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Metaproteomics has matured into a powerful tool to assess functional interactions in

microbial communities. While many metaproteomic workflows are available, the impact of

method choice on results remains unclear. Here, we carry out a community-driven, multi-

laboratory comparison in metaproteomics: the critical assessment of metaproteome inves-

tigation study (CAMPI). Based on well-established workflows, we evaluate the effect of

sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a

simplified, laboratory-assembled human intestinal model and a human fecal sample. We

observe that variability at the peptide level is predominantly due to sample processing

workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level dif-

ferences largely disappear at the protein group level. While differences are observed for

predicted community composition, similar functional profiles are obtained across workflows.

CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a

template for multi-laboratory studies in metaproteomics, and provides publicly available data

sets for benchmarking future developments.
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M icrobial communities play a primary role in global
biogeochemical cycling and form complex interactions
that are crucial for the development and maintenance

of health in humans, animals, and plants. To fully understand
microbial communities and their interplay with their environ-
ment requires knowledge not only of the microorganisms
involved and their biodiversity, but also of their metabolic
functions at both the cellular and community level1. As proteins
constitute the key operational units performing these functions,
metaproteomics has emerged as the most relevant approach to
characterize the functional expression of a given microbiome2,3.
Metaproteomics corresponds to the large-scale characterization of
the entire set of proteins accumulated by all community members
at a given point in time, known as the metaproteome4. Since its
first introduction in 20045, mass spectrometry (MS)-based
metaproteomics has quickly emerged as a powerful tool to
functionally characterize a broad variety of microbial commu-
nities in situ. This allows a direct link to the phenotypes on a
molecular level and shows the adaptations of the microorganisms
to their specific environment6. Metaproteomics thus comple-
ments other meta-omic approaches such as metagenomics and
metatranscriptomics, as these only have the exploratory power to
assess the diversity and functional potential of microorganisms,
but cannot observe their actual phenotypes7.

In metaproteomics, proteins are commonly measured using the
shotgun proteomics approach. Here, the proteins are subse-
quently extracted, isolated, and digested into peptides, after which
these are separated and analyzed using liquid chromatography
coupled to tandem mass spectrometry (LC–MS/MS). The
obtained MS/MS spectra are then matched against in silico gen-
erated spectra derived from a protein sequence database, leading
to peptide spectrum matches (PSMs). Hereafter, the identified
peptides are used to infer the proteins present in the sample.
Proteins can then be annotated with taxa and functions, pro-
viding information on gene expression levels8.

Each of the aforementioned steps can potentially influence the
outcomes of a metaproteomic analysis and every step brings
specific benefits as well as challenges. As a result, multiple
workflows have been established. While such diversity brings
flexibility, it also complicates the comparison of results across
different experiments. Sample processing challenges include
protein recovery due to the presence of different matrices9, the
presence of different types of microorganisms with different
optimal lysis conditions10,11, and limited depth of analysis3 and
quantification12 due to an increased sample complexity. Envir-
onmental samples, such as feces or soil, are complex mixtures that
can contain microbial cells, host cells, plant-derived fibrous
materials, and other abiotic components. Therefore, the compo-
sition and abundance of these components must be considered
when choosing an appropriate method for cellular lysis and
protein extraction. Fortunately, the most commonly used meth-
ods nowadays are relatively robust, and generally provide a rea-
sonably representative extraction of proteins found in these
complex mixtures. However, because differences exist, methods
still need to be optimized for the specific samples and
projects13,14 Besides, apart from different sample processing
protocols, different mass spectrometers might also lead to a
variation in results.

Moreover, metaproteomics comes with many specific bioin-
formatic challenges8,15. First, the choice of an appropriate
sequence database is critical for peptide identification16,17.
Typically, large databases can strongly impact sensitivity and false
discovery rate (FDR) estimation18, while incomplete reference
databases can lead to missing or false positive identifications19,20.
Second, the protein inference problem21 is more pronounced in
metaproteomics due to many homologous proteins from closely

related organisms22. As a result, several dedicated bioinformatic
tools have been developed or extended for metaproteomic
analysis23–30. Despite these challenges, the added value of meta-
proteomics has already been demonstrated in numerous examples
from both the environmental and medical fields, providing
unprecedented insights into the functional activity of microbial
communities7,22,31–43.

Nevertheless, a lingering concern is the potential risk of
unintended, approach-based biases inherent in various meta-
proteomic workflows. This is important because reproducibility
is key to translate metaproteome studies into applications (e.g.,
clinical or industrial). Consequently, a comprehensive evaluation
of widely used workflows is required to assess their respective
outcomes. In the past, various reference data sets from
defined microbial community samples (i.e., for which the com-
parison of established workflows composition is known a priori)
have been used in individual benchmarking studies44–46. How-
ever, a ring trial with different laboratories involved has not yet
been performed in the field of metaproteomics.

To fill this gap, the 3rd International Metaproteomics Sym-
posium (December 2018, Leipzig, Germany) hosted a multi-
laboratory benchmarking study in the form of a community
challenge. Participating laboratories received two microbial
samples: a simplified mock community simulating the gut
microbiome (SIHUMIx) and a complex, natural stool sample
(fecal sample). Each group was allowed to use any preferred
sample preparation, analysis, and data evaluation pipeline.

Here, we describe the results of this community-driven study,
referred to as the Critical Assessment of MetaProteome Investi-
gation (CAMPI). We compare and discuss the employed work-
flows covering all analysis steps from sample preparation to the
bioinformatic identification and quantification. Moreover, we
compare the metaproteome results with sequencing read-based
analyses (metagenomics and metatranscriptomics). We found
that meta-omics databases performed better than public reference
databases across both samples. More importantly, even though
larger differences were observed in identified spectra and unique
peptide sequences, the different protein grouping strategies and
the functional annotations provided similar results across the
provided data sets from all laboratories. When minor differences
could be observed, these were largely due to differences in sample
processing methods and partially to bioinformatic pipelines.
Finally, for the taxonomic comparison, we found that overall
profiles were similar between read-based methods and proteomics
methods, with few exceptions. Apart from these immediate
conclusions, the CAMPI study also delivers highly valuable
benchmark data sets that can serve as a foundation for future
method development for metaproteomics.

Results
At the 3rd International Metaproteome Symposium in December
2018, individual laboratory outcomes of a collaborative, multi-
laboratory effort to compare metaproteomic workflows were
presented. In this study, metaproteomics data was acquired in
seven laboratories, using a variety of well-established platforms.
Figure 1 provides a general overview of the study design showing
(i) the provision of two types of samples (SIHUMIx and fecal) to
the study participants, (ii) the various experimental workflows of
biomolecule extraction and MS/MS acquisition, and (iii) the
bioinformatic processing steps from protein database generation
to database search identification and follow-up analyses (more
details in the “Methods” section, see Supplementary Data 1 for an
overview of all methods).

At the Symposium, the decision was made to re-analyze the
acquired data with different bioinformatics pipelines, to obtain a
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multi-laboratory effort in metaproteomics to independently
evaluate available methodological and computational approaches,
in line with similar community-driven benchmarking
studies47–50. In the first “Results” section, we analyzed 42 raw files
(21 for the SIHUMIx sample and 21 for the fecal sample) from 24
different workflow combinations with X!Tandem using
either public or in-house generated protein databases (see Fig. 1
for a general overview, and Fig. 2 for the results; see online
Methods section for the database construction). A more in-
depth comparison of sample preparations, bioinformatic pipe-
lines, and taxonomic and functional annotations using a sub-
selection of ten data sets is available after the first “Results”
section.

Complex sample processing workflows and sample-specific
meta-omic search databases lead to more identifications. In
order to study the effect of the different sample processing and
LC–MS/MS workflows on the identification outcome, we sear-
ched all submitted MS files using the widely used X!Tandem
search engine51. To investigate the influence of the chosen
database, we searched each file against a publicly available
reference database (SIHUMIx_REF and GUT_REF) and against a
multi-omic database (SIHUMIx_MO and GUT_MO). The
comparison of all CAMPI workflows is displayed in Fig. 2 (raw
data in Supplementary Data 2).

The results greatly differed between the samples and workflows
in terms of absolute numbers of acquired spectra, identified
spectra, and relative amount of identified spectra (identification
rates). For the SIHUMIx data set, the number of acquired spectra
varied between 47k to 260k, and identification rates varied
between 29.99% and 68.64% for SIHUMIx_REF and between
32.52% and 73.34% for SIHUMIx_MO. For the fecal data set,
between 44k and 223k spectra were acquired, with identification
rates between 11.99% and 34.79% for GUT_REF, and between
15.70% and 41.94% for GUT_MO.

The differences in acquired spectra show a clear relation to the
method used, as similar methods or replicates show highly similar
numbers of acquired spectra. As expected, more complex
methods with longer gradient lengths (S03 and S04: 260 min,
S05 and S06: 460 min, S08: 240 min, F01: 210 min, F02: 160 min),

fractionation (S11, F07: 4 fractions), and additional separation
methods such as MudPIT52 (F01: 4 fractions) or ion mobility
(PASEF)53 (S13, F09) led to up to eight times more identified
spectra, but at the cost of increased time and resources spent54

(see Supplementary Data 1 for a detailed description, and
Supplementary Data 2 for an overview of the samples). Notably,
identification rates were not necessarily correlated with the total
number of identifications. For example, between analyses S03 and
S05, which used a 260 and 460 min LC gradient length,
respectively, a higher absolute number of identified spectra was
found for the 460 min gradient, but also a lower identification
rate. As expected, if an MS instrument is provided with the ability
to acquire more spectra, it will do so. However, the gains in
spectral acquisition do not readily translate into gains in
identification. There is thus a potential for diminishing returns
when going for more complex methods. There is also a somewhat
consistent drop in the number of acquired spectra of around 10%
when comparing SIHUMIx samples with fecal samples for similar
workflows (e.g., S09-S10 with F05-F06, and S13 Reps 1-3 with
F09 Reps 1-3). However, occasionally this drop is much greater,
as for S11_Fract1-4 and F07_Fract1-4. The overall limited drop
might be attributed to the higher complexity of the fecal sample,
and corresponding ion suppression effects. The differences in
identification rate are likely to be derived from the choice of the
search database. The identification rates for the publicly available
databases were invariably lower, which is due to their larger and
less specific search space, consistent with literature16,18,20,44,55.
Here, these public reference databases (SIHUMIx_REF and
GUT_REF) contained 1.6 and 16 times, respectively, more
unique in silico digested peptides than the corresponding multi-
omic databases (SIHUMIx_MO and GUT_MO) (Supplementary
Data 3).

Overall, our results indicate that generating a sample-specific
meta-omic database can be advantageous for complex metapro-
teomics samples, such as the human gut microbiome, and even
more so for complex and poorly characterized samples such as
soil microbiota. The smaller meta-omic databases require less
computational resources (e.g., CPU and RAM) and tend to be
more accurate due to their tailored composition. However, for
their generation, meta-omic databases require additional experi-
mental and computational resources, and are often not as well
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assembled and/or annotated as reference databases. Because the
composition of SIHUMIx was known, the benefit of using a
tailored meta-omic database was limited and the analysis was
feasible with available reference proteomes. In contrast, the
community for the fecal sample was unknown, which represents
the typical scenario in metaproteomics.

For known reference samples (such as SIHUMIx), it is,
therefore, reasonable to simply use the reference database, while
the largely unknown fecal sample community is best analyzed
using a tailored meta-omic database. In the following sections, we

thus opted to use only the SIHUMIx_REF and GUT_MO search
databases for SIHUMIx and fecal data sets, respectively.

Different bioinformatic pipelines resulted in highly similar
peptide identifications. To investigate the effect of the bioin-
formatic pipelines on peptide identification, we compared the two
data sets with the most identified peptides (S11 and F07) (Fig. 3).
To ensure a robust and reliable comparison, we fixed the search
parameters for the four different bioinformatic pipelines
employed (see online Methods for details).

Fig. 2 Comparison of identification rates across all CAMPI workflows. On the left side, the bar charts show the number of identified spectra using the
reference (REF) database (orange), the number of identified spectra using the multi-omic (MO) database (dark blue) and total amount of measured
spectra (red). On the right side, the light blue bars represent the identification rate calculated as the percentage of spectra that yielded a peptide
identification at 1% FDR for both the REF database (orange) and the MO database (dark blue). The specific protocols can be found in Supplementary
Data 1. For database searching, X!Tandem was used as a single search engine. Source data is provided in Supplementary Data 2.
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For SIHUMIx, the majority of the identified peptides (54.2%)
were found by all four bioinformatic pipelines (Fig. 3A), while
this ratio dropped to 40% for the more complex fecal F07 sample
(Fig. 3B). As expected, this percentage increased to 73% and 55%,
respectively, when considering the peptides identified by at least
three out of four tools. Interestingly, 16% of the peptides were
uniquely identified by a single bioinformatic pipeline for the S11
data set (3138, 2670, 891, and 841 peptides for SearchGUI/
PeptideShaker, MaxQuant, Proteome Discoverer, and MPA,
respectively), while this was 27% for the F07 data set (6024,
1264, 819, and 332 peptides for the SearchGUI/PeptideShaker,
Proteome Discoverer, MPA and MaxQuant pipeline, respec-
tively). The number of search engines varies between pipelines,
with one for MaxQuant (Andromeda) and ProteomeDiscoverer
(SequestHT), two for MPA (X!Tandem, OMSSA), and four for
SearchGUI (X!Tandem, OMSSA, MS-GF+, and Comet). Further-
more, each algorithm uses its own score as a quality metric for
finding the best matching peptide for a spectrum. This score
varies between the search engines and can even result in different
peptide identifications for the same spectrum56.

Overall, the combination from multiple search engines as
performed by SearchGUI/PeptideShaker (four algorithms)
resulted in the highest number of identifications, which is in line
with the previous studies in proteomics and proteogenomics57,58.
This effect may be attributable to algorithms with more
sophisticated scoring methods (e.g., MS-GF+59 used in Search-
GUI, but not in MPA), which generally lead to more identifica-
tions overall. However, we do expect that novel search engines
based on machine learning algorithms can still boost the number
of peptide identifications in the field of metaproteomics60.

Additionally, we compared the pipelines in terms of peptide
features using the peptide lengths and the number of missed
cleavages (lower panels of Fig. 3A, B). While few outliers could be
observed (e.g., peptide length over 50 AA for MaxQuant and

missed cleavages over two for SearchGui/PeptideShaker and
ProteomeDiscoverer), the features were overall equally distributed
between pipelines. Most of the differences thus seemed to be
simply linked to the search engines used.

Because the SearchGUI/PeptideShaker combination provided
the most identifications, relatively few identifications were missed
by excluding the other three pipelines. We therefore preferred to
only use the results of the SearchGUI/PeptideShaker pipeline in
the following sections, which investigate the effect of different
sample processing workflows on downstream peptide identifica-
tions. These analyses are performed on ten representative data
sets that have been selected based on their type of fractionation
and MS instrument. These include six SIHUMIx, and four fecal
data sets (Supplementary Data 2).

Differences between laboratory workflows are mostly attribu-
table to low abundance proteins. After we ruled out bioinfor-
matic workflows as a source of significant difference between
samples, we investigated differences arising from different
laboratory workflows. We compared the overlap and uniqueness
of identifications at the level of peptides, protein subgroups, and
the 50% most abundant protein subgroups for the selected
laboratory workflows in Fig. 4. The figure shows how many
peptides and protein subgroups are uniquely identified by a single
laboratory workflow and how many are identified by all labora-
tory workflows.

At the peptide level (Fig. 4A, B), more complex workflows,
such as those with longer gradient length and fractionation,
identified the most peptides in general (as shown earlier in Fig. 2)
as well as the most workflow-specific peptides, thus limiting the
potential for overlap. The number of identified peptides shared
between all workflows was quite limited: only 3557 peptides (4.9%
of all identified peptides) in the SIHUMIx data sets, and 2186
peptides (3.4% of all identified peptides) in the fecal data set. At
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the protein subgroup level (Fig. 4C, D), the intersections of
protein subgroups shared across all workflows were 25.7% and
34.6% for the SIHUMIx and fecal data sets, respectively. These
percentages increased to 51.5% and 67.4% when we only
considered the 50% most abundant protein subgroups (Fig. 4E,
F). Large differences between laboratory workflows observed at
the peptide level were thus attenuated at the protein subgroup
level, and further reduced for the 50% most abundant protein
subgroups. This trend was also clearly visible when considering
all intersections, including partial agreement among some
samples (Supplementary Figs. 2 and 3). Of note is that the data
sets that only differed in a single laboratory method parameter,
such as LC gradient length (S03 and S05) or fractionation (F06
and F07), showed a much higher overlap. Also, the number of
protein subgroups identified uniquely in a single sample mostly
disappeared when only considering the 50% most abundant
subgroups. We investigated this further by analyzing the
agreement between samples at all top-N-% values (Supplemen-
tary Fig. 4). A clear trend emerged: the lower the agreement
between samples on a given subgroup, the lower the abundance of
this subgroup. Furthermore, subgroups that were identified with a
single peptide—and therefore usually at the lowest abundance—
track very closely with the subgroups identified in only a single

sample. Finally, when considering the actual spectral abundance
of subgroups, those subgroups that were found in all samples also
explained at least 77% of the identified spectra. It is therefore clear
that the low agreement between samples at the peptide level is
mostly attributable to the identification of low abundant proteins.
The complexity of the samples and the limited speed of mass
spectrometers in DDA mode led to stochasticity in precursor
selection at the low end of the dynamic range. Low abundant
protein subgroups with only one peptide thus behave more like
peptides, where stochastic selection causes large differences
between samples. It is worth noting that this issue is completely
avoided by only selecting the top 50% of protein subgroups.
Overall, it can be concluded that while different laboratory
workflows provide very different peptide identifications, the
protein subgroups are well preserved.

Because protein grouping plays such an important role in
translating peptide identifications into biologically meaningful
information, we decided to analyze two commonly used grouping
methods in more detail. Protein grouping is achieved using the
algorithms PAPPSO61 and MPA28 (Supplementary Note 3).
These two methods use different rules for protein inference:
PAPPSO uses Occam’s razor, and MPA uses anti-Occam’s
razor62. The first approach provides a minimum set of proteins
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that explains the presence of the detected peptides, while the
second approach keeps all proteins matched by at least one
peptide. Both PAPPSO and MPA can create two types of protein
groups: comprehensive groups based on at least one shared
peptide, and more specific subgroups based on a complete shared
peptide set. Subgroups were deemed more suitable for this
analysis, as comprehensive groups collated proteins that were too
heterogeneous leading to diverse protein functions within the
same group (Supplementary Data 4 and 5). This might not be the
case for smaller data sets, as a smaller data set also decreases the
chance for peptides that link highly dissimilar proteins together.
For the SIHUMIx samples, the two protein grouping methods
PAPPSO and MPA provided very similar numbers of both
protein groups (8802 and 8769) and subgroups (10,132 and
10,134), while substantial differences were found for the fecal
samples (protein groups: 10,063 and 9712; subgroups: 17,576 and
21,973, for PAPPSO and MPA, respectively) (Supplementary
Data 6). While cross-sample correlation (Supplementary Figs. 5
and 6) confirmed that the impact of bioinformatic pipelines on
the analysis here was negligible, little else could be learned from
this correlation analysis. To shed some light on these differences
between protein grouping methods, we analyzed the agreement
between samples for different grouping approaches (Supplemen-
tary Figs. 7 and 8). Notably, when applied to the fecal sample, the
protein groups resulted in an unusually high number of groups
that are unique to F10. However, it remains unclear which of
these approaches is better able to capture the actual composition
of the sample, or even if the performance of the approaches varies
for different types of samples. Because PAPPSO grouping
removes likely wrong identifications from homologs, it could be
more appropriate for single-organism proteomics or for taxono-
mically well-defined samples like SIHUMIx. In contrast, the
grouping from MPA could be more appropriate for complex,
unknown samples like the fecal sample (where shared peptides
become much more likely) as it retains all information for the
grouping (Supplementary Note 3). To conclude, both protein
grouping methods provide highly similar results for the SIHUMIx
sample, but diverge on the fecal sample, likely due to the
increased complexity of the protein inference task in the latter.

Comparison of meta-omic methods reveals differences between
peptide and protein-derived analysis of taxonomic community
composition. To determine if differences between sample pro-
cessing workflows have an effect on the overall biological con-
clusions, we quantitatively compared the identified taxa for each
selected sample from both data sets using spectral counts, and
this at the peptide, the protein subgroup, and the sequencing
read level.

We found different trends between the SIHUMIx and fecal
samples (Figs. 5 and 6). For SIHUMIx, the taxonomic distribu-
tions were relatively similar between the metagenomic read,
peptide, and protein group levels based on the principal
component analysis. Hierarchical clustering highlighted clusters
of samples, with the peptide and protein subgroup profiles for
samples S07 and S14 clustering with the read-based profile
(Fig. 5A and Supplementary Fig 9A, B). Interestingly, samples
with more complex sample processing methods (S03, S05, and
S08) did not show clustering between the peptide and the protein
subgroups level. While species were found to be similar between
methods overall, there were some notable differences (Fig. 5B).
All methods agreed that Bacteroides thetaiotaomicron was the
most abundant species, and found Escherichia coli at 10–13%
abundance. However, differences were found for Blautia
producta, which was barely found by the proteomics methods,
while found at around 5% abundance by metagenomics. It is

interesting to consider that this might be caused by the
construction of the reference database: at the moment of
construction, the UniprotKB reference proteome of Blautia
producta was not available, and multiple Blautia sp. proteomes
were therefore provided instead. When looking at the Unipept
results in detail, 15% of the peptides were associated with the
genus Blautia (Supplementary Data 7), which indicates that the
lower identification of Blautia producta at the peptide level is due
to difficulties in resolving Blautia at the species level, rather than
a lack of identified Blautia peptides during the metaproteomic
search. Additionally, Clostridium butyricum was not found by the
read-based method, while Clostridiales bacterium and Bacteroides
dorei were falsely found by the protein-centric method as these
are not present in the SIHUMIx sample. However, these last two
were both found at very low abundance. For completeness, the
comparisons of community composition for SIHUMIx at the
genus level were added in Supplementary Fig. 10.

For the fecal data set, which was grouped at the family level,
relatively distinct assessments of community composition were
obtained from the read-based, peptide, and protein subgroup
levels (Fig. 6A). While the same families were identified, these had
different proportions across methods (Fig. 6B). Metatranscrip-
tomic information (Feces_MT) was available for the fecal sample
and RNA and DNA results were closely colocated, while proteins
and peptides were spread out from the read-based methods, but
also from each other (Fig. 6A). The difference between
metagenomics/metatranscriptomics and metaproteomics is not
surprising because these different methods highlight community
profiles from different angles. As already shown before,
metagenomics provides a good assessment of community
composition in terms of cell numbers for each species, while
metaproteomics reflects proteinaceous biomass for each species45.

Strikingly, for the fecal samples, the community composition as
quantified at the peptide level proved to be more similar to the
read-based than to the protein-based composition (Fig. 6A and
Supplementary Fig. 11A, B). This discrepancy is likely due to the
fundamental issue of protein inference. Indeed, in metaproteo-
mics, identification and quantification usually rely on discrimi-
native peptides. As the data sets get more complex, higher levels
of sequence homology for many proteins will be observed and
will lead to a much greater level of peptide degeneracy across
taxonomies63. Direct taxon inference from peptides thus likely
results in more stringent taxonomy filtering, due to the necessity
to rely only on taxon-specific peptides. In fact, the proportion of
unclassified peptides between the SIHUMIx and the fecal samples
went up from 24.2 to 73.4% due to the increased taxonomic
complexity of the fecal data set. In contrast, the proportion of
unclassified protein subgroups went down from 69.9% for
SIHUMIx to 9.5% for the fecal samples. This latter difference,
while large, is not that surprising because the fecal sample
considered protein subgroups at the family level, while the
SIHUMIx sample considered protein subgroups at the species
level and only considered SIHUMIx species, therefore greatly
limiting peptide-level degeneracy. For the fecal sample, proteins
within a subgroup are usually associated to the same family,
which explains the higher proportion of protein subgroups that
can be classified for the fecal samples.

Additionally, regarding quantification, protein grouping for the
fecal samples was done using MPA, which includes all peptides
(shared as well as unique), while peptide level quantification only
took into account taxon-specific peptides. Depending on the
sample and the method used, the taxonomic resolution will thus
vary. To better illustrate that, we compared the resolution across
omes and across protein grouping methods (Supplementary
Fig. 12A, B). We see that there is usually a drop of resolution
either at the species (SIHUMIx) or the genus (Fecal) level and

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27542-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7305 | https://doi.org/10.1038/s41467-021-27542-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


that the PAPPSO grouping method has a higher resolution for
complex samples as already discussed in Supplementary Note 3.

Altogether, the degree of degeneracy at the peptide level
combined with the grouping method employed for the proteins
leads to a different amount of features used for each analysis and
thus to different composition profiles between peptide-centric
and protein-centric approaches.

Ultimately, due to the sequence homology issue, worse
taxonomic resolution will be available for larger, more complex
data sets as illustrated in the differences between the SIHUMIx
and the fecal data sets. A promising approach to tackle these
limitations can take advantage of shared rather than taxon-

specific peptides (and thus avoiding the previously mentioned
issues) to assess the biomass content of a given community63.
However, regardless of the chosen approach, it is clear that a
higher level of peptide coverage will be quite helpful for higher
resolution taxonomic annotation, and that metaproteomics will
therefore benefit from focusing on analysis depth at the
peptide level.

The functional profile is similar between different metapro-
teomics workflows. A major strength of metaproteomics is the
ability to provide functional information that reflects the
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phenotype of the analyzed sample. In order to investigate the
influence of post-processing steps on this functional information,
we compared functional community profiles on both the SIHU-
MIx and the fecal samples (Fig. 7). We observed that the func-
tional similarity between data sets acquired with different
workflows on each sample is extremely high, and this regardless
of the approach chosen. For the peptide-centric approach, we
compared the Gene Ontology (GO) terms (GO domain “biolo-
gical process”) provided by Unipept for each of the identified
peptides with MegaGO64, resulting in MegaGO similarities of
0.96 or higher. Notably, 95% of the identified peptides were
associated with at least one GO term. For the protein-centric
approach, the protein families (Pfam) annotations provided by

Prophane were compared, resulting in Pearson correlations of
0.98 or higher and Spearman correlations of 0.64 or higher. This
continues the trend already observed in Fig. 4: while peptide
identifications may differ greatly between samples, the underlying
biological meaning reflected by functional annotations are highly
similar across different analysis workflows. Moreover, while some
more elaborate data measurements yield unique peptides, these
peptides do not translate into more functional pathways being
identified (Supplementary Fig. 13) and usually correspond to very
low abundant proteins, identified with only one peptide (as
already shown in Supplementary Fig. 4).

In contrast, a comparison between the different omics domains
showed important differences in terms of functional profile.

Fig. 6 Comparisons of community composition for fecal data sets. The upper panel shows PCA clustering of the results (A). Different approaches and
tools used for taxonomic annotation (MG - mOTU2, Peptides - Unipept, and Proteins - Prophane) are indicated in the label. Clusters (k= 3) were
calculated using manhattan distance and are represented by blue, yellow, and green. Features not annotated at species level were considered unclassified
and discarded for PCA calculation. Unclassified features accounted for 73.4% and 9.5% of data for peptide and protein subgroup levels. The top 10
variables driving differences between samples are represented by black arrows. The lower panel details taxonomic profiles of each sample as bar plots (B).
Source data is provided as a Source Data file.
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Notably, metagenomics and metaproteomics are particularly
different from each other, while metatranscriptomics tends to
overlap better with metagenomics, highlighting once more the
need for integrated meta-omics approaches (Supplementary
Figs. 14–16)32.

Discussion
In this founding edition of CAMPI, we used both a simplified,
laboratory-assembled sample as well as a human fecal sample to
compare commonly used experimental methods and computa-
tional pipelines in metaproteomics at the peptide, protein sub-
group, taxonomic and functional level, informed by and
contrasted with metagenomics and metatranscriptomics. Our
findings demonstrate some differences in the taxonomic profiles
between peptide-centric metaproteomics, protein-centric meta-
proteomics, and read-based metagenomics, and metatran-
scriptomics. This fits well with previous findings that assessment
of microbial community structure via shotgun metagenomics and
metaproteomics differs in the information obtained. While
metagenomics has been shown to provide a good representation
of per species cell numbers in a community, metaproteomics has
been shown to provide a good representation of per species
biomass in a community45. When looking at different proteomics
approaches, differences tend to show up primarily at the finest
resolution, such as the sequences of the identified peptide
sequences. When considering information from the protein
subgroup level up, much of this variation disappears. Different
protocols tend to primarily display different levels of analytic

depth, which correlates with more extensive sample fractionation
and faster instruments. Moreover, differences between search
engines appear somewhat complementary, giving an advantage to
integrative, multi-search engine approaches using more sophis-
ticated scoring engines. Interestingly, there appears to be an
important contribution to any observed differences from the
sequence database used for identification. This is particularly
evident in the protein inference step, where peptide-level
degeneracy in the database becomes an important factor in the
outcome of protein grouping, as already shown and discussed
previously65,66. Overall, functional profiles of different pro-
teomics workflows were quite similar, which is a reassuring
characteristic due to the unique perspective provided by pro-
teomics on the functional level.

Besides the direct conclusions of CAMPI as summarized here,
another important outcome of this study is the availability of the
acquired data sets. Indeed, these can serve as benchmark data sets
for the field when developing novel algorithms and approaches
for data processing and interpretation (see “Data availability”
section). While it is recommended that researchers use well-
annotated matched metagenomes for optimal metaproteomics
analysis, not all study designs have metagenomics information
available. For such studies, iterative search approaches on publicly
available repositories are available25,67–70, some of which address
the issue of controlling the false discovery rate of identifications68.
Moreover, other platforms such as iMetaLab30 have been widely
used for human and mouse gut metaproteomics analysis. We
have not used the iterative search approaches or alternative
platforms for this study, although the availability of the data

Fig. 7 Functional similarity between SIHUMIx samples and fecal samples. The correlation matrices at the left show the Pearson correlation (upper
triangle) and Spearman correlation (bottom triangle) for the (A) SIHUMIx data sets and (C) fecal data sets, calculated using the Pfam annotations returned
by the protein-centric Prophane analysis. The correlation matrices at the right show the MegaGO similarity for the GO domain “biological process” for the
(B) SIHUMIx data sets and (D) fecal data sets, calculated based on the GO terms returned by peptide-centric Unipept analyses. Source data is provided as
a Source Data file.
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should encourage users to evaluate the performance of these
approaches.

This CAMPI study has highlighted that there is room for
future editions of CAMPI studies. Indeed, based on the issues
identified in this study, we can already define interesting future
research questions: what is the effect of data set complexity, and
how do other sample types such as marine sediments affect the
results; how is quantification affected by the workflow used, and
which quantification approach yields the most robust and accu-
rate results; how are taxonomic resolution, functional profiling,
and quantification affected by the dynamic range of the sample
composition; and what is the potential of data-independent
acquisition (DIA) and targeted approaches in metaproteomics
regarding reproducibility and analytical depth?

Obviously, relevant standardized samples will need to be
defined for these studies, and should moreover be produced in
sufficient amounts to allow their continued use by interested
researchers after the publication of these studies. These could take
the form of a defined synthetic community with exactly known
composition, including cell numbers and sizes, preferably sti-
mulated under different biological conditions. With such a
sample, we will be able to validate a variety of quantification
methods, but also investigate the effect of quantifying individual
proteins in relation to their background. Moreover, it remains a
question for now what the effect will be on the taxonomic reso-
lution or functional profile. Label-based approaches could also be
extremely valuable for the field as it has been shown that stable
isotope labeling as a spike-in reference can strongly improve
quantification accuracy71,72. On another technical level, we could
investigate the opportunities and challenges of the use of DIA on
metaproteomics samples. Potentially, there will be new, AI-driven
search engines that will enter the field of (meta)proteomics, which
also brings new opportunities for the field.

Of course, all these follow-up CAMPI studies will contribute
highly useful benchmark samples and data sets to the field as well,
thus creating a strong, positive feedback loop with the metapro-
teomics community. Future CAMPI editions will be launched by
the Metaproteomics Initiative (metaproteomics.org), a newly
founded community of metaproteomics researchers that aims,
among other things, to standardize and accelerate experimental
and bioinformatic methodologies in this field. This initiative can
combine forces with existing initiatives such as the ABRF iPRG
study group, who recently provided a metaproteomics data set to
be analyzed by the proteomics informatics community73. We
believe that such ongoing efforts will continue to advance the field
of metaproteomics, and make it more widely applicable. Meta-
proteomics will thus develop its full potential, and further
increase its relevance across the life sciences.

Methods
Ethics. Written informed consent was obtained from the subject enrolled in the
study. This study was approved by the ethics committee of the University Mag-
deburg (reference no. 99/10).

Sample description
Simplified human intestinal microbiota sample (SIHUMIx). A simplified human
intestinal microbiota (SIHUMIx) composed of eight species was constructed to
embody a majority of known metabolic activities typically found in the human gut
microbiome. The SIHUMIx sample contains the Firmicutes Anaerostipes caccae
DSMZ 14662, Clostridium butyricum DSMZ 10702, Erysipelatoclostridium ramo-
sum DSMZ 1402 and Lactobacillus plantarum DSMZ 20174, the Actinobacteria
Bifidobacterium longum NCC 2705, the Bacteroidetes Bacteroides thetaiotaomicron
DSM 2079, the Lachnospiraceae Blautia producta DSMZ 2950, and the Proteo-
bacteria Escherichia coli MG1655, covering the most dominant phyla in human
feces74. SIHUMIx was prepared as previously described, with an additional 24 h of
cultivation of one control bioreactor, to produce sufficient biomass to be sent out to
each participating laboratory74. Participants received 3.5 × 109 cells/ml of frozen
sample (−20 °C) in dry ice.

Human fecal microbiome sample. A natural human fecal microbiome sample was
procured from a 33-years-old omnivorous, non-smoking woman. The sample was
immediately homogenized, treated with RNA-later, aliquoted, frozen, and stored at
−20 °C until aliquots were sent to each participating laboratory.

Biomolecule extraction and nucleotide sequencing
DNA/RNA extraction, sequencing, and processing. DNA was extracted from both
SIHUMIx and the fecal samples. RNA could also be extracted from the fecal sample
but not SIHUMIx as only the former was treated with RNA-later.

Extracted DNA and RNA were sequenced with Illumina technology, and the
obtained sequencing reads subsequently co-assembled into contigs for further
bioinformatic processing. Details on the extractions, libraries preparations, and
sequencing can be found in Supplementary Note 1. Preprocessing of the sequenced
reads was performed as part of the Integrated Meta-omic Pipeline (IMP)75 and
included the trimming and quality filtering of the reads, the filtering of rRNA from
the metatranscriptomic data, and the removal of human reads after mapping
against the human genome version 38. Preprocessed RNA and DNA reads were co-
assembled using MEGAHIT v1.2.476 using minimum and maximum k-mer sizes of
25 and 99, respectively, and a k-step of 4. The resulting contigs were binned using
MetaBAT 2.12.177 and MaxBin 2.2.678 with default parameters and minimum
contig length of 2500 and 1500 bps, respectively. Bins were refined using DASTool
1.1.279 with default parameters and a score threshold of 0.5. Open reading frames
(ORFs) were called from all contigs provided to DASTool using Prodigal 2.6.380 as
part of the DASTool suite.

Protein extraction and processing. In total, eight different protein extraction pro-
tocols were applied and resulted in 24 different workflows when combined with
MS/MS acquisition strategies (Fig. 1). Key characteristics for each workflow can be
found in Supplementary Data 1. The most obvious workflow differences were
found in protein recovery, cleaning, and fractionation strategies. In a wide com-
parative approach, the protein extract was processed by either filter-aided sample
preparation (FASP)81 (workflows 1–3, 5, 7–9, 11, 12, 19–23 in Supplementary Data
1), in-gel (workflows 4, 6, 10, 13–18), or in-solution (workflows 21 and 24)
digestion. In most workflows, proteins were directly extracted from the raw
defrosted material (workflows 1–20, 22, 23). In one lab, however, microbial cells
were first enriched at the interface of a reverse iodixanol gradient (workflows 21,
24). In most approaches, cell lysis was based on mechanical cell disruption by bead
beating in a variety of chemical buffers (workflows 1–12, 19–23), or in water
(workflows 13–18). Apart from bead beating, ultrasonication in a chaotrope-
detergent-free buffer was employed to allow for further separation of cytosolic and
envelope-enriched microbiome fractions (workflows 21 and 24) and, in another
separate workflow, cryogenic grinding was employed for the simultaneous
extraction of DNA, RNA, and protein using the Qiagen Allprep kit (workflows 22,
23). Recovery of proteins from the lysis mixture was carried out either by solvent
extraction using a variety of solvents, with or without further washes (workflows
4–18, 22, 23), or by filter-aided methods (FASP) (workflows 1–3). All methods
included trypsin as the sole proteolytic enzyme for digestion of DTT (or DTE)-
reduced and iodoacetamide-alkylated proteins. Digestion was performed either on
filters (workflows 1–3, 5, 7–9, 11–12, 19–24), in-gel with or without fractionation
(workflows 6, 10, 13–18), or in-solution in the presence of a surfactant (workflows
21 and 24). Of note, the enzyme/substrate ratio varied from 1/50 to 1/10,000, with
digestion times from 2 to 16 h. Finally, peptides were recovered from the gel or
eluted from filters (FASP) using a salt solution (workflows 1–3, 5–21, 24). In some
protocols, peptides were desalted using different commercial devices (workflows 4,
21, and 24).

LC–MS/MS acquisition. Each laboratory used its own LC–MS/MS protocol with
the largest differences and similarities highlighted in the following and details
provided in Supplementary Data 1. For LC, all laboratories separated peptides
using reversed-phase chromatography with a linear gradient length ranging from
60 to 460 min. Furthermore, one group performed an additional separation using a
multidimensional protein identification technology (MudPIT) combining cation
exchange and reversed-phase separation in a single column prepared in-house82.

Six groups used an Orbitrap mass spectrometer (4× Q Exactive HF, 1× Q
Exactive Plus, 1× Fusion Lumos, ThermoFisher Scientific), while two groups
employed a timsTOF mass spectrometer (Bruker Daltonik). All participants used
data-dependent acquisition (DDA) with exclusion duration times ranging from 10
to 60 s. All MS proteomics data and X!Tandem results have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via
the PRIDE partner repository83.

Bioinformatics
Generation of protein sequence databases. Two types of databases were used for
each sample; a catalog (reference) database and a database that was generated from
metagenomic and metatranscriptomic (when available) data sequenced from a
matching sample (meta-omic database). The catalog database for SIHUMIx con-
sisted of the combined reference proteomes of the strains extracted from UniProt
in July 201984 except for Blautia producta, for which the whole genus Blautia was
taken (SIHUMIx_REF). The IGC 9.9 database85 (available at http://meta.genomics.
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cn/meta/dataTools) was used as the catalog database for the fecal sample
(GUT_REF). Additionally, a meta-omic database from the assembled contigs was
produced for both samples using the open reading frame generated with Prodigal
(SIHUMIx_MO and GUT_MO).

The SIHUMIx database (SIHUMIx_REF) is composed of reference proteomes,
containing 29,557 proteins (13.2 MB). In comparison, the metagenomic assembly
for SIHUMIx (SIHUMIx_MO) produced 2719 contigs, with an average contig
length of 7.5 Kbp and the longest contigs being 468 Kbp, yielding 19,319 predicted
ORFs (6.1 MB).

For the fecal sample, the IGC reference catalog (GUT_REF) contains 9,879,896
protein sequences (2.6 GB). The co-assembly of DNA and RNA for the fecal
sample (GUT_MO) produced 247,518 contigs with an average length of 1.6 Kbp
and the longest contigs being 600 Kbp. The database GUT_MO yielded protein
sequences from 441,558 predicted ORFs (114.4 MB). All databases were
concatenated with a cRAP database of contaminants (https://thegpm.org/cRAP;
downloaded in July 2019) and the GUT databases were additionally concatenated
with the human UniProtKB Reference Proteome (downloaded in September 2019).

The four databases were in silico digested into tryptic peptides with an in-house
developed script, with two missed cleavages allowed, to compare their theoretical
search spaces. Additionally, all peptides identified with each database in the explorative
analysis, which was carried out using all data sets, were retrieved and compared.

For metaproteomic data analysis, the number of spectra, PSMs, and
identification rates (calculated by dividing the number of identified spectra by the
total number of acquired MS/MS spectra) were extracted for all data sets searched
against the selected databases (SIHUMIx_REF and GUT_MO) and compared.
Finally, a representative subset of data sets, based on the different methods, was
selected for further analysis (S03, S05, S07, S08, S11, S14 for SIHUMIx and F01,
F06, F07, and F08 for the fecal sample).

Data analysis using four different bioinformatic pipelines. All submitted MS/MS raw
files were first analyzed with a single commonly used database search method to
assess both the quality of the extraction and the MS/MS acquisition, as well as the
effect of the search database composition (reference proteomes vs. multi-omics).
For this, X!Tandem51 (Alanine, 2017.02.01) was used as a search engine with the
following parameters: specific trypsin digest with a maximum of two missed
cleavages; mass tolerances of 10.0 ppm for MS1 and 0.02 Da for MS2; fixed
modification: Carbamidomethylation of C (+57.021464 Da); variable modification:
Oxidation of M (+15.994915 Da); fixed modification during refinement procedure:
Carbamidomethylation of C (+57.021464 Da). Peptides were filtered on length
(between 6 and 50 amino acids), and charge state (+2, +3, and +4), and a
maximum valid expectation value (e-value) of 0.186.

The following database search engines were used for the pipeline comparison:
(i) MaxQuant87 (including the search engine Andromeda) (ii) Galaxy-P
workflows88,89 consisting of SearchGUI90,91 (using OMSSA92, X!Tandem51, MS-
GF+59, and Comet93) and PeptideShaker94 to merge the results, (iii)
MetaProteomeAnalyzer28 (server version 3.4, using X!Tandem and OMSSA), and
(iv) ProteomeDiscoverer 2.2 (using SequestHT, from ThermoFisher). The
identification settings for all search engines were the same as for the explorative
analysis mentioned above. Refinement searches were allowed if implemented in the
search engine (e.g., refinement search of X!Tandem), and the same for the
inclusion of post-processing tools (e.g., Percolator within ProteomeDiscoverer).

Protein inference. To allow protein group comparison, groups were created using
the combined peptide evidence of all compared samples. Two different protein
grouping methods were tested: MPA28 and PAPPSO61, and analyses were made on
protein groups and subgroups (Supplementary Note 3).

Assigning peptides to their correct protein can be a difficult task, notably due to
the protein inference issue3, i.e., the same peptide can be found in different
homologous proteins. This is particularly challenging in metaproteomics where the
diversity and number of homologous proteins are much higher compared to single-
species proteomics. To overcome this issue, most bioinformatic pipelines tend to
automatically group homologous protein sequences into protein groups. However,
each tool handles protein inference and protein groups in its own way, which
prevents a straightforward output comparison at the protein group level. In order
to allow robust comparison between approaches, the PSM output files of the four
bioinformatic pipelines were combined. The peptides were then assigned to protein
sequences in the FASTA file and the data was prepared for subsequent protein
grouping. Two approaches of protein grouping were used and evaluated in this
study: PAPPSO grouping61, which excludes proteins based on the rule of
maximum parsimony, and grouping from MPA28, which does not exclude
proteins. All data processing was done using a custom Java program except for
PAPPSO grouping for which data was exported and imported using the
appropriate XML format.

For both methods, protein groups were created using the loose rule “share at
least one peptide” (groups) and the strict rule “share a common set of peptides”
(subgroups), resulting in a total of four protein grouping analyses: (1) PAPPSO
groups, (2) MPA groups, (3) PAPPSO subgroups, and (4) MPA subgroups. Finally,
the resulting protein groups and subgroups were exported for further analysis
(Supplementary Note 3). These algorithms are also implemented in Pout2Prot95

for independent use.

Taxonomic and functional annotation. Annotations were performed at both the
peptide, protein, and the sequencing read level. Unipept was used for the peptide-
centric approach24,27,96. For the taxonomic annotation of the SIHUMIx data sets,
we used an advanced Unipept analysis that calculates the SIHUMIx-specific lowest
common ancestor (LCA) (i.e., it calculates the LCA specific for its search database
instead of the complete UniProtKB). Here, Unipept searched for the occurrence of
each peptide in all species present in NCBI. For each peptide separately, we
removed those species that cannot be present in the SIHUMIx sample (i.e., non-
SIHUMIx species and contaminating species in the cRAP database), after which we
calculated the SIHUMIx-specific LCA. This advanced taxonomic analysis using
Unipept is possible since the composition of the sample is known, and resulted in a
more accurate taxonomic annotation of the peptides. For more information and
examples of the advanced Unipept analysis (Supplementary Note 4). For the
taxonomic annotation of the fecal data sets with Unipept, the desktop96 and
CLI23,97 versions were used. In both analyses for SIHUMIx and the fecal data sets,
isoleucine (I) and leucine (L) were equated. The assigned taxonomies for each of
the peptides can be found in Supplementary Data 8 and 9.

For the functional analysis at the peptide level, we used the Unipept command
line option to extract the GO terms for each identified peptide per data set (below
1% FDR). The functional similarity of these sets of GO terms was calculated with
MegaGO64.

Prophane was used for the protein-centric approach98,99. For both the
functional and taxonomic annotations, a generic output format created by the in-
house developed protein grouping script and the protein database for a given
analysis were used. Within Prophane, the taxonomic annotation was performed
with DIAMOND blastp against the latest NCBI non-redundant (nr) database
(2019-09-30)100, while two functional annotation tasks where performed against
the eggNOG (database version 4.5.1)101 and Pfam-A (db version 32) databases102

using eggNOG-mapper103,104 and hmmscan105, respectively. Using eggNOG-
mapper, the e-value threshold was set to 0.0005 while we applied a gathering
threshold supported by Pfams (cut_ga parameter) when searching using hmmscan.
The result with the protein group identifiers from the previous analysis summary
can be found in Supplementary Data 10–12, and the assigned taxonomies for each
of the proteins can be found in Supplementary Data 13 and 14.

Metagenomic and metatranscriptomic reads were both taxonomically
annotated with the mOTUs profiler v 2.0106 with default parameters at the species
and family levels for SIHUMIx and the feces sample, respectively.

Quantification was based on read counts for metagenomic and
metatranscriptomics data, and on spectral counts for peptides and protein
subgroups. If two subgroups contained the same peptide, spectra would be counted
twice, distorting the abundance of these particular subgroups inside a measurement,
but preserving a consistent count for comparison with other samples. Comparisons
were performed with normalized values as described in detail below.

Comparison between omics domains—taxonomic resolution. Taxonomic annota-
tions from the Prophane protein group outputs were used for metaproteomics.
This method uses only identified proteins and assesses annotations based on the
LCA approach thus generating results for each protein at the best possible taxo-
nomic resolution

The mOTU2 profiler used for the metagenomic taxonomic annotation takes
advantage of marker genes for taxonomic annotation and thus annotates
everything at the OTU level. Since this approach does not allow comparison at each
taxonomic level, Kraken2107 was used to compare taxonomic resolution across
omics domains. Kraken2 was run on the sequencing reads with the
maxikraken2_1903 database and a confidence threshold set to 0.7.

Comparison between omics domains - functional comparison. Each sequence
database (SIHUMIx_REF, SIHUMIx_MO, and GUT_MO) was annotated with the
Mantis108 tool for consensus-driven protein annotation. For metaproteomics,
abundance from Prophane outputs and annotation from Mantis were used to
generate functional profiles. For metagenomics and metatranscriptomics, sequen-
cing reads were mapped against the assembly contigs using bowtie2109 and ORFs
abundance was calculated using featureCounts110 KEGG111 annotations were
retrieved from Mantis and used to compare functional profiles across omes.

Statistical analyses. Differences and overlap between search engines at the pep-
tide level and between approaches at the peptide level using presence/absence data
were visualized with UpSet plots with the UpSetR package112. For the peptides,
sequences were extracted (without modifications and with leucine (L) and iso-
leucine (I) treated equally and replaced by J) from each result file and a table,
indicating whether a peptide was found or not, was prepared (Supplementary
Note 4 and Supplementary Data 15 and 16). Similar tables and UpSet plots were
generated to visualize differences and overlap between sample preparations for the
peptides, the protein subgroups, and the top 50% protein subgroups. The top 50%
were first selected based on abundance data. The spectral counts were summed for
each subgroup across all selected samples and only the top 50% was kept for UpSet
plot comparison. Results from the taxonomic annotations for all approaches
(peptides, proteins, metagenomic and metatranscriptomic reads) were compared
and visualized using the PCA comparison feature of the R prcomp package. For the
comparison, abundance values (number of reads and spectral counts) were used
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and normalized into percentage. The taxonomic annotations were harmonized
across methods, unclassified values were filtered out and annotations with abun-
dance lower than 0.05% after filtering were grouped into “other”.

All correlation plots were calculated using both Pearson and Spearman
correlations with a p-value < 0.001. The correlations were calculated and plotted
using the corrplot R packages.

Hierarchical clusterings were calculated with the R function hclust using the
Manhattan distance and the Ward method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metaproteomic data sets generated and analyzed in the current study are available
via the PRIDE partner repository with the data set identifier PXD023217. Assemblies and
raw metagenomic and metatranscriptomic reads are available through the European
Nucleotide Archive under the study accession number PRJEB42466. Source data are
provided with this paper.

Code availability
All scripts and intermediary files are made available on github.com/metaproteomics/
CAMPI113.
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