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Abstract

In this work, we focus on the numerical approximation of a hybrid fluid-kinetic
plasma model for electrons, in which energetic electrons are described by a Vlasov
kinetic model whereas a fluid model is used for the cold population of electrons.
First, we study the validity of this hybrid modelling in a two dimensional con-
text (one dimension in space and one dimension in velocity) against the full (stiff)
Vlasov kinetic model and second, a four dimensional configuration is considered
(one dimension in space and three dimensions in velocity) following [1]. To do so,
we consider two numerical Eulerian methods. The first one is based on the Hamil-
tonian structure of the hybrid system and the second approach, which is based on
exponential integrators, enables to derive high order integrator and remove the CFL
condition induced by the linear part. The efficiency of these methods, which are
combined with an adaptive time stepping strategy, are discussed in the different
configurations and in the linear and nonlinear regimes.

1 Introduction
The goal of this work is to numerically solve hybrid fluid-kinetic models describing
charged particles systems in which hot particles interact with a cold bulk. Such a con-
figuration can be studied in tokamak plasmas where alpha-particles (generated by fusion
reaction) interact with the plasma. Another example can be found in the atmosphere
where suprathermal electrons of solar wind interact with Earth magnetosphere. Due
to the strong thermal velocity ratio between cold and hot particles, the original kinetic
model is too costly from a numerical point of view, in particular because the velocity
mesh has to be very fine to capture the thermal velocity of cold particles. Thus, the
derivation of simplified model is of great interest. Specific models have been proposed in
such context (see [1],[2],[3],[4],[5],[6]) which are derived from a reference kinetic descrip-
tion for the whole plasma. A distribution function is then introduced for the electrons:
𝑓(𝑡, 𝑥, 𝑣) ∈ R+ is the solution of a Vlasov-Maxwell system (ions are supposed fixed).
Assuming the electrons population can be split into a cold population 𝑓𝑐 and a popu-
lation of energetic (hot) electrons 𝑓ℎ, a first step, consists in decomposing the original
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distribution function 𝑓 as 𝑓 = 𝑓𝑐 + 𝑓ℎ. This decomposition let us solve the thermal ve-
locity ratio problem since kinetic functions 𝑓𝑐 and 𝑓ℎ could be solved on distinct velocity
meshes. However we can go further to remove velocity mesh on 𝑓𝑐. Indeed in a second
step, it is assumed that the cold particles are close to a thermodynamical equilibrium
with a temperature 𝑇𝑐 ≪ 1 and as such can be approximated by a fluid model. A hybrid
fluid-kinetic model is then obtained which can be simplified again by neglecting non-
linear terms of the cold (fluid) part (the wave perturbation of cold particles have small
amplitude). The so-obtained model is called Vlasov-Hybrid linearized (VHL) (see [1])
and it is the goal of this work to check its validity compared to the original full kinetic
model and to propose new specific numerical methods for its discretization.

To numerically solve the VHL model, we propose here two methods. The first one
lies on the fact that the VHL model has a noncanonical Hamiltonian structure [8],[5],[6],
which ensures the preservation of invariants like the total energy. The objectif is to exploit
this structure to construct numerical schemes which will have a good long time behavior
[9],[10],[11],[12],[13]. The first scheme is a splitting scheme designed from a splitting of the
Hamiltonian. This approach enables to combine in a clever way the terms of the model
and we are led to solve simple subsystems (like in [12],[14],[10]). A remarkable property
is that each subsystem can be solved exactly in time, the error in time thus only comes
from the splitting method, knowing that splitting methods of arbitrary order can be
derived by composition ([13]). The second method belongs to the family of exponential
and Lawson integrators [15],[16],[17],[18],[19],[20]. Indeed, exploiting the fact that the
linear part of the VHL model can be solved exactly and efficiently, high order Lawson
schemes are constructed. We mention that these two methods (splitting and Lawson) can
be combined with adaptive time stepping strategies. For Lawson methods, we benefit
from the framework of embedded methods [21],[22],[23],[24] for which the local error can
be computed easily. For the splitting methods, the recent work [25] gives alternative
strategies which enable us to compare these techniques in the charged particles context.
Note that for the phase space approximation, spectral methods are used in space whereas
high order finite difference methods (WENO) are used in velocity.

The Hamiltonian splitting bears similarities with the approaches proposed by [11] or
[1]. However, in these papers, Particle-In-Cell methods are used in phase-space whereas
Eulerian methods are used in the present work. Thus, this work is closer to the papers
[12],[10] in which an operator splitting is performed before discretizing, whereas in [11]
and [1], a phase-space discretization is performed before discretizing in time.

To validate our numerical methods, we use relation dispersion to compute the insta-
bility rates. We can go further by reconstructing the fundamental mode of the electric
field (see [26],[27]). In addition to precise way to validate the codes, this study enables
to make the link between the models (full kinetic and VHL).

The rest of the paper is organized as follows. First the VHL model and its Hamiltonian
structure are presented. Then, the two time discretizations (Hamiltonian splitting and
Lawson) are introduced. In Section 4, we focus on the 1dx-1dv case in which we discuss
the domain of validity of the VHL with respect the the full kinetic model. Finally, Section
5 is dedicated to the 1dx-3dv case.
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2 Electron hybrid model
Following [1], we consider a hybrid system for which the electron population mainly
consists of cold electrons (the unknown will be denoted with a subscript ”𝑐”) which are
approximated by a thermal equilibrium with zero temperature (the so-called cold plasma
approximation). Its kinetic description can be seen as a Dirac mass, limit of a Gaussian
function as the temperature 𝑇𝑐 goes to zero:

𝑓𝑐(𝑡,x,v) = 𝜌𝑐(𝑡,x)𝛿v=u𝑐(𝑡,x)(v) = lim
𝑇𝑐→0

𝜌𝑐(𝑡,x)

(2𝜋𝑇𝑐(𝑡,x))3/2
exp

(︂
−|v − u𝑐(𝑡,x)|2

2𝑇𝑐(𝑡,x)

)︂
. (1)

Moreover, a small amount of energetic electrons (the unknown will be denoted with a
subscript ”ℎ”) is considered, through a kinetic description. The ions are supposed to form
a stationary background of density 𝜌𝑖. Based on these assumptions, a hybrid fluid-kinetic
model is considered for the cold and hot populations, coupled with Maxwell equation for
the electromagnetic field. Indeed, from the full electron Vlasov-Maxwell system satisfied
by the distribution function 𝑓(𝑡,x,v) with the time 𝑡 ≥ 0, the space x ∈ Ω ⊂ R3 and
the velocity v ∈ R3), B0 ∈ R3 being an external magnetic field, which writes

𝜕𝑓

𝜕𝑡
+ v · ∇𝑓 +

𝑞𝑒
𝑚𝑒

(E+ v × (B+B0)) · ∇v𝑓 = 0,

𝜕B

𝜕𝑡
= −∇× E,

1

𝑐2
𝜕E

𝜕𝑡
= ∇×B− 𝜇0𝑞𝑒

∫︁
R3

v𝑓dv,

∇ · E =
1

𝜀0

[︂
𝑞𝑖𝜌𝑖 + 𝑞𝑒

∫︁
R3

𝑓dv

]︂
,

∇ ·B = 0,

the decomposition 𝑓(𝑡,x,v) = 𝑓𝑐(𝑡,x,v) + 𝑓ℎ(𝑡,x,v) together with the approximation
(2) leads to the following fluid-kinetic hybrid model

𝜕𝜌𝑐
𝜕𝑡

+ ∇ · (𝜌𝑐u𝑐) = 0,

𝜕(𝜌𝑐u𝑐)

𝜕𝑡
+ ∇ · (𝜌𝑐u𝑐 ⊗ u𝑐) =

𝑞𝑒𝜌𝑐
𝑚𝑒

(E+ u𝑐 × (B+B0)),

𝜕𝑓ℎ
𝜕𝑡

+ v · ∇𝑓ℎ +
𝑞𝑒
𝑚𝑒

(E+ v × (B+B0)) · ∇v𝑓ℎ = 0,

𝜕B

𝜕𝑡
= −∇× E,

1

𝑐2
𝜕E

𝜕𝑡
= ∇×B− 𝜇0(j𝑐 + jℎ),

∇ · E =
1

𝜀0
[𝑞𝑖𝜌𝑖 + 𝑞𝑒(𝜌𝑐 + 𝜌ℎ)],

∇ ·B = 0,

j𝑐 = 𝑞𝑒𝜌𝑐u𝑐,

jℎ = 𝑞𝑒

∫︁
R3

v𝑓ℎdv := 𝑞𝑒𝜌ℎuℎ,
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where the moments of the hot particles are denoted by∫︁
R3

(1,v)𝑓ℎ dv = (𝜌ℎ, 𝜌ℎuℎ).

Initial and boundary conditions which are necessary to complete the model will be given
below.

The above hybrid model can be reduced to an equivalent set of equations for the un-
known (u𝑐,B,E, 𝑓ℎ), or equivalently (j𝑐,B,E, 𝑓ℎ), which we intend to solve numerically.
This derivation is detailed in [1] and we refer the reader to this work. We then write

𝜕j𝑐
𝜕𝑡

+∇ ·
(︁
j𝑐 ⊗

j𝑐
𝑞𝑒𝜌𝑐

)︁
=

𝑞𝑒
𝑚𝑒

(𝑞𝑒𝜌𝑐E+ j𝑐 × (B+B0)),

𝜕𝑓ℎ
𝜕𝑡

+ v · ∇𝑓ℎ +
𝑞𝑒
𝑚𝑒

(E+ v × (B+B0)) · ∇v𝑓ℎ = 0,

𝜕B

𝜕𝑡
= −∇× E,

1

𝑐2
𝜕E

𝜕𝑡
= ∇×B− 𝜇0(j𝑐 + jℎ).

Still following [1], the system is further simplified by considering a linearization of the
equations around a stationary state (𝜌𝑐 = 𝜌

(0)
𝑐 (x), j𝑐 = 0,B = B0(x),E = 0, 𝑓ℎ =

𝑓 0
ℎ(x,v)). We finally get the following system satisfied by the perturbation (the same

notation as before are however kept)

𝜕j𝑐
𝜕𝑡

= 𝜀0Ω
2
𝑝𝑒E+ j𝑐 ×

𝑞𝑒
𝑚𝑒

B0(x), (2)

𝜕𝑓ℎ
𝜕𝑡

+ v · ∇𝑓ℎ +
𝑞𝑒
𝑚𝑒

(E+ v × (B+B0)) · ∇v𝑓ℎ = 0, (3)

𝜕B

𝜕𝑡
= −∇× E, (4)

1

𝑐2
𝜕E

𝜕𝑡
= ∇×B− 𝜇0j𝑐 − 𝜇0𝑞𝑒

∫︁
R3

v𝑓ℎ dv, (5)

where Ω2
𝑝𝑒(x) = 𝑞2𝑒𝜌

(0)
𝑐 (x)/(𝜀0𝑚𝑒).

Let us remark that will be possible to consider a Maxwellian closure instead of the
Dirac closure . It will enrich the nonlinear part, but here we chose to consider model
proposed in [1].

The energy (Hamiltonian) is

ℋ =
𝜀0
2

∫︁
Ω

|E|2dx⏟  ⏞  
ℋ𝐸

+
1

2𝜇0

∫︁
Ω

|B|2dx⏟  ⏞  
ℋ𝐵

+
1

2𝜀0

∫︁
Ω

1

Ω2
𝑝𝑒

|j𝑐|2dx⏟  ⏞  
ℋ𝑗𝑐

+
𝑚𝑒

2

∫︁
Ω

∫︁
R3

|v|2𝑓ℎ dxdv⏟  ⏞  
ℋ𝑓ℎ

. (6)

According to [5], the linearized hybrid model possesses a noncanonical structure. It is
always a difficult issue to determine the bracket of a Hamiltonian system and thus to
exhibit a canonical structure. Here, we define for the first time a bracket for the linear
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hybrid model. For two given functionals ℱ ,𝒢 of j𝑐,B,E, 𝑓ℎ, the Poisson bracket is given
by

{ℱ ,𝒢}[j𝑐,B,E, 𝑓ℎ] =
1

𝑚𝑒

∫︁
Ω

∫︁
R3

𝑓ℎ

[︁ 𝛿ℱ
𝛿𝑓ℎ

,
𝛿𝒢
𝛿𝑓ℎ

]︁
xv
dvdx

+
𝑞𝑒

𝑚𝑒𝜀0

∫︁
Ω

∫︁
R3

𝑓ℎ

(︂
∇v

𝛿ℱ
𝛿𝑓ℎ

· 𝛿𝒢
𝛿E

−∇v
𝛿𝒢
𝛿𝑓ℎ

· 𝛿ℱ
𝛿E

)︂
dvdx

+
𝑞𝑒
𝑚2

𝑒

∫︁
Ω

∫︁
R3

𝑓ℎ(B+B0) ·
(︂
∇v

𝛿ℱ
𝛿𝑓ℎ

×∇v
𝛿𝒢
𝛿𝑓ℎ

)︂
dvdx

+
1

𝜀0

∫︁
Ω

(︂
∇× 𝛿ℱ

𝛿E
· 𝛿𝒢
𝛿B

−∇× 𝛿𝒢
𝛿E

· 𝛿ℱ
𝛿B

)︂
dx

+

∫︁
Ω

Ω2
𝑝𝑒

(︂
𝛿ℱ
𝛿j𝑐

· 𝛿𝒢
𝛿E

− 𝛿𝒢
𝛿j𝑐

· 𝛿ℱ
𝛿E

)︂
dx

+
𝑞𝑒𝜀0
𝑚𝑒

∫︁
Ω

Ω2
𝑝𝑒B0 ·

(︂
𝛿ℱ
𝛿j𝑐

× 𝛿𝒢
𝛿j𝑐

)︂
dx. (7)

The two last terms are new compared with the Poisson bracket of Vlasov–Maxwell equa-
tions. The following theorem ensures that the above bracket is indeed a Poisson bracket
(the proof is given in appendix A).

Theorem 2.1. The above bracket defined by (7) is a Poisson bracket.

From this result, we can reformulate the hybrid model as

𝜕𝑡𝑈 = {𝑈,ℋ} , (8)

where ℋ denotes the Hamiltonian (6), 𝑈 = (j𝑐,B,E, 𝑓ℎ), and {·, ·} the bracket defined
in (7).

In the next sections, we consider dimensionless quantities. The derivation of dimen-
sionless equations is given in Appendices B and C according to the dimension of the
phase space.

3 Time discretizations
In this section, we succinctly present two time discretizations for the hybrid model which
will be developed in the 1𝑑𝑥 − 1𝑑𝑣 and 1𝑑𝑥 − 3𝑑𝑣 case. Regarding the Hamiltonian
structure, we will use a Hamiltonian splitting which is particularly well suited in our
case. Moreover, the linearization of the fluid part makes the use of exponential methods
very attractive in this context as well. Our goal will be to compare the efficiency of these
two integrators.

3.1 Hamiltonian splitting

From the previous section, we derive a time splitting to numerically solve (2)-(5), in its
dimensionless form (see Appendix B). Indeed, we can reformulate the hybrid model as

6



(8), where ℋ denotes the Hamiltonian (6), 𝑈 is a functional of the unknown (j𝑐,B,E, 𝑓ℎ),
and {·, ·} is the bracket defined in (7). We construct the splitting from the decomposition
of the Hamiltonian ℋ = ℋE +ℋB +ℋj𝑐 +ℋ𝑓ℎ so that the following equation

𝜕𝑈

𝜕𝑡
= {𝑈,ℋE}+ {𝑈,ℋB}+ {𝑈,ℋj𝑐}+ {𝑈,ℋ𝑓ℎ}

can be split into 4 subsystems which will be written down in the following.

Equations for ℋE

We derive here the equations corresponding to 𝜕𝑡𝑈 = {𝑈,ℋE}, for 𝑈 = (j𝑐,B,E, 𝑓ℎ)
and with ℋE = 1

2

∫︀
Ω
|E|2dx. From the following relations

𝛿ℋE

𝛿𝑓ℎ
=

𝛿ℋE

𝛿B
=

𝛿ℋE

𝛿j𝑐
= 0, and

𝛿ℋE

𝛿E
= E,

the first step of the splitting gives for 𝑓ℎ

𝜕𝑡𝑓ℎ = E · ∇𝑣𝑓ℎ,

and for E,B, j𝑐, we obtain

𝜕𝑡E = 0, 𝜕𝑡B = −∇× E, 𝜕𝑡j𝑐 = Ω2
𝑝𝑒E.

Let us remark that this system can be solved exactly in time.

Equations for ℋB

We derive here the equations corresponding to 𝜕𝑡𝑈 = {𝑈,ℋB}, for 𝑈 = (j𝑐,B,E, 𝑓ℎ).
We obtain

𝜕𝑡𝑓ℎ = 0, 𝜕𝑡E = ∇×B, 𝜕𝑡B = 0, 𝜕𝑡j𝑐 = 0,

which can be solved exactly in time.

Equations for ℋj𝑐

We derive here the equations corresponding to 𝜕𝑡𝑈 = {𝑈,ℋj𝑐}, for 𝑈 = (j𝑐,B,E, 𝑓ℎ).
We obtain

𝜕𝑡𝑓ℎ = 0, 𝜕𝑡E = −j𝑐, 𝜕𝑡B = 0, 𝜕𝑡j𝑐 = −j𝑐 ×B0,

which can be solved exactly in time.

Equations for ℋ𝑓ℎ

We derive here the equations corresponding to 𝜕𝑡𝑈 = {𝑈,ℋ𝑓ℎ}, for 𝑈 = (j𝑐,B,E, 𝑓ℎ).
We obtain

𝜕𝑡𝑓ℎ = −v · ∇𝑓ℎ + (v × (B+B0)) · ∇v𝑓ℎ,

𝜕𝑡E =

∫︁
v𝑓ℎ dv, 𝜕𝑡B = 0, 𝜕𝑡j𝑐 = 0.
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This system can not be solved exactly in time. However, we can split again the term ℋ𝑓ℎ

as follows

ℋ𝑓ℎ :=
1

2

∫︁
|v|2𝑓ℎ dv =

1

2

∫︁
𝑣2𝑥𝑓ℎ dv+

1

2

∫︁
𝑣2𝑦𝑓ℎ dv+

1

2

∫︁
𝑣2𝑧𝑓ℎ dv =: ℋ𝑓ℎ,𝑥+ℋ𝑓ℎ,𝑦+ℋ𝑓ℎ,𝑧 .

Then, we get for ℋ𝑓ℎ,⋆ , with symbol ⋆ ∈ {𝑥, 𝑦, 𝑧},

𝜕𝑡𝑓ℎ = −𝑣⋆𝜕⋆𝑓ℎ +
∑︁

𝑗∈{𝑥,𝑦,𝑧}

𝐵̂𝑗,⋆𝑣⋆𝜕𝑣𝑗𝑓ℎ, 𝜕𝑡E =

∫︁
𝑣⋆𝑓ℎ dv,

where we denote B̂ the traceless matrix such that v× (B+B0) := B̂v. It turns out that
this system can be solved exactly in time (see [9] and below for more details).

Hence, denoting 𝜙
[𝐸]
𝑡 , 𝜙

[𝐵]
𝑡 , 𝜙

[𝑗𝑐]
𝑡 , 𝜙

[𝑓ℎ]
𝑡 the respective solutions of the previous subsys-

tems, for a given initial condition 𝑈(𝑡 = 0) = 𝑈0 = (j𝑐(0),B(0),E(0), 𝑓ℎ(0)), the solution
𝜙𝑡(𝑈0) of the whole system at time 𝑡 is approximated by the so-called Lie-Trotter splitting

𝜙𝑡(𝑈0) ≈ 𝜙
[𝐸]
𝑡 ∘ 𝜙[𝐵]

𝑡 ∘ 𝜙[𝑗𝑐]
𝑡 ∘ 𝜙[𝑓ℎ]

𝑡 (𝑈0). (9)

Now denoting 𝑈𝑛 a time approximation of 𝑈 at time 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 ∈ N, Δ𝑡 > 0 being the
time step, high order splittings can be constructed from the decomposition (9). We will
use the so-called Suzuki method [28] which can be constructed from the Strang splitting
basic block [29] whose formulation reads

𝑈𝑛+1 = 𝑆Δ𝑡(𝑈
𝑛) = 𝜙

[𝐸]
Δ𝑡/2 ∘ 𝜙

[𝑗𝑐]
Δ𝑡/2 ∘ 𝜙

[𝐵]
Δ𝑡/2 ∘ 𝜙

[𝑓ℎ]
Δ𝑡 ∘ 𝜙[𝐵]

Δ𝑡/2 ∘ 𝜙
[𝑗𝑐]
Δ𝑡/2 ∘ 𝜙

[𝐸]
Δ𝑡/2(𝑈

𝑛), (10)

where the most costly step 𝜙
[𝑓ℎ]
Δ𝑡 has been put in the middle to be evaluated only once

per time step. The Suzuki method can be written as a composition of 5 Strang methods
(which leads to 25 stages):

𝑈𝑛+1 = 𝒮Δ𝑡(𝑈
𝑛) = 𝑆𝛼1Δ𝑡 ∘ 𝑆𝛼2Δ𝑡 ∘ 𝑆𝛼3Δ𝑡 ∘ 𝑆𝛼2Δ𝑡 ∘ 𝑆𝛼1Δ𝑡(𝑈

𝑛), (11)

where the constants 𝛼𝑖 are defined by

𝛼1 = 𝛼2 =
1

4− 3
√
4
, 𝛼3 =

1

1− 4
2
3

. (12)

Let us recall that the Strang method is second order accurate whereas the Suzuki method
is fourth order. We refer to [30] for other composition methods designed from a three
terms decomposition. We observe that the number of stages increases dramatically when
high order are considered which is, as we will see, a drawback of these methods.

3.2 Lawson methods

The VHL system (2)-(5) (in its dimensionless form proposed in Appendix B), can be
rewritten by splitting the linear part and the nonlinear part as

𝜕𝑡𝑈 + 𝐴𝑈 +𝑁(𝑡, 𝑈) = 0,
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where 𝑈(𝑡,x,v) = (j𝑐(𝑡,x),B(𝑡,x),E(𝑡,x), 𝑓ℎ(𝑡,x,v))
T, 𝐴 is a 10x10 matrix and 𝑁 is a

function to be defined. If all the linear terms are taken into account, the linear part 𝐴
reads

𝐴𝑈 =

⎛⎜⎜⎝
B̂0 03 −Ω2

𝑝𝑒I3 0̃𝑇

03 03 ∇̂ 0̃𝑇

I3 −∇̂ 03 0̃𝑇

0̃ 0̃ 0̃ ℒ

⎞⎟⎟⎠𝑈, (13)

where ∇̂ is defined such that ∇×u = ∇̂u for all function u ∈ R3, 03 is a 3x3 matrix with
0 entries, ℒ := v · ∇ − (v×B0) · ∇v, with B̂0 the 3x3 matrix such that j𝑐 ×B0 = B̂0j𝑐,
0̃ = (0, 0, 0), and the nonlinear part reads

𝑁(𝑡, 𝑈) =

⎛⎜⎜⎝
0̃𝑇

0̃𝑇

−
∫︀
R3 v𝑓ℎ dv

−(E+ v ×B) · ∇v𝑓ℎ

⎞⎟⎟⎠ .

In fact term
∫︀
R3 v𝑓ℎ dv is linear in 𝑓ℎ, but non local. We decide to consider it explicitly in

the nonlinear term to avoid an increase of the size of 𝐴 and 𝑈 . Once the VHL system has
been reformulated this way, exponential and Lawson integrators can be used. Following
[20], we shall use Lawson integrators for stability reasons. The basics of the Lawson
schemes are reminded in the following. In a first step, the linear part is filtered out by
considering 𝑉 (𝑡) = 𝑒𝑡𝐴𝑈 so that we get

𝜕𝑡𝑉 + 𝑁̃(𝑡, 𝑉 ) = 0 (14)

with 𝑁̃ : (𝑡, 𝑉 ) ↦→ 𝑒𝑡𝐴𝑁(𝑡, 𝑒−𝑡𝐴𝑉 ). Then, in a second step, a Runge-Kutta method is used
for (14) which can be reformulated into a numerical method on 𝑈 (see [17]). Considering
only explicit Runge-Kutta methods with 𝑠-stages, the Butcher tableau reads

0
𝑐2 𝑎2,1
...

... . . .
𝑐𝑠 𝑎𝑠,1 · · · 𝑎𝑠,𝑠−1

𝑏1 · · · 𝑏𝑠−1 𝑏𝑠

so that the numerical scheme for (14) is

𝑉 (𝑖) = 𝑉 𝑛 −Δ𝑡
𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗𝑁̃(𝑡𝑛 + 𝑐𝑗Δ𝑡, 𝑉 (𝑗)), 𝑖 = 1, . . . , 𝑠,

𝑉 𝑛+1 = 𝑉 𝑛 −Δ𝑡
𝑠∑︁

𝑖=1

𝑏𝑖𝑁̃(𝑡𝑛 + 𝑐𝑖Δ𝑡, 𝑉 (𝑖)),
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and in a last step, we come back to the unknown 𝑈 to get

𝑈 (𝑖) = 𝑒−𝑐𝑖Δ𝑡𝐴𝑈𝑛 −Δ𝑡

𝑖−1∑︁
𝑗=1

𝑎𝑖,𝑗𝑒
(𝑐𝑗−𝑐𝑖)Δ𝑡𝐴𝑁(𝑡𝑛 + 𝑐𝑗Δ𝑡, 𝑈 (𝑗)), 𝑖 = 1, . . . , 𝑠,

𝑈𝑛+1 = 𝑒−Δ𝑡𝐴𝑈𝑛 −Δ𝑡
𝑠∑︁

𝑖=1

𝑏𝑖𝑒
(𝑐𝑖−1)Δ𝑡𝐴𝑁(𝑡𝑛 + 𝑐𝑖Δ𝑡, 𝑈 (𝑖)).

As we shall see in the next sections, the efficiency of Lawson integrators is strongly
related to the cost of the evaluation of exp(𝐴). It turns out that in the 1𝑑𝑥− 3𝑑𝑣 case,
the evaluation of exp(𝐴) is very expensive if not impossible, even using formal languages.
Thus, one strategy may be to transfer some terms from the linear part to the nonlinear
part making the calculation of exp(𝐴) doable, still leading to efficient schemes.

3.3 Adaptive time step methods

We end this numerical section by discussing the possibility to use adaptive time step
strategies. For the two integrators presented before, we will see that adaptive time step
methods can be incorporated. This can be of great interest in many applications, in
particular in plasma physics for which a linear phase can be solved using large time steps
whereas for the nonlinear phase, which involves strong gradients and small time scales,
small time steps may be preferred to capture important physical phenomena (see [20]).

To remind the basics of the adaptive time stepping strategy, we consider an ODE
satisfied by 𝑈(𝑡) ∈ R𝑑. Basically, adaptive time stepping requires two numerical solutions
at time 𝑡𝑛+1 computed with two different integrators of different orders. Typically, we
will denote 𝑈𝑛+1

[𝑝] (resp. 𝑈𝑛+1
[𝑝+1]) the numerical solution computed with an integrator of

order 𝑝 (resp. 𝑝+ 1)

𝑈𝑛+1
[𝑝] = 𝑈(𝑡𝑛+1) +𝒪((Δ𝑡𝑛)

𝑝+1) 𝑈𝑛+1
[𝑝+1] = 𝑈(𝑡𝑛+1) +𝒪((Δ𝑡𝑛)

𝑝+2),

where Δ𝑡𝑛 is the time step used at iteration 𝑛 to compute 𝑈𝑛+1
[𝑝] and 𝑈𝑛+1

[𝑝+1]. Combining
these two solutions enables to estimate the local error on the solution of lower order

𝐿𝑛+1
[𝑝] = ‖𝑈𝑛+1

[𝑝+1] − 𝑈𝑛+1
[𝑝] ‖ (15)

(here ‖ · ‖ is a vectorial norm to be defined according to the problem), and to compute
the time step for the next iteration

Δ𝑡𝑛+1 = 𝑝

√︃
tol
𝐿𝑛+1
[𝑝]

Δ𝑡𝑛, (16)

with the user-specified tolerance tol. Thus, there are two situations: (𝑖) if the local
error 𝐿𝑛+1

[𝑝] is larger than the user-specified tolerance tol, the iteration is rejected and is
restarted by recomputing 𝑈𝑛+1

[𝑝] with a smaller time step given by (16). (𝑖𝑖) otherwise, if
the local error 𝐿𝑛+1

[𝑝] is smaller than tol, 𝑈𝑛+1
[𝑝] is kept as approximated solution at time

𝑡𝑛+1 and a new time step is computed according to (16), which ensures that the local
error at the former time will be smaller than tol.
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Adaptive time step method for the Hamiltonian splitting method
We incorporate adaptive time stepping strategies in the Hamiltonian splitting pre-

sented in Subsection 3.1, following the recent work [25]. We choose the Suzuki splitting
(11) and define the substep solution 𝑈 (𝑚), 𝑚 = 1, . . . , 4, as follows

𝑈𝑛+1
[4] = 𝒮Δ𝑡(𝑈

𝑛) = 𝑆𝛼1Δ𝑡 ∘ 𝑆𝛼2Δ𝑡 ∘ 𝑆𝛼3Δ𝑡 ∘ 𝑆𝛼2Δ𝑡 ∘ 𝑆𝛼1Δ𝑡(𝑈
𝑛).⏟  ⏞  

𝑈(1)⏟  ⏞  
𝑈(2)⏟  ⏞  

𝑈(3)⏟  ⏞  
𝑈(4)

The advantage of this approach introduced in [25] comes from the fact that the lower order
integrator uses a linear combination of the outputs generated by the intermediate steps of
the splitting. Then, as soon as the number of stages is large enough, low order integrator
can be designed and the strategy is cost-free. Using a linear combination of

(︀
𝑈 (𝑚)

)︀
𝑚∈[|1,4|],

where 𝑈 (1) = 𝑆𝛼1Δ𝑡(𝑈
𝑛), 𝑈 (2) = 𝑆𝛼2Δ𝑡(𝑈

(1)), 𝑈 (3) = 𝑆𝛼3Δ𝑡(𝑈
(2)), 𝑈 (4) = 𝑆𝛼2Δ𝑡(𝑈

(3)), a
third order approximation of 𝑈(𝑡𝑛+1) can be obtained

𝑈𝑛+1
[3] = −𝑈𝑛

[4] + 𝑤1(𝑈
(1) + 𝑈 (4)) + 𝑤2(𝑈

(2) + 𝑈 (3))

with
𝑤1 =

𝑔2(1− 𝑔2)

𝑔1(𝑔1 − 1)− 𝑔2(𝑔2 − 1)
, 𝑤2 = 1− 𝑤1

and 𝑔1 = 𝛼1, 𝑔2 = 𝛼1 + 𝛼2. Thus, the local error estimate is defined following (15):
𝐿𝑛+1
[3] = ‖𝑈𝑛+1

[4] − 𝑈𝑛+1
[3] ‖ and the time step is computed using (16).

Adaptive time step method for the Lawson method
Adaptive methods are more classical in the context of Runge-Kutta methods (see

embedded Runge-Kutta methods [22, 21]. In order to perform comparisons with the
Hamiltonian splitting, we use methods of same orders as in the splitting context. We
will use the Dormand-Prince 4(3) method (DP4(3)) (see [22],[21]) whose Butcher tableau
is

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1 1

6
1
3

1
3

1
6

1
6

1
3

1
3

(︀
1
6
− 𝜆
)︀

𝜆

where 𝜆 is a non-zero parameter to be fixed; as in [22] we choose 𝜆 = 1
10

. The fourth
order estimator 𝑈𝑛+1

[4] is given by the coefficients in the penultimate line (which has to be
read as usual in a Butcher tableau) and the third order estimator 𝑈𝑛+1

[3] is given by the
last line. As previously, the local error estimate is defined by 𝐿𝑛+1

[3] = ‖𝑈𝑛+1
[4] − 𝑈𝑛+1

[3] ‖ as
in (15) and the time step is following (16).
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4 Vlasov hybrid model: 1𝑑𝑥-1𝑑𝑣 case
In this section, we consider the case of one dimension in space and velocity. Obviously,
this simplified framework prevents taking into account several terms of (2)-(5), but it
will enable us to study the domain of validity of the VHL system with respect to the
original full kinetic model including hot and cold particles. Indeed, even if the velocity
mesh induces very costly computations, the 1𝑑𝑥-1𝑑𝑣 case enables to perform them.

First we write down the VHL system in the 1𝑑𝑥− 1𝑑𝑣 case (see Appendix C for the
dimensionless procedure) ⎧⎪⎨⎪⎩

𝜕𝑡𝑢𝑐 = 𝐸,

𝜕𝑡𝐸 = −𝜌
(0)
𝑐 𝑢𝑐 −

∫︀
R 𝑣𝑓ℎ d𝑣,

𝜕𝑡𝑓ℎ + 𝑣𝜕𝑥𝑓ℎ + 𝐸𝜕𝑣𝑓ℎ = 0,

(17)

with the initial conditions (𝑢0
𝑐 , 𝐸

0, 𝑓 0
ℎ) and 𝜌

(0)
𝑐 such that 𝜕𝑥𝐸0(𝑥) = 𝜌

(0)
𝑐 +

∫︀
R 𝑓 0

ℎ(𝑥, 𝑣) d𝑣−
1. We introduce the Poisson bracket in this reduced case. For two functionals ℱ [𝑢𝑐, 𝐸, 𝑓ℎ]
and 𝒢[𝑢𝑐, 𝐸, 𝑓ℎ], we get

{ℱ ,𝒢}[𝑢𝑐, 𝐸, 𝑓ℎ] =

∫︁
R

∫︁
R
𝑓ℎ

(︂
𝜕𝑥

𝛿ℱ
𝛿𝑓ℎ

𝜕𝑣
𝛿𝒢
𝛿𝑓ℎ

− 𝜕𝑣
𝛿ℱ
𝛿𝑓ℎ

𝜕𝑥
𝛿𝒢
𝛿𝑓ℎ

)︂
d𝑣d𝑥

+

∫︁
R

(︂
𝛿ℱ
𝛿𝑢𝑐

𝛿𝒢
𝛿𝐸

− 𝛿ℱ
𝛿𝐸

𝛿𝒢
𝛿𝑢𝑐

)︂
d𝑥

+

∫︁
R

∫︁
R
𝑓ℎ

(︂(︂
𝜕𝑣

𝛿ℱ
𝛿𝑓ℎ

)︂
𝛿𝒢
𝛿𝐸

−
(︂
𝜕𝑣

𝛿𝒢
𝛿𝑓ℎ

)︂
𝛿ℱ
𝛿𝐸

)︂
d𝑣d𝑥.

With this framework, the hybrid model (17) can be rewritten as, using 𝑈 = (𝑢𝑐, 𝐸, 𝑓ℎ),

𝜕𝑡𝑈 = {𝑈,ℋ}, with ℋ =
1

2

∫︁∫︁
𝑣2𝑓ℎ d𝑣d𝑥+

1

2

∫︁
𝜌(0)𝑐 𝑢2

𝑐 d𝑥+
1

2

∫︁
𝐸2 d𝑥. (18)

4.1 Numerical schemes

In this section, we present two time discretizations of the 1𝑑𝑥-1𝑑𝑣 hybrid model (17).
The first one is based on a Hamiltonian splitting whereas the second one belongs to the
family of exponential integrators.

4.1.1 Hamiltonian splitting

In this section, we present a numerical method based on a decomposition of the Hamil-
tonian

ℋ =
1

2

∫︁∫︁
𝑣2𝑓ℎ d𝑣d𝑥⏟  ⏞  
ℋ𝑓ℎ

+
1

2

∫︁
𝑢2
𝑐 d𝑥⏟  ⏞  

ℋ𝑢𝑐

+
1

2

∫︁
𝐸2 d𝑥⏟  ⏞  

ℋ𝐸

.

Thus, using 𝑈 = (𝑢𝑐, 𝐸, 𝑓ℎ), the time splitting can be deduced from

𝜕𝑡𝑈 = {𝑈,ℋ𝐸 +ℋ𝑢𝑐 +ℋ𝑓ℎ} = {𝑈,ℋ𝐸}+ {𝑈,ℋ𝑢𝑐}+ {𝑈,ℋ𝑓ℎ}, 𝑈(𝑡 = 0) = 𝑈0. (19)
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In the sequel, we will compute 𝜙[𝐸], 𝜙[𝑢𝑐] and 𝜙[𝑓ℎ] the solutions corresponding to each
part so that the solution 𝜙(𝑈0) of (19) can be approximated at time 𝑡 with a first order
approximation by the following Lie-Trotter composition

𝑈(𝑡) := 𝜙𝑡(𝑈0) ≈ 𝜙
[𝐸]
𝑡 ∘ 𝜙[𝑢𝑐]

𝑡 ∘ 𝜙[𝑓ℎ]
𝑡 (𝑈0). (20)

One important remark is that each subsystem can be solved exactly in time such that the
error only comes from the splitting which can be reduced by considering high order tech-
niques. Below is detailed the computation of each subflow 𝜙

[𝐸]
𝑡 (𝑈0), 𝜙

[𝑢𝑐]
𝑡 (𝑈0), 𝜙

[𝑓ℎ]
𝑡 (𝑈0).

Part ℋ𝐸

Let us start with 𝜙
[𝐸]
𝑡 (𝑈0) solution at time 𝑡 of 𝜕𝑡𝑈 = {𝑈,ℋ𝐸}, 𝑈(𝑡 = 0) = 𝑈0. We

have
𝜕𝑡𝑢𝑐 = {𝑢𝑐,ℋ𝐸} = 𝐸,

𝜕𝑡𝐸 = {𝐸,ℋ𝐸} = 0,

𝜕𝑡𝑓ℎ = {𝑓ℎ,ℋ𝐸} = −𝐸𝜕𝑣𝑓ℎ.

(21)

Starting from an initial solution 𝑈0 = (𝑢𝑐, 𝐸, 𝑓ℎ)(𝑡 = 0), the solution of this system at
time 𝑡 is

𝜙
[𝐸]
𝑡 (𝑈0) =

⎛⎝ 𝑢𝑐(0) + 𝑡𝐸(0)
𝐸(0)

𝑓ℎ(0, 𝑥, 𝑣 − 𝑡𝐸(0))

⎞⎠ .

The velocity approximation is performed using a fifth order Lagrange interpolation.

Part ℋ𝑢𝑐

Next, we consider 𝜙
[𝑢𝑐]
𝑡 (𝑈0) the solution at time 𝑡 of 𝜕𝑡𝑈 = {𝑈,ℋ𝑢𝑐}. Equations are

𝜕𝑡𝑢𝑐 = {𝑢𝑐,ℋ𝑢𝑐} = 0,

𝜕𝑡𝐸 = {𝐸,ℋ𝑢𝑐} = −𝜌(0)𝑐 𝑢𝑐,

𝜕𝑡𝑓ℎ = {𝑓ℎ,ℋ𝑢𝑐} = 0.

(22)

Starting from an initial solution 𝑈0 = (𝑢𝑐, 𝐸, 𝑓ℎ)(𝑡 = 0), the solution of this system at
time 𝑡 is

𝜙
[𝑢𝑐]
𝑡 (𝑈0) =

⎛⎝ 𝑢𝑐(0)

𝐸(0)− 𝑡𝜌
(0)
𝑐 𝑢𝑐(0)

𝑓ℎ(0)

⎞⎠ .

Part ℋ𝑓ℎ

Finally, we write the equations associated with 𝜕𝑡𝑈 = {𝑈,ℋ𝑓ℎ}, 𝑈(𝑡 = 0) = 𝑈0 (whose
solutions at time 𝑡 is 𝜙

[𝑓ℎ]
𝑡 (𝑈0)),

𝜕𝑡𝑢𝑐 = {𝑢𝑐,ℋ𝑓ℎ} = 0,

𝜕𝑡𝐸 = {𝐸,ℋ𝑓ℎ} = −
∫︁
R
𝑣𝑓ℎ d𝑣,

𝜕𝑡𝑓ℎ = {𝑓ℎ,ℋ𝑓ℎ} = −𝑣𝜕𝑥𝑓ℎ.

(23)
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Starting from an initial solution 𝑈0 = (𝑢𝑐, 𝐸, 𝑓ℎ)(𝑡 = 0), the solution of this system at
time 𝑡 is

𝜙
[𝑓ℎ]
𝑡 (𝑈0) =

⎛⎝ 𝑢𝑐(0)

𝐸(0)−
∫︀ 𝑡

0

∫︀
R 𝑣𝑓ℎ(𝑠, 𝑥, 𝑣) d𝑣d𝑠

𝑓ℎ(0, 𝑥− 𝑣𝑡, 𝑣)

⎞⎠ .

Regarding the spatial approximation, a spectral method is used. Denoting 𝑓ℎ(𝑡, 𝑘, 𝑣), 𝑘 ∈
Z the Fourier transform of 𝑓ℎ(𝑡, 𝑥, 𝑣), we approximate 𝑓ℎ(0, 𝑥− 𝑣𝑠, 𝑣) using 𝑓ℎ(𝑠, 𝑘, 𝑣) =
𝑒−𝑖𝑘𝑣𝑠𝑓ℎ(0, 𝑘, 𝑣). Inserting in the equation on 𝐸, we get

𝐸̂(𝑡, 𝑘) = 𝐸̂(0, 𝑘)− 𝑖

𝑘

∫︁
R

(︀
𝑒−𝑖𝑘𝑣𝑡 − 1

)︀
𝑓ℎ(0, 𝑘, 𝑣) d𝑣.

As mentioned, high order splittings can be constructed from the decomposition (20)
(Lie, Strang, Suzuki, . . . ).

4.1.2 Lawson methods

Here a second time discretization is presented for (17): this is the Lawson method [19].
Indeed, in hyperbolic cases, Lawson methods have to be preferred compared to exponen-
tial methods due to stability reasons (see [20]). First we need to reformulate (17), by
applying a space Fourier transform on the 𝑓ℎ equation⎧⎪⎨⎪⎩

𝜕𝑡𝑢𝑐 = 𝐸

𝜕𝑡𝐸 = −𝜌
(0)
𝑐 𝑢𝑐 −

∫︀
R 𝑣𝑓ℎ d𝑣

𝜕𝑡𝑓ℎ + 𝑖𝑘𝑣𝑓ℎ + 𝐸𝜕𝑣𝑓ℎ = 0

(24)

where 𝑓ℎ := 𝑓ℎ(𝑡, 𝑘, 𝑣) denotes the space Fourier transform of 𝑓ℎ, 𝑘 being the Fourier
variable. Separating the linear and the nonlinear parts, (24) can be rewritten as

𝜕𝑡

⎛⎝𝑢𝑐

𝐸

𝑓ℎ

⎞⎠+

⎛⎝ 0 −1 0

𝜌
(0)
𝑐 0 0
0 0 𝑖𝑘𝑣

⎞⎠⎛⎝𝑢𝑐

𝐸

𝑓ℎ

⎞⎠+

⎛⎝ 0∫︀
R 𝑣𝑓ℎ d𝑣

𝐸𝜕𝑣𝑓ℎ

⎞⎠ = 0.

Let 𝑈 =
(︁
𝑢𝑐, 𝐸, 𝑓ℎ

)︁T
and

𝐴 =

⎛⎝ 0 −1 0

𝜌
(0)
𝑐 0 0
0 0 𝑖𝑘𝑣

⎞⎠ , 𝑁(𝑈) =

⎛⎝ 0∫︀
R 𝑣𝑓ℎ d𝑣

𝐸𝜕𝑣𝑓ℎ

⎞⎠
so that (24) can be rewritten in a form amenable to exponential integrators

𝜕𝑡𝑈 + 𝐴𝑈 +𝑁(𝑈) = 0.

The rest of the algorithm is the same as the one presented in Subsection 3.2. In the
numerical results, standard Runge-Kutta methods (like RK(4, 4) or RK(3, 3)) will be
used (see also [20]).
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Lawson methods are particularly efficient when the linear part can be computed
efficiently. This is true in our case since exp(𝑡𝐴) is explicit

𝑒𝑡𝐴 =

⎛⎜⎜⎜⎜⎜⎝
cos

(︂√︁
𝜌
(0)
𝑐 𝑡

)︂
−

sin

(︂√
𝜌
(0)
𝑐 𝑡

)︂
√

𝜌
(0)
𝑐

0√︁
𝜌
(0)
𝑐 sin

(︂√︁
𝜌
(0)
𝑐 𝑡

)︂
cos

(︂√︁
𝜌
(0)
𝑐 𝑡

)︂
0

0 0 𝑒𝑖𝑘𝑣𝑡

⎞⎟⎟⎟⎟⎟⎠ .

4.2 Dispersion relation in the hybrid case

This section is devoted to the derivation of the dispersion relation of the hybrid model
(17). In the 1𝑑𝑥− 1𝑑𝑣 case, it is also possible to derive an explicit approximation of the
electric field which enables us to validate the code.

We consider an homogeneous stationary state of the hybrid model (𝑢(0)
𝑐 , 𝐸(0), 𝑓

(0)
ℎ ) =

(0, 0, 𝑓
(0)
ℎ ) where 𝑓

(0)
ℎ only depends on 𝑣 (see [31], [26]). Then, considering a linearization

of the hybrid model around this state (𝑢𝑐, 𝐸, 𝑓ℎ) = (0, 0, 𝑓
(0)
ℎ ) + 𝜀(𝑢

(1)
𝑐 , 𝐸(1), 𝑓

(1)
ℎ ) and

neglecting quadratic terms leads to⎧⎪⎨⎪⎩
𝜕𝑡𝑢

(1)
𝑐 = 𝐸(1),

𝜕𝑡𝐸
(1) = −𝜌

(0)
𝑐 𝑢

(1)
𝑐 −

∫︀
𝑣𝑓

(1)
ℎ d𝑣,

𝜕𝑡𝑓
(1)
ℎ + 𝑣𝜕𝑥𝑓

(1)
ℎ + 𝐸(1)𝜕𝑣𝑓

(0)
ℎ = 0,

with unknown 𝐸(1), 𝑢(1)
𝑐 and 𝑓

(1)
ℎ which will be denoted 𝐸, 𝑢𝑐 and 𝑓ℎ respectively, so that

the following system will be considered⎧⎪⎨⎪⎩
𝜕𝑡𝑢𝑐 = 𝐸,

𝜕𝑡𝐸 = −𝜌
(0)
𝑐 𝑢𝑐 −

∫︀
𝑣𝑓ℎ d𝑣,

𝜕𝑡𝑓ℎ + 𝑣𝜕𝑥𝑓ℎ + 𝐸𝜕𝑣𝑓
(0)
ℎ = 0.

(25)

In the following, we shall consider 𝜌
(0)
𝑐 constant and 𝑓

(0)
ℎ (𝑣) is an even function. The

Fourier (resp. Laplace) variable is denoted by 𝑘 (resp. 𝜔) and the unknown in the
Fourier (resp. Laplace) space is denoted with a hat ·̂ (resp. a tilde ·̃). Then, applying
Fourier and Laplace transforms to (25) leads to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

˜̂𝑢𝑐(𝜔, 𝑘) +
1
𝑖𝜔

˜̂
𝐸(𝜔, 𝑘) = − 1

𝑖𝜔
𝑢̂𝑐(𝑡 = 0, 𝑘),

−𝑖𝜔
˜̂
𝐸(𝜔, 𝑘)− 𝐸̂(𝑡 = 0, 𝑘) = −𝜌

(0)
𝑐

˜̂𝑢𝑐(𝜔, 𝑘)−
∫︀ +∞
−∞ 𝑣

˜̂
𝑓ℎ(𝜔, 𝑘) d𝑣,

˜̂
𝑓ℎ(𝜔, 𝑘, 𝑣) = − 𝑖

𝑘

𝑓ℎ(𝑡 = 0, 𝑘, 𝑣)

𝑣 − 𝜔
𝑘

+
𝑖

𝑘

˜̂
𝐸(𝜔, 𝑘)𝜕𝑣𝑓

(0)
ℎ (𝑣)

𝑣 − 𝜔
𝑘

.

(26)

Inserting ˜̂
𝑓ℎ(𝜔, 𝑘, 𝑣) into

∫︀ +∞
−∞ 𝑣

˜̂
𝑓ℎ(𝜔, 𝑘)d𝑣 requires to pay attention to poles 𝜔 = 𝑘𝑣, the

integral is now considered on a path 𝛾, where 𝛾 is either the real axis (−∞,+∞) when
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ℑ(𝜔) > 0 or an open coutour parallel to the real axis at infinity and passes below the
pole 𝜔 when ℑ(𝜔) ≤ 0. We finally get

˜̂
𝐸(𝜔, 𝑘) =

𝑁(𝜔, 𝑘)

𝐷(𝜔, 𝑘)

where 𝐷 and 𝑁 are defined by

𝐷(𝜔, 𝑘) = 1− 1

𝑘2

(︃
𝜌(0)𝑐

𝑘2

𝜔2
+

∫︁
𝛾

𝜕𝑣𝑓
(0)
ℎ (𝑣)

𝑣 − 𝜔
𝑘

d𝑣

)︃
(27)

and

𝑁(𝜔, 𝑘) =
𝜌
(0)
𝑐

𝜔2
𝑢̂𝑐(𝑡 = 0, 𝑘)− 1

𝑖𝜔
𝐸̂(𝑡 = 0, 𝑘)− 1

𝜔𝑘

∫︁
𝛾

𝑣
𝑓ℎ(𝑡 = 0, 𝑘, 𝑣)

𝑣 − 𝜔
𝑘

d𝑣. (28)

For a given 𝑘, the roots 𝜔 ∈ C of 𝐷(𝑘, 𝜔) enables to get the time behavior of the 𝑘th
Fourier mode of the electric field.

Consistency between full kinetic and VHL models
This approach enables us to validate the VHL model (17) with respect to the full

kinetic model when 𝑇𝑐 → 0. Indeed, starting from the full Vlasov-Poisson system{︂
𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 + 𝐸𝜕𝑣𝑓 = 0,
𝜕𝑥𝐸 =

∫︀
R 𝑓 d𝑣 − 1,

(29)

a similar linearization procedure gives ˜̂
𝐸𝑉 𝑃 (𝜔, 𝑘) = 𝑁𝑉 𝑃 (𝑘,𝜔)

𝐷𝑉 𝑃 (𝑘,𝜔)
with

𝐷𝑉 𝑃 (𝜔, 𝑘) = 1− 1

𝑘2

∫︁
𝛾

𝜕𝑣𝑓
0(𝑣)

𝑣 − 𝜔
𝑘

d𝑣, 𝑁𝑉 𝑃 (𝜔, 𝑘) = − 1

𝑘2

∫︁
𝛾

𝑓(𝑡 = 0, 𝑘, 𝑣)

𝑣 − 𝜔
𝑘

d𝑣. (30)

Now, if initial conditions are compatible, we have the following proposition.

Proposition 1. If 𝑓 0(𝑣) = 𝑓 0
ℎ(𝑣) + 𝑓 0

𝑐 (𝑣) with

𝑓 0
𝑐 (𝑣) = 𝜌(0)𝑐 𝛿𝑣=0(𝑣) = lim

𝑇𝑐→0

𝜌
(0)
𝑐

(2𝜋𝑇𝑐)1/2
exp

(︂
−|𝑣|2

2𝑇𝑐

)︂
,

then 𝐷𝑉 𝑃 (𝜔, 𝑘) = 𝐷(𝜔, 𝑘). In particular, they have same roots.

Proof. Since 𝐷𝑉 𝑃 (𝜔, 𝑘) = 1 − 1
𝑘2

(︁∫︀
𝛾

𝜕𝑣𝑓0
𝑐 (𝑣)

𝑣−𝜔
𝑘

d𝑣 +
∫︀
𝛾

𝜕𝑣𝑓0
ℎ(𝑣)

𝑣−𝜔
𝑘

𝑑𝑣
)︁
, we have to prove that∫︀

𝛾
𝜕𝑣𝑓0

𝑐 (𝑣)
𝑣−𝜔

𝑘
d𝑣 = 𝜌

(0)
𝑐

𝑘2

𝜔2 . Let us denote ℳ𝜌,𝑢,𝑇 (𝑣) :=
𝜌

(2𝜋𝑇 )
1
2
exp

(︁
− |𝑣−𝑢|2

2𝑇

)︁
. Then 𝜕𝑣ℳ𝜌

(0)
𝑐 ,0,𝑇𝑐

(𝑣) =

− 𝑣
𝑇𝑐
ℳ

𝜌
(0)
𝑐 ,0,𝑇𝑐

(𝑣) and

∫︁
𝛾

𝜕𝑣ℳ𝜌
(0)
𝑐 ,0,𝑇𝑐

(𝑣)

𝑣 − 𝜔
𝑘

d𝑣 = −𝜌
(0)
𝑐

𝑇𝑐

(︂
1 +

1√
2𝑇𝑐

𝜔

𝑘
𝑍

(︂
1√
2𝑇𝑐

𝜔

𝑘

)︂)︂
,
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where 𝑍 is the plasma dispersion function defined by 𝑍(𝜉) = 1√
𝜋

∫︀
𝛾

𝑒−𝑧2

𝑧−𝜉
d𝑧 =

√
𝜋 exp(−𝜉2)(𝑖−

erfi(𝜉)). When 𝜉 → +∞, we have erfi(𝜉) = −𝑖+ exp(𝜉2)/
√
𝜋(1

𝜉
+ 1

2𝜉3
+ 3

4𝜉5
+𝒪 (𝜉−7)), so

that 𝜉𝑍(𝜉) is equivalent to −1− 1
2𝜉2

+𝒪 (𝜉−4). With 𝜉 = 1√
2𝑇𝑐

𝜔
𝑘
, we obtain

lim
𝑇𝑐→0

∫︁
𝛾

𝜕𝑣ℳ𝜌
(0)
𝑐 ,0,𝑇𝑐

(𝑣)

𝑣 − 𝜔
𝑘

d𝑣 = 𝜌(0)𝑐

𝑘2

𝜔2
.

When considering the Dirac expression, an integration by parts formula gives∫︁
𝛾

𝜕𝑣(𝜌
(0)
𝑐 𝛿𝑣=0(𝑣))

𝑣 − 𝜔
𝑘

d𝑣 = 𝜌(0)𝑐

∫︁
𝛾

𝛿𝑣=0 (𝑣)
1(︀

𝑣 − 𝜔
𝑘

)︀2 d𝑣 = 𝜌(0)𝑐

𝑘2

𝜔2
.

From both point of view (cold limit or Dirac mass), we get the result.

Explicit expression of the linearized electric field
We can go further by deriving an explicit approximation of the electric field. This is

the goal of the end of this part. Appealing the residue theorem, we can compute the
inverse Laplace transform

𝐸̂(𝑡, 𝑘) =
1

2𝑖𝜋

∫︁ 𝑢+𝑖∞

𝑢−𝑖∞

˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑡 d𝜔 =

∑︁
𝑗

𝑅𝑒𝑠𝜔=𝜔𝑘,𝑗

(︁
˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑡

)︁
where 𝑢 is a real number so that the contour path of integration is in the region of
convergence of ˜̂

𝐸(𝜔, 𝑘) and where 𝜔𝑘,𝑗 are the poles of ˜̂
𝐸(𝜔, 𝑘) (or the roots of 𝐷(𝑘, 𝜔)).

If 𝜔𝑘,𝑗 is a simple pole, we have

𝑅𝑒𝑠𝑤=𝑤𝑘,𝑗

(︁
˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑘,𝑗𝑡

)︁
= lim

𝜔→𝜔𝑘,𝑗

(︀
𝜔 − 𝜔𝑘,𝑗

)︀ ˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑡

= lim
𝜔→𝜔𝑘,𝑗

(︀
𝜔 − 𝜔𝑘,𝑗

)︀ 𝑁(𝑘, 𝜔)

𝐷(𝑘, 𝜔)
𝑒−𝑖𝜔𝑡.

Thus, using a Taylor expansion of 𝐷(𝑘, 𝜔) around 𝑤𝑘,𝑗 gives

𝐷(𝑘, 𝜔) = 𝐷(𝑘, 𝜔𝑘,𝑗)⏟  ⏞  
0

+
(︀
𝜔 − 𝜔𝑘,𝑗

)︀ 𝜕𝐷
𝜕𝜔

(𝑘, 𝜔𝑘,𝑗) +𝒪
(︀
(𝜔 − 𝜔𝑘,𝑗)2

)︀
and finally

𝑅𝑒𝑠𝜔=𝜔𝑘,𝑗

(︁
˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑘,𝑗𝑡

)︁
=

𝑁(𝑘, 𝜔𝑘,𝑗)
𝜕𝐷
𝜕𝜔

(𝑘, 𝜔𝑘,𝑗)
𝑒−𝑖𝜔𝑘,𝑗𝑡. (31)

Remark 1. In practice, for a given wavenumber 𝑘, we obtain a very good approximation
of 𝐸̂(𝑡, 𝑘) considering only the dominant frequency (with the largest imaginary part).
Indeed, denoting 𝜔𝑘,𝑗0

± = ±𝜔𝑟 + 𝑖𝜔𝑖 this dominant frequency, for any other frequency 𝜔𝑘,𝑗

such that ℑ(𝜔𝑘,𝑗) < 𝜔𝑖, we get (using the notation 𝐶𝑗 = 𝑁(𝑘, 𝜔𝑘,𝑗)/𝜕𝐷
𝜕𝜔

(𝑘, 𝜔𝑘,𝑗))

𝐸̂(𝑡, 𝑘) =
∑︁
𝑗

𝐶𝑗𝑒
−𝑖𝜔𝑘,𝑗𝑡 = 𝐶𝑗+0

𝑒−𝑖𝜔
𝑘,𝑗0
+ 𝑡 + 𝐶𝑗−0

𝑒−𝑖𝜔
𝑘,𝑗0
− 𝑡 +

∑︁
𝑗 ̸=𝑗±0

𝐶𝑗𝑒
−𝑖𝜔𝑘,𝑗𝑡

= 𝑒𝜔𝑖𝑡

⎛⎝𝐶𝑗+0
𝑒−𝑖𝜔𝑟𝑡 + 𝐶𝑗−0

𝑒𝑖𝜔𝑟𝑡 +
∑︁
𝑗 ̸=𝑗±0

𝐶𝑗𝑒
−𝑖ℜ(𝜔𝑘,𝑗)𝑡𝑒(ℑ(𝜔𝑘,𝑗)−𝜔𝑖)𝑡

⎞⎠
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and since ℑ(𝜔𝑘,𝑗)− 𝜔𝑖 < 0 ∀𝑗 ̸= 𝑗±0 , we deduce the sum goes to zero for large times.

Thanks to this remark, we only consider the root with the largest imaginary part,
and under the assumption 𝑓

(0)
ℎ is even, one can prove that if 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 is a (simple)

root, then the same is true for −𝜔𝑟 + 𝑖𝜔𝑖. We deduce the following approximation of the
Fourier transform of the electric field

𝐸̂(𝑡, 𝑘) ≈ 𝑅𝑒𝑠𝜔=𝜔𝑟+𝑖𝜔𝑖

(︁
˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑡

)︁
+𝑅𝑒𝑠𝜔=−𝜔𝑟+𝑖𝜔𝑖

(︁
˜̂
𝐸(𝜔, 𝑘)𝑒−𝑖𝜔𝑡

)︁
where the residues are defined by (31). Let denote 𝑟± the modulus of 𝑁(𝑘,±𝜔𝑟+𝑖𝜔𝑖)

𝜕𝐷
𝜕𝜔

(𝑘,±𝜔𝑟+𝑖𝜔𝑖)
and

𝜑± its argument, we then get

𝐸̂(𝑡, 𝑘) ≈ 𝑟+𝑒𝑖𝜑
+

𝑒−𝑖(𝜔𝑟+𝑖𝜔𝑖)𝑡 + 𝑟−𝑒𝑖𝜑
−
𝑒−𝑖(−𝜔𝑟+𝑖𝜔𝑖)𝑡. (32)

In the tests we will consider, the perturbation is a trigonometric function which enables
to compare easily (32) with the numerical results.

4.3 Numerical results

This section is devoted to the study of numerical methods presented in Subsection 4.1
for the 1𝑑𝑥-1𝑑𝑣 hybrid model (17). First of all, the validity of hybrid model is discussed.
Then, splitting and Lawson methods are compared, in both constant and adaptive time
step cases. In the following, we denote by 𝛼 ∈ [0, 1] the density of hot particles and by
1− 𝛼 = 𝜌

(0)
𝑐 the density of cold particles.

Using the following notation for the Maxwellian

ℳ𝜌,𝑢,𝑇 (𝑣) :=
𝜌

(2𝜋𝑇 )
1
2

exp

(︃
−|𝑣 − 𝑢|2

2𝑇

)︃
,

we will consider in this section the following initial condition for the full kinetic model

𝑓(𝑡 = 0, 𝑥, 𝑣) = ℳ1−𝛼,0,𝑇𝑐(𝑣) + (1 + 𝜖 cos(𝑘𝑥))
(︀
ℳ𝛼/2,𝑣0,1(𝑣) +ℳ𝛼/2,−𝑣0,1(𝑣)

)︀
(33)

with 𝑘 = 0.5, 𝑣0 = 3.4, 𝛼 = 0.2, 𝑥 ∈ [0, 𝐿], 𝐿 = 2𝜋/𝑘 = 4𝜋, 𝑣 ∈ [−𝑣max, 𝑣max] (𝑣max = 12)
and the perturbation for the hot particles is 𝜖 = 10−2. The parameter 𝑇𝑐 will vary to
study the limit as 𝑇𝑐 goes to zero. For the hybrid model, the compatible initial condition
reads

𝑢𝑐(𝑡 = 0, 𝑥) = 0

𝑓ℎ(𝑡 = 0, 𝑥, 𝑣) = (1 + 𝜖 cos(𝑘𝑥))
(︀
ℳ𝛼/2,𝑣0,1(𝑣) +ℳ𝛼/2,−𝑣0,1(𝑣)

)︀ (34)

where 𝑘, 𝑣0, 𝛼 and 𝜖 are chosen as in the full kinetic case. We easily check that, taking
the limit 𝑇𝑐 → 0 in (33) gives 𝑓(𝑡 = 0, 𝑥, 𝑣) = 𝑓𝑐(𝑡 = 0, 𝑥, 𝑣) + 𝑓ℎ(𝑡 = 0, 𝑥, 𝑣), with
𝑓ℎ(𝑡 = 0, 𝑥, 𝑣) given by (34) and 𝑓𝑐(𝑡 = 0, 𝑥, 𝑣) = (1 − 𝛼)𝛿𝑣=0. The initial electric field
𝐸(𝑡 = 0, 𝑥) is obtained by solving the Poisson equation at initial time

𝜕𝑥𝐸(𝑡 = 0) = (1− 𝛼) +

∫︁
(1 + 𝜖 cos(𝑘𝑥))

(︀
ℳ𝛼/2,𝑣0,1(𝑣) +ℳ𝛼/2,−𝑣0,1(𝑣)

)︀
d𝑣 − 1. (35)

We will denote 𝑁𝑥 (resp. 𝑁𝑣) the number of points in the space (resp. velocity) variable
such that the space mesh is Δ𝑥 = 𝐿/𝑁𝑥 (resp. the velocity mesh is Δ𝑣 = 2𝑣max/𝑁𝑣).
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4.3.1 Numerical study of the limit of the full kinetic model towards the
hybrid model

Our goal is to investigate numerically the convergence of the full kinetic model (29)
towards the hybrid model as the temperature of the cold particles 𝑇𝑐 goes to zero.

A first consistency study has been done on dispersion relations (see Proposition
1). Here, we propose another validation at the numerical level on the full nonlinear
models. On Figure 1, we plot the time evolution of the electric energy ‖𝐸(𝑡, ·)‖𝐿2 =
1
2

∫︀ 𝐿

0
𝐸2(𝑡, 𝑥) d𝑥 in semi-log scale. The numerical parameters are chosen as follows:

𝑁𝑥 = 135, 𝑁𝑣 = 1011, Δ𝑡 = 0.05. A large number of points is considered in the ve-
locity direction to correctly describe the Maxwellian with different temperatures 𝑇𝑐 =
0.05, 0.1, 0.2, 0.4. For the two models (full kinetic and hybrid), a Lawson RK(4, 4) time
integrator is used, with a spectral approximation in space and a WENO approximation
in velocity.

Figure 1: Time evolution of the electric energy for the full kinetic model (with different
values of 𝑇𝑐 = 0.4, 0.2, 0.1, 0.05) and the hybrid model.

First we observe a very good agreement between the two models when the cold tem-
perature 𝑇𝑐 is small enough (𝑇𝑐 = 0.05, 0.1), which validates the hybrid modeling. The
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perturbation of the hot particles generates an instability (two-stream type instability)
which is developing up to 𝑡 = 60 and a nonlinear phase takes place up to 𝑡 = 300. The
instability rate of the linear phase can be computed a priori by solving the dispersion
relation. The dominant frequency is computed by solving the dispersion relation using a
Newton method and written in Table 1. The corresponding slopes are plotted on Figure
1: Lawson schemes are able to recover very accurately the instability rates computed
from the linear theory. One can also remark that, when 𝑇𝑐 is lower than 0.1, the results
obtained from the full kinetic model and the hybrid model are very close to each other,
even in the nonlinear phase.

We can go further with the dispersion relation by reconstructing the linearized elec-
tric field 𝐸lin from (32). We have 𝐸lin(𝑡, 𝑥) = 4𝜖𝑟+𝑒𝜔𝑖𝑡 cos(𝜔𝑟𝑡−𝜑+) cos(𝑘𝑥). We are then
able to compare electric energy obtained by Lawson method to the fully linearized elec-
tric energy given by dispersion relation and equal to 4

√
2𝜋𝜖𝑟+𝑒𝜔𝑖𝑡| cos(𝜔𝑟𝑡 − 𝜑+)| (with

𝑟+ = 0.0461822286329758, 𝜑+ = 1.08935392582393, 𝜔𝑟 = 0.9054349300445959, 𝜔𝑖 =
0.0909886498164638 computed numerically from the dispersion relation). Results are
presented on Figure 2; parameters are the same as previously, except the perturbation
𝜖 = 10−5 which is smaller to increase the linear phase. One can observe a very good
agreement between numerical and analytical results up to time 𝑡 ≈ 120 which corre-
sponds to the beginning of the nonlinear phase (which can not be reproduced by the
linear theory).

𝑇𝑐 𝜔(𝑇𝑐)
0.4 1.06 + 𝑖0.05
0.2 0.98 + 𝑖0.083
0.1 0.94 + 𝑖0.089
0.05 0.92 + 𝑖0.09

hybrid (𝑇𝑐 = 0) 0.90 + 𝑖0.091

Table 1: Solution of dispersion relation for different values of 𝑇𝑐 in kinetic case (30), and
for hybrid case (27).

On Figure 3, we plot the distribution function obtained by the kinetic (with 𝑇𝑐 = 0.05)
and hybrid models at time 𝑡 = 0 and 𝑡 = 300. For the hybrid model, we plot both 𝑓ℎ and
𝑢𝑐 whereas for the kinetic model, we only plot the values of 𝑓 which are lower than 0.2.
We can see a very good agreement on both the distribution function (the two vortices
are created around the phase velocity 𝑣𝜑 ≈ 𝑅𝑒(𝜔)/𝑘 = 1.84) and on the cold velocity.
Whereas the capability of the hybrid model to capture the linear phase of the full kinetic
model can be deduced from the dispersion relation, its capability to capture correctly
the nonlinear effects is more delicate to anticipate. Figure 3 illustrates well the efficiency
of the hybrid modelling.
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Figure 2: Comparison of electric energy given by Lawson method on hybrid model, and
by reconstruction of linearized electric field from dispersion relation study.

Figure 3: Density particles 𝑓 in phase space at initial time (left), at final time 𝑡 = 300
computed by kinetic model (middle), and density of hot particles 𝑓ℎ at 𝑡 = 300 computed
by hybrid model (right) (in cyan is plotted the mean velocity of cold particles 𝑢𝑐).
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4.3.2 Comparison of the two solvers

This section is devoted to the comparison of the Hamiltonian splitting method presented
in Subsection 4.1.1 and the Lawson method presented in Subsection 4.1.2 for the numer-
ical resolution of linearized hybrid model (17).

We consider initial condition (34) with 𝑘 = 0.5, 𝛼 = 0.2, 𝑣0 = 3.4, 𝑥 ∈ [0, 𝐿], 𝐿 = 4𝜋,
𝑣 ∈ [−12, 12] and the perturbation 𝜖 = 10−2. The initial electric field 𝐸(𝑡 = 0, 𝑥) is
obtained by solving Poisson equation (35) at 𝑡 = 0. In the following, phase-space domain
is discretized with 𝑁𝑥 = 27 points in 𝑥 and 𝑁𝑣 = 128 points in 𝑣.

Concerning the time step, we consider three time steps:

• Δ𝑡 = 0.1 ≈ 0.5Δ𝑣; this is a CFL condition from standard finite volume schemes.

• Δ𝑡 = 0.5 ≈ 𝜎 Δ𝑣
‖𝐸𝑛‖∞ = 0.54, with 𝜎 ≈ 1.732; this is the CFL condition of

WENO5 with RK(4,4) (see [20]) computed from the numerical estimate ‖𝐸𝑛‖∞ =
max𝑖,𝑛 |𝐸𝑛

𝑖 | ≈ 0.6.

• Δ𝑡 = 0.7; this is a large time step chosen to illustrate that the splitting methods
have no stability constraint on the time step.

On Figure 4, we can see the time evolution of the electric energy (in semi-log scale)
obtained by the two fourth order (Suzuki (11)-(12) and Lawson-RK(4, 4)) solvers with the
time steps 0.1, 0.5 and 0.7. First, it is important to note that all the simulations capture
correctly the linear phase, even with a coarse mesh and large time steps. Moreover, for
Δ𝑡 = 0.1, 0.5, both methods are stable as expected and give very similar results. However,
for Δ𝑡 = 0.7 Lawson-RK(4,4) method becomes unstable in the nonlinear phase; indeed,
in this regime, the electric field amplitude reaches the maximum and Δ𝑡 = 0.7 violates
the CFL condition, whereas Suzuki splitting method stays stable as expected.

On Figure 5 we plot the time evolution of the relative error on total energy, computed
as

ℋ𝑛

ℋ0
− 1 (36)

with
ℋ𝑛 =

1

2

∫︁∫︁
𝑣2𝑓𝑛

ℎ d𝑣d𝑥+
1

2

∫︁
𝜌(0)𝑐 (𝑢𝑛

𝑐 )
2 d𝑥+

1

2

∫︁
(𝐸𝑛)2 d𝑥.

We consider the same numerical parameters as before and compare the effect of the time
integrators (Hamiltonian splittings: Lie (9), Strang (10) and Suzuki (11), and Lawson-
RK(4, 4)) on the total energy preservation. Firstly, we can observe on Figure 5 that
the energy is very well preserved by splitting methods; in particular, the relative error
oscillates around a constant for large times, which is a typical behavior of geometric
methods. Secondly, for time steps under CFL condition, the error obtained when using
Lawson-RK(4,4) method is near 4% which is very acceptable. Obviously, as noticed
previously, when Δ𝑡 = 0.7 we can observe that error on Lawson-RK(4,4) diverges in the
nonlinear phase due to the numerical instability but before that, the error is about 2%.
Finally, in Table 2, the maximum of the relative error max𝑛 |ℋ𝑛/ℋ0 − 1| for the different
methods and time steps is shown.
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Figure 4: Time evolution of the electric energy for the hybrid model (computed by the
Lawson and Suzuki methods) for different choices of time step Δ𝑡 = 0.1, 0.5, 0.7).

We compare in Figure 6 the distribution of hot particles 𝑓ℎ computed by Suzuki
and Lawson-RK(4,4) method at time 𝑡 = 100, on which we added the mean velocity
of cold particles 𝑢𝑐 (we have chosen Δ𝑡 = 0.1). A very good agreement of the two
numerical solutions is observed: the vortices position and the cold velocity shape are
very close for both methods. We can also observe that the Lawson-RK(4,4) method
seems to introduce slightly more diffusion than Suzuki since the vortices have a better
resolution. This might be explained by the velocity discretization of the two methods;
in the Lawson-RK(4, 4) method, a WENO5 method (involving slope limiters) is used
whereas a 5-th order reconstruction (without limiters) is used in Suzuki method.

To complete this part, we plot in Figure 7 the orders of accuracy of different time
integrators used to approximate the hybrid model: Hamiltonian splittings (Lie, Strang
and Suzuki) and Lawson (RK(4, 4) and RK(3, 3)). To do so, we computed the maximum
value of relative error on total energy max𝑛 |ℋ𝑛/ℋ0 − 1|, until time 𝑡 = 15 as a function
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0.1 0.5 0.7
Lie 0.0036 0.0187 0.0394
Strang 0.0001 0.0019 0.0109
Suzuki 3× 10−8 0.0001 0.0028
Lawson-RK(4,4) 0.0372 0.0331 NaN

Table 2: Maximum of relative error for different simulations of Figure 5.

of different time steps chosen in the interval Δ𝑡 ∈ [0.01, 1.25] (here we have 𝑁𝑥 = 243
and 𝑁𝑣 = 512). All the theoretical orders are recovered and we also observe that the
error constants of Suzuki and Lawson-RK(4,4) methods are very close. Let us remark
that the Suzuki method is a bit more expensive than the Lawson-RK(4,4) method (more
details will be given in Subsection 4.3.4).
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Figure 5: Time evolution of the relative error on total energy for the hybrid model
(computed by Lawson and splitting methods and for different choices of time step Δ𝑡 =
0.1, 0.5, 0.7).
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Figure 6: Density of hot particules 𝑓ℎ and mean velocity of cold particules 𝑢𝑐 (cyan
curves) at initial time (left), at time 𝑡 = 100 computed by Suzuki method (middle) and
computed by Lawson-RK(4,4) method (right).

Figure 7: Study of order in time of different numerical methods for the hybrid model
(Lawson and splitting methods). The error is computed on maximum value of relative
error on total energy.
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4.3.3 Comparison of the two adaptive time step methods

This section is devoted to the study of the Suzuki and Lawson methods combined with
adaptive time step strategies. Both methods are presented in Subsection 3.3. For all
simulations, we are interested in error estimator (15) which we recall in our hybrid model
case

𝐿𝑛+1
[3] =

(︃
𝑁𝑥−1∑︁
𝑖=0

(𝑢𝑐
𝑛+1,[4]
𝑖 − 𝑢𝑐

𝑛+1,[3]
𝑖 )2Δ𝑥

)︃ 1
2

+

(︃
𝑁𝑥−1∑︁
𝑖=0

(𝐸
𝑛+1,[4]
𝑖 − 𝐸

𝑛+1,[3]
𝑖 )2Δ𝑥

)︃ 1
2

+

(︃
𝑁𝑥−1∑︁
𝑖=0

𝑁𝑣−1∑︁
𝑗=0

⃒⃒⃒
𝑓ℎ

𝑛+1,[4]
𝑖,𝑗 − 𝑓ℎ

𝑛+1,[3]
𝑖,𝑗

⃒⃒⃒2
Δ𝑣Δ𝑥

)︃ 1
2

= 𝐿𝑛+1
𝑢𝑐

+ 𝐿𝑛+1
𝐸 + 𝐿𝑛+1

𝑓ℎ
,

(37)

where 𝑢𝑐
𝑛+1,[𝑝]
𝑖 , 𝐸

𝑛+1,[𝑝]
𝑖 and 𝑓ℎ

𝑛+1,[𝑝]
𝑖,𝑗 are the discrete unknown computed with a 𝑝-order

method in time and associated to time 𝑡𝑛+1 and to the phase space grid point 𝑥𝑖 =
𝑖Δ𝑥, 𝑖 = 0, . . . , 𝑁𝑥 and 𝑣𝑗 = −𝑣max + 𝑗Δ𝑣, 𝑗 = 0, . . . , 𝑁𝑣. For both methods, at iteration
𝑛, if the error criteria ‖𝐿𝑛+1

[3] ‖ <tol is fullfiled, then the time step Δ𝑡𝑛+1 at the next
iteration is computed using (16). This will allow us to compare the error estimate with
the same tolerance tol (we considered a tolerance equal to tol= 2× 10−5) for the DP4(3)
method and the Suzuki method. We will also look at the number of iterations of each
simulation method, and the size of the time steps that the adaptive time step method
proposes. Note that the two methods in Section 3.3 use the same error estimation so
that they share the criterion for rejecting an iteration.

method number of iterations number of succeeded iterations ratio
Suzuki 23895 23849 0.998

Lawson-DP4(3) 2288 2192 0.958

Table 3: Comparison of number of iterations to solve the problem to time 𝑡 = 300,
succeeded iterations of adaptive time step methods and ratio between succeeded and
total numbers of iterations.

On Table 3, we show the number of iterations needed to reach the final time 𝑡 = 300
for the two adaptive time step methods (Suzuki and Lawson-DP4(3)) using the following
numerical parameters 𝑁𝑥 = 81, 𝑁𝑣 = 128. We also give the number of rejected iterations
and the ratio of succeeded iterations of adaptive time step method over the total number
of iterations. First, we observe that a large majority of iterations are accepted for both
methods, which means that the error estimate is efficient. For Lawson-DP4(3), the ratio
is slightly lower than for Suzuki, which means that the strategy tries larger time steps
which are sometimes rejected. The very high proportion of accepted iterations implies
that we rarely have to modify time step and compute again the same iteration with a
smaller time step. The corresponding overcost is neglectable. The second remark is that
the Suzuki method needs about 10 times more iterations than Lawson-DP4(3) method,
meaning that Suzuki requires smaller time steps to satisfy the criterion ‖𝐿𝑛+1

[3] ‖ <tol.
On Figure 8, the time history of the time steps is represented (rejected iterations

are also presented using square boxes) for both adaptive methods. First, we observe
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that larger time steps are computed during the linear phase (up to 𝑡 ≈ 50). During the
nonlinear phase, the time step becomes smaller and oscillates around a constant, which
enables to capture nonlinear effects and strong gradients. Second, for a same tolerance
(tol=2× 10−5), we can see that Suzuki needs smaller time steps compared to DP4(3) to
guarantee that the criterion is satisfied, as remarked previously in Table 3. Note that the
variations of the time step are quite important; it is possible to control these variations
by incorporating bounds in the predicted time steps, which in addition enables to reduce
the number of rejected iterations (see [23]). On Figure 9, we plot the local error 𝐿[3] as
a function of time for Lawson methods (left) and Suzuki methods (right), with adaptive
and constant time steps. For a large time step (Δ𝑡 = 0.5), even if the methods are stable,
the local error is larger than the tolerance (still equal to 2× 10−5) whereas the adaptive
methods automatically choose the optimal step for which the local error is smaller than
the tolerance, as expected. One can see that the Lawson method with adaptive stepping
strategy and with a fixed time step Δ𝑡 = 0.1 leads to very close results; however, the
adaptive version optimizes the size of the time step according to the local error which is
a nice feature in this case. For Suzuki methods, as already discussed, smaller time steps
are required to respect the tolerance compared to DP4(3). Moreover, with Δ𝑡 = 0.1
constant, Suzuki creates larger local error whereas DP4(3) remains (almost) under the
tolerance.

Figure 8: Time evolution of the time step size Δ𝑡𝑛 (rejected iterations are denoted by
squares) for the hybrid model with adaptive time stepping methods.

For the two adaptive methods, we are now interested in the evolution of the local
error over time, but looking at the different contributions of the local error 𝐿𝑛

[3], namely
𝐿𝑛
𝑢𝑐

, 𝐿𝑛
𝐸 and 𝐿𝑛

𝑓ℎ
in (37). The results are shown in Figure 10. The error of DP4(3) and its

various contributions are shown at the top, while these of the Suzuki method are shown
at the bottom. One observes that the contribution from 𝐿𝑛

𝑢𝑐
is negligible which can be

explained by the fact that in DP4(3), the linear part of the problem is solved exactly.
However, since the nonlinear part includes the calculation of the current

∫︀
𝑣𝑓ℎ d𝑣 in 𝐿𝑛

𝐸

and the transport in the 𝑣 direction in 𝐿𝑛
𝑓ℎ

, the contribution of these two components
remains preponderant throughout the simulation. For Suzuki method, the error comes
essentially from 𝐿𝑛

𝑓ℎ
because of the error from the transport part interpolation.
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Figure 9: Comparison of time error evolution for constant and adaptive time step ap-
proaches. Lawson methods on the left, Suzuki methods on the right (semi-log scale).

Figure 10: Comparison of each component of local error as a function of time for Lawson
(top) and Suzuki (bottom).
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4.3.4 About computational time

To end the comparison between splitting and Lawson methods, we focus on their com-
putational times. On Figure 11 (left), we present the mean value as well as quartiles of
the computational time of one iteration for the RK(4, 4), DP4(3) and Suzuki methods.
We recall that RK(4,4) method is constituted of four stages, whereas DP4(3) and Suzuki
methods have 5 stages. This explains why one iteration of RK(4,4) method costs less
than one iteration of two other methods. On the right part of Figure 11, we look at each
stage of the methods. We recall that DP4(3) is made of 4 steps of RK(4,4) plus a fifth
extra step. As expected, all steps of Suzuki method have the same cost (since Suzuki
is a composition of 5 Strang splittings). On the contrary, we observe that the first two
steps of RK(4,4) or DP4(3) are less costly than last steps.

Figure 11: Mean value and quartiles of computational time for one iteration (Left) and
each step of one iteration (Right).

5 Vlasov hybrid model: 1𝑑𝑧-3𝑑𝑣 case
This section is dedicated to the study of the numerical methods discussed above (Hamil-
tonian splitting and Lawon) on a more complex and realistic four dimensional problem.
Due to the high dimensionality of the problem, we will not consider the full kinetic
problem as in the previous section but we will discuss some specific modifications of the
numerical methods which are required to make four dimensional simulations efficient.

As in [1], starting from the full six-dimensional hybrid problem (2)-(5), we consider
here the case of a wave propagation parallel to a uniform magnetic field B0(x) = 𝐵0e𝑧 =
(0, 0, 𝐵0)

𝑇 , 𝐵0 > 0 and Ω2
𝑝𝑒 = 4 so that the wave vector k = 𝑘e𝑧 = (0, 0, 𝑘)𝑇 and the

problem becomes one dimensional in space but the three dimensions in velocity are kept.
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Thus, we consider the following unknown for the VHL

𝑓ℎ(𝑡, 𝑧,v), 𝐸𝑥(𝑡, 𝑧), 𝐸𝑦(𝑡, 𝑧), 𝐵𝑥(𝑡, 𝑧), 𝐵𝑦(𝑡, 𝑧), 𝑗𝑐,𝑥(𝑡, 𝑧), 𝑗𝑐,𝑦(𝑡, 𝑧),

with v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) and𝑗𝑐,𝑥/𝑦 = −𝜌
(0)
𝑐 𝑢𝑐,𝑥/𝑦. The model is normalized as in [1] and reads

as

𝜕𝑗𝑐,𝑥
𝜕𝑡

= Ω2
𝑝𝑒𝐸𝑥 − 𝑗𝑐,𝑦𝐵0, (38)

𝜕𝑗𝑐,𝑦
𝜕𝑡

= Ω2
𝑝𝑒𝐸𝑦 + 𝑗𝑐,𝑥𝐵0, (39)

𝜕𝑓ℎ
𝜕𝑡

+ 𝑣𝑧𝜕𝑧𝑓ℎ − (𝐸𝑥 + 𝑣𝑦𝐵0 − 𝑣𝑧𝐵𝑦) 𝜕𝑣𝑥𝑓ℎ

− (𝐸𝑦 − 𝑣𝑥𝐵0 + 𝑣𝑧𝐵𝑥) 𝜕𝑣𝑦𝑓ℎ − (𝑣𝑥𝐵𝑦 − 𝑣𝑦𝐵𝑥) 𝜕𝑣𝑧𝑓ℎ = 0, (40)
𝜕𝐵𝑥

𝜕𝑡
= 𝜕𝑧𝐸𝑦, (41)

𝜕𝐵𝑦

𝜕𝑡
= −𝜕𝑧𝐸𝑥, (42)

𝜕𝐸𝑥

𝜕𝑡
= −𝜕𝑧𝐵𝑦 − 𝑗𝑐,𝑥 +

∫︁
𝑣𝑥𝑓ℎ dv, (43)

𝜕𝐸𝑦

𝜕𝑡
= 𝜕𝑧𝐵𝑥 − 𝑗𝑐,𝑦 +

∫︁
𝑣𝑦𝑓ℎ dv. (44)

Let us detail the Poisson bracket in this context. First, the Hamiltonian reduces to (we
denote B := (𝐵𝑥, 𝐵𝑦, 0)

T)

ℋ =
1

2

∫︁
R
(𝐸2

𝑥 + 𝐸2
𝑦) d𝑧⏟  ⏞  

ℋ𝐸

+
1

2

∫︁
R
(𝐵2

𝑥 +𝐵2
𝑦) d𝑧⏟  ⏞  

ℋ𝐵

+
1

2

∫︁
R

1

Ω2
𝑝𝑒

(𝑗2𝑐,𝑥 + 𝑗2𝑐,𝑦) d𝑧⏟  ⏞  
ℋ𝑗𝑐

+
1

2

∫︁
R

∫︁
R3

|v|2𝑓 d𝑧dv⏟  ⏞  
ℋ𝑓ℎ

.

(45)
We define one bracket as follows, for two given functionals ℱ ,𝒢 of the unknown

{ℱ ,𝒢}[𝑗𝑐,𝑥, 𝑗𝑐,𝑦, 𝐵𝑥, 𝐵𝑦, 𝐸𝑥, 𝐸𝑦, 𝑓ℎ] =

∫︁
R

∫︁
R3

𝑓ℎ

(︂
𝜕𝑧

𝛿ℱ
𝛿𝑓ℎ

𝜕𝑣𝑧
𝛿𝒢
𝛿𝑓ℎ

− 𝜕𝑣𝑧
𝛿ℱ
𝛿𝑓ℎ

𝜕𝑧
𝛿𝒢
𝛿𝑓ℎ

)︂
dvd𝑧

+

∫︁
R

∫︁
R3

𝑓ℎ

(︂
𝜕𝑣𝑥

𝛿ℱ
𝛿𝑓ℎ

𝛿𝒢
𝛿𝐸𝑥

+ 𝜕𝑣𝑦
𝛿ℱ
𝛿𝑓ℎ

𝛿𝒢
𝛿𝐸𝑦

− 𝜕𝑣𝑥
𝛿𝒢
𝛿𝑓ℎ

𝛿ℱ
𝛿𝐸𝑥

− 𝜕𝑣𝑦
𝛿𝒢
𝛿𝑓ℎ

𝛿ℱ
𝛿𝐸𝑦

)︂
dvd𝑧

+

∫︁
R

∫︁
R3

𝑓ℎ(B+B0) ·
(︂
∇v

𝛿ℱ
𝛿𝑓ℎ

×∇v
𝛿𝒢
𝛿𝑓ℎ

)︂
dvd𝑧

+

∫︁
R

(︂
−𝜕𝑧

𝛿ℱ
𝛿𝐸𝑦

𝛿𝒢
𝛿𝐵𝑥

+ 𝜕𝑧
𝛿ℱ
𝛿𝐸𝑥

𝛿𝒢
𝛿𝐵𝑦

+ 𝜕𝑧
𝛿𝒢
𝛿𝐸𝑦

𝛿ℱ
𝛿𝐵𝑥

− 𝜕𝑧
𝛿𝒢
𝛿𝐸𝑥

𝛿ℱ
𝛿𝐵𝑦

)︂
d𝑧

+

∫︁
R
Ω2

𝑝𝑒

(︂
𝛿ℱ
𝛿𝑗𝑐,𝑥

𝛿𝒢
𝛿𝐸𝑥

+
𝛿ℱ
𝛿𝑗𝑐,𝑦

𝛿𝒢
𝛿𝐸𝑦

− 𝛿𝒢
𝛿𝑗𝑐,𝑥

𝛿ℱ
𝛿𝐸𝑥

− 𝛿𝒢
𝛿𝑗𝑐,𝑦

𝛿ℱ
𝛿𝐸𝑦

)︂
d𝑧

+

∫︁
R
Ω2

𝑝𝑒𝐵0

(︂
𝛿ℱ
𝛿𝑗𝑐,𝑥

𝛿𝒢
𝛿𝑗𝑐,𝑦

− 𝛿ℱ
𝛿𝑗𝑐,𝑦

𝛿𝒢
𝛿𝑗𝑐,𝑥

)︂
d𝑧. (46)
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From this, one can rewrite the system (38)-(44) as

𝜕𝑡𝑈 = {𝑈,ℋ},

with 𝑈(𝑡, 𝑧,v) = (𝑗𝑐,⊥(𝑡, 𝑧), 𝐵⊥(𝑡, 𝑧), 𝐸⊥(𝑡, 𝑧), 𝑓ℎ(𝑡, 𝑧,v) where ℋ is given by (45) and
𝑗𝑐,⊥ = (𝑗𝑐,𝑥, 𝑗𝑐,𝑦)

T, 𝐸⊥ = (𝐸𝑥, 𝐸𝑦)
T, 𝐵⊥ = (𝐵𝑥, 𝐵𝑦)

T. In the rest of this section, we will
also use the notation 𝑣⊥ = (𝑣𝑥, 𝑣𝑦)

T ∈ R2 such that v = (𝑣⊥, 𝑣𝑧)
T and we introduce the

symplectic matrix

𝐽 =

(︂
0 1
−1 0

)︂
.

5.1 Numerical schemes

In this part, we will present some modifications of the Hamiltonian splitting and Lawson
methods which are specific to the numerical resolution of the 1𝑑𝑧 − 3𝑑𝑣 hybrid model.

5.1.1 Hamiltonian splitting

As in the previous section, we adapt a Hamiltonian splitting method to our case in which
the Hamiltonian (45) can be split into four parts. The splitting can be deduced from
(45) through

𝜕𝑡𝑈 = {𝑈,ℋ𝐸}+ {𝑈,ℋ𝐵}+ {𝑈,ℋ𝑗𝑐}+ {𝑈,ℋ𝑓ℎ}, 𝑈(𝑡 = 0) = 𝑈0. (47)

In the sequel, we will compute 𝜙
[𝐸]
𝑡 , 𝜙

[𝐵]
𝑡 , 𝜙

[𝑗𝑐]
𝑡 and 𝜙

[𝑓ℎ]
𝑡 the solutions corresponding

to each part so that the solution 𝜙(𝑈0) of (47) can be approximated at time 𝑡 with a
composition of the subflows 𝜙

[𝐸,𝐵,𝑗𝑐,𝑓ℎ]
𝑡 .

Part ℋ𝐸

To compute the solution of the subflow corresponding to ℋE, we have to solve the
following system

𝜕𝑡𝐸⊥ = (0, 0)T, 𝜕𝑡𝑓ℎ − 𝐸⊥ · ∇𝑣⊥𝑓ℎ = 0, 𝜕𝑡𝐵⊥ = 𝐽𝜕𝑧𝐸⊥, 𝜕𝑡𝑗𝑐,⊥ = Ω2
𝑝𝑒𝐸⊥.

Starting with the initial condition 𝑈(𝑡 = 0) = 𝑈0 = (𝑗𝑐,⊥, 𝐸⊥, 𝐵⊥, 𝑓ℎ)(𝑡 = 0), the solution
at time 𝑡 is

𝜙
[𝐸]
𝑡 (𝑈0) =

⎛⎜⎜⎝
𝑗𝑐,⊥(0) + 𝑡Ω2

𝑝𝑒𝐸⊥(0)
𝐸⊥(0)

𝐵⊥(0) + 𝑡𝐽𝜕𝑧𝐸⊥(0)
𝑓ℎ(0, 𝑧, 𝑣⊥ + 𝑡𝐸⊥(0), 𝑣𝑧)

⎞⎟⎟⎠ .

The computation of 𝑓ℎ(0, 𝑧, 𝑣⊥ + 𝑡𝐸⊥(0), 𝑣𝑧) is performed using two one-dimensional
interpolations (in 𝑣𝑥 and 𝑣𝑦) of fifth order Lagrange type.
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Part ℋ𝐵

Now we compute 𝜙
[𝐵]
𝑡 the solution to

𝜕𝑡(𝑓ℎ, 𝐵⊥, 𝑗𝑐,⊥) = 0, 𝜕𝑡𝐸⊥ = −𝐽𝜕𝑧𝐵⊥.

We obtain

𝜙
[𝐵]
𝑡 (𝑈0) =

⎛⎜⎜⎝
𝑗𝑐,⊥(0)

𝐸⊥(0)− 𝑡𝐽𝜕𝑧𝐵⊥(0)
𝐵⊥(0)
𝑓ℎ(0)

⎞⎟⎟⎠ .

Part ℋ𝑗𝑐

Here we compute 𝜙
[𝑗𝑐]
𝑡 the solution to

𝜕𝑡(𝑓ℎ, 𝐵⊥) = 0, 𝜕𝑡𝐸⊥ = −𝑗𝑐,⊥, 𝜕𝑡𝑗𝑐,⊥ = −𝐽𝑗𝑐,⊥𝐵0.

We then have

𝜙
[𝑗𝑐]
𝑡 (𝑈0) =

⎛⎜⎜⎜⎝
exp(−𝐽𝑡)𝑗𝑐,⊥(0)𝐵0,

𝐸⊥(0)− 𝐽
(︁
exp(−𝐽𝑡)− 𝐼

)︁
𝑗𝑐,⊥(0)

𝐵⊥(0)
𝑓ℎ(0)

⎞⎟⎟⎟⎠ ,

since
∫︀ 𝑡

0
exp(−𝐽𝑠))𝑗𝑐,⊥(0) d𝑠 = 𝐽

(︁
exp(−𝐽𝑡)− 𝐼

)︁
𝑗𝑐,⊥(0).

Part ℋ𝑓ℎ

For this last part, we have to compute the solution to

𝜕𝑡(𝐵⊥, 𝑗𝑐,⊥) = 0,

𝜕𝑡𝑓ℎ + 𝑣𝑧𝜕𝑧𝑓ℎ − (𝑣𝑦𝐵0 − 𝑣𝑧𝐵𝑦) 𝜕𝑣𝑥𝑓ℎ − (−𝑣𝑥𝐵0 + 𝑣𝑧𝐵𝑥) 𝜕𝑣𝑦𝑓ℎ − (𝑣𝑥𝐵𝑦 − 𝑣𝑦𝐵𝑥) 𝜕𝑣𝑧𝑓ℎ = 0,

𝜕𝑡𝐸⊥ =

∫︁
𝑣⊥𝑓ℎ dv.

As in the Vlasov-Maxwell case (see [9]), this system can not be solved exactly in time
but following [9], we split again the Hamiltonian ℋ𝑓ℎ into ℋ𝑓ℎ = ℋ𝑓ℎ,𝑥 +ℋ𝑓ℎ,𝑦 +ℋ𝑓ℎ,𝑧

where ℋ𝑓ℎ,𝑖 =
1
2

∫︀
𝑣2𝑖 𝑓ℎ dv, 𝑖 = 𝑥, 𝑦, 𝑧. Then, it leads to the following subsystems

• ℋ𝑓ℎ,𝑥: 𝜕𝑡(𝐵⊥, 𝑗𝑐,⊥, 𝐸𝑦) = 0, 𝜕𝑡𝑓ℎ−
(︀
−𝑣𝑥𝐵0𝜕𝑣𝑦𝑓ℎ +𝐵𝑦𝑣𝑥𝜕𝑣𝑧𝑓ℎ

)︀
= 0, 𝜕𝑡𝐸𝑥 =

∫︀
𝑣𝑥𝑓ℎ dv.

We first remark that
∫︀
𝑣𝑥𝑓ℎ dv is constant in time so that the Ampère equation

can be solved easily. Moreover, the transport equation can be solved exactly using
a directional splitting since the two operators commute. Then, we have

𝜙
[𝑓ℎ,𝑥]
𝑡 (𝑈0) =

⎛⎜⎜⎜⎜⎝
𝑗𝑐,⊥(0)

𝐸𝑥(0) + 𝑡
∫︀
𝑣𝑥𝑓ℎ(0) dv

𝐸𝑦(0)
𝐵⊥(0)

𝑓ℎ(0, 𝑧, 𝑣𝑥, 𝑣𝑦 − 𝑡𝑣𝑥𝐵0, 𝑣𝑧 + 𝑡𝐵𝑦𝑣𝑥)

⎞⎟⎟⎟⎟⎠ .

In practice, two one-dimensional interpolations are performed (using fifth order
Lagrange).
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• ℋ𝑓ℎ,𝑦: 𝜕𝑡(𝐵⊥, 𝑗𝑐,⊥, 𝐸𝑥) = 0, 𝜕𝑡𝑓ℎ − (𝐵0𝑣𝑦𝜕𝑣𝑥𝑓ℎ −𝐵𝑥𝑣𝑦𝜕𝑣𝑧𝑓ℎ) = 0, 𝜕𝑡𝐸𝑦 =
∫︀
𝑣𝑦𝑓ℎ dv.

This step is very similar to the previous one and we have

𝜙
[𝑓ℎ,𝑦]
𝑡 (𝑈0) =

⎛⎜⎜⎜⎜⎝
𝑗𝑐,⊥(0)
𝐸𝑥(0)

𝐸𝑦(0) + 𝑡
∫︀
𝑣𝑦𝑓ℎ(0) dv

𝐵⊥(0)
𝑓ℎ(0, 𝑧, 𝑣𝑥 + 𝑡𝑣𝑦𝐵0, 𝑣𝑦, 𝑣𝑧 − 𝑡𝐵𝑥𝑣𝑦)

⎞⎟⎟⎟⎟⎠ .

In practice, two one-dimensional interpolations are performed (using fifth order
Lagrange).

• ℋ𝑓ℎ,𝑧: 𝜕𝑡(𝐵⊥, 𝑗𝑐,⊥, 𝐸⊥) = 0, 𝜕𝑡𝑓ℎ + 𝑣𝑧𝜕𝑧𝑓ℎ −
(︀
−𝐵𝑦𝑣𝑧𝜕𝑣𝑥𝑓ℎ + 𝑣𝑧𝐵𝑥𝜕𝑣𝑦𝑓ℎ

)︀
= 0.

The calculation of the ℋ𝑓ℎ,𝑧 part deserves more attention. First, we introduce a new
function 𝑔(𝑡, 𝑧,v) := 𝑓(𝑡, 𝑧 + 𝑡𝑣𝑧,v) which satisfies

𝜕𝑡𝑔 +𝐵𝑦(0, 𝑧 + 𝑡𝑣𝑧)𝑣𝑧𝜕𝑣𝑥𝑔 − 𝑣𝑧𝐵𝑥(0, 𝑧 + 𝑡𝑣𝑧)𝜕𝑣𝑦𝑔 = 0. (48)

It turns out that this transport equation can be solved exactly in time and the details
are given in the following. First, we observe that the characteristics of (48) can be solved
exactly

𝑣̇𝑥(𝑡) = 𝐵𝑦(0, 𝑧(0) + 𝑡𝑣𝑧(0))𝑣𝑧(0), 𝑣̇𝑦(𝑡) = −𝐵𝑥(0, 𝑧(0) + 𝑡𝑣𝑧(0))𝑣𝑧(0). (49)

Even if 𝑧, 𝑣𝑧 and 𝐵𝑥,𝑦 are constant in time during this step, the filtering has introduced a
time dependency. This can be overcome by expanding the magnetic field 𝐵⊥ into Fourier
series in the 𝑧 variable, which leads to

𝐵⊥(𝑡, 𝑧) = 𝐵⊥(0, 𝑧) =
∑︁
𝑘

𝐵̂⊥(0, 𝑘)𝑒
𝑖𝑘𝑧, so that 𝐵⊥(0, 𝑧 + 𝑡𝑣𝑧) =

∑︁
𝑘

𝐵̂⊥(0, 𝑘)𝑒
𝑖𝑘(𝑧+𝑡𝑣𝑧).

Then, integrating in time the first equation of (49), we have

𝑣𝑥(𝑡) = 𝑣𝑥(0) + 𝑣𝑧(0)

∫︁ 𝑡

0

∑︁
𝑘

𝐵̂𝑦(0, 𝑘)𝑒
𝑖𝑘(𝑧(0)+𝑠𝑣𝑧(0)) d𝑠

= 𝑣𝑥(0) + 𝑣𝑧(0)
∑︁
𝑘

𝐵̂𝑦(0, 𝑘)𝑒
𝑖𝑘𝑧(0)

∫︁ 𝑡

0

𝑒𝑖𝑘𝑠𝑣𝑧(0) d𝑠

= 𝑣𝑥(0) +
∑︁
𝑘

𝐵̂𝑦(0, 𝑘)
1

𝑖𝑘
𝑒𝑖𝑘𝑧(0)(𝑒𝑖𝑘𝑡𝑣𝑧(0) − 1),

whereas for the equation on 𝑣𝑦, we have

𝑣𝑦(𝑡) = 𝑣𝑦(0)− 𝑣𝑧(0)

∫︁ 𝑡

0

∑︁
𝑘

𝐵̂𝑥(0, 𝑘)𝑒
𝑖𝑘(𝑧(0)+𝑠𝑣𝑧(0)) d𝑠

= 𝑣𝑦(0)−
∑︁
𝑘

𝐵̂𝑥(0, 𝑘)
1

𝑖𝑘
𝑒𝑖𝑘𝑧(0)(𝑒𝑖𝑘𝑡𝑣𝑧(0) − 1).

34



Then, the dynamics of ℋ𝑓ℎ,𝑧 is given by

𝑔(𝑡, 𝑧,v) = 𝑔

(︃
0, 𝑧, 𝑣𝑥 −

∑︁
𝑘

𝐵̂𝑦(0, 𝑘)
1

𝑖𝑘
𝑒𝑖𝑘𝑧(𝑒𝑖𝑘𝑡𝑣𝑧 − 1),

𝑣𝑦 +
∑︁
𝑘

𝐵̂𝑥(0, 𝑘)
1

𝑖𝑘
𝑒𝑖𝑘𝑧(𝑒𝑖𝑘𝑡𝑣𝑧 − 1), 𝑣𝑧

)︃
.

Finally, 𝑓ℎ(𝑡) is obtained by performing the inverse change of unknown

𝑓(𝑡, 𝑧,v) = 𝑔(𝑡, 𝑧 − 𝑡𝑣𝑧,v).

Then, the ℋ𝑓ℎ,𝑧 part can be solved exactly in time using three one-dimensional linear
advections (still performed using fifth order Lagrange interpolation). To conclude, the
solution of the ℋ𝑓ℎ part can be done using the composition of the ℋ𝑓ℎ,𝑥,ℋ𝑓ℎ,𝑦 and ℋ𝑓ℎ,𝑧

parts.

5.1.2 Exponential integrators

In this part, we present the exponential integrators to discretize in time the VHL (38)-
(44). Indeed, as mentioned above, the exponential of the whole linear part is complex or
costly to evaluate. Hence, we propose here some modifications compared to the Lawson
scheme presented in Subsection 3.2 based on the two guidelines: we want to remove
the most restrictive stability conditions and we want to consider a linear part whose
exponential is efficient to evaluate.

In this spirit, we first observe that the term (v × B0) induces a restrictive CFL
conditions which can be overcome by performing the following change of variables 𝑤 =
exp(𝑡𝐵0𝐽)𝑣 (with 𝑤 = (𝑤𝑥, 𝑤𝑦)

T and 𝑣 = (𝑣𝑥, 𝑣𝑦)
T) to filter out this term with very slight

influence on the rest of the system. Then, we introduce 𝑔(𝑡, 𝑧, 𝑤, 𝑣𝑧) = 𝑓ℎ(𝑡, 𝑧, exp(−𝑡𝐵0𝐽)𝑤, 𝑣𝑧)
with

exp(−𝑡𝐵0𝐽) =

(︂
cos(𝑡𝐵0) − sin(𝑡𝐵0)
sin(𝑡𝐵0) cos(𝑡𝐵0)

)︂
, 𝐽 =

(︂
0 1
−1 0

)︂
,

so that exp(−𝑡𝐵0𝐽)𝑤 = (cos(𝑡𝐵0)𝑤𝑥 − sin(𝑡𝐵0)𝑤𝑦, sin(𝑡𝐵0)𝑤𝑥 + cos(𝑡𝐵0)𝑤𝑦)
T. Hence,

we derive the equation on 𝑔

𝜕𝑡𝑔 + 𝑣𝑧𝜕𝑧𝑔 − 𝑒−𝑡𝐵0𝐽𝐸⊥ · ∇𝑤𝑔 − ℬ𝑔 = 0, (50)

where ℬ𝑔 is given by

ℬ𝑔 := (v ×B) · ∇v𝑓ℎ

=

⎛⎝ cos(𝑡𝐵0)𝑤𝑥 − sin(𝑡𝐵0)𝑤𝑦

sin(𝑡𝐵0)𝑤𝑥 + cos(𝑡𝐵0)𝑤𝑦

𝑣𝑧

⎞⎠×

⎛⎝ 𝐵𝑥

𝐵𝑦

0

⎞⎠ ·
(︂

𝑒−𝑡𝐵0𝐽∇𝑤𝑔
𝜕𝑣𝑧𝑔

)︂

=

⎛⎝ 𝑣𝑧(− cos(𝑡𝐵0)𝐵𝑦 + sin(𝑡𝐵0)𝐵𝑥)
𝑣𝑧(sin(𝑡𝐵0)𝐵𝑦 + cos(𝑡𝐵0)𝐵𝑥)

(cos(𝑡𝐵0)𝑤𝑥 − sin(𝑡𝐵0)𝑤𝑦)𝐵𝑦 − (sin(𝑡𝐵0)𝑤𝑥 + cos(𝑡𝐵0)𝑤𝑦)𝐵𝑥

⎞⎠·
⎛⎝𝜕𝑤𝑥𝑔
𝜕𝑤𝑦𝑔
𝜕𝑣𝑧𝑔

⎞⎠(51)
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For the Ampère equation (43)-(44), the integrals have to be recast in the new variables∫︁
𝑣𝑓 dv =

∫︁
(𝑒−𝑡𝐵0𝐽𝑤)𝑔 d𝑤d𝑣𝑧,

so that they can be rewritten as

𝜕𝑡𝐸⊥ = −𝐽𝜕𝑧𝐵⊥ − 𝑗𝑐,⊥ +

∫︁
(𝑒−𝑡𝐵0𝐽𝑤)𝑔 d𝑤d𝑣𝑧. (52)

The rest of the equations is unchanged.

The second modification is based on the fact the exponential of the linear part (even
with the previous filtering step) turns out to be quite complicated and in practice too
costly, even using formal languages. Then, we propose to transfer from the linear part
the space derivatives of the Maxwell equations to include them in the nonlinear part so
that the exponential of the linear part is easier to evaluate. We then reformulate the
system as

𝜕𝑡𝑈 + 𝐴𝑈 + 𝐹 (𝑡, 𝑈) = 0,

with the following linear part

𝐴𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐵0 0 0 −Ω2
𝑝𝑒 0 0

−𝐵0 0 0 0 0 −Ω2
𝑝𝑒 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 𝑣𝑧𝜕𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑈,

and with the following nonlinear part

𝐹 (𝑡, 𝑈) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

−𝜕𝑧𝐸𝑦

𝜕𝑧𝐸𝑥

𝜕𝑧𝐵𝑦 −
∫︀
R3(cos(𝑡𝐵0)𝑤𝑥 − sin(𝑡𝐵0)𝑤𝑦)𝑔 d𝑤d𝑣𝑧

−𝜕𝑧𝐵𝑥 −
∫︀
R3(sin(𝑡𝐵0)𝑤𝑥 + cos(𝑡𝐵0)𝑤𝑦)𝑔 d𝑤d𝑣𝑧
−𝑒−𝑡𝐵0𝐽𝐸⊥ · ∇𝑤𝑔 − ℬ𝑔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(53)

In return for an easy computation of 𝑒𝑡𝐴, we now have CFL stability condition coming
from the Maxwell equations in the nonlinear term.

Then, a standard exponential integrator can be used by simply considering Fourier
transform in space whereas WENO methods will be used to approximate the velocity
derivative. Note that the change of variables induces a time dependency on the nonlinear
term (which was not the case in the 1𝑑𝑥− 1𝑑𝑣 case).
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5.2 Numerical results

In this part, we present some numerical results for the 1𝑑𝑧− 3𝑑𝑣 hybrid model obtained
with the numerical methods presented above. Following [1], we consider the following
initial condition

𝑓ℎ(𝑡 = 0, 𝑧,v) =
𝜌ℎ

(2𝜋)3/2𝑣‖𝑣2⊥
exp

(︁
− 𝑣2𝑧

2𝑣2‖
−

(𝑣2𝑥 + 𝑣2𝑦)

2𝑣2⊥

)︁
,

with 𝑧 ∈ [0, 2𝜋/𝑘], 𝑘 = 2, 𝑣‖ = 0.2, 𝑣⊥ = 0.6, 𝜌ℎ = 0.2 and 𝐵𝑥(𝑡 = 0, 𝑧) = 𝜖 sin(𝑘𝑧), the
other unknown (𝐸𝑥, 𝐸𝑦, 𝑗𝑐,𝑥, 𝑗𝑐,𝑦, 𝐵𝑦) are zero initially. The velocity domain is truncated
to v = [−3.6, 3.6]× [−3.6, 3.6]× [−2.4, 2.4] and we denote 𝑁𝑥, 𝑁𝑣𝑥 , 𝑁𝑣𝑦 , 𝑁𝑣𝑧 the number
of points in each direction.

We are interested in the time history of the following energies (magnetic energy,
electric energy, energy of the cold and hot particles)

ℋ𝐵(𝑡) =
1

2

∫︁
(𝐵2

𝑥(𝑡, 𝑧) +𝐵2
𝑦(𝑡, 𝑧)) d𝑧, ℋ𝐸(𝑡) =

1

2

∫︁
(𝐸2

𝑥(𝑡, 𝑧) + 𝐸2
𝑦(𝑡, 𝑧) + 𝐸2

𝑧 (𝑡, 𝑧)) d𝑧,

ℋ𝑐(𝑡) =
1

2Ω2
𝑝𝑒

∫︁
(𝑗2𝑐,𝑥(𝑡, 𝑧) + 𝑗2𝑐,𝑦(𝑡, 𝑧)) d𝑧, ℋℎ(𝑡) =

1

2

∫︁∫︁
|v|2𝑓ℎ(𝑡, 𝑧,v) dvd𝑧,

whose sum is preserved with time

dℋ
d𝑡

=
d(ℋ𝐵 +ℋ𝐸 +ℋ𝑐 +ℋℎ)

d𝑡
= 0.

We first consider both Lawson and splitting methods with fixed time step (as presented
in Subsection 5.1): two Lawson methods (Lawson-RK(4, 4) and Lawson-RK(3, 3)) and
two splitting methods (Lie and Strang). We will not present results from the Suzuki
schemes since it mainly gives the same results as Strang and it costs five times the
Strang method. Indeed, when a splitting method involves a lot of subparts (seven in our
case), the number of stages required to reach high order accuracy increases dramatically
(even if some strategies can be used to avoid this (see [14])). To give an example, Strang
splitting requires 15 stages so that Suzuki requires 5×15 = 75 stages per iteration which
is clearly too much in the high dimensional kinetic context and which makes Suzuki less
attractive. On the contrary, Lawson methods turn out to be a good compromise since
they are optimal in the sense that they involve as many stages as their order. For Vlasov
type systems, this is of crucial importance. Moreover, Lawson methods are versatile
since the linear part can be chosen in order to overcome some specific constraints of
the model: the complexity of the exponential part evaluation, the presence of a term
involving a stringent CFL condition. . . Moreover, filtering out the term v × B0 is also
an important feature of our Lawson integrators since it enables to take into account this
rotation term analytically and to remove the associated CFL condition. Let us remark
that a similar filtering strategy may have been used within the splitting framework but
it leads to additional steps in the ℋ𝑓ℎ subpart which is already the most costly one.

Since the Maxwell equations are approximated in time using explicit schemes, this
still induces a CFL condition on the two approaches (Lawson and splitting) as discussed
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in [32]. Indeed, focusing only on the unknown (𝐸𝑥, 𝐸𝑦, 𝐵𝑥, 𝐵𝑦), it is possible to compute
the stability condition on the time step Δ𝑡 as a function of the space mesh Δ𝑧. The CFL
conditions are gathered in Table 4. For Lawson methods, another CFL condition coming

methods CFL condition
Lie (

√
2/𝜋)Δ𝑧

Strang (2/𝜋)Δ𝑧

Lawson-RK(3, 3) (
√
3/𝜋)Δ𝑧

Lawson-RK(4, 4) (2
√
2/𝜋)Δ𝑧

Table 4: CFL condition from the Maxwell part using the different time integrators.

from the velocity discretization is also present but the condition from Maxwell equations
is the most restrictive one. Let us remark that it would be possible to remove it by
incorporating the Maxwell equations in the linear part (as presented in (13) in Section
3.2). However, as discussed above, the calculation of the exponential of the matrix (13)
is complicated and more advanced techniques are required to evaluate it, like the use of
Padé approximant; this will be the topic of a future work.

In Figure 12, we plot the time history of the electric energy, the magnetic energy
and the energy of cold particles defined in (54), in semi-log scale for the Strang and
Lawson-RK(3, 3) methods. We have chosen a coarse mesh 27× 32× 32× 41, Δ𝑡 = 0.05.
We have considered a small perturbation 𝜖 = 10−5 in order to observe a long linear
phase (up to 𝑡 ≈ 100) whereas the nonlinear phase is developing up to the final time
𝑡 = 200. For the linear phase, it is possible to compare the numerical results with
the solution of the dispersion relation from [1]. First, as expected, the three energies
grows exponentially which traduces the fact that some energy is transferred from the fast
particles to the electromagnetic fields and to the cold particles. After this linear phase,
the fields amplitude saturates, which means that the nonlinear terms start to play a
significative role, so that the linear theory is not valid anymore. First we observe that the
two methods are able to capture the underlying phenomena and a very good agreement
with the instability rate computed from the linear theory is observed. Moreover, the
saturation is also very similar for the two methods.

In Figure 12, we show the total energy conservation as a function of time for the two
methods (Strang and Lawson-RK(3, 3)). Even if the phase space mesh is coarse, the total
energy is quite well preserved: about 8% for Lawson method and about 5% for Strang
splitting methods. As expected (and as observed in the 1𝑑𝑥 − 1𝑑𝑣 case), Hamiltonian
splittings based methods have a good behavior on this diagnostics. However, the effect
of the coarse mesh makes the results of Strang not as good as in the 1𝑑𝑥 − 1𝑑𝑣 case
for which the mesh was refined. Moreover, let us recall that the cost of Strang is more
important than the one of Lawson-RK(3, 3) in this four-dimensional context: Strang is
almost twice more costly as Lawson-RK(3, 3).

Then, we investigate the effect of the filtering of the term v × B0 in the Lawson
schemes. In Figure 14, we show the time history of the electric energy (in semi-log scale)
obtained by the two versions of Lawson schemes (filtered and non-filtered) using two
different phase-space meshes (15 × 20 × 20 × 41 and 15 × 32 × 32 × 41) with Δ𝑡 = 0.1.
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One can observe the impact of the refinement in the 𝑣⊥ direction on the non-filtered
version whereas the filtered version has the good instability rate even with a coarse
mesh.

Hence, for the last test, we only consider Lawson methods and look at the robustness
of the adaptive Lawson-DP4(3) method. This approach is interesting since (𝑖) in the
linear phase electromagnetic fields are small so that the stability condition coming from
the nonlinear part of the equations is not restrictive; (𝑖𝑖) in the nonlinear phase, the local
error estimator of the embedded Runge-Kutta method will ensure stability automatically.
In practice, due to space derivatives in (53), stability condition is still restrictive, so that
(𝑖) is not fully satisfied. In the following, we consider 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 =
41, tol = 6× 10−5 and the time step is computed as

Δ𝑡0 =
𝐶

2
Δ𝑧, Δ𝑡𝑛+1 = min

(︃
max

(︃
𝑝

√︃
tol
𝐿𝑛+1
[𝑝]

Δ𝑡𝑛,
𝐶

2
Δ𝑧

)︃
, 3𝐶Δ𝑧

)︃
, 𝑛 ≥ 0, (54)

where 𝐿𝑛+1
[𝑝] is the local error given by (15) and 𝐶 is given from Table 4. Note that we

imposed the upper bound 3𝐶Δ𝑧 in order to avoid large time steps and then large errors
that may occur at the very beginning of the simulation. In Figure 15, the time history
of the electric energy is shown. In Figure 16, the history of the time steps (top) and
of the local error (bottom) are presented. In simulation with Lawson-DP4(3), the time
step is initialized to Δ𝑡0 = 1

2
2
√
2

𝑁𝑧
≈ 0.05, we can see that the next three iterations used

Δ𝑡𝑛 = 32
√
2

𝑁𝑧
≈ 0.3 which is the upper bound of (54); this comes from the fact that the

electromagnetic fields are very small and the local error is very small as well. All the
other iterations use a time step close to the stability condition coming from Maxwell
equations i.e. Δ𝑡𝑛 ≈ 2

√
2

𝑁𝑧
. It is worth mentioning that the adaptive time step strategy

automatically finds this optimal time step (the adaptive stepping even overestimates the
CFL for 16% of succeeded iterations). Unlike in the 1𝑑𝑥− 1𝑑𝑣 problem in which 95.8%
of iterations are accepted, in this 1𝑑𝑥−3𝑑𝑣 problem only 71% of iterations are accepted.
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Figure 12: Time evolution of the electric energy, the magnetic energy and the energy
of cold particles defined in (54), in semi-log scale for Strang and Lawson-RK(3, 3).
Δ𝑡 = 0.05, 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 = 41.

Figure 13: Time evolution of the total energy for Strang and Lawson-RK(3, 3). Δ𝑡 =
0.05, 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 = 41.
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Figure 14: Time evolution of the electric energy for the filtered and unfiltered versions
of Lawson-RK(3, 3). Left: Δ𝑡 = 0.05, 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 20, 𝑁𝑣𝑦 = 20, 𝑁𝑣𝑧 = 41. Right:
Δ𝑡 = 0.05, 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 = 41

Figure 15: Time evolution of the electric energy defined in (54), in semi-log scale for
Lawson-RK(3, 3) (Δ𝑡 = 0.05) and Lawson-DP4(3). 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 =
41.
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Figure 16: Time evolution of the time step (top) and the local error (bottom) for Lawson-
DP4(3). 𝑁𝑧 = 27, 𝑁𝑣𝑥 = 32, 𝑁𝑣𝑦 = 32, 𝑁𝑣𝑧 = 41.
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6 Conclusion
In this work, we investigate the performances of two different time integrators coupled
with Eulerian methods for a hybrid fluid-kinetic model. This hybrid model, for which we
derive the Hamiltonian structure (Poisson bracket and Hamiltonian) intends to describe
electrons plasma which can be divided into two populations: a cold part described with a
linearized fluid model and a hot part described through a kinetic model. First, we study
numerically the validity of this hybrid modelling through comparisons with the original
full kinetic model in two dimensions of the phase space. In this simplified context, we
also study the dispersion relations of the two models (full kinetic and hybrid) and detail
the pros and cons of two time integrators, namely the Hamiltonian splitting (inspired
by the Hamiltonian structure of the hybrid model) and the Lawson methods (motivated
by the linearization of the fluid part of the hybrid model). These two integrators are
combined with adaptive time stepping strategies which ensure that the local error is
lower than a user-specified tolerance for the whole simulation. Then, we extend these
time integrators to a four dimensional framework in which wave propagation is parallel to
a uniform external magnetic field, as in [1]. In this case, Hamiltonian splitting methods
turn out to be less competitive than Lawson methods.

A Poisson bracket
In this Appendix, we prove that the bracket (7) is indeed a Poisson bracket. As usual,
the linearity and skew-symmetry properties are easy to check. We then focus on the
Jacobi identity. The bracket (7) can be reformulated as follows,

{ℱ ,𝒢} =: {ℱ ,𝒢}VM + {ℱ ,𝒢}𝑗𝐸, (55)

where the first bracket corresponds to the Vlasov-Maxwell bracket (see [34]) and the
second part reads

{ℱ ,𝒢}𝑗𝐸 =

∫︁
Ω

Ω2
𝑝𝑒

(︂
𝛿ℱ
𝛿j𝑐

· 𝛿𝒢
𝛿E

− 𝛿𝒢
𝛿j𝑐

· 𝛿ℱ
𝛿E

)︂
dx+

∫︁
Ω

Ω2
𝑝𝑒B0 ·

(︂
𝛿ℱ
𝛿j𝑐

× 𝛿𝒢
𝛿j𝑐

)︂
dx.

Using the above decomposition, the Jacobi identity can be written as follows,

{{ℱ ,𝒢},ℋ}+ {{𝒢,ℋ},ℱ}+ {{ℋ,ℱ},𝒢}
= {{ℱ ,𝒢}VM,ℋ}VM + {{ℱ ,𝒢}VM,ℋ}𝑗𝐸,
+ {{ℱ ,𝒢}𝑗𝐸,ℋ}VM + {{ℱ ,𝒢}𝑗𝐸,ℋ}𝑗𝐸 + cyc,

(56)

where ℱ ,𝒢,ℋ are functionals of the unknown and cyc is used to denote cyclic permuta-
tion. From the bracket theorem in [35], we only need to consider the functional derivatives
of {ℱ ,𝒢} modulo the second derivative terms, which, with abuse of notations, gives

𝛿{ℱ ,𝒢}VM

𝛿j𝑐
= 0,

𝛿{ℱ ,𝒢}VM

𝛿E
= 0,

𝛿{ℱ ,𝒢}𝑗𝐸
𝛿𝑓ℎ

= 0,
𝛿{ℱ ,𝒢}𝑗𝐸

𝛿E
= 0,

𝛿{ℱ ,𝒢}𝑗𝐸
𝛿B

= 0.

(57)
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So the second term and third term in (56) are all zeros. As 𝛿{ℱ ,𝒢}𝑗𝐸
𝛿E

= 0, and 𝛿{ℱ ,𝒢}𝑗𝐸
𝛿j𝑐

=

0 (in the sense of modulo the second variational derivatives), we know that the fourth
term in (56) is zero.

Next only the first term in (56) is left. The starting point is the classical Poisson
bracket of Vlasov–Maxwell equations,

{ℱ̄ ,𝒢}[𝑓ℎ,E, B̄] = =

∫︁
Ω

∫︁
R3

𝑓ℎ

[︁ 𝛿ℱ̄
𝛿𝑓ℎ

,
𝛿𝒢
𝛿𝑓ℎ

]︁
𝑥𝑣
dvdx

+

∫︁
Ω

∫︁
R3

𝑓ℎ

(︂
∇v

𝛿ℱ̄
𝛿𝑓ℎ

· 𝛿𝒢
𝛿E

−∇v
𝛿𝒢
𝛿𝑓ℎ

· 𝛿ℱ̄
𝛿E

)︂
dvdx

+

∫︁
Ω

∫︁
R3

𝑓ℎB̄

(︂
∇v

𝛿ℱ̄
𝛿𝑓ℎ

×∇v
𝛿𝒢
𝛿𝑓ℎ

)︂
dvdx

+

∫︁
Ω

(︂
∇× 𝛿ℱ̄

𝛿E
· 𝛿𝒢
𝛿B̄

−∇× 𝛿𝒢
𝛿E

· 𝛿ℱ̄
𝛿B̄

)︂
dx,

(58)

where we used the coordinate transformation B̄ = B−B0 and we introduced the func-
tional ℱ̄ [𝑓ℎ,E, B̄] as

ℱ̄ [𝑓ℎ,E, B̄] = ℱ [𝑓ℎ,E, B̄− B̄0] = ℱ [𝑓ℎ,E,B].

We have the following relations of variational derivatives,

𝛿ℱ̄
𝛿𝑓ℎ

=
𝛿ℱ
𝛿𝑓ℎ

,
𝛿ℱ̄
𝛿E

=
𝛿ℱ
𝛿E

,
𝛿ℱ̄
𝛿B̄

=
𝛿ℱ
𝛿B

. (59)

Substituting the above variational derivatives into (58), we have

{ℱ̄ ,𝒢}[𝑓ℎ,E, B̄] =

∫︁
Ω

∫︁
R3

𝑓ℎ

[︁ 𝛿ℱ
𝛿𝑓ℎ

,
𝛿𝒢
𝛿𝑓ℎ

]︁
𝑥𝑣
dvdx

+

∫︁
Ω

∫︁
R3

𝑓ℎ

(︂
∇v

𝛿ℱ
𝛿𝑓ℎ

· 𝛿𝒢
𝛿E

−∇v
𝛿𝒢
𝛿𝑓ℎ

· 𝛿ℱ
𝛿E

)︂
dvdx

+

∫︁
Ω

∫︁
R3

𝑓ℎ (B+B0)

(︂
∇v

𝛿ℱ
𝛿𝑓ℎ

×∇v
𝛿𝒢
𝛿𝑓ℎ

)︂
dvdx

+

∫︁
Ω

(︂
∇× 𝛿ℱ

𝛿E
· 𝛿𝒢
𝛿B

−∇× 𝛿𝒢
𝛿E

· 𝛿ℱ
𝛿B

)︂
dx

=: {ℱ ,𝒢}(𝑓ℎ,E,B).

(60)

Then we know that the ‘first term + cyc = 0‘ in (56), i.e., {{ℱ ,𝒢}VM,ℋ}VM + cyc = 0,
which ends the proof of the Jacobi identity (58).

B Dimensionless procedure
In Table 5, we introduce the physical parameters used for the dimensionless procedure
(with 𝑒 the elementary charge: 𝑞𝑒 = −𝑒). Moreover, we assume Ω2

𝑝𝑒

Ω2
𝑐𝑒

𝑢̄𝑐

𝑐
= 1 and Ω2

𝑝𝑒

Ω2
𝑐𝑒

𝑢̄ℎ

𝑐

𝜌
(0)
ℎ

𝜌
(0)
𝑐

=
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Parameter Value
𝑡 1/|Ω𝑐𝑒|
𝑥 𝑐/|Ω𝑐𝑒|
𝑣 𝑐
𝐵 |Ω𝑐𝑒|𝑚𝑒/𝑒
𝐸 𝑐|Ω𝑐𝑒|𝑚𝑒/𝑒

𝑗𝑐 𝑒𝜌
(0)
𝑐 𝑢̄𝑐∫︀

R3 v𝑓ℎ dv 𝜌
(0)
ℎ 𝑢̄ℎ

Table 5: Dimensionless system for the four dimensional hybrid model.

1 so that we get

𝜕j𝑐
𝜕𝑡

= Ω̄2
𝑝𝑒E− j𝑐 ×B0, (61)

𝜕𝑓ℎ
𝜕𝑡

+ v · ∇𝑓ℎ − (E+ v × (B+B0)) · ∇v𝑓ℎ = 0, (62)

𝜕B

𝜕𝑡
= −∇× E, (63)

𝜕E

𝜕𝑡
= ∇×B− j𝑐 +

∫︁
R3

v𝑓ℎdv, (64)

where Ω̄2
𝑝𝑒 =

Ω2
𝑝𝑒

Ω2
𝑐𝑒

denotes the dimensionless plasma frequency (which is denoted Ω2
𝑝𝑒 in

the paper).

C Dimensionless procedure for the 1𝑑𝑥− 1𝑑𝑣 case
In Table 6, we introduce the physical parameters used for the dimensionless procedure
of the hybrid system (2)-(5) in one dimension in space and velocity. Moreover, assuming
𝜌
(0)
ℎ

𝜌
(0)
𝑐

𝑢̄ℎ

𝑢̄𝑐
= 1, we obtain (17).

Parameter Value
𝑡 1/Ω𝑝𝑒

𝑥 𝑢̄𝑐/Ω𝑝𝑒

𝑣 𝑢̄𝑐

𝐸 Ω𝑝𝑒𝑚𝑒𝑢̄𝑐/𝑞𝑒

𝑗𝑐 𝑞𝑒𝜌
(0)
𝑐 𝑢̄𝑐∫︀

R 𝑣𝑓ℎ d𝑣 𝜌
(0)
ℎ 𝑢̄ℎ

Table 6: Dimensionless system for the two dimensional hybrid model.
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