Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Piecewise Multipole-Expansion Implicit Solvation for Arbitrarily Shaped Molecular Solutes

MPG-Autoren
/persons/resource/persons22000

Reuter,  Karsten
Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München;
Theory, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Filser, J., Reuter, K., & Oberhofer, H. (2021). Piecewise Multipole-Expansion Implicit Solvation for Arbitrarily Shaped Molecular Solutes. Journal of Chemical Theory and Computation, 18(1), 461-478. doi:10.1021/acs.jctc.1c00834.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-D040-3
Zusammenfassung
The multipole-expansion (MPE) model is an implicit solvation model used to efficiently incorporate solvent effects in quantum chemistry. Even within the recent direct approach, the multipole basis used in MPE to express the dielectric response still solves the electrostatic problem inefficiently or not at all for solutes larger than approximately ten non-hydrogen atoms. In existing MPE parametrizations, the resulting systematic underestimation of the electrostatic solute–solvent interaction is presently compensated for by a systematic overestimation of nonelectrostatic attractive interactions. Even though the MPE model can thus reproduce experimental free energies of solvation of small molecules remarkably well, the inherent error cancellation makes it hard to assign physical meaning to the individual free-energy terms in the model, raising concerns about transferability. Here we resolve this issue by solving the electrostatic problem piecewise in 3D regions centered around all non-hydrogen nuclei of the solute, ensuring reliable convergence of the multipole series. The resulting method thus allows for a much improved reproduction of the dielectric response of a medium to a solute. Employing a reduced nonelectrostatic model with a single free parameter, in addition to the density isovalue defining the solvation cavity, our method yields free energies of solvation of neutral, anionic, and cationic solutes in water in good agreement with experiment.