no templates in the bank
which match the waveforms closely enough. Thus, a
compromise must be reached: enough templates must be
employed that signals are not lost, but their number must
not be so large that the computing cost explodes. For some
searches (e.g., for continuous gravitational waves from
neutron stars in binary systems) the computing cost is so
high that it constrains the search sensitivity.
The problem of how to place templates in parameter

space is well studied. There are many ways to construct
template banks. For example, one can simply place the
templates at random [17], with a high enough density that
most signals are likely to lie near enough to a template. Or
one can improve this by removing redundant templates
which are “too close” to neighboring ones, and adding
more templates at random, if required [18]. One can also
build template banks as lattices in parameter space.
Following this approach, two important lattices are

Zn and A�
n. The first is the Cartesian product of equally

spaced grids in all dimensions, and the second is the
n-dimensional generalization of the two-dimensional hex-
agonal lattice and the three-dimensional fcc lattice. Both
are used in large-parameter-space searches. For example
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the Einstein@Home all-sky searches for continuous gravi-
tational waves use a Z4 template bank [19,20]; the four
parameters are frequency f, its time derivative _f, and the
projections of the sky position onto a Cartesian plane
containing Earth’s orbit about the Sun, ðnx; nyÞ. A recent
targeted Einstein@Home search [21] used Z3, where the
three parameters are f, _f and f̈. Searches for gamma-ray
pulsars use both types of lattices. For example, the first
stage of searches that recently discovered two “spider”
pulsars [22,23] employ a Z2 lattice for ðf; _fÞ and an A�

2

lattice for sky position. In the follow-up stage, aZ5 lattice is
used for f, _f, P, a, T; the final three parameters are orbital
period, projected semimajor axis, and time of the ascending
node [15]). Some related searches, for example [24], only
use Z5, because they only contain the follow-up stage.
Part of the motivation for this work was to investigate if
replacing Zn with A�

n might significantly increase the
discovery rate in such searches.
More broadly, lattices provide a standard for compari-

son. Since the optimal quantizer lattice is superior to any
other choice of template bank (under reasonable assump-
tions it maximizes the number of detections for a given
number of templates [25]) it provides a “gold standard.”
Thus, the analytic results presented here provide a com-
parison for any template bank, and allow designers to
bound potential improvements to their banks, particularly
when the worst-case mismatch is very large.
One way to characterize a template bank is via the

mismatch functionm. This is a function on parameter space,
which quantifies how much signal-to-noise ratio (SNR) is
lost because of the discreteness of the template bank. Its
value at any point is the fractional difference between the
squared SNR obtained for a signal with those parameters in
the nearest template, and the squared SNR that would have
been obtained had a template been located exactly at that
point. Thus,m vanishes at the locations of the templates, and
is largest “halfway in between” two templates. In a recent
paper, we showed how the fraction of lost signals is related to
the average of m and functions of m [25].
Note that in the literature, the term “mismatch” is

sometimes used differently than we do here. In some cases,
it refers to the worst-case mismatch, meaning the maximum
value of our function. In other cases, it is a function of two
points of parameter space. In this paper, we follow [25]:
m is a function of a single point in parameter space. Our
definition corresponds to Eq. (2.5) of [25], as illustrated in
Fig. 1 of that paper.
When the templates are close together, so the mismatch

is small,m can be expressed as a positive-definite quadratic
form and thought of as the squared distance between
the parameter-space point with the coordinates λa and
the closest template. Thus, in this approximation,
m ≈ gabΔλaΔλb, where gab is the metric on the parameter
space, Δλa is the coordinate separation between the point

and the closest template (see, e.g., [13,26]), and we adopt
the “summation convention” that repeated indices are
summed from 1 to n. In this paper, we call this the
quadratic approximation to the mismatch, and write it
as m ¼ r2.
When the templates are less-closely spaced, a better

approximation to the mismatch is the “spherical” ansatz,
m ≈ sin2r ¼ sin2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabΔλaΔλb

p
Þ, recently introduced in

[27]. The spherical ansatz could also be used for the
semicoherent mismatch, thus providing a tractable alter-
native to more complicated approaches such as the aver-
aged metric of [28].
In general, the parameter-space metric gab is a function

of the coordinates λa. In what follows, we will assume that
the parameter space has been divided into regions which are
large enough that they contain many templates, but small
enough that gab can be treated as a constant within each
region. For example, in a search for continuous gravita-
tional waves, a 1-kHz frequency interval might be broken
into 1-Hz bands. (Within these, typical template spacings
might be a fraction of a μHz.) Then, in each region, by
diagonalization and rescaling, we introduce new coordi-
nates xi, for which r2 ¼ gabΔλaΔλb ¼ Δx21 þ � � � þ Δx2n.
Another good example is the search for gamma-ray

pulsations from isolated neutron stars with a linear spin-
down. This is a four-dimensional parameter space whose
coordinates are frequency f, frequency derivative _f, and
sky position coordinates ðnx; nyÞ. For typical multiyear
datasets, it can be seen from Eqs. (28) and (29) in [15] that
the metric only depends upon f. So, provided that the
parameter space is broken into regions which cover small
ranges of frequency (say from f to 1.1f) the metric can be
treated as a constant. (This also holds for the semicoherent
metric; see Eq. (42) in [15].)
If the mismatch is small, then the bank which minimizes

the average value of r2 loses the smallest fraction of signals
[25]. If the bank is a lattice, this is called the “optimal
quantizer” [29]. This paper extends those results to large
mismatch, by exploiting the spherical ansatz [27] and
carrying out an explicit calculation for template banks
constructed from the Zn and A�

n lattices.
Our paper is organized as follows. In Sec. II we describe

the n-dimensional lattices Zn and A�
n, and derive their key

properties. In Sec. III we calculate the fraction of lost
detections using the quadratic approximation and spherical
ansatz for these lattices for two- and three-dimensional
source distribution. This fraction of lost signals may be
thought of as the “inefficiency” or “loss fraction” of the
lattice. In Sec. IV we evaluate the loss fraction as the
parameter-space dimension n → ∞. This gives us simple
analytic expressions; in some cases the approach is fast
enough that these are good approximations even in finite
numbers of dimensions. In Sec. V we compare the loss
fraction of Zn and A�

n at fixed numbers of templates (which
for simple one-stage searches is equivalent to fixed
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computing cost). Finally, in Sec. VI, we derive the
distribution function of the squared radius r2 and examine
its properties for the Zn and A�

n lattices. This is followed by
a short conclusion.
Our results only depend on the even-order moments

of the Wigner-Seitz (WS) cells of the lattices, which we
denote by hr2mi. Appendix A contains a calculation of these
moments for the Zn lattice and Appendix B contains the
corresponding calculation for the A�

n lattice.

II. THE Zn AND A�
n LATTICES

The lattices Zn and the A�
n are an infinite collection of

regularly spaced points in Cartesian space Rn. We use x to
denote a point in Rn with the normal Euclidean norm
jxj2 ¼ x · x, where the dot denotes the standard dot product.
The lattices are generated by a set of n constant basis
vectors ei ∈ Rn, for i ∈ 1;…; n, which for these particular
lattices are normalized so that ei · ei ¼ 1. Two-dimensional
representatives of these lattices are illustrated in Fig. 1.
To characterize the geometry of the lattice, we shall use

xi to denote Cartesian coordinates and yi to denote lattice
coordinates. Accordingly, the lattice consists of all points
x ¼ yiei in Rn, such that yi ¼ cil, where ci ∈ Z are
integers and l is the lattice spacing. As earlier, we follow
the “summation convention” that repeated indices are
summed.
The squared distance r2 between points xA and xB with

lattice coordinates yAi and yBi is then

r2 ¼ ðxA − xBÞ · ðxA − xBÞ ¼ ΔyiΔyjei · ej ¼ gijΔyiΔyj;

ð2:1Þ

where Δyi ¼ yAi − yBi are the lattice coordinate separa-
tions and gij ¼ ei · ej is a Gram matrix (see, e.g., [29]).
The region of Rn for which the coordinates yi ∈ ½0;l� is

called a “Fundamental Polytope” or FP. The FP has 2n

vertices, which are neighboring lattice points. The region of
Rn which is closer [in the sense of the coordinate distance
Eq. (2.1)] to a given lattice point than to any other lattice
point is called the “WS cell” of that lattice point. We denote
the Wigner-Seitz cell of the origin yi ¼ 0 by WS (see
Fig. 1). The distance from the origin to the most distant
point of WS is called the covering radius or WS radius R; it
is the radius of the smallest sphere about the origin which
encloses every point of the WS.
We can compute the n-volume of the FP and the WS

as follows. Since all FP are equivalent, we concentrate on
the FP defined by lattice coordinate values yi ∈ ½0;l�. The
n-volume of the FP is

VFP ¼
Z

l

0

dy1 � � �
Z

l

0

dyn
ffiffiffi
g

p ¼ ln ffiffiffi
g

p
; ð2:2Þ

where g ¼ detðgijÞ ¼ const. The n-volume of the WS,
VWS, is equal to that of the FP, because (if the WS is
copied around all lattice points) they overlap only on the
boundaries (a set of measure zero), are in one-to-one
correspondence, and cover all of space.
The FP is contractible to the origin, in the sense that if a

point x ∈ Rn lies inside it, then so does the point λx for
λ ∈ ½0; 1Þ. Because it is defined via a linear construction, it
can also be contracted to any other vertex, so it is convex
and contractible in any direction. By construction the FP is
bounded by a set of (n − 1)-dimensional planes.
In similar fashion, the boundary of the WS is defined by a

set of (n − 1)-dimensional planes that lie halfway between
the origin and the surrounding lattice points. We can
compute the covering radius R of the WS centered at the
origin by considering the subset of those planes which lie in
the FP, i.e., which lie halfway between the origin and the
remaining 2n − 1 FP lattice points, and finding the point of
intersection most distant from the origin.
To characterize the efficiency of the space covering, one

defines the thickness Θ as the average number of covering
spheres that contain a point of the space. This is equal to the
ratio of volume of an n-dimensional ball enclosed by one of
the spheres, to the volume VFP ¼ VWS [29],

Θ ¼ VðBnðRÞÞ
VWS

: ð2:3Þ

Here, VðBnðRÞÞ ¼ πn=2Rn=Γð1þ n=2Þ is the volume of an
n-ball Bn of radius R. From the definition it follows that
Θ ≥ 1. Smaller values of Θ indicate less overlap among the
balls, i.e., a more efficient covering.1

In the following subsections we compute the quantities
defined above for the Zn and A�

n lattices. We will use
these quantities in calculating the statistical properties of

FIG. 1. Two-dimensional lattices: (a) the Z2 square lattice,
(b) the A�

2 hexagonal lattice. The fundamental polytopes are
shown in light gray; the WS cells are shown in dark gray and
inscribed by the dashed circles of the covering radius. For general
n, the basis vectors ei for A�

n define vertices of an equilateral
n-simplex [see text after Eq. (2.10)].

1Another quantity used in the literature is the normalized
thickness (or center density) θ ¼ Rn=VWS.
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functions of the distance, such as the mismatch, for both
lattices and to compare the derived results.

A. The Zn lattice

The Zn lattice (see, e.g., [29]) is generated by ortho-
normal basis vectors:

ei · ej ¼ δij; ð2:4Þ

where δij is the Kronecker delta, i.e., the Gram matrix gij is
the identity matrix. Thus, if the basis vectors are taken as
the standard coordinate basis, then the lattice coordinates yi
are just the normal Cartesian coordinates and xi ¼ yi. The
distance function Eq. (2.1) is

r2 ¼
Xn
i¼1

Δy2i ; ð2:5Þ

and, according to Eq. (2.2), the n-volume of the FP is

VFP ¼ ln: ð2:6Þ

According to Eq. (2.1), the largest distance between any
pair of vertices in the FP is r2 ¼ nl2. It is also the largest
distance from the origin to a point within the FP.
To find the boundary of the WS centered at the origin,

we begin by finding the equations of the planes that lie
halfway between the origin and the nearest lattice points at
distance l from the origin. (The other potential bounding
planes are irrelevant because they lie outside.) There are
2n of these nearest lattice points. They have coordinates
ð0;…; 0;�l; 0;…; 0Þ, where l is located in the jth
position and the remaining n − 1 coordinates vanish.
Using the distance function Eq. (2.5) we find that the
coordinates in the (n − 1)-dimensional boundary planes
satisfy the equation

Xn
i¼1

y2i ¼ ðyj ∓ lÞ2 þ
Xn
i¼1
ði≠jÞ

y2i ¼ l2 ∓ 2lyj þ
Xn
i¼1

y2i :

Thus the planes bounding the WS satisfy

yj ¼ �l=2: ð2:7Þ

There are 2n such planes, since j ¼ 1;…; n. These define
an n-cube which is identical to the FP but shifted by −l=2
along each coordinate axis, so that its center is at the origin.
Note that the result Eq. (2.7) follows directly from the
lattice geometry.
The WS radius R is easily computed. The point of

mutual intersection of the n planes with yj > 0 defines a
vertex of the WS. All of the 2n vertices of the WS (defined
by intersecting each of the possible planes, one for each
coordinate, n in total) are at the same distance R from the

origin. Hence, the WS covering radius R is the distance of
that WS vertex from the origin. Using the expression
Eq. (2.5) gives

R2 ¼ 1

4
nl2 ð2:8Þ

for the covering radius of the Zn lattice. The n-volume of
the FP and of the WS can be expressed in terms of R, as

VFP ¼ VZn

WS ¼ 2nn−n=2Rn: ð2:9Þ

Later, we will compare the properties of different lattices at
fixed VWS.

B. The A�
n lattice

The A�
n lattice is a classical root lattice, whose attractions

have been discussed in detail by [30]. For n ≤ 17 it is either
the thinnest classical root lattice, or close to the thinnest
one. (Note however that thinner nonclassical lattices have
been constructed numerically, by semidefinite optimization
in the space of lattices. The current record holders are listed
in Table 2 of [31].)
The A�

n lattice is generated by basis vectors chosen to
satisfy (see, e.g., [29,32])

ei · ej ¼
�
1 for i ¼ j

−1=n for i ≠ j:
ð2:10Þ

The vectors ei are easily visualized: they point from the
origin to n of the nþ 1 vertices of an equilateral n-simplex.
(The unit vector from the origin to the final vertex of the
simplex is −e1 − � � � − en, which implies that the center of
the simplex lies at the origin of coordinates.)
For this lattice, the distance function Eq. (2.1) is

r2 ¼
Xn
i¼1

Δy2i −
1

n

Xn
i;j¼1
ði≠jÞ

ΔyiΔyj;

¼
�
1þ 1

n

�Xn
i¼1

Δy2i −
1

n

�Xn
i¼1

Δyi
�

2

; ð2:11Þ

and the Gram matrix is

gij ¼

0
BBBBB@

1 −1=n � � � −1=n
−1=n 1 � � � −1=n

..

. ..
. . .

. ..
.

−1=n −1=n � � � 1

1
CCCCCA
: ð2:12Þ

Using recursion and row reduction, or applying Sylvester’s
theorem, it is easy to see that the determinant is

g ¼ n−nðnþ 1Þn−1: ð2:13Þ
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From Eq. (2.2), one obtains

VFP ¼ n−n=2ðnþ 1Þðn−1Þ=2ln ð2:14Þ

for the n-volume of the FP.
We now compute the covering radius R, which is the

distance from the origin to the most distant point of the WS
centered at the origin. To find the boundary of the WS
centered at the origin, we first find the equation of the plane
that lies halfway between the origin and a lattice point with
coordinates yi ¼ ð0;…; 0;l;…;lÞ, where the number of
zeros is k and the number of l’s is n − k. We take this form
for an FP vertex because it is sufficiently general, i.e.,
according to the distance function form Eq. (2.11), the
coordinates can be permuted without changing the distance
value. In contrast to theZn lattice, every FP vertex defines a
WS boundary plane. After multiplying the squared distance
by an overall factor of n=ðnþ 1Þ, the coordinates in the
planes satisfy the equation

Xn
i¼1

y2i −
1

nþ 1

�Xn
i¼1

yi

�
2

¼
Xk
i¼1

y2i þ
Xn
i¼kþ1

ðyi − lÞ2

−
1

nþ 1

�Xk
i¼1

yi þ
Xn
i¼kþ1

ðyi − lÞ
�

2

: ð2:15Þ

This expression can be simplified, rearranged, and divided
by 2lðn − kÞ=ðnþ 1Þ to obtain

Xn
i¼1

yi ¼
nþ 1

n − k

Xn
i¼kþ1

yi −
kþ 1

2
l: ð2:16Þ

Writing the (unity) coefficient of the lhs as ðnþ 1Þ=
ðn − kÞ − ðkþ 1Þ=ðn − kÞ, and canceling the common
terms in the sums, gives

nþ 1

n − k

Xk
i¼1

yi −
kþ 1

n − k

Xn
i¼1

yi ¼ −
kþ 1

2
l: ð2:17Þ

Multiplying this expression by ðn − kÞ=ðkþ 1Þ yields the
following formula, which defines the planes bounding the
WS cell:

Xn
i¼1

yi ¼
nþ 1

kþ 1

Xk
i¼1

yi þ
n − k
2

l: ð2:18Þ

Although we obtained this equation for a specific subset
of vertices, it is trivial to obtain the corresponding equation
for any vertex, by replacing the sum from 1 to kwith a sum
over any k of the coordinates. Changing the sign of l gives
the corresponding parallel plane bounding the WS on the

other side of the origin. For this reason, the WS is
sometimes called a “permutohedron” [29] and denoted Pn.
To obtain the covering radius R, we intersect a set of n

bounding planes defined by Eq. (2.18), to identify a point at
this radius in the WS. The k ¼ 0 equation implies

Xn
i¼1

yi ¼
nl
2
: ð2:19Þ

The k ¼ 1 equation then implies y1 ¼ l=ðnþ 1Þ.
Combining these with the k ¼ 2 equation implies y2 ¼
2l=ðnþ 1Þ. Continuing in this fashion, intersecting all of
the planes implies yi ¼ il=ðnþ 1Þ. The squared covering
radius of the WS is thus given by

R2 ¼
�
1þ 1

n

�Xn
i¼1

y2i −
1

n

�Xn
i¼1

yi

�
2

¼
�
1þ 1

n

�
l2

ðnþ 1Þ2 ð1
2 þ � � � þ n2Þ − 1

n

�
nl
2

�
2

¼ l2

nðnþ 1Þ
nðnþ 1Þð2nþ 1Þ

6
−
nl2

4

¼ 1

12
ðnþ 2Þl2: ð2:20Þ

As before, we can express the WS n-volume in terms of R:

VA�
n

WS ¼
�
12ðnþ 1Þ
nðnþ 2Þ

�
n=2

ðnþ 1Þ−1=2Rn: ð2:21Þ

This will be useful later, when we compare lattices at fixed
WS volume.

III. THE FRACTION OF LOST DETECTIONS

A template bank is discrete, so most points in parameter
space do not have an exactly matching template. As a
result, there is (on average) some loss of SNR from
mismatch between signal and template, which (on average)
results in lost detections. We quantify the number of lost
detections following the treatment given in [25].
Assume that the detector or instrument is located within

a cloud of sources, such as a galaxy. Each source emits a
signal, which would produce a detector SNR ρ2 in a
perfectly matching template. Assume that the number of
sources is sufficiently large that it may be treated as a
continuous distribution. Then the number of sources dN
with SNR in the interval ðρ2; ρ2 þ dρ2Þ is

dN ¼ Pðρ2Þdρ2; ð3:1Þ

where Pðρ2Þ is the number of sources per unit SNR
interval. To calculate Pðρ2Þ, we need to know how the
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sources are distributed with (luminosity) distance L from
the detector, and how the SNR ρ2 depends upon L.
We assume that the sources are distant enough that the

detector is in their radiation zone. For gravitational-wave
sources, the gravitational-wave strain h is inversely propor-
tional to the source-detector distance L, so that SNR ρ2 ∼
h2 ∼ 1=L2 [14]. For electromagnetic sources, the SNR ρ2 is
proportional to intensity, which also scales ∼1=L2 (for
example, see [15, Eq. (11)]) so the same relation holds.
So in both cases, if there is a uniform d ¼ 2- or d ¼
3-dimensional Euclidean spatial distribution of sources,
one has

dN ∼ Ld−1dL ∼ ρ−d−2dρ2; ð3:2Þ

which implies that Pðρ2Þ ∝ ρ−d−2.
Note that for simplicity, we have assumed that the

distribution function does not depend upon the source
parameters, but only upon its distance. This assumption can
be dropped, as shown in Sec. VI of [25]. That section, and
the Conclusion of that paper, also have further discussion
regarding realistic spatial distributions of sources, which
might (for example) correspond to fractional values of d.
For example for Galactic neutron stars, the effective value
of d is between 2 and 3; see [33,34].
To fully determine Pðρ2Þ, let ρ2D denote the SNR lower

bound for confident detection: below this threshold, detec-
tor noise would produce too many false positives. We then
obtain

Pðρ2Þ ¼ d
2

ND

ρ2

�
ρ2D
ρ2

�
d=2

; ð3:3Þ

where ND is the total number of detectable sources in
the SNR range ρ2 ∈ ½ρ2D;∞Þ, assuming perfect signal-to-
template match.
Due to the mismatch m between a source signal and the

closest template, the actual SNR detection threshold is
ρ2D=ð1 −mÞ, where m ∈ ½0; 1Þ. This means that some
signals fail to be detected, because their (perfect match)
SNR lies in the interval ρ2 ∈ ½ρ2D; ρ2D=ð1 −mÞ�. The number
of these “lost” signals is

Nlost ¼
1

V

Z Z
ρ2D=ð1−mÞ

ρ2D

Pðρ2Þdρ2dV; ð3:4Þ

where dV ¼ dnx ¼ ffiffiffi
g

p
dny is the volume element of

parameter space2, and V ¼ R
dV is the total volume.

Note that we need to integrate over the parameter space,
because the mismatch function m ¼ mðxiÞ depends on a

point in the parameter space. Finally, by using the explicit
form of Pðρ2Þ above we find the fraction of lost detections
(see [25, Eq. (5.10)]),

Nlost

ND
¼ 1

V

Z
ð1 − ð1 −mÞd=2ÞdV: ð3:5Þ

Assuming that the template bank is a lattice and that the
parameter space has much larger volume than a single WS
cell, and using the spherical ansatz for the mismatch [27],
we find that the fraction of lost detections is [25, Eq. (5.10)]

Nlost

ND
≈

1

VWS

Z
WS

fðrÞdV; ð3:6Þ

where the integral is over a single WS cell, and the
integrand (using the spherical ansatz) is

fðrÞ ¼
�
1 − cosdr for r ≤ π=2

1 for r > π=2
: ð3:7Þ

The ratio Nlost=ND defines the “loss fraction” of the lattice,
i.e., the fraction of potentially detectable signals which
the lattice fails to catch. Equivalently, 1 − Nlost=ND is the
efficiency of the lattice: the expected fraction of potentially
detectable signals which are indeed found.
Provided that the WS cell is not too large, so that

R < π=2, the integrand can be expanded in a series, giving
a loss fraction

Nlost

ND
≈

1

VWS

Z
WS

ð1 − cosdðrÞÞdV

¼ d
2
hr2i − dð3d − 2Þ

24
hr4i þ dð15d2 − 30dþ 16Þ

720
hr6i

−
dð105d3 − 420d2 þ 588d − 272Þ

40320
hr8i þ � � � :

ð3:8Þ

Here,

hrpi ¼ 1

VWS

Z
WS

rpdV ð3:9Þ

denotes the normalized pth moment of the lattice.
Provided that the effective dimensionality of the source

distribution d > 8=π2 ≈ 0.81, the quadratic approximation
always implies a larger fraction of signals lost than the
spherical ansatz, because 1 − cosdðrÞ < r2d=2 on the
interval r ∈ ½0; π=2�.
Appendix A shows how the even moments may be

computed for the Zn lattice. The first six of these, which
suffice for this paper, are

2We recall that in the xi’s coordinates the quadratic approxi-
mation to the mismatch is m ≈ r2 ¼ Δx21 þ � � � þ Δx2n.
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hr2i¼nl2

12
;

hr4i¼nl4

720
ð5nþ4Þ;

hr6i¼ nl6

60480
ð35n2þ84nþ16Þ;

hr8i¼ nl8

3628800
ð175n3þ840n2þ656n−96Þ;

hr10i¼ nl10

95800320
ð385n4þ3080n3þ5456n2þ352n−768Þ;

hr12i¼ nl12

523069747200
ð175175n5þ2102100n4

þ6646640n3þ3747744n2−2883712nþ35328Þ:
ð3:10Þ

We note that all of these quantities can be expressed in
terms of the covering radius R2 ¼ nl2=4. The correspond-
ing even moments for the A�

n lattice are computed in
Appendix B, but not repeated here.
In the following we shall consider d ¼ 2- and d ¼

3-dimensional source distributions.

A. The Zn lattice: d = 2 case

For a source distribution with effective dimensionality
d ¼ 2, we now evaluate the fraction of lost sources,

assuming that the covering radius R ≤ π=2. The integrand
of Eq. (3.8) (fðrÞ ¼ sin2r, the mismatch in the spherical
ansatz [27]) is approximated (within 1%) by taking
terms up to the eighth moment. Then, Eq. (3.8) takes
the form

Nlost

ND
≈ hr2i − 1

3
hr4i þ 2

45
hr6i − 1

315
hr8i

¼ 1

3
R2 −

5nþ 4

135n
R4 þ 70n2 þ 168nþ 32

42525n2
R6

−
175n3 þ 840n2 þ 656n − 96

4465125n3
R8: ð3:11Þ

We plot this quantity in Fig. 2(a), where mworst ¼ sin2 R
denotes the worst-case mismatch in the spherical ansatz.
Figure 2(a) also compares the spherical ansatz [27] to the

mismatch with the prediction one would find using the
normal quadratic approximation. If the lattice is widely
spaced (sparse), then the spherical ansatz predicts signifi-
cantly fewer lost signals than the standard quadratic
approximation. The quadratic approximation keeps only
the first term in Eq. (3.11), so

�
Nlost

ND

�
Quadratic approximation

¼ 1

3
arcsin2ð ffiffiffiffiffiffiffiffiffiffiffiffi

mworst
p Þ; ð3:12Þ

which is valid in any dimension n.

(a) (b)

FIG. 2. The fraction of lost detections for the Zn lattice in dimensions n ¼ 2 (lower solid curve) and n ¼ 4 (upper solid curve). For
larger n the corresponding curves group very close together; the red dashed curve shows the n → ∞ limit of Eq. (4.1). The left-hand plot
shows a d ¼ 2-dimensional source distribution and the right-hand plot shows a d ¼ 3-dimensional distribution. The fraction of lost
detections depends upon the spacing of the template bank, which is set by the covering radius R; with the spherical ansatz [27], the worst
mismatch mworst ¼ sin2R. For closely spaced templates (small R) no detections are lost. For comparison the quadratic approximation
Eq. (3.12) is shown as a dotted curve. It predicts more lost signals than the spherical ansatz suggests. The fraction of lost detections at
maximum mismatch R ¼ π=2 is given in Table I. As n → ∞ and at covering radius R ¼ π=2, about 62% of detections are lost for a
d ¼ 2-dimensional source distribution, and about 77% are lost for a d ¼ 3-dimensional source distribution.
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To make a fair comparison of the spherical ansatz and the
quadratic approximation, we need to examine Eq. (3.11)
and Eq. (3.12) for the same lattice, with the same spacing,
implying identical WS radius R. In this case, Eq. (3.12)
gives the worst-case mismatch via the spherical ansatz [27]
mworst ¼ sin2R (rather than via the quadratic approximation
mworst ¼ R2). In what follows, we carry out this fair
comparison for the Zn lattice in d ¼ 3 case and for the
A�
n lattice in d ¼ 2 and d ¼ 3 cases.
Results of numerical computations of the maximal

fraction of lost detections are presented in Table I.

B. The Zn lattice: d = 3 case

For d ¼ 3 the integrand in Eq. (3.8) is fðrÞ ¼ 1 − cos3 r,
and we again assume R ≤ π=2. The expression Eq. (3.8)
takes the following form:

Nlost

ND
≈
3

2
hr2i − 7

8
hr4i þ 61

240
hr6i − 547

13440
hr8i

þ 703

172800
hr10i − 44287

159667200
hr12i: ð3:13Þ

Here, to maintain 1% accuracy in the integrand we have had
to include more terms than for d ¼ 2. Figure 2(b) illustrates
how the fraction of lost detections depends on the covering
radius (via the worst-case mismatch mworst). In the case of
quadratic approximation we keep only the first term in
Eq. (3.13),

�
Nlost

ND

�
Quadratic approximation

¼ 1

2
arcsin2ð ffiffiffiffiffiffiffiffiffiffiffiffi

mworst
p Þ; ð3:14Þ

valid in any dimension n. For a widely spaced lattice the
spherical ansatz predicts significantly fewer lost signals
than the standard quadratic approximation. The worst-case
values (fraction of lost detections at WS radius R ¼ π=2)
are shown in Table I.

C. The A�
n lattice: d = 2 and d = 3 cases

As for the Zn lattice, we can again estimate how the
fraction of lost detections depends upon the covering
radius. For the A�

n lattice, we can compute the moments
hrpi exactly, but cannot give a closed analytic form as we
did for theZn lattice. We use the exact expressions obtained
in Appendix B, and substitute these into the expressions
Eq. (3.11) and Eq. (3.13). The plots of the fraction of lost
detections versusmworst are given in Fig. 3, and someworst-
case values are shown in Table I.

IV. LARGE-n LIMITS

The reader will notice that as the dimension n of the
parameter space gets large, the curves appear to approach a
limit. This is explained in Sec. VI, where we show that as n
gets large, the mismatch distribution function becomes
sharply peaked at r2 ¼ R2=3 for the Zn lattice and at
r2 ¼ R2 for the A�

n lattice. Thus, for the Zn lattice, Eq. (3.8)
immediately gives

lim
n→∞

Nlost

ND
¼ 1 − cosdðR=

ffiffiffi
3

p
Þ

¼ 1 − cosd
�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
mworst

p
ffiffiffi
3

p
�
; ð4:1Þ

where we have used the relationship mworst ¼ sin2 R
between the WS radius and the worst-case mismatch.
For a source distribution with effective dimensionality

d ¼ 2 this has a limiting value of Nlost=ND ≈ 0.620 for
mworst ¼ 1. So, if there are at least a few dimensions to
parameter space, then placing templates in a rectangular
grid at unit mismatch will recover about 38% of signals. For
a source distribution with effective dimensionality d ¼ 3,
the limiting value isNlost=ND ≈ 0.766, so a rectangular grid
at unit mismatch would recover about 23% of signals.
In the case of the A�

n lattice, Sec. VI shows that in the
limit of large n we have

lim
n→∞

hr2iWS ¼ R2; ð4:2Þ

where the covering radius R ∈ ð0; π=2�. In fact this is also
true for the higher moments, as can be seen from either
Sec. VI or from the results of Appendix B, meaning that

lim
n→∞

hr2miWS ¼ R2m; m ¼ 1; 2; 3;…: ð4:3Þ

Thus,

TABLE I. The maximal fraction of lost detections Nlost=ND for
the Zn and A�

n lattices in small dimensions n, for d ¼ 2-
and d ¼ 3-dimensional source distributions. Note that all lattices
have “maximal”WS radius R ¼ π=2, which means that at a fixed
dimension n, the WS cells have smaller volume for Zn than
for A�

n.

Zn Zn A�
n A�

n

n d ¼ 2 d ¼ 3 d ¼ 2 d ¼ 3

2 0.558 0.665 0.642 0.736
3 0.579 0.697 0.720 0.816
4 0.589 0.714 0.771 0.863
5 0.595 0.724 0.806 0.893
6 0.599 0.731 0.832 0.914
7 0.602 0.736 0.851 0.928
8 0.605 0.740 0.867 0.939
9 0.606 0.743 0.880 0.948
10 0.608 0.745 0.890 0.954
11 0.609 0.747 0.899 0.960
12 0.610 0.749 0.906 0.964
n → ∞ 0.620 0.766 1 1
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lim
n→∞

Nlost

ND
¼ 1 − cosdR; ð4:4Þ

which leads to a worst-case limit of unity, as shown in
Table I. For large dimensions the quadratic approximation
of the fraction of lost detections can also be constructed in
the closed form [cf. Eq. (3.12)],

lim
n→∞

�
Nlost

ND

�
Quadratic approximation

¼ d
2
arcsin2ð ffiffiffiffiffiffiffiffiffiffiffiffi

mworst
p Þ: ð4:5Þ

This expression is shown by the dotted curves in Fig. 3.

V. COMPARISON OF Zn AND A�
n AT FIXED

NUMBER OF TEMPLATES

To evaluate the relative loss fractions of the Zn and A�
n

lattices at fixed number of templates, we must compare
them for identical values of the WS cell volume VWS. This
ensures that the same number of templates would be
employed to cover a given volume of parameter space.
Such a comparison is shown in Fig. 4. The horizontal

axis “x” in these plots is proportional to the “squared
length” V2=n

WS. In the figure, this is normalized to reach unity
when the covering radius of the A�

n lattice reaches R ¼ π=2.
From Eq. (2.21), the resulting normalization factor is the
inverse of

V2=n
WS-Max ¼ ½VA�

n
WSðR ¼ π=2Þ�2=n

¼ 3π2ðnþ 1Þ
nðnþ 2Þ ðnþ 1Þ−1=n: ð5:1Þ

Thus, if we denote the horizontal axes of Fig. 4 by
x ¼ ðVWS=VWS-MaxÞ2=n, by using Eq. (2.9) and Eq. (2.21)
we have

x ¼
� 4

3π2
ðnþ2
nþ1

Þð1þ nÞ1=nR2 for Zn

4R2

π2
for A�

n;
ð5:2Þ

where R is WS cell covering radius of the corresponding
lattice. Note that when the two lattices are compared at a
given point on the x axis, they have equal WS cell volume;
hence, they have different WS radii, and correspondingly
different values of l.
At fixed VWS, the WS radius R of theZn lattice is always

larger than the WS radius of the A�
n lattice. Since we allow

theWS radius for A�
n to reach maximal value π=2, it follows

that in the plots in Fig. 4, the WS radius of Zn exceeds π=2
for some of the domain. The transition point where the WS
radius of Zn reaches R ¼ π=2 is denoted by a dot on the
curves; to the right of this dot, the mismatch of the Zn

lattice is set to unity for r > π=2 in accordance with
Eq. (3.7). Thus, to the right of this dot, the Zn results
have been obtained with Monte Carlo integration, since the
analytic formulas obtained earlier only hold for R ≤ π=2.
As can be seen from Eq. (5.2), the location of this dot
approaches x ¼ 1=3 in the large-n limit.
One can see that these plots have taken us away from the

quadratic approximation to the mismatch. To get some
sense of how far away, consider the maximum mismatch at
the locations of the dots. In the quadratic approximation,
this would be m ¼ r2 ¼ π2=4 ≈ 2.47, more than double
the maximum allowed value of m ¼ 1. In the quadratic
approximation to the mismatch, the lower curves of Fig. 4

(a) (b)

FIG. 3. The fraction of lost detections for the A�
n lattice in different numbers of dimensions (moving upwards) n ¼ 2, 4, 10, 20, 100,

1000. The left-hand plot shows a d ¼ 2-dimensional source distribution and the right-hand plots shows a d ¼ 3-dimensional
distribution. As in the previous figure, the n → ∞ limit is shown in red, and the plot is restricted to R ≤ π=2. The quadratic
approximation is shown as a dotted curve in the limit n → ∞ [see Eq. (4.5)]. The fraction of lost detections at maximum mismatch
R ¼ π=2 is given in Table I.
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would be straight lines tangent to the given curves at
VWS ¼ 0. The upper curves would be horizontal lines
passing through the VWS ¼ 0 values.
The results of [25] show that for small mismatch, where

the quadratic approximation applies, the A�
n lattice is only

slightly less lossy than the Zn lattice. We can now see that
this marginal advantage decreases for larger mismatch: the
upper part of Fig. 4 shows the ratio of the loss fractions for
the two lattices. The efficiency of the A�

n lattice is at most
≈10% higher than that of the Zn lattice.
The large-n limits of Sec. IV are informative and can

be easily evaluated. Taking n → ∞ in Eq. (5.2) the loss
fractions Eq. (4.1) and Eq. (4.4) for both the lattices take the
identical form:

Nlost

ND
¼ 1 − cosd

�
π

2

ffiffiffi
x

p �
: ð5:3Þ

This is shown by the dotted red curves in Fig. 4. The
transition point x ¼ 1=3 is indicated with a dot; at that point
the covering radius of the Zn lattice is equal to π=2. While
the A�

n lattice has the same curve, the transition is only

relevant for the Zn lattice. For large n, the ratio of the loss
fractions approaches unity, as can be seen from Eq. (5.3).

VI. DISTRIBUTION FUNCTION
OF THE SQUARED DISTANCE

To understand and interpret the results presented above,
it is helpful to define the mismatch distribution function
PmðmÞ. This is a probability distribution: if points in
parameter space are chosen “at random,” then the proba-
bility that the mismatch lies in the range ðm;mþ dmÞ is
PmðmÞdm. Here, we compute PmðmÞ under the assumption
that the probability of selecting a particular point in
parameter space is a uniform distribution in the lattice
coordinates yi ∈ ½0;l�. This is equivalent to a uniform
distribution in xi.
With the quadratic approximation and the spherical ansatz

[27], the mismatch is a one-to-one function of the squared
distance r2, assuming of course in the spherical case that we
restrict attention to r ∈ ½0; π=2�. Hence, the mismatch
distribution can be obtained from the radius distribution
function Pr2ðr2Þ, assuming the same uniform distribution of

(a) (b)

FIG. 4. A comparison of lattice loss fractions at fixed number of templates. Lower curves: the loss fractions Nlost=ND for the Zn and
A�
n lattices, at fixed WS cell volume VWS. The red dotted curves represent the lattice loss fraction in the limit n → ∞ [see Eq. (5.3)].

Upper curves: ratios of these loss fractions. The horizontal axis normalization is given by Eq. (5.1). The dots on the curves indicate
where the covering radius for Zn reaches R ¼ π=2. The left (right) plots are for a d ¼ 2 (d ¼ 3)-dimensional source distributions.
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the yi. This distribution function can be used to compute an
average value of an integrable function f of r2,

hfðr2Þi ¼ 1

VWS

Z
WS

fðr2ÞdV ¼
Z

R2

0

fðr2ÞPr2ðr2Þdr2:

ð6:1Þ
Thus, the quantity we wish to compute is the distribution of
the values of the quadratic forms given in Eq. (2.5) for theZn

lattice and in Eq. (2.11) for the A�
n lattice.

A. r2 distribution for the Zn lattice

For finite values of the dimension n we have not found
a simple closed form for Pr2ðr2Þ, although we can give

expressions for n ¼ 1, 2, and 3. However, the large-n limit
is easily computed.
To compute the radius distribution function Pr2ðr2Þ for

large n, we make use of the central limit theorem [35].
Consider the distance Eq. (2.5). In the large-n limit it is the
sum of many independent random variables, each of which
has the same distribution. Thus, we expect that it should
approach a normal or Gaussian distribution, characterized
entirely by the mean and variance of the distribution.
We have already calculated the moments of r2 for the Zn

lattice in Eq. (3.10). The mean and variance are given by

hr2i ¼ 1

12
nl2 ¼ 1

3
R2; ð6:2Þ

FIG. 5. The probability distribution of the squared distance Pr2ðr2Þ is shown as the solid curves for the Zn (left plots) and A�
n

(right plots) lattices, for a varying number of dimensions n. The top curves show small dimensions n ¼ 2, 4, 6, 8, 10 and the lower
curves show larger dimensions n ¼ 20, 50, 100, 200, 500. The dotted curves show the Gaussian approximation given in Eq. (6.4), with
the correct mean and variance for the given lattice and dimension. One can see that for the Zn lattice, as expected from the central limit
theorem, the Gaussian approximation approaches the true distribution as n → ∞, which is a Dirac delta function peaked at r2=R2 ¼ 1=3.
For A�

n, the central limit theorem does not apply, and the Gaussian approximation does not approach the true distribution for
large dimension. Nevertheless, as n → ∞, the distributions approaches a Dirac delta function peaked at r2=R2 ¼ 1. Similar plots are
presented in [17].
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and

σ2 ¼ hr4i − hr2i2 ¼ 1

180
nl4 ¼ 4

45n
R4: ð6:3Þ

From these, the large-n limit follows immediately. Note
that as n gets large, the variance vanishes, which means that
the distribution becomes sharply peaked.
If n is large enough that the central limit theorem applies,

then the distribution of squared distance approaches a
Gaussian normal distribution:

Pr2ðr2Þdr2 ¼ ð2πσ2Þ−1=2e−ðr2−R2=3Þ2=2σ2dr2: ð6:4Þ

Note that if the dimension n is large, then this has vanishing
support for negative r2, otherwise the normalization may be
suitably adjusted.
In the n → ∞ limit with fixed mismatch, the variance

vanishes, and the distribution approaches a Dirac delta
function

lim
n→∞

Pr2ðr2Þ ¼ δ

�
r2 −

1

3
R2

�
: ð6:5Þ

In Fig. 5 we show how this limit is approached. When n is
larger than 2, one has 2σ2 < ðR2=3Þ2 and as soon as n is a
few times larger than this, the Gaussian distribution
becomes a good approximation to the actual mismatch.

B. r2 distribution for the A�
n lattice

The case of the A�
n lattice is not as simple. The squared

distance is still a quadratic form which can be diagonalized,
but the variables which make it up are no longer indepen-
dent, because they are constrained by the boundaries of the
WS. It is unlike the Zn lattice, where these constraints are
independent for each variable. Hence, the central limit
theorem cannot be applied.
It is informative to examine the moments of r2 defined

by Eq. (3.9), which are computed exactly via recursion in
Appendix B. Figure 6 shows the mean and variance of r2

for the A�
n lattice. One immediately sees a significant

difference when compared with the Zn lattice: at large
dimension, the mean value of squared radius hr2i
approaches the squared WS radius R2, whereas for Zn it
is 1=3 of that value. As with the cubic lattice, the variance
approaches zero at large dimension, indicating that the
distribution is becoming sharply peaked. Some higher
moments hr2mi are shown in Fig. 7: for large n they
asymptote to R2m.
It is straightforward to study the distribution function

numerically. First, select points at random from within the
FP, by drawing the lattice coordinates y1;…; yn from
independent uniform distribution in the range ½0;l�.
Then identify the closest lattice point to x ¼ yiei and
calculate the distance between the two. We now describe

how to identify this closest lattice point. (An algorithm is
given in [29] for An as well as the correspondence with the
dual lattice A�

n, but we were unable to implement it.)
It is straightforward to show that the closest lattice

point to x must be one of the vertices of the FP. Since
there are 2n such vertices, when n is large, it is not
computationally feasible to check the distances to all of
them. However, it is trivial to show that the distance to
the closest lattice point is unchanged if we permute the
ordering of the lattice coordinates yi. So the first step of
simplification is to reorder the lattice coordinate values of
yi in increasing order.

FIG. 6. The mean and variance of the squared radius for the A�
n

lattice for dimensions from 1 to 1000, obtained exactly using the
recursion in Appendix B. At large dimension the distribution is a
narrow peak at the squared WS radius R2.

FIG. 7. The even moments hrmi form ¼ 2, 4, 6, 8, 10, 12 in the
units of Rm for the A�

n lattice for dimensions from 1 to 1000 are
shown in the ascending order.
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We now prove the following. If 0 ≤ y1 ≤ � � � ≤ yn ≤ l
are the lattice coordinates of a point in the FP, then the
closest FP vertex has coordinates of the form ð0;…; 0;
l;…;lÞ, where there are k zeros followed by (n − k) l’s.
The proof is by contradiction.
Suppose that the closest vertex to the point with lattice

coordinates ðy1;…; ynÞ is a point with lattice coordinates
A ¼ ð0;…; 0;l; 0;l;…;lÞ and is at squared distance r2A.
We use yR to denote the lattice coordinate value at the
position of the rightmost zero, and yL to denote the value at
the leftmost l. Now, construct a different lattice vertex B,
by swapping the leftmost l with the 0 just to its right,
so that B ¼ ð0;…; 0;l;l;…;lÞ, and denote its squared
distance from y by r2B. The difference between the squared
distances is

r2A − r2B ¼
�
1þ 1

n

�
ððyL − lÞ2 þ y2R − ðyR − lÞ2 − y2LÞÞ

¼ 2l
�
1þ 1

n

�
ðyR − yLÞ: ð6:6Þ

Since the coordinates are ordered so that yL < yR, it
follows that r2A − r2B > 0 and thus that A is not the closest
lattice vertex to y. The same argument shows that swapping
a leftmost l with a 0 anywhere to its right will always
decrease the distance. The result follows by induction.
This makes it computationally straightforward to iden-

tify the closest vertex to any point inside the FP. First, sort
the lattice coordinates in increasing order. Then, calculate
the distances to the nþ 1 vertices with coordinates of the
form ð0;…; 0;l;…;lÞ and select the minimum.
We have used this method to find Pr2ðr2Þ numerically for

the A�
n lattice, for dimensions from n ¼ 1 to n ¼ 1000. This

is plotted in Fig. 5. In comparison with the cubic lattice Zn,
two differences are immediately apparent. The first is that
as the dimension n increases, the distribution increasingly
becomes peaked around the WS radius R, and the second
is that the Gaussian approximation (with the correct mean
and variance) is not good, because it does not fall off fast
enough as r → R.

VII. CONCLUSION

In this paper, we have computed and compared the loss
fractions of two template grids. The first is based on the
simple cubic lattice Zn, and the second is based on the root
lattice A�

n, which is a generalization of the two-dimensional
hexagonal lattice. In particular, we extend the results of [25]
to the case of large mismatch, by exploiting the spherical
ansatz [27].
The main result is rather clear, and visible in the plots in

the upper parts of Fig. 4. The slight advantages offered by
the A�

n lattice at small mismatch decrease at larger mis-
match. This can be easily understood from the distribution
of the squared radius for points randomly selected within a

WS cell. As the dimension n of parameter space increases,
this distribution becomes an increasingly narrow peak
centered closer and closer to the squared WS radius.
This behavior can be seen in the rhs plots of Fig. 5.
We believe that in the limit as the dimension n → ∞, this

may be the case for any lattice. To state it precisely, the
distribution function for the squared radius becomes an
increasingly narrow peak, which is true if and only if

lim
n→∞

hr2mi ¼ hr2im; ð7:1Þ

with the understanding that the WS radius R is held fixed
during the limiting process. We have tried to prove this
using Jensen’s inequality [36], but are not convinced that
our argument is correct.
One of the motivations for this work was the hope that

replacing the Zn lattices used in current continuous gravi-
tational-wave and gamma-ray pulsar searches by “better”
ones such as A�

n would significantly increase the number of
sources found. Unfortunately, the gain would be very small.
The results obtained in this paper are for two specific

template banks, both constructed as regular lattices.
However, we expect that these are representative of the
behavior of all (generic) template banks, as the template
spacings are increased beyond the quadratic approxima-
tion. Thus, they provide useful insights for the general case.
We conclude with two final messages for the data analyst:
First, a fairly effective template-based search can be

constructed at mismatch values that are shockingly high in
the quadratic approximation (quadratic mismatch exceed-
ing unity!). For example, consider a four-dimensional
parameter space and a two-dimensional source distribution
(e.g., a search for isolated pulsars in a “planar” Galaxy).
Place the templates on a Z4 lattice, spaced so that the
quadratic approximation predicts a worst-case mismatch
of 1. Then, according to the left-hand plot of Fig. 2, only
≈28% of signals3 would be lost from the mismatch between
signal and template parameters.
Second, if the goal is to detect as many signals as

possible with a fixed number of templates, there is little
incentive to build template banks with sophisticated lattices
such as A�

n instead of the humble cubic lattice Zn. While
there may be particular cases where the small gains
(typically less than 10%) are worth the trouble, for most
purposes the effort is better invested elsewhere.
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APPENDIX A: EVEN MOMENTS
OF THE Zn LATTICE

For the Zn lattice, the general even-order moment can be
computed as follows. One uses the multinomial expansion
to write

hr2mi ¼
X

k1þ���þkn¼m

�
m

k1;…; kn

�Yn
i¼1

hx2kii i; ðA1Þ

where the sum is over all non-negative integer ki’s whose
sum equals m. The multinomial coefficient is

�
m

k1; k2;…; kn

�
¼ m!

k1!k2! � � � kn!
; ðA2Þ

and the coordinate moments are

hx2ki ¼ 1

l

Z
l=2

−l=2
x2kdx ¼ 1

2kþ 1

�
l
2

�
2k
: ðA3Þ

In the sum Eq. (A1), there are many identical terms on the
rhs which are obtained by permutation of the indices of
the ki. The number of these identical terms depends upon
the number of distinct nonzero values taken by the ki,
which in turn depends upon the dimension n.
Suppose that for each term, the nonzero ki are sorted in

increasing order; there are at most m of them. Let q ≤ m
denote the number of these nonzero ki, and let n1 denote the
number of ki which have the smallest value, n2 the next
smallest, and so on; the sum is bounded by

P
i ni ≤ m.

Then the number of equivalent (under permutation) terms
which appear on the rhs of Eq. (A1) is equal to the number

of ways in which n1 coordinates can be chosen from the n,
and n2 can be chosen from the remaining n − n1, and so on.
This is

Nðk1;…; kqÞ

¼
�

n

n1

��
n − n1
n2

�
× � � � ×

�
n − n1 − � � � − np−1

np

�

¼ n!
n1!n2! � � �np!ðn − n1 − � � � − npÞ!

; ðA4Þ

where the quantities in the second line are the standard
binomial (choice) coefficients; the rhs is a polynomial in n
of order ≤ m. Thus one obtains

hr2mi ¼
X

k1þ���þkq¼m

� m

k1;…; kq

	
Nðk1;…; kqÞ

ð2k1 þ 1Þ � � � ð2kq þ 1Þ
�
l
2

�
2m
;

ðA5Þ

where the sum is over all distinct (under permutation)
partitions ki.
For example, for m ¼ 5, the rhs of Eq. (A5) has seven

terms, with the following sets of ki∶ f1; 1; 1; 1; 1g;
f1; 1; 1; 2g; f1; 2; 2g; f1; 1; 3g; f2; 3g; f1; 4g, and f5g.
Respectively, these have ni given by f5g;f3;1g;f1;2g;
f2;1g;f1;1g;f1;1g, and f1g, with corresponding N given
by nðn−1Þðn−2Þðn−3Þðn−4Þ=5!, nðn−1Þðn−2Þðn−3Þ=3!,
nðn − 1Þðn − 2Þ=2!, nðn−1Þðn−2Þ=2!, nðn − 1Þ, nðn − 1Þ
and n. Thus one obtains

�
l
2

�
−10

hr10i ¼
�

5

1; 1; 1; 1; 1

�
nðn − 1Þðn − 2Þðn − 3Þðn − 4Þ

5!35
þ
�

5

1; 1; 1; 2

�
nðn − 1Þðn − 2Þðn − 3Þ

3!335

þ
�

5

1; 2; 2

�
nðn − 1Þðn − 2Þ

2!523
þ
�

5

1; 1; 3

�
nðn − 1Þðn − 2Þ

2!327

þ
�

5

2; 3

�
nðn − 1Þ
5 · 7

þ
�

5

1; 4

�
nðn − 1Þ
3 · 9

þ
�
5

5

�
n
11

:

This simplifies, to give the tenth moment of Eq. (3.10).
The supplementary material [37] for this manuscript

include a short Mathematica script to calculate arbitrary
even moments of the Zn lattice.

APPENDIX B: EVEN MOMENTS
OF THE A�

n LATTICE

Here we give a general expression for computation of
any even moment of the A�

n lattice. The computation is a

generalization of Chapter 21, Sec. 3.F of [29], where the
second moment is found.
The un-normalized and normalized pth moments of a

region or object D are defined as

UpðDÞ¼
Z
D
rpdV; and IpðDÞ¼UpðDÞ=U0ðDÞ; ðB1Þ

where D is the domain of integration and the radius r is
measured from the origin O (see Fig. 8).
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The WS cell in dimension n is called a permutohedron
and is denoted Pn. It has a complex shape with ðnþ 1Þ!
vertices and 2nþ1 − 2 faces. According to the definition
Eq. (B1), U0ðPnÞ is the volume of the WS cell Pn. The
normalizedmth moment IpðPnÞ is obtained by dividing out
the volume.
Note that the length conventions used in this Appendix

follow [29], and differ from the conventions used in the
remainder of this paper. To transform a quantity associated
withPn with dimensions of ðlengthÞd in this section into the
units used in the remainder of the paper, multiply by

�
l2

nðnþ 1Þ
�
d=2

: ðB2Þ

For example, in the conventions of this section, the point
in Pn most distant from the center has squared radius
nðnþ 1Þðnþ 2Þ=12, which should be compared with
Eq. (2.20), and the n-volume is U0ðPnÞ ¼ ðnþ 1Þn−1=2,
which should be compared with Eq. (2.14).
Each face of Pn is the direct product of a pair of lower-

dimensional permutohedrons.4 For n even there are n=2
types of faces and for n odd there are ðnþ 1Þ=2 types of
faces. Following [29] the different types of faces are labeled
by s ¼ 0;…; n − 1. A face of type s, Fn−1;s, is the Cartesian
product, Fn−1;s ¼ Ps × Pn−s−1; faces of type s and faces of
type n − s − 1 are equivalent. The number of faces of type s
is the binomial coefficient

�
nþ 1

sþ 1

�
: ðB3Þ

The squared distance from the center of Pn to the center of a
face of type s is

h2n;s ¼
1

4
ðsþ 1Þðn − sÞðnþ 1Þ: ðB4Þ

By symmetry, the line from the center of Pn to the center of
any face is orthogonal to the face. We call this the center
line to the face.
Because the faces are formed from lower-dimensional

permutohedrons, the moments may be calculated by
recursion. We divide Pn into generalized pyramids, one
face at a time, by taking the bundle of all line segments that
begin at the center of the Pn and extend to anywhere in that
face. These pyramids are disjoint (apart from a set of
measure zero on their boundaries) and their union is Pn. To
compute the moments of Pn, we compute the moments of
the pyramids and sum them.
The mth moment of each pyramid can be found with

elementary calculus. We slice each pyramid into slabs of
thickness dx, where x ∈ ½0; hn;s� is a a coordinate that runs
along the center line to a face of type s, and the slicing is
orthogonal to the center line shown in Fig. 8. Each slab has
n-volume

dV ¼ xn−1

hn−1n;s
U0ðPsÞU0ðPn−s−1Þdx; ðB5Þ

so by integration over x the volume of the pyramid is

Z
hn;s

0

dV ¼ 1

n
hn;sU0ðPsÞU0ðPn−s−1Þ: ðB6Þ

Summing over all faces gives

U0ðPnÞ ¼
1

n

Xn−1
s¼0

�
nþ 1

sþ 1

�
hn;sU0ðPsÞU0ðPn−s−1Þ: ðB7Þ

This recursion relation, together with the initial value
U0ðP0Þ ¼ 1, determines the volume U0ðPnÞ for dimen-
sions n > 0.
To construct a general recursion relation for an arbitrary

even moment U2mðPnÞ, m ¼ 0; 1; 2; 3;…, we begin with
the expression

U2mðPnÞ ¼
Xn−1
s¼0

�
nþ 1

sþ 1

�
U2mðPn;sÞ; ðB8Þ

where U2mðPn;sÞ’s are the moments of n-dimensional pyra-
mids Pn;s into which a permutohedron Pn is decomposed.

FIG. 8. The n-dimensional pyramid associated with (n − 1)-
dimensional face Fn−1;s. The point O is such that for all
congruent faces Fn−1;s the associated pyramids are congruent.
The axis Ox is perpendicular to the face Fn−1;s, and hn−1;s is the
distance form O to the face. The increment dx is thickness of the
slab at x.

4A face of Pn is only the direct product (metrically as well as
geometrically!) of lower-dimensional faces of Pn if we follow the
“dimension-dependent” length conventions of [29].
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Every such moment can be calculated by using the definition
Eq. (B1), substituting for r2 the expression

r2 ¼ x2

h2n;s
ρ2n−1;s þ x2. ðB9Þ

Here ρn−1;s is the distance from the point of intersection of the
axis Ox with the face Fn−1;s to an arbitrary point of the face
(see Fig. 8). It follows that

U2mðPn;sÞ ¼
Z
Fn−1;s

dV
Z

hn;s

0

dx

�
x2

h2n;s
ρ2n−1;s þ x2

�
m

¼
Xm
k¼0

�
m

k

�Z
Fn−1;s

ρ2kn−1;sdV
Z

hn;s

0

x2mþn−1

hn−1þ2k
n;s

dx;

where the volume element dV is in the face Fn−1;s. (For odd
moments m ¼ kþ 1=2, where k ¼ 0; 1; 2;… the finite sum
in the expression above is replaced by an infinite series.)
Using the definition Eq. (B1) for themomentsU2kðFn−1;sÞ of
faces Fn−1;s (here, with origin at the center of the face) and
integrating over x we obtain

U2mðPn;sÞ ¼
h2ðm−kÞþ1
n;s

nþ 2m

Xm
k¼0

�
m

k

�
U2kðFn−1;sÞ: ðB10Þ

Substituting this expression into Eq. (B8) we obtain

U2mðPnÞ ¼
1

nþ 2m

Xn−1
s¼0

Xm
k¼0

�
nþ 1

sþ 1

��
m

k

�

× h2ðm−kÞþ1
n;s U2kðFn−1;sÞ: ðB11Þ

The next step is to consider the face Fn−1;s as the Cartesian
product Ps × Pn−s−1 and apply again the definition Eq. (B1)
to the moments U2kðFn−1;sÞ, with the origin at the center of
the face. Replace r2 with

ρ2n−1;s ¼ ρ2s þ ρ2n−1−s; ðB12Þ

TABLE II. Numerical values for the first six even moments of
the WS cell Pn of the A�

n lattice for dimensions n ¼ 1;…; 15,
where the covering radius R is given in Eq. (2.20). The exact
values of these moments are given in Table III. In the text we
argue that limn→∞hr2i=R2 ¼ 1, and that limn→∞hr2mi ¼ hr2im.
Hence, as n → ∞, all of these table entries should approach unity.

n hr2i=R2 hr4i=R4 hr6i=R6 hr8i=R8 hr10i=R10 hr12i=R12

1 0.3333 0.2000 0.1429 0.1111 0.0909 0.0769
2 0.4167 0.2333 0.1482 0.1013 0.0727 0.0541
3 0.4750 0.2727 0.1728 0.1167 0.0824 0.0602
4 0.5187 0.3083 0.1987 0.1353 0.0959 0.0701
5 0.5529 0.3397 0.2233 0.1540 0.1101 0.0810
6 0.5807 0.3672 0.2460 0.1720 0.1242 0.0921
7 0.6038 0.3914 0.2669 0.1891 0.1380 0.1031
8 0.6234 0.4130 0.2862 0.2052 0.1512 0.1139
9 0.6404 0.4324 0.3039 0.2204 0.1639 0.1244
10 0.6552 0.4499 0.3202 0.2346 0.1760 0.1346
11 0.6683 0.4657 0.3354 0.2481 0.1876 0.1444
12 0.6800 0.4802 0.3496 0.2608 0.1986 0.1539
13 0.6905 0.4936 0.3628 0.2728 0.2092 0.1630
14 0.7001 0.5058 0.3751 0.2842 0.2193 0.1719
15 0.7088 0.5172 0.3867 0.2950 0.2290 0.1804

TABLE III. Exact values of the lowest-order even moments for the A�
n lattice, as given by the recursion relationship derived in

Appendix B. Numerical values may be found in Table II.

n hr2i=R2 hr4i=R4 hr6i=R6 hr8i=R8 hr10i=R10 hr12i=R12

1 1
3

1
5

1
7

1
9

1
11

1
13

2 5
12

7
30

83
560

319
3150

403
5544

1517
28028

3 19
40

409
1500

27217
157500

38281
328125

1427333
17325000

539235971
8957812500

4 389
750

37
120

312953
1575000

15977293
118125000

41514229
433125000

10041681373
143325000000

5 209
378

22469
66150

1085536
4862025

131002604
850854375

43271601607
393094721250

120676030448681
1490484151406250

6 78077
134456

423151
1152480

66683227
271063296

2855332489
16602626880

3049146605765
24545323579392

561024599680723
6091703033794560

7 89035
147456

1515163
3870720

3645004793
13655900160

813284979379
4301608550400

43871720179117
317974904045568

47003442367289761
455737531223310336

8 3313213
5314410

146336671
354294000

127738979843
446410440000

23552471440009
114791256000000

343658283760349
2272866868800000

26512131817729691533
232684745693400000000

9 1100657
1718750

117719
272250

895784540747
2947957031250

535892016104111
2432064550781250

217007542831819286
1324259147900390625

7422858954915606122659
59651253317173095703125

10 18539106101
28295372292

9643229133
21435888100

396436661186
1237922537775

7667873302060633
32681154997260000

556729110272163449
3163535803734768000

4395579391379571244226791
32656586938990809795000000

11 25941989
38817792

6463162733
13877360640

1863816574691
5556495200256

1400046042361
5643315437760

1406514743813641321
7499234843102306304

26425247449515274378841
182976643149919334876160

12 17061288862565
25090245516518

389281868476643
810607932072120

135373127776116799
387267939547455330

3186173305108287135529
12217012599590390810400

194307923663053340412317
978338368975198496096832

44840145568064414926573819
291366954251159115746656512

13 81923134171
118639604580

2718612928907
5508267355500

4772968402612073
13157873645450625

26384102217284296859
96710371294062093750

8775008810370829285906
41949735388321000865625

3034165287365868825626600411
18609951361643904009012890625

14 3588341852791
5125781250000

5807913344549
11481750000000

6330843027118853801
16878172500000000000

3357739197420742084967
11814720750000000000000

9575820529342227197910377
43667207892000000000000000

17383801168332194619594087887
101149132462560000000000000000

15 423929152911307
598134325510144

49305729309609649
95327658128179200

210551088639050555933
544511583228159590400

19505342217281370335341
66119263677705093120000

271786289285385309816213443
1186973021542161831690240000

664211366929553172581639942783
3682314032738752046039040000000
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and use the binomial theorem to raise Eq. (B12) to power k.
Employing the definition Eq. (B1) for the moments U2jðPsÞ
and U2ðk−jÞðPn−1−sÞ, we obtain

U2kðFn−1;sÞ ¼
Xk
j¼0

�
k

j

�
U2jðPsÞU2ðk−jÞðPn−s−1Þ: ðB13Þ

Finally, substituting Eq. (B13) into Eq. (B11), we obtain the
following relation for the even moments of Pn:

U2mðPnÞ ¼
1

nþ 2m

Xn−1
s¼0

Xm
k¼0

Xk
j¼0

�
nþ 1

sþ 1

��
m

k

��
k

j

�

× h2ðm−kÞþ1
n;s U2jðPsÞU2ðk−jÞðPn−s−1Þ: ðB14Þ

This recursion relation, together with the initial values
U0ðP0Þ ¼ 1 and U2mðP0Þ ¼ 0, for m ¼ 1; 2; 3;…, defines
an arbitrary even-order moment.
In Tables II and III we give numerical and exact values

for the even moments hr2mi obtained from U2mðPnÞ,
for dimensions n < 16. The un-normalized moments
are computed using the recursion relation Eq. (B14).

The normalized moments I2mðPnÞ are then defined by
Eq. (B1). Both of these follow the conventions of Conway
and Sloane, Chapter 21, Sec. 3F [29]. They are then
rescaled following Eq. (B2) with d ¼ 2m to obtain
hr2mi, which are in the conventions used everywhere else
in this paper.
The following lines of Mathematica are sufficient to

calculate the arbitrary even moments U2mðPnÞ ¼ U½m; n�
up to dimensions of several thousand. The normalized
moments are I2mðPnÞ ¼ II½m; n�, and the moments
(with the length conventions used in the remainder of
this paper, as they appear in Tables II and III) are
hr2mi ¼ Mo½m; n�.
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