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Abstract. We study graded rings of meromorphic Hermitian modular forms of degree
two whose poles are supported on an arrangement of Heegner divisors. For the group
SU2,2(OK ) where K is the imaginary-quadratic number field of discriminant −d , d ∈
{4, 7, 8, 11, 15, 19, 20, 24} we obtain a polynomial algebra without relations. In particular
the Looijenga compactifications of the arrangement complements are weighted projective
spaces.

1. Introduction

The ring of symmetric Hermitian modular forms of degree two over the number
fieldQ(

√−3)was shown byDern and Krieg [6] to be a polynomial algebra without
relations generated by forms of weights 4, 6, 9, 10, 12. Their proof relies on the
construction of modular forms with special divisors as Borcherds products, and has
been applied to imaginary quadratic fields of other discriminants ( [7,19]).However,
by [17], the algebra of symmetric Hermitian modular forms over the unitary group
U2,2(OK ) or SU2,2(OK ) is freely generated if and only if the discriminant of the
underlying number field is −3 or −4, and as the discriminant increases the ring
structure rapidly becomes quite complicated.

In this paper we will instead consider ringsM!∗ of meromorphic modular forms
with poles supported on certain rational quadratic divisors. Looijenga [13] found
conditions that guarantee that every nonzero form in M!∗ has nonnegative weight
and thatM!∗ itself is finitely generated. The proj ofM!∗ is then the Looijenga com-
pactification of the complement of these rational quadratic divisors in theHermitian
modular fourfold, with properties similar to the Baily–Borel compactification.

Among rings of the formM!∗ there are a surprising number of examples of free
algebras of modular forms:
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Table 1. Free algebras of meromorphic modular forms. H(d,−) denotes an irreducible
Heegner divisor of discriminant d defined by (1). We add an index i if there are multiple
divisors of the same discriminant

d Hd Generator weights

4 H1(1/4,−) 2,4,6,8,10
7 H(1/7, −) 2,3,4,7,8
8 H(1/8, −) 2,3,4,6,8
11 H(1/11, −) 2,3,4,5,6
15 H1(1/15, −) + H2(1/15, −) 2,3,3,4,4
19 H(1/19, −) + H(4/19, −) 1,2,3,4,5
20 H1(1/20, −) + H2(1/20, −) + H(1/5, −) 1,2,3,3,5
24 H1(1/24, −) + H2(1/24, −) + H(1/6, −) 1,2,3,3,4

Theorem 1. For each d ∈ {4, 7, 8, 11, 15, 19, 20, 24} there is a Heegner divisor
Hd for which the ring of symmetric meromorphic modular forms for the group
SU2,2(OK ), K = Q(

√−d) is freely generated. In particular, the Looijenga com-
pactification of the arrangement complement�K \(H2−Hd) is a complex weighted
projective space of dimension four.

Here �K is the group generated by SU2,2(OK ) and a certain reflection σ , such
that the modular forms on �K are precisely the symmetric modular forms on
SU2,2(OK ). The algebras we find are presented in Table 1 below. Note that for
d = 4 we must take the group SU2,2(OK ), rather than the usual modular group
U2,2(OK ). For discriminant d ∈ {4, 7, 8, 11} the modular forms are allowed to
have poles precisely on the Siegel upper half-space H2 (viewed as the subset of
symmetric matrices in the Hermitian upper half-spaceH2) and its conjugates under
the modular group. We prove in Theorem 18 that these are the only such exam-
ples. We do not have a classification of all free algebras of meromorphic Hermitian
modular forms, but from some searching it seems likely that there are none besides
those mentioned above.

Hermitian modular forms of degree two also have the geometric interpretation
as forms on moduli spaces of abelian fourfolds with CM, or of lattice-polarized K3
surfaces of Picard number 16, and the Heegner divisors parameterize varieties with
additional automorphisms. The theorem of Dern–Krieg above can be interpreted
as a statement on K3 surfaces polarized by the root lattice U ⊕ E8 ⊕ E6, and the
Jacobian of their generators is precisely the discriminant. As discussed in [13], some
interestingmoduli spaces can be realized as the complements of Heegner divisors in
orthogonal modular varieties and the GIT compactifications of these moduli spaces
are usually isomorphic to the Proj of the graded ring ofmeromorphicmodular forms
with constrained poles. It is natural to guess that the graded rings found here also
have moduli space interpretations of this sort.
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2. Background

2.1. Lattices and modular forms

Let L = (L , Q) be an even integral lattice of signature (n, 2), n ≥ 1, where
Q : L → Z is its quadratic form and 〈x, y〉 = Q(x + y) − Q(x) − Q(y) is its
bilinear form. Fix one of the two connected components D(L) of

{[Z] ∈ P(L ⊗ C) : 〈Z,Z〉 = 0, 〈Z,Z〉 < 0}
and define A(L) = {Z ∈ L ⊗ C : [Z] ∈ D(L)}. Let O(L) be the orthogonal
group of (L , Q). The full modular group associated with L is

O+(L) = {γ ∈ O(L) : γ (D(L)) = D(L)}.
For a finite-index subgroup � ≤ O+(L), a modular form of weight k ∈ Z and
character χ : � → C× is a holomorphic function f : A(L) → C satisfying

f (tZ) = t−k f (Z), t ∈ C×

and

f (γZ) = χ(γ ) f (Z), γ ∈ �

as well as (for n ≤ 2) a boundedness condition “at cusps". A typical choice for �

is the discriminant kernel

˜O+(L) = {γ ∈ O+(L) : γ x − x ∈ L for all x ∈ L ′},
where

L ′ = {x ∈ L ⊗ Q : 〈x, y〉 ∈ Z for all y ∈ L}
is the dual lattice. A meromorphic modular form is a meromorphic function f
satisfying the functional equations above as well as a meromorphy condition at
cusps (which again is automatic for n > 2).

For any vector λ ∈ L ′ of positive norm, define the rational quadratic divisor

Dλ(L) = {[Z] ∈ P(L ⊗ C) : 〈Z, λ〉 = 0}.
Let γ ∈ L ′/L and m be a positive rational number. The union

H(m, γ ) =
⋃

λ∈L+γ

λ primitive in L ′
Q(λ)=m

Dλ(L) (1)

is locally finite and˜O+(L)-invariant and therefore descends to an analytic divisor on
ỸL := ˜O+(L)\D(L), called a Heegner divisor of discriminant m. We additionally
define

H(m) =
⋃

γ∈L ′/L
H(m, γ )
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and

D(m) =
⋃

d∈N
H(m/d2),

such that D(m) is the union of all Dλ(L) with λ ∈ L ′ (not necessarily primitive)
of norm m. Both H(m) and D(m) are O+(L)-invariant.

Modular forms on ˜O+(L) can be constructed by lifting modular forms on con-
gruence subgroups of SL2(Z). We follow Borcherds [1] and consider the input
forms into this lift as vector-valued modular forms whose multiplier is the Weil
representation attached to L . When L has even rank this is the representation

ρ : SL2(Z) −→ C[L ′/L] = span(ex : x ∈ L ′/L)

defined on S = (

0 −1
1 0

)

and T = (

1 1
0 1

)

by

ρ(S)ex = i sig(L)/2
√|L ′/L|

∑

y∈L ′/L
e2π i〈x,y〉ey

and

ρ(T )ex = e−2π i Q(x)ex .

(This is the dual of the representation ρL of [1] because in our convention L has
signature (n, 2).) A weakly holomorphic vector-valued modular form of weight k
is a holomorphic function F : H → C[L ′/L] that satisfies

F(M · τ) = (cτ + d)kρ(M)F(τ )

and whose Fourier expansion about ∞ involves only finitely many negative expo-
nents.

Borcherds [1] defined two singular theta lifts that construct modular forms with
respect to ˜O+(L). Let k ∈ N0 and let

F(τ ) =
∑

x∈L ′/L

∑

m∈Z−Q(x)

c(m, x)qmex , q = e2π iτ

be a weakly holomorphic modular form of weight 1 + k − n/2 whose Fourier
coefficients are integers.

(1) If k = 0, there is a Borcherds product 
F , which is a meromorphic modular
form with a character (or multiplier system) of weight c(0, 0)/2 and divisor

div
F =
∑

λ∈L ′
Q(λ)>0

c(−Q(λ), λ)Dλ(L).

Note that the sum is not taken over primitive vectors, and in particular 
F may be
holomorphic even if some coefficients c(−Q(λ), λ) are negative. The order of 
F

on any (primitive) Heegner divisor is then

ord(
F , H(d, λ + L)) =
∞
∑

n=1

c(−n2d, nλ), λ ∈ L ′ with Q(λ) = −d.
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(2) If k ≥ 1, Borcherds defines a singular additive lift �F , which is a meromor-
phic modular form of weight k with trivial character on ˜O+(L), all of whose poles
have order k and lie on rational quadratic divisors Dλ(L) with c(−Q(λ), λ) �= 0.
When F is holomorphic, this coincides with the Gritsenko lift; in particular, if F
is holomorphic then �F is holomorphic; and if F is a cusp form and k ≥ 2 then
�F is also a cusp form.

Weakly holomorphic input forms F can be computed effectively [20]. Most of
the Borcherds products we will need were already tabulated in Appendix B of [20].

If F is a modular form on the orthogonal group of a signature (n, 2) lattice L
then its restriction, or pullback, to any rational quadratic divisor is a modular form
of the same weight. There is an important generalization of the restriction map
called the quasi-pullback. For any (holomorphic) modular form F(Z) of weight k,
with a zero of order r ∈ N0 on Dλ(L), we write Z = z + λw with z ⊆ λ⊥ and
w ∈ C, and define

QF(z) := lim
w→0

F(z + λw)

wr
.

This defines a modular form on Dλ(L) of weight k + r which is a cusp form if
r > 0.

The restriction map preserves the space of (singular) additive lifts. Slightly
more precisely, for any form F of weight 1 + k − n/2, k ≥ 1 and any λ ∈ L of
norm m > 0, we have the identity

�F

∣

∣

∣Dλ(L)
= �ϑF ,

where ϑF ∈ M !
1+k−n/2+1/2(ρλ⊥) is the theta-contraction of F , obtained by mul-

tiplying the components by unary theta series of the form θa(τ ) = ∑

n∈Z q(n+a)2 ,
a ∈ 1

mZ and summing up. Ma [14] showed under the assumption of Koecher’s
principle that the quasi-pullback of Borcherds products satisfies the same formula,

Q
F = 
ϑF ,

by showing that both sides define a modular form with the same divisor. This
identity was proved in a different way by Zemel [22] who showed that it holds even
without the assumption of Koecher’s principle.

2.2. Hermitian modular forms of degree two

Fix an imaginary-quadratic number field K of discriminant dK , with ring of integers
OK and dual lattice

O#
K = {x ∈ K : trK/Q(xy) ∈ Z for all y ∈ OK }.

Let H2 be the Hermitian upper half-space of degree two:

H2 = {z = x + iy : x, y ∈ C2×2, x = xT , y = yT , y positive definite}.
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This is acted upon by the split-unitary group

U2,2(C) = {M ∈ GL4(C) : MT JM = J }, J =
( 0 0 −1 0

0 0 0 −1
1 0 0 0
0 1 0 0

)

by Möbius transformations:
(

a b
c d

) · z = (az + b)(cz + d)−1 where a, b, c, d are
(2 × 2) blocks.

Let

� ≤ U2,2(OK )

be a finite-index subgroup. We denote by Ak(�) the space of automorphic forms
of weight k, meaning meromorphic functions f : H2 → C that satisfy

f (γ z) = det(cz + d)k f (z), γ = (

a b
c d

) ∈ �.

Any automorphic form extends to a meromorphic section of a vector bundle over
�\H2; this is a form ofKoecher’s principle. If f is holomorphic then it has a Fourier
expansion

f (z) =
∑

B∈�K

c f (B)e2π i tr(Bz)

where

�K =
{

hermitian matrices B = (bi j ), bi j ∈ O#
K

}

,

and where c f (B) may be nonzero only if B is positive semidefinite. The function
f is a cusp form if its nonzero coefficients c f (B) only appear when B is positive
definite.

We further define

SU2,2(OK ) := U2,2(OK ) ∩ SL4(C)

and remark that SU2,2(OK ) = U2,2(OK ) if and only if dK �= −3,−4.
Hermitian modular forms of degree two are essentially the same as modular

forms on O(4, 2). Indeed, there is an isomorphism between SU2,2(OK ) and the
subgroup

˜SO
+
(L) = ker(det : ˜O+(L) → {±1})

for the lattice

L = U ⊕U ⊕ OK ,

where U is Z2 with quadratic form (x, y) �→ xy and where OK is the lattice
OK together with its norm form NK/Q, and this leads to an identification between
modular forms for these groups which is worked out in detail in [5,10]. The full
discriminant kernel ˜O+(L) is generated by ˜SO

+
(L) and by the reflection

ρ : U ⊕U ⊕ OK −→ U ⊕U ⊕ OK , (x1, y1, x2, y2, β) �→ (x1, y1, x2, y2,−β),
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whose action onH2 is the involution
(

τ z1
z2 w

) �→ (

τ −z2−z1 w

)

with automorphy factor
(+1). ˜O+(L) also contains the reflection

σ : U ⊕U ⊕ OK −→ U ⊕U ⊕ OK , (x1, y1, x2, y2, β) �→ (x1, y1, y2, x2, β)

whose action on H2 is the involution
(

τ z1
z2 w

) �→ (

w z1
z2 τ

)

with automorphy factor

(+1). Finally, we remark that ˜SO
+
(L) contains the map

ι : U ⊕U ⊕ OK −→ U ⊕U ⊕ OK , (x1, y1, x2, y2, β)

�→ (−x1,−y1,−x2,−y2, β)

whose action on H2 is
(

τ z1
z2 w

) �→ (

τ −z1−z2 w

)

with automorphy factor (−1).
Considering the transformations under σ and −ρι shows that any Hermitian

modular form F of weight k without character that arises from a modular form on
˜O+(L) (including Maass lifts and Borcherds products) satisfies

F
(

(

τ z1
z2 w

)

)

= εF
(

(

w z1
z2 τ

)

)

= (−1)kεF
(

(

τ z2
z1 w

)

)

,

where ε = 1 if F has trivial character and ε = −1 if F has the determinant char-
acter. A Hermitian modular form is called symmetric (resp. skew-symmetric) if it
is invariant (resp. anti-invariant) under the involution

(

τ z1
z2 w

) �→ (

w z1
z2 τ

)

. Symmet-
ric Hermitian modular forms of weight k and trivial character for SU2,2(OK ) can
therefore be identified with modular forms of weight k and trivial character for
˜O+(L).

Let us also mention here that under the local isomorphism from O(4, 2) to
U(2, 2) the rational-quadratic divisors take the explicit form

�a,B,c :=
{

z ∈ H2 : a · det(z) + tr(Bz) + c = 0
}

, a, c ∈ Z, B ∈ �K ,

and the discriminant of this divisor (the norm of the corresponding λ ∈ L ′) is

disc(�a,B,c) = ac − det(B).

The Siegel upper half-space H2 always appears as the discriminant 1/|dK | divisor
�0,B,0 where B =

(

0 i/
√|dK |

−i/
√|dK | 0

)

; more generally, all other �a;B;c can be

mapped biholomorphically toH2 under the action of U2,2(C). One other important
example of a rational-quadratic divisor is

�
0,

(

1 0
0 −1

)

,0
=

{

(

τ z1
z2 w

)

∈ H2 : τ = w
}

,

which represents the Heegner divisor H(1). Note that H(1) = H(1, 0) is irre-
ducible because the lattice L is maximal. In the language of the orthogonal group
�

0,
(

1 0
0 −1

)

,0
is the mirror of σ .
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For any even integer k ≥ 4, the Hermitian Eisenstein series Ek may be defined
as the theta lift (i.e. the Borcherds additive lift) of the vector-valued Eisenstein
series

Ek−1,0 =
∑

M∈�∞\SL2(Z)

e0|k−1M,

or rather theHermitianmodular formcorresponding to thismodular formonO+(L);
cf. Sect. 3.3 of [5] for a formula for its Fourier series. The additive lift raises the
weight by one because the lattice we consider has signature (4, 2).

Remark 2. Borcherds products 
 on H2 may have a quadratic character when dK
is even (cf. [5], Lemma 1.5 and Satz 5.4). One can show that the character appears
if and only if 
 has odd order on the Heegner divisor of discriminant 1/4. In this
case the exponents of the Fourier series do not lie in �K .

2.3. Free algebras of meromorphic modular forms

Let L = (L , Q) be a lattice of signature (n, 2) with locally symmetric spaceD(L)

defined as in Sect. 2.1. A hyperplane arrangement (in the sense of Looijenga [13])
will mean a finite family of Heegner divisors H(ni , γi ), i = 1, ..., N with the
following property: for any one-dimensional intersection � of hyperplanes λ⊥ with
λ primitive and λ ∈ L + γi , Q(λ) = ni for some i , the one-dimensional lattice
� ∩ L is positive-definite.

For such a hyperplane arrangement H letM!
k denote the space of meromorphic

orthogonalmodular forms ofweight k for˜O+(L)which are holomorphic away from
H . Looijenga proved ( [13], Corollary 7.5) that M!

k = {0} for all k < 0 and that
M!

0 = C, and further that the algebra

M!∗ =
⊕

k≥0

M!
k

is finitely generated. ProjM!∗ has similar properties to the Baily–Borel compacti-
fication of ỸL = ˜O+(L)\D(L) and is called the Looijenga compactification of the
complement ỸL\H .

Remark 3. In the examples corresponding to Hermitian modular forms throughout
the rest of the paper, the hyperplane arrangements H satisfy the stronger property
that any nontrivial intersection of two hyperplanes in H is already disjoint from
D(L). In this case, the quasi-pullback of a modular form inM!

k to any hyperplane
λ⊥ ∈ H is a holomorphic modular form of weight k − mλ, where mλ is the
multiplicity of the pole λ⊥. By applying Koecher’s principle to modular forms on
any hyperplane, we see that k ≥ mλ. This proves the fact that M!∗ is generated by
modular forms of positive weight in a more elementary way. Here it is essential
that the signature of the lattice is (n, 2) with n ≥ 4.
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We will be interested in examples where M!∗ is a polynomial ring without
relations. The results of [17] show that whether a given set of modular forms
generates a given graded ring of holomorphic modular forms can be read off of
their Jacobian, and it is natural to guess that similar results apply to M!∗. We will
show that they do. If f0, ..., fn : A(L) → C are meromorphic modular forms of
level � ≤ O+(L) of weights k0, ..., kn and characters χ0, ..., χn , and z0, ..., zn are
coordinates on A(L), then the Jacobian is

J = J ( f0, ..., fn) = det
(

∂ fi/∂z j
)n

i, j=0
.

After applying the chain rule we see that J transforms as a modular form of weight
n + ∑n

i=0 ki and character

χ = det ⊗
n

⊗

i=0

χi .

The Jacobian satisfies the product rule in each component and every mero-
morphic modular form can be written as a quotient f = g/h where g, h are
holomorphic. After applying the equation

J (g/h, f1, ..., fn) = 1

h2

(

h · J (g, f1, ..., fn) − g · J (h, f1, ..., fn)
)

and the analogous equations in the other components we see that J ( f0, ..., fn) is
meromorphic with poles at worst where any of f0, ..., fn has a pole.

In the case of Hermitian modular forms the Jacobian becomes the Rankin–
Cohen–Ibukiyama bracket:

J ( f0, ..., f4)
(

(

τ z1
z2 w

)

)

= det

⎛

⎜

⎜

⎜

⎜

⎝

k0 f0 k1 f1 k2 f2 k3 f3 k4 f4
∂τ f0 ∂τ f1 ∂τ f2 ∂τ f3 ∂τ f4
∂z1 f0 ∂z1 f1 ∂z1 f2 ∂z1 f3 ∂z1 f4
∂z2 f0 ∂z2 f1 ∂z2 f2 ∂z2 f3 ∂z2 f4
∂w f0 ∂w f1 ∂w f2 ∂w f3 ∂w f4

⎞

⎟

⎟

⎟

⎟

⎠

.

Throughout the paper, we denote by M!∗ the ring of symmetric meromorphic
Hermitian modular forms on SU2,2(OK ) with poles along the hyperplane arrange-
ment H , that is, the ring of meromorphic modular forms for ˜O+(L) which are
holomorphic on D(L) \ H .

Theorem 4. Let f0, ..., f4 ∈ M!∗. Suppose the Jacobian J = J ( f0, ..., f4) is
nonzero.

(i) The Jacobian J vanishes on the Heegner divisor D(1) \ H.
(ii) Suppose J has only a simple zero on D(1)\H, and that all other poles or zeros

of J are contained in the hyperplane arrangement H. Then

M!∗ = C[ f0, ..., f4].
By [17, Theorem 2.5 (2)], the Jacobian J is nonzero if and only if f0, ..., f4 are
algebraically independent.
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Proof. (i) Since the Jacobian has the determinant character for ˜O+(L), it vanishes
on all mirrors of reflections in the discriminant kernel which are not contained in
H (see [17, Theorem 2.5 (4)]). Recall that the mirrors of reflections in ˜O+(L) are
exactly the rational quadratic divisors associated with vectors of norm 1 in L . For
the lattices corresponding to Hermitian modular forms, the union of these mirrors
is the Heegner divisor D(1) (in fact, D(1) = H(1) + H(1/4) if 4|dK , otherwise
D(1) = H(1)). This proves the desired claim.

(ii) This is essentially the same argument as used in [17, Theorem 5.1]. Let
f5 ∈ M!∗ be a modular form of minimal weight k5 that does not lie in the subring
generated by f0, ..., f4, and compute the determinant by cofactor expansion:

0 = det

⎛

⎝

k0 f0 ... k4 f4 k5 f5
k0 f0 ... k4 f4 k5 f5
∇ f0 ... ∇ f4 ∇ f5

⎞

⎠ =
5

∑

i=0

(−1)i ki fi Ji , Ji = J ( f0, ..., f̂i , ..., f5).

Each Ji vanishes on D(1) \ H and by assumption (ii) is a multiple of J in the ring
M!∗, say Ji = J · gi ; and of course g5 is 1. This yields the representation

f5 =
4

∑

i=0

(−1)i ki
k5

fi gi .

Each gi lies in C[ f0, ..., f4] by minimality of f5; but then f5 also lies in
C[ f0, ..., f4], a contradiction. ��
Remark 5. Theorem 4 generalizes in an obvious way to meromorphic modular
forms on orthogonal groups of lattices of higher rank. We will construct some free
algebras of meromorphic modular forms on lattices of higher rank in a separate
paper.

Remark 6. If f0, ..., f4 freely generate the algebra of symmetric modular forms,
then any skew-symmetric modular form (that is, a modular form with the determi-
nant character) vanishes on D(1)\ H as in the proof of Theorem 4, and is therefore
a multiple of J = J ( f0, ..., f4) under the assumption in Theorem 4 (ii). It follows
that the full ring of meromorphic modular forms is

C[ f0, ..., f4, J ]/(J 2 − P( f0, ..., f4))

for a uniquely determined polynomial P .

3. Modular forms with poles on the Siegel half-space

In this section we consider the simplest possible hyperplane arrangement in H2:
the Siegel upper half-space H2 together with its images under SU2,2(OK ). The
intersection of any two hyperplanes in this arrangement determines a Heegner
divisor inH2 whose irreducible components have discriminant at most 1/|dK |, and
is therefore empty whenever dK /∈ {−3,−4}. By a separate computation one can
check that this holds when dK = −4. (In more detail: for any norm 1/4 vectors
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u, v ∈ 2U ⊕ OK for which u⊥ and v⊥ are images of H2, we have 〈u, v〉 ∈ 1
2 + Z

and therefore

det

(〈u, u〉 〈u, v〉
〈u, v〉 〈v, v〉

)

= det

(

1/2 〈u, v〉
〈u, v〉 1/2

)

≤ 0,

sou⊥∩v⊥ is not positive definite andhas empty intersectionwithH2.) The condition
fails when dK = −3; indeed, in this case, there is a cusp form of weight 9 that
vanishes only on the orbits of H2, cf. [6].

We will show by cases that the rings of meromorphic Hermitian modular
forms with poles confined to these hypersurfaces are, when the underlying number
field has discriminant −4,−7,−8 or −11, freely generated by forms of weights
2, 4, 6, 8, 10; and 2, 3, 4, 7, 8; and 2, 3, 4, 6, 8; and 2, 3, 4, 5, 6 respectively. Finally
we will prove that the ring in question cannot be generated by only five forms for
any other discriminant.

3.1. Discriminant −4

Symmetric Hermitian modular forms for the group � = SU2,2(Z[i]) correspond
to modular forms for the discriminant kernel of the root lattice L = 2U ⊕ 2A1, i.e.

Z6 with Gram matrix S =
⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 0 0 0
0 0 0 2 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. Through this correspondence the �-orbit

of the Siegel half-spaceH2 = {z ∈ H2 : zT = z} is an irreducible Heegner divisor
of discriminant 1/4 hyperplanes:

H := H(1/4, (0, 0, 0, 1/2, 0, 0))

=
⋃

{λ⊥ : λ ∈ (0, 0, 0, 1/2, 0, 0) + Z6; λTSλ = 1/2}.

Remark 7. There are two �-orbits of discriminant 1/4 divisors, i.e. H and
H(1/4, (0, 0, 1/2, 0, 0, 0)). One is represented by the Siegel half-space H2, and
the other by

{z ∈ H2 : tr(
(

0 1/2
1/2 0

)

z) = 0} = {z ∈ H2 : z1 = −z2}.

Under the full Hermitian modular group U2,2(Z[i]) these orbits coincide. It is
crucial that we consider only the subgroup � because there are modular forms
holomorphic away from H2\(� · H2 ∪ � · {z : z1 = −z2}) of negative weight
such as the form φ−1

4 below, and therefore the spaces of these modular forms are
not finite-dimensional. The ring of holomorphic modular forms for this group was
determined by Dern and Krieg [6], building on earlier work of Freitag [9].
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TheWeil representation attached to S admits the weight (−1)weakly holomor-
phic vector-valued modular form

F−1(τ ) = 8η(2τ)14

η(τ)12η(4τ)4
e0 + η(τ)2

η(2τ)4

(

e(0,0,1/2,0,0,0) + e(0,0,0,1/2,0,0)
)

− 32η(2τ)2η(4τ)4

η(τ)8
e(0,0,1/2,1/2,0,0)

= q−1/4 (

e(0,0,1/2,0,0,0) + e(0,0,0,1/2,0,0)
)

+ 8e0 − 32q1/2e(0,0,1/2,1/2,0,0) + O(q3/4)

where as usual η(τ) = q1/24
∏∞

n=1(1− qn). The Borcherds lift of F−1 is a weight
4 modular form φ4 with quadratic character and simple zeros on both �-orbits of
discriminant 1/4 hyperplanes (i.e. on the Heegner divisor H(1/4)). There is also a
weakly holomorphic vector-valued modular form

G−1(τ ) = q−1e0 + 68e0 + 4928q1/2e(0,0,1/2,1/2,0,0) + ...

which lifts to a skew-symmetric Borcherds product �34 of weight 34 with simple
zeros exactly on the Heegner divisor D(1) = H(1) ∪ H(1/4). In weight one we
have (up to scalar multiple) a unique weakly holomorphic modular form F1(τ )

whose image under the singular additive lift is a weight two meromorphic modular
form φ2 with double poles only on H :

F1(τ ) = q−1/4e(0,0,0,1/2,0,0) − 2e(0,0,0,0,0,0) + 56q1/2e(0,0,1/2,1/2,0,0) + ...

Besides φ2, φ4 we also need the Hermitian Eisenstein series E4, E6, E10 of
weights 4, 6, 10, which are defined as the additive lifts of vector-valued Eisenstein
series of weights 3, 5, 9, respectively, following Sect. 2.2.

Theorem 8.

M!∗ = C[φ2, E4, E6, φ2
4 , E10].

Proof. We will first show that φ2, E4, E6, φ4, E10 are algebraically independent.
Under the pullback map to (0, 0, 1/2, 0, 0, 0)⊥, the images of φ2, E4, E6 and an
appropriate linear combination of E4E6 and E10 are the algebraically independent
Siegel modular forms of weight two (with a double pole on the diagonal) and
weights 4, 6, 10. (Note that this is not the copy of H2 on which we allow poles;
nevertheless, the restrictions there can also be interpreted as Siegel modular forms.)
By construction,φ4 has a double zero there. This implies the algebraic independence
(cf. Remark 9).

Now the Jacobian J = J (φ2, E4, E6, φ2
4 , E10) is nonzero, holomorphic away

from the divisor H , has weight

wt(J ) = 2 + 4 + 6 + 8 + 10 + 4 = 34,

and it vanishes on D(1)\H = H(1, 0)∪� ·{z : z1 = −z2}, so J/�34 ∈ M!
0 = C.

The claim follows by applying Theorem 4. ��
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Remark 9. Here we are using the fact that, if functions h1, ..., hr on D(L) and
λ ∈ L ′ of positive norm are given such that the restrictions of h1, ..., hr−1 to λ⊥
are algebraically independent, but the restriction of hr vanishes identically, then
h1, ..., hr are algebraically independent. It is enough that hr is not algebraic over
C(h1, ..., hr−1), which is true because all powers of hr have different orders of
vanishing. We will also use this argument in the next sections.

Remark 10. Note that φ4 is squared because of its nontrivial character χ . One can
also apply Theorem 4 to see that the algebra of modular forms for ker(χ) is the free
algebra on φ2, E4, E6, φ4, E10, as their Jacobian is a nonzero multiple of �34/φ4.

Remark 11. In the notation of [6] the meromorphic form φ2 is the form

φ2 = aE4E6 + bE10 + cφ10

φ2
4

where aE4E6 + bE10 + cφ10 is the unique linear combination that vanishes on
(0, 0, 1/2, 0, 0, 0)⊥.

3.2. Discriminant −7

The signature (4, 2) latticewhosemodular forms correspond to degree-twomodular
forms for the group � = SU2,2(OK ) with K = Q(

√−7) is L = Z6 with Gram

matrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 1 0 0
0 0 1 4 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. Generators and relations for the ring of holomorphic modular

forms were determined in [19]. We will compute the ring of meromorphic modular
forms holomorphic away from the Siegel upper half-space:

M!∗ = { f ∈ Ak, f holomorphic on H2\(� · H2)}.
Recall that the �-orbit of H2 is the Heegner divisor H(1/7).

Since the discriminant is prime, we can construct input forms into the singular
lift fromweakly holomorphicmodular forms inM !,−∗ (�0(7), χ) using theBruinier–
Bundschuh correspondence [4] (see also the constructions in [19]). The Borcherds
product 
 associated with an input form

∑

n�−∞ c(n)qn in this convention has
divisor

div
 =
∑

d>0

(
∑

f 2|d
c(− f )δ f

)

H(d),

where δ f is 1 if p| f and δ f = 1/2 otherwise, and the weight of 
 is as usual
half of the constant coefficient. There is a symmetric Borcherds product φ7 and a
skew-symmetric product �28 obtained from the weight (−1) forms

F−1(τ ) = 2q−2 + 6q−1 + 14 − 38q3 − 96q5 ± ...

and

G−1(τ ) = q−7 + 14q−1 + 56 + 4522q3 + 27846q5 + ...
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with divisors

div φ7 = 3H(1/7) + H(2/7), div�28 = 7H(1/7) + H(1),

and there is a weight 1 form

F1(τ ) = 2q−1 − 2 + 50q3 − 52q5 ± ...

that lifts to ameromorphic Hermitianmodular form φ2 with order two poles exactly
on � · H2. Finally we need the weight 2 vector-valued modular form

F2(τ ) = q−1/7(e(0,0,1/7,5/7,0,0) − e(0,0,6/7,2/7,0,0))

+13q3/7(e(0,0,5/7,4/7,0,0) − e(0,0,2/7,3/7,0,0)) + O(q5/7)

which lifts to a meromorphic form φ3 with triple poles on � · H2.
In the notation of [19],

φ2 = m9

b7
, φ3 = m(2)

10

b7
, φ7 = b7.

Let E4 and E8 be the Eisenstein series of weight 4 and 8 for � = SU2,2(OK )

respectively.

Theorem 12.

M!∗ = C[φ2, φ3, E4, φ7, E8].

Proof. The algebraic independence of φ2, φ3, E4, φ7, E8 follows immediately from
that of the (holomorphic) modular forms φ2φ7, φ3φ7, E4, φ7, E8. The Jacobian
J (E4, φ7, E8, φ2φ7, φ3φ7) can be shown to be nonzero by direct computation (for
this one needs at least the first 8 Fourier–Jacobi coefficients), or the algebraic inde-
pendence can be derived from the results of [19]. We carried out this computation
in SageMath [15] using code available at [18]. The Jacobian

J = J (φ2, φ3, E4, φ7, E8)

has weight 28 and vanishes on the Heegner divisor H(1), so J/�28 ∈ M!
0 = C.

The claim follows from Theorem 4. ��

This implies that, up to a nonzero constantmultiple, the Jacobian of the holomorphic
forms above is

J (E4, φ7, E8, φ2φ7, φ3φ7) = φ2
7 J (φ2, φ3, E4, φ7, E8) = φ2

7�28 ∈ M42.
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3.3. Discriminant −8

The lattice L we take in this section has Gram matrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 0 0 0
0 0 0 4 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. We will use

the weakly holomorphic modular forms of weight (−1) whose Fourier expansions
begin

F−1(τ ) = q−1/4e(0,0,1/2,0,0,0) + 2q−1/8(e(0,0,0,1/4,0,0) + e(0,0,0,3/4,0,0))

+6e(0,0,0,0,0,0) + ...

G−1(τ ) = q−1/2e(0,0,0,1/2,0,0) − 4q−1/8(e(0,0,0,1/4,0,0) + e(0,0,0,3/4,0,0))

+6e(0,0,0,0,0,0) + ...

H−1(τ ) = q−1e(0,0,0,0,0,0) + 8q−1/8(e(0,0,0,1/4,0,0) + e(0,0,0,3/4,0,0))

+54e(0,0,0,0,0,0) + ...

These lift to Borcherds products ψ3, φ3,�27 with the following properties:
(1) ψ3 is a weight 3 cusp form with a quadratic character and divisor

divψ3 = 2H(1/8) + H(1/4);

(2) φ3 is a meromorphic weight 3 form with trivial character and divisor

div φ3 = −3H(1/8) + H(1/2);

(3) �27 is a skew-symmetric cusp form of weight 27 with divisor

div�27 = 8H(1/8) + H(1/4) + H(1).

The form φ3 can also be constructed as a singular additive lift. We also need the
meromorphic form φ2 defined as the singular additive lift of the weight 1 form

F1(τ ) = q−1/8(e(0,0,0,1/4,0,0) + e(0,0,0,3/4,0,0)) − 2e(0,0,0,0,0,0) + ... ∈ M !
1(ρ),

which has double poles on H(1/8) and is holomorphic elsewhere.
Let M!∗ be the ring of meromorphic modular forms that are holomorphic on

H2\(� · H2) = H2\H(1/8).

Theorem 13.

M!∗ = C[φ2, φ3, E4, ψ2
3 , E8]
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Proof. The product φ2ψ
2
3 is the unique weight 8 cusp form in the Maass subspace

(cf. [11]) that vanishes on the Heegner divisor H(1/4); this is the additive lift of
the vector-valued cusp form

q1/4e(0,0,1/2,1/2,0,0) − 2q1/2e(0,0,0,1/2,0,0) + 8q5/8(e(0,0,1/2,1/4,0,0)

+e(0,0,1/2,3/4,0,0)) + ... ∈ S7(ρ).

Using the Fourier–Jacobi expansions (with at least the first 8 coefficients) of the
holomorphic forms φ2ψ

2
3 , φ3ψ

2
3 , E4, ψ2

3 , E8 as computed in SageMath [15] we find
that their Jacobian is not identically zero. It follows that

J = J (φ2, φ3, E4, ψ2
3 , E8) ∈ M!

27

is nonzero and vanishes on the reflective divisor D(1) = H(1) + H(1/4), so
J/�27 ∈ M!

0 = C and the claim follows from Theorem 4. ��
Remark 14. The ring structure of holomorphic modular forms for this group was
determined by Dern and Krieg in [7]. As before, if χ is the character of ψ3 then
the algebra of modular forms for ker(χ) is freely generated by φ2, φ3, E4, ψ3, E8,
with Jacobian �27/ψ3.

3.4. Discriminant −11

We use the lattice L with Gram matrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 1 0 0
0 0 1 6 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. Since the discriminant is

prime, we again have the Bruinier–Bundschuh isomorphism between vector-valued
modular forms and the minus-space of modular forms of level �0(11) with the
quadratic character. In weight (−1) there are weakly holomorphic modular forms
with Fourier expansion beginning

F−1(τ ) = 2q−3 + 10q−1 + 10 − 12q2 − 40q6 ± ...

G−1(τ ) = 2q−4 − 8q−1 + 6 + 46q2 − 150q6 ± ...

H−1(τ ) = q−11 + 22q−1 + 48 + 528q2 + 7920q6 + ...

They lift to Borcherds products φ5, φ3,�24 with the properties

(1) φ5 is a weight 5 cusp form with divisor

div φ5 = 5H(1/11) + H(3/11);
(2) φ3 is a meromorphic weight 3 form with divisor

div φ3 = −3H(1/11) + H(4/11);
(3) �24 is a skew-symmetric cusp form of weight 24 with divisor

div�24 = 11H(1/11) + H(1).
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We will also use the singular additive lift φ2 of the weight 1 form

F1(τ ) = q−1 − 1 + 7q2 + 7q6 + 19q7 ± ...

which is holomorphic except for double poles on � · H2. Define M!∗ to consist of
meromorphic modular forms holomorphic on H2\(� · H2) = H2\H(1/11).

Theorem 15.

M!∗ = C[φ2, φ3, E4, φ5, E6].
Proof. By a similar argument to the previous section, φ2φ5 is the unique weight 7
cusp form in the Maass space. A direct computation in SageMath [15] using the
first 8 Fourier–Jacobi coefficients shows that the Jacobian of the (holomorphic)
modular forms φ2φ5, φ3φ5, E4, φ5, E6 is not identically zero, which implies that
φ2, φ3, E4, φ5, E6 are algebraically independent. Their Jacobian

J = J (φ2, φ3, E4, φ5, E6)
has weight 24 and vanishes on H(1), so J/�24 ∈ M!

0 = C and the claim follows
from Theorem 4. ��
Remark 16. The ring of holomorphic modular forms was computed in [19].

3.5. A nonexistence theorem

We will show that the four cases above account for all freely generated algebras
of Hermitian modular forms that are holomorphic away from H2. Let K be an
imaginary-quadratic number field of discriminant dK and let M!

k be the space
of meromorphic Hermitian modular forms of weight k whose poles lie only on
conjugates of H2.

Lemma 17. dimM!
1 ≤ 1.

Proof. The Fourier–Jacobi expansion of any holomorphic Hermitian modular form
h takes the form

h
(

(

τ z1
z2 w

)

)

=
∞
∑

n=0

hn(τ, z1, z2)e
2π inw.

In particular, if h has weight one, then for any λ ∈ OK , the form hn(τ, λz, λz) is a
Jacobi form ofweight one (and index NK/Qλ) and vanishes identically by a theorem
of Skoruppa (cf. [8], Theorem 5.7). Therefore the zeros of each hn are dense in
H × C2 so all hn vanish identically. This shows that there are no holomorphic
Hermitian modular forms of weight one (without character) for any discriminant.

Now suppose f, g ∈ M!
1 are linearly independent. Since a weight one form

in M!
1 can have at worst a simple pole on H2 with constant residue, some linear

combination of f and g must be holomorphic on H2 and therefore holomorphic
everywhere. This cannot happen by the previous paragraph. ��
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Theorem 18. Suppose |dK | > 11. Then M!∗ cannot be generated by only five
modular forms.

Proof. Suppose M!∗ is generated by five modular forms f1, ..., f5 of weights
k1, ..., k5. Since the intersection of any two hyperplanes in the arrangement is dis-
joint from H2, the boundary components of the Looijenga compactification have
dimension at most two. Using an argument analogous to [17, Theorem 3.5 (2)], we
find that the Jacobian

J = J ( f1, ..., f5)

has only a simple zero on the Heegner divisor

D(1) =
⊕

λ∈L ,Q(λ)=1

Dλ(L),

a (not necessarily simple) zero or pole on the Siegel upper half-space, and no
zeros or poles otherwise. By the Bruinier converse theorem [3] it is the Borcherds
lift of a vector-valued modular form F ∈ M !−1(ρ). We can fix ρ to be the Weil
representation of the lattice OK , as this yields the same Weil representation as
2U ⊕ OK . The form F then has principal part

F(τ ) = q−1e0 + mq−1/|dK |(ev + e−v) + 2 · wt(J )e0 + O(q1/|dK |)

for some m ∈ Z, (the multiplicity of H2 in the divisor of J ), where v = i√|dK | ∈
O#

K /OK .
Consider the theta-contractionϑF to the sublatticeZ ⊆ OK ,which corresponds

to the quasi-pullback of J to H2. The Looijenga condition implies that ϑF ∈
M !−1/2(ρZ) is a modular form with principal part q−1e0 + O(q0) at infinity, which
determines it uniquely:

ϑF(τ ) = (q−1 + 70 + 131976q + ...)e0 + (32384q3/4 + ...)e1/2.

Since the weight of J increases or decreases by the multiplicity m under the quasi-
pullback to H2, we find

35 = wt(J ) + m.

The dual representation ρ∗ admits a modular form of weight three, which can
be constructed as the Serre derivative of the usual theta series:

G(τ ) := 1

2π i
�′(τ ) − 1

12
E2(τ )�(τ),

where �(τ) = ∑

λ∈O#
K
qNK/Q(λ)eλ. In particular the Fourier expansion of G has

the form

G(τ ) = − 1

12
e0 +

( 1

|dK | − 1

12

)

q1/|dK |(ev + e−v) ± ... ± 23

6
qe0 + ...
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for a unique pair of cosets ±v ∈ O#
K /OK . If we write

F(τ ) =
∑

x∈O#
K /OK

fx (τ )ex and G(τ ) =
∑

x∈O#
K /OK

gx (τ )ex

then
∑

x∈O#
K /OK

fx (τ )gx (τ ) is a weakly holomorphic modular form of weight two
and therefore has constant term zero. This yields the identity

23

6
− 70 − 2m

12
+ 2m

( 1

|dK | − 1

12

)

= 0

which implies m = |dK |. This relation can also be proved using the approach to
classify reflective modular forms in [16].

Since k1, ..., k5 ≥ 1 and by Lemma 17 at most one of the generators can have
weight one, we have

35 − |dK | = wt(J ) = k1 + k2 + k3 + k4 + k5 + 4

≥ 1 + 2 + 2 + 2 + 2 + 4 = 13

and therefore |dK | ≤ 22. To rule out the possibilities dK = −15,−19,−20 we
apply Borcherds’ obstruction theorem [2], according to which vector-valued cusp
forms of weight three for the dual representation ρ∗ yield linear relations among
the vanishing orders of a Borcherds product along Heegner divisors. Unlike the
cases with |dK | ≤ 11, the discriminants dK = −15,−19,−20 yield cusp form
spaces of dimension at least two, and by computing a basis for them (cf. Appendix
B of [20]) we see that there are no Borcherds products with zeros only on the Siegel
upper half-space and the divisor D(1). ��

Remark 19. The nonexistence of the potential Jacobian does not follow frommerely
computing the dimension of the obstruction space. The discriminant dK = −23
already yields an example: despite a three-dimensional space of cusp form obstruc-
tions, Appendix B of [20] shows the existence of a skew-symmetric form �12
of weight 12 with a simple zero on H(1), an order 23 zero on the Siegel upper
half-space, and no other zeros. Our argument above shows that this cannot be the
Jacobian of a set of algebra generators.

4. Rings of modular forms with multiple poles

We will consider rings of meromorphic Hermitian modular forms with poles
on Heegner divisors that are not necessarily conjugate to the Siegel upper half-
space. For the discriminants |dK | ∈ {15, 19, 20, 24} we find additional hyperplane
arrangements H such that the rings of meromorphic modular forms that are holo-
morphic away from H are polynomial algebras without relations.
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4.1. Discriminant −15

The lattice L has Gram matrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 1 0 0
0 0 1 8 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. There are two ±-pairs of orbits of

norm 1/15 vectors under the discriminant kernel, so the discriminant 1/15 Heegner
divisor splits into two irreducible components:

H(1/15) = H(1/15, (0, 0, 1/15,−2/15, 0, 0))

+H(1/15, (0, 0, 4/15,−8/15, 0, 0)),

the first of which represents the upper half-spaceH2. There are weight (−1)weakly
holomorphic vector-valued modular forms with Fourier expansions beginning

F−1(τ ) = q−4/15(e(0,0,2/15,−4/15,0,0) + e(0,0,−2/15,4/15,0,0))

+ 7q−1/15(e(0,0,4/15,−8/15,0,0) + e(0,0,−4/15,8/15,0,0))

− 4q−1/15(e(0,0,1/15,−2/15,0,0) + e(0,0,−1/15,2/15,0,0))

+ 6e(0,0,0,0,0,0) + ...

G−1(τ ) = q−4/15(e(0,0,−8/15,1/15,0,0) + e(0,0,8/15,−1/15,0,0))

+ 7q−1/15(e(0,0,1/15,−2/15,0,0) + e(0,0,−1/15,2/15,0,0))

− 4q−1/15(e(0,0,4/15,−8/15,0,0) + e(0,0,−4/15,8/15,0,0))

+ 6e(0,0,0,0,0,0) + ...

H−1(τ ) = q−1e(0,0,0,0,0,0) + 15q−1/15(e(0,0,1/15,−2/15,0,0)

+ e(0,0,−1/15,2/15,0,0) + e(0,0,4/15,−8/15,0,0) + e(0,0,−4/15,8/15,0,0))

+ 40e(0,0,0,0,0,0) + ...

that lift to meromorphic Borcherds products, respectively labelled φ3, ψ3,�20 of
weights 3, 3, 20. The form �20 is a skew-symmetric cusp form with simple zeros
on H(1) and all other zeros contained in H(1/15), and the forms φ3, ψ3 have triple
poles along one of the two components of H(1/15) and are holomorphic elsewhere.

We additionally need the following additive lifts with singularities: the form φ2
which is the additive lift of the weight one weakly holomorphic form

F1(τ ) = q−1/15(e(0,0,1/15,−2/15,0,0) + e(0,0,−1/15,2/15,0,0) + e(0,0,4/15,−8/15,0,0)

+e(0,0,−4/15,8/15,0,0)) − 2e(0,0,0,0) + ...

and the forms φ4, ψ4 coming from the weight three weakly holomorphic forms

F3(τ ) = q−1/15(e(0,0,−1/15,2/15,0,0) + e(0,0,1/15,−2/15,0,0))

−5q1/3(e(0,0,1/3,1/3,0,0) + e(0,0,2/3,2/3,0,0)) + ...

G3(τ ) = q−1/15(e(0,0,−4/15,8/15,0,0) + e(0,0,4/15,−8/15,0,0))

−5q1/3(e(0,0,1/3,1/3,0,0) + e(0,0,2/3,2/3,0,0)) + ...
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In particular, φ2 has double poles on both components of H(1/15), and each of φ4,
ψ4 have fourth-order poles on exactly one of the components.

The ring of meromorphic modular formsM!∗ consists of modular forms which
are holomorphic away from the divisor

H(1/15) = H(1/15, (0, 0, 1/15,−2/15, 0, 0))

+H(1/15, (0,−1, 4/15,−8/15, 1, 0)).

Theorem 20.

M!∗ = C[φ2, φ3, ψ3, φ4, ψ4].
Proof. We will outline an argument to show that these meromorphic forms are
algebraically independent that avoids computing any Jacobians directly. Consider
the succesive restrictions to subgrassmannians in the following chain of signature
(n, 2) sublattices:

L → (Zv1 + Zv2 + Zv3 + Zv4 + Zv5) → (Zv1 + Zv2 + Zv3 + Zv4)

→ (Zv1 + Zv2 + Zv3)

where

v1 = (1, 0, 0, 0, 0, 0), v2 = (0, 2, 0,−1,−3, 0), v3 = (0, 0, 0, 0, 0, 1),

v4 = (0, 0, 0, 0, 1, 0), v5 = (0, 0, 1, 0, 0, 0).

The lattices above are constructed as the intersections u⊥
1 , u

⊥
1 ∩u⊥

2 and u⊥
1 ∩u⊥

2 ∩u⊥
3

where

u1 = (0, 0, 2/15,−4/15,−1, 0), u2 = (0, 0, 8/15,−1/15, 0, 0),

u3 = (0, 1, 1, 0, 2, 0) ∈ L ′.

The rank three lattice in the end has Gram matrix
( 0 0 1
0 −4 0
1 0 0

)

and the modular forms

on its orthogonal group are simply ellipticmodular forms of level�0(2) (and double
the starting weight). The images of the generators under these restriction maps are
computed using theta-contraction as suggested in section 2.1:

φ2 �→ Pφ2 �→ P2φ2 �→ 1 + 48q + 624q2 + 1344q3 + ...

φ3 �→ 0 �→ 0 �→ 0

ψ3 �→ Pψ3 �→ 0 �→ 0

φ4 �→ Pφ4 �→ P2φ4 �→ q − 8q2 + 12q3 ± ...

ψ4 �→ Pψ4 �→ P2ψ4 �→ q − 8q2 + 12q3 ± ...

Here, P denotes the ordinary restriction map (not the quasi-pullback discussed
in section 2.1, which is not even a ring homomorphism). In particular one finds
Pφ3 = 0; Pψ3 �= 0 but P2ψ3 = 0; and one also finds P2(φ4 − ψ4) �= 0 but
P3(φ4 − ψ4) = 0. (The vanishing of the Borcherds products is clear from their
divisors, as u1 and u2 appear in the principal part of F−1 and G−1, respectively.)
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This implies successively that the sets {φ2, φ4}, {φ2, φ4, ψ4}, {φ2, φ4, ψ4, ψ3} and
finally {φ2, φ4, ψ4, ψ3, φ3} are algebraically independent by Remark 9.

Similarly to the previous cases, we find that the Jacobian of the five forms is a
nonzero multiple of the predicted Jacobian �20 and therefore that these forms are
generators ofM!∗. ��
Remark 21. The maximal discrete extension of the Hermitian modular group [12]
contains Atkin–Lehner involutions which swap the two pairs of Heegner divisors
of discriminant 1/15, and in particular swap the pairs {φ3, ψ3} and {φ4, ψ4}.

4.2. Discriminant −19

In this case L is the lattice withGrammatrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 1 0 0
0 0 1 10 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠.Wewill again construct

modular forms using the Bruinier–Bundschuh isomorphism (cf. section 3.2) from
weakly holomorphic modular forms of level �0(19) and quadratic character χ

lying in the minus-space. There are forms of weight (−1) with Fourier expansions
beginning

F−1(τ ) = 2q−6 + 2q−4 − 8q−1 + 6 + 12q2 ± ...

G−1(τ ) = 2q−5 + 2q−4 + 10q−1 + 8 − 6q2 ± ...

H−1(τ ) = 2q−7 + 10q−1 + 10 + 20q2 ± ...

J−1(τ ) = q−19 + 2q−4 + 30q−1 + 38 + 198q2 + ...

which lift to Borcherds products φ3, φ4, φ5,�19 with divisors

div φ3 = H(6/19) + H(4/19) − 3H(1/19),

div φ4 = H(5/19) + H(4/19) + 6H(1/19),

div φ5 = H(7/19) + 5H(1/19),

div�19 = H(1) + H(4/19) + 16H(1/19).

The forms φ4, φ5,�19 are cusp forms of weights 4, 5, 19, with �19 skew-
symmetric, and φ3 is meromorphic with triple poles on the Siegel upper half-space
and its conjugates. (In fact it can also be constructed as a singular additive lift.)

We will be interested in the ring of meromorphic modular forms M!∗ that are
holomorphic away from

D(4/19) = H(1/19) ∪ H(4/19).

Besides the Borcherds products above, we also need the singular additive theta lift
φ1 of the weight 0 (vector-valued) modular form

F0(τ ) = q−4/19(e2v − e−2v) − 2q−1/19(ev − e−v) + O(q2/19)
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where v ∈ L ′ can be any vector of norm 1/19, as well as the singular lift φ2 of the
modular form

F1(τ ) = 2q−1 − 2 + 6q2 + 10q3 ± ... ∈ M !,−
1 (�0(19), χ).

(In F0 we cannot use the Bruinier–Bundschuh isomorphism because the weight of
the lift is odd.) In particular, φ1 has simple poles on both H(1/19) and H(4/19),
and φ2 has double poles only on H(1/19). Let M!∗ be the ring of meromorphic
modular forms that are holomorphic away from the divisor D(4/19).

Since �19 has a simple zero on H(1) and all other zeros contained in D(4/19),
we expect it to be the Jacobian of a system of generators.

Theorem 22.

M!∗ = C[φ1, φ2, φ3, φ4, φ5].
Proof. Using a similar argument to the discriminant (−15) modular group, we
consider the restrictions to subgrassmannians with respect to the following chain
of sublattices:

L → (Zv1 + Zv2 + Zv3 + Zv4 + Zv5) → (Zv1 + Zv2 + Zv3 + Zv4)

→ (Zv1 + Zv2 + Zv3)

where

v1 = (1, 0, 0, 0, 0, 0), v2 = (0, 2, 0,−1,−3, 0), v3 = (0, 0, 0, 0, 0, 1),

v4 = (0, 1, 1,−1,−3, 0), v5 = (0, 1, 1, 0, 2, 0),

i.e. the sublattices u⊥
1 , u

⊥
1 ∩ u⊥

2 , u
⊥
1 ∩ u⊥

2 ∩ u⊥
3 with primitive vectors

u1 = (0,−1, 5/19, 9/19, 1, 0), u2 = (0, 0, 8/19, 3/19, 1, 0),

u3 = (0, 0, 10/19,−1/19, 0, 0) ∈ L ′.

The lattice Zv1 + Zv2 + Zv3 has Gram matrix
( 0 0 1
0 −2 0
1 0 0

)

and its modular forms

are elliptic modular forms of level one of twice the starting weight. At the final
stage in this restriction process the form φ1 gets a pole, so we instead consider the
(holomorphic) cusp form φ2

1φ4 of weight 6. We obtain the following images under
the restriction maps (again denoted P):

φ2 �→ Pφ2 �→ P2φ2 �→ 1 + 240q + 2160q2 + ...

φ3 �→ 0 �→ 0 �→ 0

φ4 �→ Pφ4 �→ P2φ4 �→ 0

φ5 �→ Pφ5 �→ 0 �→ 0

φ2
1φ4 �→ P(φ2

1φ4) �→ P2(φ2
1φ4) �→ q − 24q2 ± ...

The point at which the products φ3, φ4, φ5 vanish in this process can be read imme-
diately off of the principal part of their input forms because u1 has norm 6/19, u2
has norm 7/19 and u3 has norm 5/19 (such that φ3 vanishes on u⊥

1 ; φ4 vanishes on
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u⊥
3 ; and φ5 vanishes on u⊥

2 ). The level one forms E4(τ ) and �(τ) in the rightmost
column are algebraically independent, so this is also true for {φ2, φ

2
1φ4}. By con-

sidering the point at which zeros appear in this process one finds successively that
the sets {φ2, φ

2
1φ4, φ4}, {φ2, φ

2
1φ4, φ4, φ5}, {φ2, φ

2
1φ4, φ4, φ5, φ3} are algebraically

independent.
The Jacobian of φ1, φ2, φ3, φ4, φ5 is therefore nonzero and has weight 19. By

the same argument used previously it must equal �19 and the forms generateM!∗.
��

4.3. Discriminant −20

The lattice L in this case has Gram matrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 0 0 0
0 0 0 10 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠.

We will use the weakly holomorphic modular forms of weight (−1)

F−1(τ ) = q−1/2e(0,0,1/2,1/2,0,0) + q−1/5(e(0,0,0,1/5,0,0) + e(0,0,0,4/5,0,0))

− 4q−1/20(e(0,0,0,1/10,0,0) + e(0,0,0,9/10,0,0)

+ e(0,0,1/2,2/5,0,0) + e(0,0,1/2,3/5,0,0)) + 6e(0,0,0,0,0,0) + ...

G−1(τ ) = q−3/10(e(0,0,1/2,1/10,0,0) + e(0,0,1/2,9/10,0,0))

+ q1/5(e(0,0,0,1/5,0,0) + e(0,0,0,4/5,0,0))

+ 4q−1/20(e(0,0,0,1/10,0,0) + e(0,0,0,9/10,0,0)

+ e(0,0,1/2,2/5,0,0) + e(0,0,1/2,3/5,0,0)) + 10e(0,0,0,0,0,0) + ...

H−1(τ ) = q−1e(0,0,0,0,0,0) + q1/5(e(0,0,0,1/5,0,0) + e(0,0,0,4/5,0,0))

+ 16q−1/20(e(0,0,0,1/10,0,0) + e(0,0,0,9/10,0,0) + e(0,0,1/2,2/5,0,0)

+ e(0,0,1/2,3/5,0,0)) + 36e(0,0,0,0,0,0) + ...

which lift to Borcherds products φ3, φ5,�18 with trivial character,�18 being skew-
symmetric. φ3 is meromorphic with triple poles on both components of H(1/20),
and φ5,�18 are cusp forms. In the notation of Appendix B of [20] these are the
products

φ3 = ψ
(3)
8

ψ5
, φ5 = ψ5, �18 = ψ3ψ15.

We also need the singular theta lifts φ1, φ2, ψ3 of weights 1, 2, 3 of the weakly
holomorphic modular forms

F0(τ ) = q−1/5(e(0,0,0,1/5,0,0) − e(0,0,0,4/5,0,0))

− 2q−1/20(e(0,0,0,1/10,0,0) + e(0,0,1/2,3/5,0,0) − e(0,0,0,9/10,0,0)

− e(0,0,1/2,2/5,0,0)) + ...

F1(τ ) = q−1/20(e(0,0,0,1/10,0,0) + e(0,0,0,9/10,0,0) + e(0,0,1/2,2/5,0,0)

+ e(0,0,1/2,3/5,0,0)) − 2e(0,0,0,0,0,0) + ...

F2(τ ) = q−1/20(e(0,0,1/2,2/5,0,0) − e(0,0,1/2,3/5,0,0)) + ...
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In particular, φ1 has simple poles on H(1/5) and both components of H(1/20);
φ2 has double poles on both components of H(1/20); and ψ3 has triple poles only
on the component of H(1/20)which is not conjugate to the Siegel upper half-space
under �.

The ringM!∗ will consist of meromorphic modular forms that are holomorphic
away from

D(1/5) = H(1/5) + H(1/20, (0, 0, 0, 1/10, 0, 0))

+H(1/20, (0, 0, 1/2, 2/5, 0, 0)).

�18 has simple zeros on the reflective divisors H(1) and H(1/4) and its other zeros
lie in D(1/5), so we expect it to be the Jacobian of a set of generators. Note that
H(1/20, (0, 0, 0, 0, 1/10, 0, 0)) represents the Siegel upper half-space.

Theorem 23.

M!∗ = C[φ1, φ2, φ3, ψ3, φ5].

Proof. Let λ := (0, 0, 1/2, 0, 0, 0) ∈ L ′. The lattice λ⊥ is the root lattice 2U ⊕
A1(5) and the modular forms on its orthogonal group are paramodular forms of
level 5, for which generators were determined in [21]. Among them are (up to
scalar) uniquely determined cuspidal Gritsenko lifts g6, g7 of weights 6 and 7 and
holomorphic Borcherds products b5, b8 of weights 5 and 8. We find that the images
of the generators under this pullback map are

φ1 �→ g6/b5, φ2 �→ g7/b5, φ3 �→ b8/b5, ψ3 �→ 0, φ5 �→ b5.

In particular, to show that {φ1, φ2, φ3, ψ3, φ5} is algebraically independent it is
sufficient to prove that {g6/b5, g7/b5, b8/b5, b5} is algebraically independent. By
direct computation we find that the Jacobian

J (g6/b5, g7/b5, b8/b5, b5) = 1

b35
J (g6, g7, b8, b5)

is not identically zero. By the argument we have used in the previous sections, the
forms φ1, φ2, φ3, ψ3, φ5 have Jacobian �18 and freely generate the ring M!∗. ��
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4.4. Discriminant −24

In this section L is the lattice with Grammatrix

⎛

⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 2 0 0 0
0 0 0 12 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞

⎠. We need the weakly

holomorphic modular forms of weight (−1) whose Fourier expansions begin

A−1(τ ) = q−1/4e(0,0,1/2,0,0,0) + q−1/6(e(0,0,0,1/6,0,0) + e(0,0,0,5/6,0,0))

+ 2q−1/24(e(0,0,0,1/12,0,0) + e(0,0,0,5/12,0,0) + e(0,0,0,7/12,0,0)

+ e(0,0,0,11/12,0,0)) + 4e(0,0,0,0,0,0) ± ...

B−1(τ ) = q−3/8(e(0,0,0,1/4,0,0) + e(0,0,0,3/4,0,0)) − 2q−1/6(e(0,0,0,1/6,0,0)

+ e(0,0,0,5/6,0,0)) − q−1/24(e(0,0,0,1/12,0,0) + e(0,0,0,5/12,0,0)

+ e(0,0,0,7/12,0,0) + e(0,0,0,11/12,0,0)) + 4e(0,0,0,0,0,0) ± ...

C−1(τ ) = q−1/2e(0,0,0,1/2,0,0) + q−1/6(e(0,0,0,1/6,0,0)

+ e(0,0,0,5/6,0,0)) − 4q−1/24(e(0,0,0,1/12,0,0) + e(0,0,0,5/12,0,0)

+ e(0,0,0,7/12,0,0) + e(0,0,0,11/12,0,0)) + 6e(0,0,0,0,0,0) + ...

D−1(τ ) = q−7/24(e(0,0,1/2,1/12,0,0) + e(0,0,1/2,11/12,0,0))

+ q−1/6(e(0,0,0,1/6,0,0) + e(0,0,0,5/6,0,0))

+ 6q−1/24(e(0,0,0,1/12,0,0) + e(0,0,0,11/12,0,0)) − 4q−1/24(e(0,0,0,5/12,0,0)

+ e(0,0,0,7/12,0,0)) + 6e(0,0,0,0,0,0) + ...

J−1(τ ) = q−1e(0,0,0,0,0,0) + 2q−1/6(e(0,0,0,1/6,0,0) + e(0,0,0,5/6,0,0))

+ 16q−1/24(e(0,0,0,1/12,0,0) + e(0,0,0,5/12,0,0) + e(0,0,0,7/12,0,0)

+ e(0,0,0,11/12,0,0)) + 34e(0,0,0,0,0,0) + ...

These lift to Borcherds products labelled φ2, ψ2, φ3, ψ3,�17 respectively, with
divisors

div φ2 = H(1/4) + H(1/6) + 3H(1/24, (0, 0, 0, 1/12, 0, 0))

+ 3H(1/24, (0, 0, 0, 5/12, 1, 0)),

divψ2 = H(3/8) − 2H(1/6) − 2H(1/24, (0, 0, 0, 1/12, 0, 0))

− 2H(1/24, (0, 0, 0, 5/12, 1, 0)),

div φ3 = H(1/2) + H(1/6) − 3H(1/24, (0, 0, 0, 1/12, 0, 0))

− 3H(1/24, (0, 0, 0, 5/12, 1, 0))

divψ3 = H(7/24) + H(1/6) + 7H(1/24, (0, 0, 0, 1/12, 0, 0))

− 3H(1/24, (0, 0, 0, 5/12, 1, 0)),

div�17 = H(1) + H(1/4) + 2H(1/6) + 18H(1/24, (0, 0, 0, 1/12, 0, 0))

+ 18H(1/24, (0, 0, 0, 5/12, 1, 0)).

The product φ2 is holomorphic but has a quadratic character under � =
SU2,2(Z[√−6]); the products ψ2, φ3, ψ3 are meromorphic with trivial character
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and poles of order equal to their weight (indeed, they can also be constructed as
additive lifts); and�17 is a skew-symmetric cusp form. In the notation of Appendix
B of [20]

φ2 = ψ2, ψ2 = ψ
(2)
6

ψ2
2

, φ3 = ψ
(3)
5

ψ2
, ψ3 = ψ

(2)
5

ψ2
.

(The form �17 does not appear in those tables as its weight is too high.) We will
also need a singular additive lift φ1 of weight one whose input form is

F0(τ ) = q−1/6(e(0,0,0,1/6,0,0) − e(0,0,0,5/6,0,0))

− 2q−1/24(e(0,0,0,1/12,0,0) − e(0,0,0,5/12,0,0) + e(0,0,0,7/12,0,0)

− e(0,0,0,11/12,0,0)) ± ...

such that φ1 has simple poles on both components of H(1/24) and on H(1/6).
The ringM!∗(�) will consist of meromorphic modular forms that are holomor-

phic away from

D(1/6) = H(1/6) + H(1/24, (0, 0, 0, 1/12, 0, 0))

+H(1/24, (0, 0, 0, 5/12, 1, 0)).

Here H(1/24, (0, 0, 0, 1/12, 0, 0)) represents the Siegel upper half-space. Note
that �17 has simple zeros on H(1) and H(1/4) and all other zeros in D(1/6).

Theorem 24.

M!∗(�) = C[φ1, ψ2, φ3, ψ3, φ
2
2 ].

Proof. If λ := (0, 0, 1/2, 1/12, 0, 0) ∈ L ′, then λ⊥ is the root lattice 2U ⊕ A1(7)
and its modular forms are paramodular forms of level 7. Generators of such
paramodular formswere determined in [21]; among them are a unique (up to scalar)
Gritsenko lift g5 in weight 5 and Borcherds products b4, b6, b7 of weights 4, 6, 7.
Under the pullback to λ⊥ the generators map as follows:

φ1 �→ g5/b4, ψ2 �→ b6/b4, φ3 �→ b7/b4, ψ3 �→ 0, φ2
2 �→ b4.

Therefore the algebraic independence of φ1, ψ2, φ3, ψ3, φ
2
2 follows from the non-

vanishing of the Jacobian

J0 = J (g5/b4, b6/b4, b7/b4, b4) = 1

b34
J (g5, b6, b7, b4).

By computing the Fourier series of these forms in SageMath [15] as in Section
3.2 we find that the fourth Fourier-Jacobi coefficient of J0 is nonzero. As in the
previous sections, we find that φ1, ψ2, φ3, ψ3, φ

2
2 have Jacobian J = �17 and

therefore freely generate the ringM!∗. ��
Similarly to some of the previous sections, if χ is the character of φ2 then we

have M!∗(ker(χ)) = C[φ1, φ2, ψ2, φ3, ψ3] with Jacobian �17/φ2.
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