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Abstract
Recently, the mechanistic framework of active inference has been put forward as a
principled foundation to develop an overarching theory of consciousness which would
help address conceptual disparities in the field (Wiese 2018; Hohwy and Seth 2020).
For that promise to bear out, we argue that current proposals resting on the active
inference scheme need refinement to become a process theory of consciousness. One
way of improving a theory in mechanistic terms is to use formalisms such as compu-
tational models that implement, attune and validate the conceptual notions put forward.
Here, we examine how computational modelling approaches have been used to refine
the theoretical proposals linking active inference and consciousness, with a focus on the
extent and success to which they have been developed to accommodate different facets
of consciousness and experimental paradigms, as well as how simulations and empir-
ical data have been used to test and improve these computational models. While current
attempts using this approach have shown promising results, we argue they remain
preliminary in nature. To refine their predictive and structural validity, testing those
models against empirical data is needed i.e., new and unobserved neural data. A
remaining challenge for active inference to become a theory of consciousness is to
generalize the model to accommodate the broad range of consciousness explananda;
and in particular to account for the phenomenological aspects of experience. Notwith-
standing these gaps, this approach has proven to be a valuable avenue for theory
advancement and holds great potential for future research.
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1 Theories of Consciousness and the Multiple Explanandum Problem

The nature of consciousness remains one of the most puzzling and least under-
stood phenomena. In the early 90s, Crick and Koch proposed a research program
focused on the neural correlates of consciousness (NCC), as inroads into under-
standing how the physical (brain) give rise to the phenomenal qualities (conscious-
ness), arguing that ‘the problem of consciousness can, in the long run, be solved
only by explanations at the neural level’ (Crick and Koch 1990). The NCC was
defined as the minimum neuronal mechanisms jointly necessary for enabling any
one specific conscious experience (Chalmers 2000). Since that seminal contribu-
tion, the NCC program has flourished. Many empirical investigations have been
conducted aimed at unravelling the neural mechanism(s) that underpin conscious-
ness, which have led to the development of a number of theories in recent years
(for a recent review see Doerig et al. 2021). Yet, little agreement exists on their
implications and the interpretation of their findings. This issue may partly be due
to a lack of a unified explananda i.e., what is that the science of consciousness
ought to explain, and of consensus on how consciousness should be operational-
ized and measured. We refer to this as the “explanandum problem”. Consciousness
has been described as a “bundle of features” (Wiese 2018), each of which is
tackled by different research programs, which themselves internally debate on the
taxonomy and experimental paradigms to be used. Let us start by briefly reviewing
some ways in which the study of consciousness has been approached.

Consciousness has been studied across two dimensions: Arousal or wakeful-
ness (i.e., state of consciousness) and awareness (i.e., content of consciousness)
(Laureys 2005).

Research on the states of consciousness, studies consciousness as a temporally
extended state where having a subjective experience is possible, as opposed to other
states where experience as a whole is absent (e.g. under anesthesia) (Bayne 2007).
Whether those states are better thought of as resembling different “levels” in a
continuum or “regions” in a multidimensional space remains an open question
(Bayne et al. 2016). Researchers who investigate the neural correlates of conscious
states usually compare how brain activity differs between states, with or without
sensory stimulation (Bayne 2007). A few examples are studies contrasting patterns of
brain activity, measured with functional Magnetic Resonance Imaging (fMRI),
Magneto/Electroencephalograpohy (M/EEG), Electrocorticography (ECoG), between
wakefulness vs. sleep (e.g. Horovitz et al. 2009), between dreaming vs. dreamless sleep
(e.g. Siclari et al. 2017), or between wakefulness vs. anaesthesia (Alkire et al. 2008)
(for a recent review see Koch et al. 2016).

Research focusing on the content of consciousness investigates the neural patterns
associated to a particular phenomenal content, such as a specific object, face, colour or
sound. A useful distinction was proposed by Ned Block (1990, 1992, 1995) between
phenomenal consciousness and access consciousness, who has further argued for the
existence of at least two distinct NCC associated with those constructs, also differing in
their experimental approaches. We review those in turn.

The phenomenal content of consciousness refers to the subjective qualities of
conscious experience i.e., what differs between experiences of red versus green
(Block 1990; Block 1992; Block 1995; Metzinger 2000). Studying phenomenology
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involves dealing with the “hard problem” of consciousness, which refers to grappling
with what it means to “feel” something. Why does seeing something feel different from
hearing it? (Chalmers 1995). Understanding the subjective qualities of consciousness,
as opposed to understanding the mechanisms that enable the report of such subjective
experiences (conscious access), requires addressing at least two questions. One ques-
tion refers to identifying the phenomenological properties that are essential and
invariantly present in any experience. That is, what makes any experience an experi-
ence e.g., intrinsic, unified, unique, integrated and definite according to some theories
(Tononi et al. 2016). Another question refers to what are the specific properties of a
particular experience – what makes a given experience that experience e.g., why we
see the color red when we look at an apple. To address these questions, phenomenology
research collects first-person data using introspection, a form of qualitative research
focusing on the study of an individual’s lived experiences within the world. Those
methods, while very insightful at unravelling those subjective experiences, do not come
without limitations. Perhaps the biggest challenge is that not all experiences are equally
accessible to introspection (Nisbett and Wilson 1977). In addition, the mere exercise of
introspecting can modify the content of those primal experiences. These limitations
however do not disqualify the methodology per se. It merely reflects the fact that
sources of evidence might be limited, a concept that is extensible to every scientific
methodology. Yet, they remain essential tools for understanding how experiences
present to us, and how we attribute meaning to them. The research tradition of
neurophenomenology put forward by the late Francisco Varela (1996) and others, for
instance in the framework of Integrated Information Theory (Haun and Tononi 2019),
have aimed at addressing and better characterizing the structure of these phenomenal
qualities and the neural mechanism behind them. A recent example for the latter
approach concerns studies investigating the experience of space for which initial ideas
have been advanced (Haun and Tononi 2019) and supported by empirical evidence
(Song et al. 2017). In the tradition of neurophenomenology (Varela 1996), rigorous
first-person data have been used in conjuction with neurophysiological data to shed
light on the large-scale dynamics of consciousness (Lutz et al. 2002; for a recent review
see Berkovich-Ohana et al. 2020).

Conscious access, on the other hand, refers to processes that enable specific
information to be subjectively reported and made available for use by higher-level
cognitive processes (e.g. reasoning, planning, decision-making, voluntary direction
of attention, action control, etc.) (Block 2005). This information does not need to
come from the senses, it can also be internal thoughts about our own perception
(i.e. meta-cognition), or awareness about our own conscious experience (i.e. meta-
awareness). Paradigms tipically investigating access consciousness require partici-
pants to report about their internal experiences. For instance, in binocular rivalry
experiments, participants are asked to report (e.g., via button press) their current
percept, as perception alternates between competing stimuli that are concurrently
presented to each eye. Neural representations between those trials in which a
stimuli has been consciously perceived are contrasted against those in which the
very same stimuli was not perceived. Another strategy consists of presenting
stimulus that vary along a specific dimension known to affect perceptual detection
(e.g., duration, contrast, spatial frequency) while collecting perceptual reports. Brain
activity is then contrasted between those trials in which participants reported to
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consciously perceive the stimuli with those in which they reported not perceiving
the stimuli (for an overview of methods used to render stimuli invisible see Kim
and Blake 2005).

Perhaps as a consequence of the heterogeneity in what the field of consciousness
takes as its target of explanation (Signorelli et al. 2021), many theories of the neural
correlates of consciousness have been put forward, each emphasizing one (or several)
of the outlined consciousness explanandum (i.e. its states, contents, phenomenological
nature, reportability, etc.) and selecting their preferred methodology accordingly.
Reacting to this state of affairs, some argue that consciousness should not be
partitioned, and instead should be studied as a unified phenomenon with a single
underlying mechanism. For example, Bachmann and Hudetz (2014) argue that con-
sciousness results from the interaction between the mechanisms that represent the
contents of consciousness, and those that enable and modulate different states of
conscious experience. Both mechanisms are necessary and co-dependent: contents
cannot reach consciousness if there is no conscious state, and there is no conscious
state without a content being represented. Thus, in their view, elucidating the integra-
tion of these two aspects is decisive for uncovering a sufficient NCC. In contrast, others
have called for a strict separation between the concepts (Block 2005). Although
concrete conceptual attempts have been made to bring different consciousness theories
together, or at least to integrate their central claims (e.g. Wiese 2020), a common
research agenda has not been agreed upon yet and progress in the field appears in many
ways to have stagnated.

Against this background, there has been a push to integrate the study of the diverse
explananda of consciousness and their respective experimental paradigms by
interpreting the empirical findings using the explanatory constructs of a general-
purpose modelling framework of brain function: active inference (Wiese 2018;
Hohwy and Seth 2020). Some work has already been advanced to clarify which aspects
of this framework might be particularly suitable for explaining common phenomena in
consciousness research (Hohwy and Seth 2020).

Here we aim to gain some clarity on the issue of whether and how the computational
modelling framework afforded by active inference can be exploited to its full potential
to produce, refine and unify an explanatory theory of consciousness (when broadly
defined). In reviewing the promise of active inference as a general framework for
consciousness, we will for this piece set aside the important question of what the
explananda of the research program on consciousness ought to be i.e., access con-
sciousness or phenomenology. We will instead borrow inspiration from the systematic
approach taken by Hohwy and Seth (2020) in which predictive processing is evaluated
by its ability to provide a framework for explaining common challenges in conscious-
ness research.

2 Active Inference as a Modelling Framework for Building a Process
Theory

The Free Energy Principle states that all adaptive biological agents seek to minimize
long-term surprise (i.e. entropy) (Friston 2010). Although this principle is normative
(i.e. axiomatic, self-evident, non-falsifiable; Allen 2018) in nature and does not provide

Vilas M.G. et al.



mechanistic explanations of brain function, it can be used when building process
models. A process model of brain function is one that specifies the neural processes
that bring about a cognitive capacity, in terms of their structure, mechanisms and
information flow (Andrews 2021). An example of such a process model developed
under the free energy principle is active inference (Friston et al. 2016), which realizes a
variant of a neural algorithmic scheme called predictive processing.

Predictive processing is at the core of hypotheses proposing that the brain seeks to
reduce surprise by inferring the (hidden) states of the world giving rise to our sensorial
experience using Bayesian inference mechanisms (Friston and Kiebel 2009). Such
inference can be made by instantiating a generative model which specifies the likeli-
hood of observations given hidden states in the world, and a prior probability of each
state. The neural system uses this generative model to compute a posterior probability
of the causes behind those observations. This generative model is said to be hierarchi-
cal, where each level of the hierarchy encodes states at nested timescales and each level
takes as observations the hidden states of the levels below (Friston et al. 2017; Friston
et al. 2018).

Under the predictive processing lens, the predictions of the generative model are
compared against real observations, and the difference between the model and the
observations i.e., “prediction error” (formally equivalent to free energy) is transmitted
upwards in the hierarchy (Friston and Kiebel 2009). The goal of the neural system is to
minimize these prediction errors across hierarchical levels. This can be achieved in two
ways: by inferring the states of the world that maximize the probability of the
observation, which corresponds to perception and is typically modelled by predictive
coding schemes (Friston & Kiebel, 2009; Bastos et al. 2012); or by sampling or acting
in the world to increase the chance of meeting those predictions (Friston et al. 2016).
Models that assume this last property are what we will call active inference models.

Active inference models imply that the system not only minimizes surprise in the here
and now: it also minimizes expected surprise through a policy selection process. This
minimization can be achieved in two ways: either by performing a pragmatic action that
maximizes the probability of obtaining the rewards encoded by the priors, or by carrying out
an epistemic action that maximizes information gain through exploration. The generative
model must therefore possess beliefs about future states, and counterfactual beliefs that
encode the probability of some state and its outcome conditional on having selected a
particular policy (Friston et al. 2018). The transitions between states at each level in the
hierarchy are contextualized by the levels above (Friston et al. 2017).

The organism is also said to estimate the precision of its beliefs. Thus, the brain not
only encodes beliefs about states of the world, how they produce observations, and how
they transition over time; it also quantifies and modulates confidence in those beliefs.
These so-called precision estimates can weight the impact of prediction errors (gain
function), and when deployed in a descending (top-down) manner as expectations,
they are thought of as attentional mechanisms (Feldman and Friston 2010). In this
way, the neural system can amplify or down-regulate the ascending (bottom-up)
prediction errors depending on the context and the goals of the organism
(Auksztulewicz et al. 2017).

Taken together, these computational principles make up the architecture of
active inference, which can be used to construct process theories of specific
cognitive phenomena.
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3 Active Inference Accounts of Consciousness

As an all-encompassing framework for building process theories of brain functions,
active inference should in principle be able to accommodate consciousness. Accord-
ingly, several attempts have been made to link the general-purpose computational
mechanisms put forward by active inference with the diverse explananda of conscious-
ness. In this section we will review some examples of these proposals. We will only
discuss those that exclusively use conceptual tools from active inference, but see
Marvan and Havlík (2021) for an overview of proposals that mix active inference with
mechanisms from other theories. We will also omit theories of specific aspects of
consciousness (e.g., the phenomenological property of conscious presence, or the self)
that are based on predictive coding mechanisms alone rather than active inference (e.g.
Seth et al. 2012; Woźniak 2018).

Proponents of active inference affirm that consciousness, as any other biological
process, can be explained by the Free Energy Principle and Bayesian theories of brain
processing where action plays a key role in reducing uncertainty. As defenders of active
inference have argued: “conscious processing is about inferring the causes of sensory
states, and thereby navigating the world to elude surprises” (Friston 2018).

The fact that consciousness is an inferential process does not mean that all organisms
that perform inference are conscious. Instead, the active inference framework proposes
that the difference between conscious and unconscious organisms or states is that the
former are endowed with thick temporal and deep counterfactual generative models
(Friston 2018). A conscious system is able to infer states of the world that have not
happened yet (i.e. temporal thickness), relative to a selected course of action (i.e.
counterfactual depth). Temporal thickness and counterfactual depth are graded features
of generative models that allow the inference of states further away in time, and to
compare a greater number of policies. Since these two properties are assumed to
underlie conscious phenomena, proponents of active inference therefore argue that
consciousness must therefore be a graded phenomenon. Indeed, non-human organisms
differ in the extent to which they exhibit consciousness signatures, and humans are
more or less conscious at different points in time. The claim is that during states of
reduced consciousness (e.g., sedation) the brain’s generative model might lose temporal
thickness and counterfactual depth.

Regarding conscious contents, they are said to be determined by the hypothesis with
the highest posterior probability, parametrized by the inferences made at each level of
the hierarchy. This is the belief that best explains away prediction errors and the one
that will be used to sample the world or act on it (Hohwy 2012). The contents of our
phenomenological experience are thus inferred states: “(...) seeing red and feeling pain
(...) are themselves inferred causes, constructed to accommodate (i.e. best explain) the
raw sensory flux – and the hierarchical machinations they induce” (Clark et al. 2019).
Some have suggested that the contents of consciousness particularly represent the
middle level beliefs of this posterior hierarchy (Clark et al. 2019; Whyte and Smith
2020). The relationship between these proposals and the temporal and counterfactual
depth of generative models remains a matter of debate.

Some phenomenological properties can be explained by the hierarchical nature of
the generative model as well. Lower levels are said to track sensorial information over
short periods of time, while higher levels process more abstract and amodal
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representations over longer time-windows. Correspondingly, top levels might encode
information using discrete (and lower dimensional) representations, while lower levels
may deal with information in a continuous manner (Friston et al. 2017). This might
explain why phenomena such as memory (Barron et al. 2020) or imagination, associ-
ated with higher levels of the cortical hierarchy and involving sensory systems to a
lesser degree, can feel different than canonical sensorial experiences like perceiving the
redness of a ball (Clark et al. 2019).

Similarly, hierarchical precision deployment might explain why humans are capable
of attending to and manipulating their own beliefs of the states of the world (i.e.
metacognitive capacities). As mentioned before, top-down precision-weighting is often
equated with attentional processes where higher level states modulate the confidence
and importance abscribed to different perceptual states. Meta-awareness states, where
one becomes aware and consciously manipulates these internal attentional processes,
can be then thought as precision deployment over those levels in the hierarchy that
deploy attention modulating mechanisms themselves (Sandved Smith et al. 2020).

4 Active Inference as a Computational Framework for Consciousness

Although many of the multiple explanandums of consciousness have been conceptually
described through the active inference lens and these theoretical claims are a useful
guide for research, they remain preliminary in nature and do not constitute a process
theory in a strict sense. They typically do not provide mechanistic explanations, which
identify the entities, operations and organizational features that have a causal effect in
producing the phenomena of interest, and specify how the relevant components are
implemented in the underlying system (Craver 2006; Kaplan 2011). The theory linking
active inference and consciousness needs to be further constrained and specified to
provide a mechanistic account, as has been already pointed out (Friston et al. 2020;
Wiese and Friston 2020).

So far, the majority of researchers in the field have tried to make theoretical
advancements through more precise conceptual specifications (for the latest examples
see Clark et al. 2019; Friston et al. 2020; Limanowski and Friston 2020; Wiese and
Friston 2020). However, as it will be discussed in the remaining sections, a promising
alternative for better-specifying a theory is by building computational models (defined
here as computer code formalizations of verbal theories) that implement its proposals
(Guest and Martin 2021). Simulations and empirical data can be used to test this model,
detect any incorrect mechanistic assumptions and thus refine the underlying theory
(Smaldino 2017).

Proponents of active inference have long made use of computational modelling
practices in their research (Friston et al. 2018), and thus such efforts might well be
underway. In the following, we will discuss how computational models and experi-
mental data can be and have been used to refine and validate the explanatory theories of
consciousness under the active inference framework. As before, we will omit from this
revision models that only partially implement the active inference scheme, such as
empirically-based models whose parameters are interpreted post-hoc in terms of
predictive coding mechanisms (e.g. Boly et al. 2011; Sanders et al. 2014) and do not
refer to policy selection processes.
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We focus on the mechanistic framework as a tool for evaluating the progress the
field has made given the explicit intent to provide a neural process theory of con-
sciousness (Miłkowski 2016a).

4.1 Towards an Explanatory Computational Model

4.1.1 Target Phenomena

When building a mechanistic model, the first step is to clearly identify and characterize
the phenomena to be explained (Craver 2006). Models can then be evaluated by their
ability to produce and modulate this explanandum, and the mechanisms proposed as
explanatory for producing the phenomena of interest can be validated or falsified.

As stated before, one of the challenges in the field is that the target of consciousness
research remains a much-debated issue and broadly differs across theories. Computa-
tional models of consciousness have consequently defined their explanandum differ-
ently depending on their embedding theoretical framework. This makes the formal and
quantitative comparison of the mechanistic proposals put forward by different theories
a difficult task.

Consciousness as the target of computational modelling also bears another important
constraint: the phenomenon in itself is subjective, meaning that its presence is only
accessible from a first-person perspective (Metzinger 2000) and thus cannot be objec-
tively determined. Computational models cannot be probed with phenomenological
interviews or other introspective methods commonly used in research with humans to
characterize in detail internal states and subjective experience. To sidestep this limita-
tion, computational models have been evaluated by their ability to simulate or fit the
findings of experimental studies probing the explananda of consciousness. For exam-
ple, computational models have been built to simulate electrophysiological markers
traditionally believed to index conscious access mechanisms (e.g. Whyte and Smith
2020). Simulation approaches of this kind are also framed as building a replicatively
valid model, meaning one which can generate known outputs from known inputs
(Miłkowski 2016b). Building such a model is a promising approach to start refining
a theory of consciousness. It will allow us to investigate which mechanistic processes
(instantiated by the computational model) can give rise to observables related to
conscious experience (the experimental markers). Yet, parallel work that formally
relate those input-output models and simulations to subjective qualities (Carter et al.
2018) will be needed to fully validate this approach, at least when it comes to
understanding phenomenal properties of consciousness, as opposed to cognitive access.

The fragmented definition of consciousness and the diversity of findings regarding
neural and behavioral markers makes building a computational model of consciousness
seem like an especially challenging endeavour. As stated before, it has been suggested
that a potential solution to these issues might be to leverage the general-purpose
mechanistic framework of brain processing of active inference. Such framework
provides a single conceptual and formal scaffolding for situating the diverse
explananda of consciousness (i.e. states, contents, phenomenology, reportability),
traditionally studied in isolation with incommensurable theories. Situating the
explananda under a common framework of brain function, whose components’ inter-
action we understand, would inspire ideas on how the elements of the explananda
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themselves might interact to give rise to consciousness. This unifying approach has the
potential of developing a mechanistic model that is able to predict diverse behavioral
and neural markers of consciousness, and is able to provide an explanation of how
these integrate to produce a conscious experience.

How far are active inference models from providing a unified account of conscious-
ness? In this section we will provide a synthesis of the existing models (see Table 1).
We will restrict our discussion to work targeting phenomena traditionally associated
with consciousness, like perceptual awareness and phenomenological experience. We
will omit computational models of other high-level cognitive capacities (e.g. working
memory), but it is important to mention these might be useful for better characterizing
consciousness as they indirectly involve it (Reggia et al. 2017).

Predictively valid models of a variety of consciousness explananda have been built
using the mechanistic tools of active inference. Such models have provided a partial
account of conscious access markers. As anticipated (Vilas and Melloni 2020), they
have also been able to accommodate the diversity of contents of conscious experience
by simulating correlates of meta-awareness and meta-cognitive processes (Smith et al.
2019; Sandved Smith et al. 2020), or reports of hallucinations (Benrimoh et al. 2018;
Benrimoh et al. 2019). Most notably, some of these efforts illustrate how two aspects of
consciousness (e.g., meta-awareness and conscious access) might interact in a single
model to modulate the reportability of internal emotional states (Smith et al. 2019). In
contrast with these advancements, no computational model of active inference has so
far reproduced findings on reduced states of consciousness, or was used to accommo-
date the structurally invariant properties of phenomenology, like the integrative nature
of subjective experience.

What tasks have researchers used as an interface between computational models and
experimental data? Active inference studies have simulated binocular rivalry (Parr et al.
2019), masking (Whyte and Smith 2020), inattentional blindness (Whyte and Smith
2020), Troxler fading illusion (Parr et al. 2019) and oddball paradigms (Sandved Smith
et al. 2020), as well as a working memory paradigm tapping into conscious access
mechanisms (Smith et al. 2019), and a speech paradigm eliciting hallucinations
(Benrimoh et al. 2018; Benrimoh et al. 2019). All studies used relatively simple stimuli
with a low degree of ecological validity.

Active inference models simulate posterior beliefs of synthetic participants over the
hidden states of a task, and these are then used to model behavioral and neural
responses. The key contribution of this body of work is to use a similarly parameterized
generative model to describe the evolution of hidden states with active inference
mechanisms. At the same time, the models contain customized response models which
map these hidden states to specific types of behavioral or neural markers, addressing
the diversity of the explanandum. As behavioral markers, reports of perceptual expe-
rience (Whyte and Smith 2020), internal states (Smith et al. 2019) and visual saccades
(Parr et al. 2019) were simulated. Neural markers included simulated firing rate
responses (Smith et al. 2019; Whyte and Smith 2020), local field potentials (Smith
et al. 2019) and event-related potentials (ERPs) (Whyte and Smith 2020). No work has
so far simulated differences in the spatial distribution of brain activity.

Remarkably, active inference models have already helped to conceptually
integrate the results of different experimental tasks probing the same aspect of
consciousness. Whyte and Smith (2020) developed a model that could mimic the
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findings of two studies reporting the modulation of the P3 component (a marker
once thought to signal access consciousness) in response to different experimental
manipulations: one tapping into the attention of participants and the other into
their expectation. The authors parameterized these input conditions into their
model to independently modulate precision estimations, and simulated
experiments that systematically varied their values to disentangle their effects on
the P3. As another example, Parr et al. (2019) modelled how beliefs about the
precision of states transitions might account for the stability of conscious percep-
tion in two different perceptual awareness tasks performed by the same synthetic
subject. These two examples illustrate the potential this modelling framework has
for integrating the results of different studies.

In sum, replicatively valid models using the active inference framework have been
deployed to accomodate a number of consciousness explananda. This preliminary but
quantitively shows that this modelling framework is a serious candidate for providing a
neural process theory of consciousness (broadly defined). Still, to further demonstrate
this capacity studies need to extend these models to account for altered states of
consciousness and the structure of phenomenological experience. Experiments should
also simulate other neural markers associated with consciousness, since signatures such
as the P3 are often contested in their relation to consciousness (Verleger 2020).

Having reviewed the ways in which active inference models deal with the diversity
of the explanandum, we will now move on to the second step of building a mechanistic
model: identifying the components that are critical for the theory and characterizing
their effects on the phenomena of interest.

4.1.2 Explanatory Components

Not all of the mechanisms put forward by an all-encompassing model of brain function
like active inference might be relevant for building an explanation of consciousness. A
complete mechanistic model is one that identifies, specifically, all the causally relevant
components for producing the phenomena. As a desiderata, the computational model
should specify how the causally relevant components of the theory are instantiated, and
separate them from auxiliary assumptions (Lee et al. 2019).

Equipped with a well spell-out set of critical components and their specification,
then the assumptions and behavior of the model can be tested through simulations of
empirical data (Smaldino 2017; Wilson and Collins 2019). A number of practices can
be used to determine the components of the model truly relevant for producing the
phenomena, and refine the mechanistic proposal of the theory.

For instance, critical insights can be gathered through simulating the whole param-
eter range of the model components to determine how this variation affects the
simulated responses and how the elements of the model jointly influence the target.
This approach can also test how robust the model is to changes of its auxiliary
assumptions (Nassar and Frank 2016). In addition, model fit procedures can be used
to estimate the parameter values that better explain the simulated data, or to contrast the
explanatory power of a model against alternative ones (Wilson and Collins 2019). For
instance, parameters of each model can be systematically pruned (e.g. using Bayesian
model reduction; Friston et al. 2019), and alternative models can be explicitly com-
pared (e.g. using Bayesian model selection; Friston and Penny 2011) and/or fused (e.g.,
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using Bayesian model averaging; Trujillo-Barreto et al. 2004). Beyond this, the models
fitted on particular datasets or trained for solving particular tasks could also be used to
explain other datasets or tasks relevant to the phenomena of interest, to test the
generalizability of the mechanisms proposed. These practices guards against confirma-
tion bias (see Farrell and Lewandowsky 2010) and evaluate the level of commitment
one should have to the theory.

We will now review how these practices have been implemented for refining
theories linking active inference mechanisms and consciousness phenomena. Concep-
tual work has already suggested which specific components of the active inference
framework might be those driving conscious experience. For instance, much work has
been done in modelling the role of precision estimates and their hierarchical deploy-
ment in determining the content of a conscious experience. This component plays a
central role on active inference as the content is defined by the hypothesis with the
largest posterior probability which in turn is affected by the precision ascribed to those
beliefs (Hohwy 2012).

To investigate the effect of the precision abscribed to likelihood estimates on the
contents of experience, studies have manipulated their parameter values to determine
how they affect conscious reports across masking and inattentional blindness para-
digms (Whyte and Smith 2020), as well as the number of perceptual switches in a
binocular rivalry paradigm (Parr et al. 2019). In conjunction, both experiments dem-
onstrate that increasing the uncertainty of the mapping between observations and the
hidden states of the world influence if a content is consciously perceived or not. Going
further, Benrimoh et al. (2018) analyzed how the precision estimation of different
components of the model jointly interact to influence the target, showing that high prior
precisions over policies can influence perception and induce hallucinations as long as
they are accompanied by diminished likelihood precision, since in this scenario prior
policies will have increased influence in establishing the perceptual hypothesis with the
higher posterior probability.

Other work has characterized the role of priors in determining the contents of
consciousness. Benrimoh et al. (2019) showed how hallucinations whose content is
incongruous with the environment can only be simulated if an incorrect prior is added
to the model. Similarly, Whyte and Smith (2020) reported that a prior consistent with
new perceptual input increases the probability of the stimuli being consciously per-
ceived. Since priors also affect the posterior probability of different perceptual hypoth-
esis, taken thogether these studies further validate active inference’s hypothesis that
such model component is the one determining the content of conscious experience.

In contrast to concepts such as precision estimation and the content of the priors,
other elements of the theoretical proposal linking active inference with consciousness
remain underspecified. For example, the temporal thickness and counterfactual depth of
the generative model, which are thought to index consciousness levels, remain ambig-
uously specified in the computational models. Some researchers have modelled the
temporal depth as nested beliefs of hidden states (e.g. Whyte and Smith 2020), others as
nested beliefs of model parameters (i.e. beliefs affecting the precision of components at
lower levels of the hierarchy; see Sandved Smith et al. 2020). Those mechanisms could
be complementary, yet whether and how those mechanism might differentially mod-
ulate consciousness levels has not been studied. The temporal depth property has also
been translated to conscious access terms by defining it as the ability of the top levels of
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the model’s hierarchy to integrate information from lower levels, and transmit this
integration in a top-down manner (Smith et al. 2019; Whyte and Smith 2020). The
counterfactual property, which has been defined as the number of policies instantiated
by the model, has not been manipulated to test its effects on consciousness levels, and
the interaction with the temporal depth has not been investigated.

Not only the computational implementations of some of the relevant components of
the modelling framework are unclear. These studies do not elucidate, and consequently
manipulate, which are the auxiliary assumptions of the model. They also lack formal
comparisons between the accuracy of their models from those of other consciousness
theories. Simulation approaches are not the only way to fill these modelling gaps.
Empirical data can also be used for such purposes, as we will explore in the next
section.

4.2 Empirical Testing

4.2.1 Model Predictions

At some point during the theory development process, collecting empirical data
becomes necessary to validate the adequacy of the computational model and further
refine its mechanistic proposals. During the simulation process researchers parameter-
ize and vary the explanatory components of the model, as well as the initial conditions
or auxiliary assumptions, to characterize the mechanisms giving rise to the phenomena
of interest. This means the model should be able to make a precise prediction of the
behavior of the system under multiple parameter combinations, some of which possibly
have not been tested empirically before. This is referred to as a “predictively valid
model”, that is, a model that can correctly output predictions matching new observa-
tions (Miłkowski 2016b).

Importantly, it is unnecessary and often impossible to test predictions stemming
from the whole parameter space of the model. This is especially true for highly
parameterized and complex models like those of active inference. The researcher needs
to identify those predictions whose confirmation or falsification would be the most
informative for understanding and assessing the adequacy of the explanatory mecha-
nisms put forward by the theory (Wilson and Collins 2019). Simulations can be used to
find those initial values where the contrast between predictions would be greater. For
example, assuming some initial conditions, model X with component x would predict
effect A, while model Y that is identical to model X but without component x would
predict effect B. An experiment replicating those initial conditions can help disambig-
uate how necessary component x is for explaining the phenomena. Model fit metrics
can then be used to compare how well these alternative mechanisms or models explain
real and specific datasets (Lee et al. 2019). This approach can also be used to contrast
the adequacy of models built from different theories. Adversarial collaboration projects
are an example of this, where the most diverging predictions made by two competing
theories are identified, and experiments are carried out by different research teams to
verify or falsify those diagnostic predictions (Melloni et al. 2021).

How have active inference models been empirically tested to refine their mechanistic
explanation of consciousness? Unfortunately, to the best of our knowledge, no study
using this computational framework has motivated the collection of new empirical data
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to evaluate and refine the models. More than 50 theoretical journal articles have been
published making verbal and mathematical claims on how active inference might
explain consciousness. The number of articles implementing these theoretical proposals
into a computational model is considerably smaller – six studies according to this
review. Of these, none has directly compared simulation results against new experi-
mental data. Instead, they have been evaluated by their ability to reproduce findings
from previous studies.

Yet, computational models of active inference that advance precise hypotheses to be
tested in future empirical work have been put forward. For instance, through simula-
tions Whyte and Smith (2020) identified attention and expectation as independent
modulators of the common marker of consciousness P3, and proposed a new variant
of a Posner cueing paradigm that would separately manipulate these components in a
real experimental setting.

Empirical testing of the computational model is not only crucial for probing the
effects of the explanatory components on the phenomena of interest. As the next
section will illustrate, it is also the default approach for investigating how these
components are instantiated in the system underlying the real capacity, i.e., their neural
implementation.

4.2.2 Neural Implementation

It has been argued that a mechanistic explanation of a mental capacity such as
consciousness is not complete until it shows how it is implemented in the human brain
(Kaplan 2011). In other words, a mechanistic explanation requires building a structur-
ally valid model, meaning one whose structure has shown a correspondence with that
of the physical system implementing the capacity (Miłkowski 2016b). To create such a
model in the neuroscience domain, the researcher needs to map the entities, properties
and operations of the computational model to the anatomy and dynamics of the brain.

Detailed proposals have been put forward for how the components of the active
inference model might be instantiated in the brain (Parr and Friston 2018). Researchers
have measured how the behavior of these mechanisms can be explained by the activity
of relevant neural structures or processes, or vice versa. For example, Schwartenbeck
et al. (2015) showed that, in accordance with one of the anatomical proposals of active
inference, participants’ dopaminergic activity during a reward task can be predicted by
the modelled precision estimates.

This modelling approach can also help refine the verbal and mathematical formu-
lation of the theory and the computational model itself. For example, a biophysically
realistic models of predictive coding and/or active inference would need to specify
whether the term “precision” is implemented in the computational model as putative
classical neuromodulation, other (e.g. NMDA-dependent) gain control mechanisms,
synchronous activity, divisive normalization, lateral inhibition, or combinations thereof
(Friston 2012; Shipp 2016; Auksztulewicz et al. 2018; Northoff and Mushiake 2020).

So far, methods that statistically relate brain recordings with the mechanistic components
of the consciousness models of active inference are still missing. Some preliminary hypoth-
eses have been nonetheless spelled out. For instance, Whyte and Smith (2020) described
how the top-level of their model might mirror the activity of prefrontal and parietal areas
while the lower-level would correspond to those of sensory regions. However, this proposal

Vilas M.G. et al.



remains conceptual in nature. Although they simulated neural firing rates independently
encoding the posterior beliefs at each level of the hierarchy, they did not use these to
simulate brain recordings based on high spatial resolution techniques (e.g. fMRI). This
would have enabled a more direct comparison of their results to studies outlining the role of
these brain regions in conscious access processes.

More generally, experiments such as the one of Whyte and Smith (2020) would also
benefit from model-based fMRI approaches (O’Doherty et al. 2007), which use model
fitting and regression techniques to identify the areas of the brain whose activity
correlates with the neural activity predicted by the computational model.

A similar promising tool for linking neural recordings of a particular dataset with a
computational model of brain function is dynamical causal modeling (DCM; Friston et al.
2003).DCMsaregenerativemodelsofneural activity that canbeused to inferbrain responses
to experimental manipulations by fitting the model to a specific dataset. One can use this
approach to test how well the model explains real data, as well as to elucidate the optimal
parameters values in particular experimental scenarios. DCMs have been used to evaluate
predictivecodingmodelsofconsciousnessstatesandhaveshown, forexample, that top-down
processesprojections fromhigher levelsof thecorticalhierarchyare impaired in thevegetative
state (Boly et al. 2011), or that they are altered in visual illusions such as apparent motion
(Sanders et al. 2014). Despite this progress, so far active inference models have not been
combinedwithDCMtechniques todirectly fit empirical resultsof consciousness research,but
rather used to reproducemore general patterns in data abstracted from several studies.

5 Moving Forward

We have reviewed some good examples of how computational models and simulation
approaches have been used to specify and validate verbal theories linking mechanisms
from active inference with conscious access processes and the contents of conscious
experience. But this work is still very preliminary in nature, and the consciousness
explananda is still partly, and disjointly, situated within the active inference framework.

To make significant progress, further studies need to deepen the knowledge on how
the mechanistic components integrate and influence one another. Future work could
also extend these efforts to cover more systematically the diversity of conscious
contents (e.g. internal thoughts, representations about the self), for example by using
a dimensional approach (Studerus et al. 2010; Lutz et al. 2015; Birch et al. 2020). But
more importantly, the already developed models need to be tested against newly
collected empirical data to test their predictive and structural validity.

Parallel to these, to fully account for the broad explanandum of consciousness,
active inference models need to be developed to accommodate the spectrum of states of
consciousness and, most critically, the structure and qualities of experience. Recently,
Ramstead et al. (2021) have proposed an account termed computational phenomenol-
ogy based on linking phenomenological data with computational generative models of
experience in an attempt to formally describe the structure of consciousness. This
proposal which remains to be explicitly formalized leaves the physical realization of
consciousness aside, merely pursuing a methodological naturalization of phenomenol-
ogy. Extending it to encompass a physical and neural implementation will go a long
way to address the subjective qualities of experience.
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Altogether, the development of computational models linking active inference
mechanisms to consciousness phenomena holds the promise of advancing the theory
by making more explicit the mechanism that within the framework relate to conscious-
ness, while also opening avenues for future empirical research. Advancing the theory,
however, suspends the question of what the explananda of the problem of conscious-
ness are; and while the active inference framework is not expected to resolve this
question, researchers of consciousness should ask themselves what a theory is about.
The mystery of consciousness is and will always be its intrinsic, subjective nature, and
how phenomenal properties are embedded in physical systems. For active inference
(and/or any other theory) to be called a theory of consciousness, it needs to address
these aspects.
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