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Abstract

The multipole-expansion (MPE) model is an implicit solvation model used to effi-

ciently incorporate solvent effects in quantum chemistry. Even within the recent direct

approach, the multipole basis used in MPE to express the dielectric response still

solves the electrostatic problem inefficiently or not at all for solutes larger than ≈ 10

non-hydrogen atoms. In existing MPE parameterizations, the resulting systematic un-

derestimation of the electrostatic solute-solvent interaction is presently compensated

for by a systematic overestimation of non-electrostatic attractive interactions. Even

though the MPE model can thus reproduce experimental free energies of solvation of

small molecules remarkably well, the inherent error cancellation makes it hard to as-

sign physical meaning to the individual free energy terms in the model, raising concerns

about transferability. Here, we resolve this issue by solving the electrostatic problem

piece-wise in 3D regions centered around all non-hydrogen nuclei of the solute, en-

suring reliable convergence of the multipole series. The resulting method thus allows

for a much improved reproduction of the dielectric response of a medium to a solute.

Employing a reduced non-electrostatic model with a single free parameter, in addition

1

ar
X

iv
:2

10
8.

11
74

9v
2 

 [
ph

ys
ic

s.
ch

em
-p

h]
  9

 D
ec

 2
02

1

jakob.filser@tum.de


to the density isovalue defining the solvation cavity, our method yields free energies

of solvation of neutral, anionic and cationic solutes in water in good agreement with

experiment.

1 Introduction

With many—if not most—chemical processes of interest in biochemistry,1 electrochem-

istry,2,3 catalysis4 and related fields5 taking place in solution or at liquid interfaces with

other phases, it is not surprising that the modelling of liquid environments is a major topic

in computational chemistry.4,6–9 The fundamental issue is that, from a first-principles point

of view, the separation of a liquid system into one or multiple ‘solutes’ and a ‘solvent’ is arti-

ficial. Electrons and nuclei of the solvent and the solute follow the same quantum mechanical

(QM) and statistical laws, and the straightforward approach would be to treat both at an

explicit, quantum mechanical level.6 In practice, however, treating both at the same level of

theory quickly turns out as computationally intractable already for rather trivial systems.

The numbers of electrons and nuclei in this complete picture are much larger than those of

the solute alone, as usually a large number of solvent molecules would have to be included

in the model system to obtain converged results. In addition, the solvent typically consists

of small, highly mobile molecules. While some short-range ordering may occur, there is gen-

erally no long-range order and a thermodynamic sampling would be necessary to accurately

account for all solvent degrees of freedom.4,6

This great effort to accurately account for solvent effects is in stark contrast to the

empirically known fact that typically, if one is interested in the properties of a molecular

system in solution (but not the properties of the solution under the influence of the solute),

the solvent plays only a minor role compared to the atomic structure of the solute itself.6 It

is therefore reasonable—and necessary—to simulate only the solute at a detailed, quantum

mechanical level and treat the solvent merely as an environment for the solute, using a

simpler model.7
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There are, of course, different practical approaches to this general idea.4,8 One highly

popular group of methods, which we focus on in this work, are the so-called implicit solva-

tion or continuum embedding models.6,7,9 The general idea is to ignore any atomistic detail

of the solvent altogether—although in some cases one or few individual solvent molecules

may still need to be included explicitly.10,11 Instead, the time-averaged effect of the solvent

on the solute is modelled using the former’s macroscopic properties, most notably its rela-

tive dielectric permittivity, and/or empirical models fitted to experimental reference data,

typically free energies of solvation in the limit of infinite dilution.12

At the heart of many implicit solvent models stands the interaction of the solute charge

density with a dielectric medium. The difference between the individual methods lies mostly

in the way this electrostatic problem is solved in practice. The here discussed multipole-

expansion (MPE) methods expand the dielectric response of the solvent in a multipole series.

Earlier versions13–18 can solve the electrostatic problem exactly only when the charge density

is completely localized within the cavity,19 which is the region around the solute assumed to

be inaccessible to the solvent. This leads to the so-called outlying charge error when solute

charge density and model dielectric overlap, as is often necessary to accurately describe the

strong interaction with solvents such as water.20,21

This rather severe limitation of the MPE method was recently lifted through a novel

regularization of the electrostatic potential and the so-called direct approach by Sinstein et

al.19,20 This generalization now allows the modelling of stronger electrostatic solute-solvent

interactions, opening up the method for a more general use. Unfortunately, though, practical

applications of both the original and the direct approach of the MPE model so far suffered

from convergence and accuracy issues for larger solutes. The reason for this is that in

these models the expansion of the electrostatic potential inside the cavity relies on a single

expansion center, typically in the geometric center of the solute. Thus solutes that deviate

strongly from a roughly spherical shape tend to necessitate rather high multipole expansion

orders.20 Indeed in this work, we show that for some solutes the multipole series might
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fail to converge altogether. As a remedy, we here present a new approach, based on the

partition of space into small subcavities, similar in philosophy to the domain decomposition

conductor-like screening model (ddCOSMO).22–24 This adaptation now allows for a true

multi-center expansion of the electrostatic potential. We show that this new variant of the

MPE model lifts size restrictions of the solute and allows for a much more stable convergence

with expansion order.

This work is organized as follows: After briefly recapitulating the current state of the

art of the MPE method in section 2, we thoroughly test the model on a popular benchmark

set12 described in section 3, in section 4. We develop the modified MPE subcavities method

in section 5 and demonstrate its efficacy in section 6. There we further present a new pa-

rameterization of the model for water as a solvent. Lastly, we discuss how the success of

the original method20 in describing solution in water is based on a size-dependent system-

atic error cancellation. Our modified method is largely free of such phenomena, improving

transferability.

2 Theoretical and technical background

2.1 Scope of the model

We consider a cluster-like (i.e. not periodic in any real-space direction) molecular system

(henceforth referred to as ‘solute’) surrounded by a liquid solvent. One of the main charac-

teristics of the solvent in any implicit solvation model is its dielectric permittivity. Therefore,

the terms ‘solvent’ and ‘dielectric (medium)’ are used interchangeably in the present work.

In contrast, the term ‘(in) vacuum’ will refer to the absence of a solvent. The solute is treated

at a density-functional theory (DFT) level of theory,20,25–29 while the molecules of the solvent

are not treated explicitly. Instead, their time-averaged dielectric response is approximated

in a classical electrostatic model.6,7,9,20 Space is divided into a finite number of regions Xi,

where the index i can take arbitrary values, depending on the specific problem definition.
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Each Xi is assigned to either the dielectric medium or vacuum, with the latter describing the

inside of the so-called solvation cavity, i.e. the region around the solute which is assumed

to be inaccessible by solvent molecules. Any dielectric effects within this solvation cavity

are explicitly accounted for at the DFT level of theory. Within the region belonging to the

implicit dielectric, the dielectric response is instead assumed to be local, linear, homogeneous

and isotropic. It can thus be described by a scalar relative permittivity εi, which is constant

within a particular dielectric.

εi = ε(r ∈ Xi) = const. . (1)

There are, however, transitions between the different dielectric regions. There, the permit-

tivity may show a complicated spatial behavior,30 which implicit models tend to replace with

simple smeared out step-functions for the sake of efficiency.21,31,32 In this spirit, the MPE

method, together with other popular approaches such as COSMO,33 SMx,10,11 or the original

PCM model,7 defines a sharp transition on the 2D boundaries Bij between 3D regions Xi

and Xj. In section 5 below we will generalize this concept to an arbitrary number of regions

in space Xi. In the following, we therefore keep the discussion at the level of general regions

Xi which obey eq. (1). The exact definition of their shape will be given in the next section.

Finally, we restrict ourselves to the time-independent and non-periodic case in the absence

of external fields other than that of the nuclei for the time being. Furthermore, the solvent

contains no ions (the solute may, however, be ionic). This means that ionic liquids as well

as saline solutions34 lie beyond the scope of the present model.

2.2 Electrostatic problem

The electrostatic problem is solved identically to previous work, using the ansatz20

Φ(r) = ε−1(r)ΦH(r) + ΦMPE(r) , (2)
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where the electrostatic potential ΦMPE is due to the solvent response. ΦH is the classical

Coulomb—or, in a DFT20,25–29 context, Hartree—potential35 of the solute charge density ρ

ΦH(r) =

∫
R3

d3r′
ρ(r′)

‖r− r′‖
. (3)

The latter obeys Poisson’s equation in vacuum,

∇2ΦH(r) = −4πρ(r) . (4)

The net charge density ρ includes both electrons and nuclei of the solute,

ρ(r) = −ρel(r) +
Nmax∑
N=1

QNδ(r−RN) . (5)

Here, ρel is the solute electron density, δ is the delta function, and RN andQN are respectively

the nuclear coordinates and charges of the Nmax nuclei constituting the explicitly treated

solute.20

As mentioned above, implicit solvation models generally partition space into a dielectric

medium XQ and a so-called ‘cavity’ XR in which the solute resides.6,7,9,20 For these regions,

the relative dielectric permittivity is defined by

ε(r ∈ XR) = 1 (6a)

ε(r ∈ XQ) = εbulk , (6b)

where εbulk is the experimentally determined macroscopic permittivity of the solvent. The

spatial extents of these regions are defined by an isovalue ρiso of the solute electronic density
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through

XR = {r : ρ̃el(r) > ρiso} (7a)

XQ = {r : ρ̃el(r) < ρiso} (7b)

An electronic density isosurface is per definition smooth, continuous and follows the shape

of the solute. It is thus a convenient way to define solvation cavities and is commonly

used in various implicit solvation models, implemented in different electronic structure pack-

ages.20,21,34,36 The isovalue ρiso thereby takes the form of a free parameter that needs to be

determined e.g. by fitting to a suitable training set, cf. section 6.2. However, other definitions,

e.g. based on atom-centered spheres,11,22,37 are also commonly used. The method described

in section 5 makes no assumptions about the cavity shape other than that it roughly follows

the shape of the solute and that it is sharp in the sense of eqs. (6a) and (6b). It can thus, in

principle, be used together with any such cavity definition. An electronic density isosurface

is merely the choice which we use to demonstrate the method in the present work.

Being an effective model, though, the exact choice of which electron density ρ̃el to use

in the above definition is ambiguous. Different possibilities have been proposed19,20. In the

present work we use the superposition of free atom electron densities ρfree, i.e. the electron

densities of the solute’s individual atoms in vacuum.25 We refer the reader to the cited

publications for the other options. It has been shown before19,20 that those choices lead

to a systematic error in the free energy of solvation for anionic solutes. The superposition

of ρfree does not suffer from this issue and is able to describe neutral, cationic and anionic

solvents all with the same set of parameters.19 It should be noted here that in practice, when

using a hybrid exchange correlation functional, the DFT software FHI-aims20,25–29 which we

use throughout the present work calculates ρfree from its generalized gradient approximation

(GGA) part, so e.g. the PBE38 and HSE0639,40 functionals will in practice yield the exact

same cavity.
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Note that the non self-consistent electron density ρ̃el is used solely for the cavity definition.

The electrostatic potentials ΦH and ΦMPE, which depend on the former, are, of course,

calculated self-consistently from the instantaneous electron density ρel of the solute at each

SCF step.

Next, we need to choose a basis to represent the solvent response to the electrostatic

potential given in eq. (2). It has been shown that in a region of constant ε(r), ΦMPE is a

harmonic function, lending itself to a series expansion in regular solid harmonic functions

Rl
m or their irregular counterparts I lm.13–18,20

Rl
m(r) = rl Y l

m(θ, ϕ) (8a)

I lm(r) = r−(l+1) Y l
m(θ, ϕ) (8b)

l,m ∈ Z, l ≥ 0, −l ≤ m ≤ l

Here, Y l
m are the real valued spherical harmonics (cf. ref. 25). We thus use a piece-wise

definition of ΦMPE, treating each region Xi separately.20 We define

Φi = ΦMPE(r ∈ Xi) . (9)

If Xi is bounded, i.e. if

∃r ∈ R+ : r > ‖r‖ ∀r ∈ Xi , (10)

as is the case inside the solvation cavity XR, then Φi can be expanded in a set {Rl
m}K of

Rl
m(r− rK) around a center rK

13–18,20

Φi(r) =

lRmax∑
l=0

l∑
m=−l

R
(l,m)
K Rl

m(r− rK) , (11)

with expansion coefficients R
(l,m)
K . If Xi is unbounded, i.e. if eq. (10) is not satisfied, as is the

case in XQ, then Φi can be expanded in a union of sets {I lm}J of I lm(r − rJ) with multiple

8



centers rJ
13–18,20

Φi(r) =
Jmax∑
J=1

lQmax∑
l=0

l∑
m=−l

Q
(l,m)
J I lm(r− rJ) , (12)

and with expansion coefficients Q
(l,m)
J . The only singularities are at r = rJ . By choosing

rJ /∈ Xi ∀J , Φi is continuous in Xi by construction.13–18,20

ΦMPE can then be uniquely defined by imposing continuity of the total electrostatic

potential and of the electric flux density at Bij.
7 Together with the regularization in eq. (2),

this leads to the following boundary conditions20

Φi(r)− Φj(r) =
(
ε−1
j − ε−1

i

)
ΦH(r) (13a)

nr∇ (εiΦi(r)− εjΦj(r)) = 0 (13b)

∀r ∈ Bij,∀i 6= j ,

where nr is the surface normal of Bij at r.

We insert eq. (11) and eq. (12) into eq. (13), for bounded and unbounded Xi/j, respec-

tively. Evaluating it at sets of points situated at the interfaces Bij then essentially turns

the problem of determining the dielectric response into an algebraic problem of solving an

overdetermined system of linear equations (SLE) for the expansion coefficients of the poten-

tial.16,20

Ax = b (14)

Here, A contains the basis functions Rl
m and I lm for eq. (13a) and their scaled derivates

for eq. (13b), evaluated at said discrete set of points on Bij. b contains the scaled Hartree

potential for eq. (13a) and zero for eq. (13b). The solution vector x contains the expansion

coefficients R
(l,m)
K and I

(l,m)
J . The discretization algorithm for Bij aims to achieve a certain

degree of determination ddet, i.e. the ratio between rows and columns in A. Equation (14)

can finally be solved using a number of algorithms which all more or less reduce to a linear

least-squares fit. The technical details of this numeric solution have been described in ref.
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20. As a measure for the quality of the solution to the linear algebra problem we use the

adjusted coefficient of determination R̄2,41–43 which essentially measures how much of the

variability of the dependent variable of an equation is due to a linear relationship with the

independent variable. The calculation of R̄2 is described in the supporting information (SI)

of the present work.

With ΦMPE defined in this manner, it is possible to calculate the free energy Gelstat({RN})

of a molecule electrostatically embedded into the solvent by replacing the Hartree potential

with eq. (2) in a DFT20,25–29 calculation. Using the total energy of the solute in vacuum

Evac({RN}), this then defines the electrostatic contribution to the solvation free energy of the

solute, ∆Gelstat
solv ({RN}) = Gelstat({RN}) − Evac({RN}). Note that all these quantities refer

to the respective electronic ground state and we have here explicitly written the dependence

on the nuclear positions {RN}. For clarity of notation, this dependence will henceforth be

dropped.

2.3 Non-electrostatic free energy contributions

There are, of course, further contributions to the free energy of a solute in solvent, beyond

the hitherto discussed electrostatics. Specifically, solute and solvent also interact via Pauli

repulsion and dispersion forces, and there are entropic and even grand-canonical contribu-

tions to consider due to the displacement of solvent molecules (cavity formation). We refer

to recent reviews for a detailed overview over these, so-called non-electrostatic contributions

generally considered in implicit solvation models.7–9 Here, we only point out that these dif-

ferent contributions are often lumped together into effective expressions with a minimum

number of free parameters. The solvation free energy is correspondingly written as arising

from two contributions,

∆Gsolv = ∆Gelstat
solv + ∆Gnon−elstat

solv , (15)
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with Gnon−elstat
solv containing all non-electrostatic contributions. One frequent functional ex-

pression for the latter is a simple linear function of surface area A and volume V of the

solvation cavity21

∆Gnon-elstat
solv = αA+ βV , (16)

with α and β empirical parameters that are fitted to a set of experimental free energies of

solvation. While this functional form was initially established for the self-consistent contin-

uum solvation (SCCS) model,21 it turns out that such a treatment of non-electrostatics can

also be used with other electrostatic models such as MPE.20

Both A and V are a measure of molecular size and are therefore typically correlated.

Considering the effective character of the functional form employed for the non-electrostatic

free energy contribution, it is correspondingly possible to also use only one of its two terms,

typically the surface area one, αA, at generally insignificant increases in the mean error

of computed solvation free energies with respect to experimental references.19–21 For our

present purpose of assessing and removing error cancellation between the electrostatic and

non-electrostatic contributions to ∆Gsolv, having less flexibility in a non-electrostatic term

with only one fit parameter is actually even beneficial. In this work, we correspondingly use

as simple non-electrostatic model,

∆Gnon-elstat
solv = αA . (17)

Following earlier work,20 we also treat ∆Gnon-elstat
solv as a post-SCF correction instead of in-

cluding it self-consistently in the Kohn-Sham44 (KS) operator.

It is worth noting that in fitting the parameter α to experimental reference data,12

see below, the free energy contributions due to nuclear degrees of freedom are to some

degree accounted for in ∆Gnon-elstat
solv , at least in a statistical manner.19 For unpolar organic

solvents, the problem may also emerge that the optimized α becomes negative. With ∆Gelstat
solv

negative by construction and then ∆Gnon-elstat
solv also negative, the solvation free energy would
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necessarily result as exothermic. The case of a solute being repelled by the solvent thus

lies outside the scope of such a model. Notwithstanding, in the present work we focus on

solvation in water, where α is typically positive20,21 and this problem does not play a role.

2.4 Technical details

The computational setup used to calculate ∆Gelstat
solv is identical to the one of preceding work

and we refer to the corresponding publication for all technical details.20 Unless mentioned

otherwise, all DFT calculations are performed with FHI-aims20,25–29 (version 210415) into

which the present implicit solvent model was implemented. The tight default electronic basis

sets and integration grids included in the FHI-aims20,25–29 package are employed throughout.

We use the Perdew, Burke, Ernzerhof (PBE) exchange-correlation (xc) functional38 with

collinear spin and an atom-wise scalar zeroth order regular approximation (ZORA)25 for

relativistic effects of the core electrons. Kohn-Sham levels are occupied through a Gaussian

broadening scheme45 with a rather narrow width of 0.01eV to account for the molecular

nature of our solutes. Equation (14) was solved in a direct solver by QR factorization of the

left-hand side matrix and subsequent singular value decomposition of the R matrix,46,47 as

described before.20

3 Benchmark systems and experimental reference data

All molecular geometries and experimental reference values for ∆Gsolv used in the present

work were taken from the Minnesota Solvation Database, version 2012.12 We use all 790 small

molecules included in the database to investigate the convergence of ∆Gelstat
solv with numeric

parameters in the respective models, especially with the expansion order. We furthermore

use this set to test the computational performance of our method. In order to keep these

convergence studies as unbiased and to make the resulting parameters as generally applicable
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as possible, we randomize the two physical model parameters ε and ρiso. For each of the

790 test solutes, two random numbers Rε/ρ are drawn from a uniform distribution between

0 and 1. The parameters are then calculated according to

ε =
2

Rε

(18a)

ρiso = 10−(1+3·Rρ) e�A−3
, (18b)

yielding ε > 2 with the distribution becoming increasingly sparse for higher values. A

molecular geometry together with its ε and ρiso will henceforth be referred to as a system.

While any ε ≥ 1 is physically possible, this distribution is chosen to roughly mimic the

range of permittivities of real-life solvents, which are rarely ever much smaller than 2.12 The

isodensities are uniformly distributed on a logarithmic scale, ranging from 10−1 to 10−4 e�A−3

which is roughly the range in which we expect to find optimized isodensities for different

solvents based on previous experience with the original direct version of the MPE model.19,20

Note that as the cavity tends to become smoother for lower isodensities, it is reasonable to

assume that any set of converged parameters within the sampled isodensity range can also

be applied to lower isodensities. In fact, we will see in the following section, specifically in

table 1, that systems for which the electrostatic problem is hard to solve typically have high

ρiso. To ensure comparability between calculations, the randomly chosen permittivities and

isodensities differ only between solutes, but for each solute the same values are used for all

convergence studies.

DFT calculations with implicit solvation may occasionally fail for various reasons. In

our case, this happened mostly due to issues with the cavity surface discretization algorithm

(cf. SI as well as ref. 20). Addressing these issues is beyond the scope of the present work.

Due to such failures occurring only rarely, we simply ignore problematic systems for the

time being. Unless mentioned otherwise, within each convergence study, performance test or

parameterization, solutes for which at least one calculation failed for any reason are discarded
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from further analysis.

For the parameterizations in section 6.2 we used all solutes for which ∆Gsolv in water is

available in the Minnesota Solvation Database. For some ionic solutes, a version clustered

by one explicit water molecule and an unclustered version is available.10,11 For these solutes,

only the clustered versions were used. This set of training data is slightly larger than in

previous work where only some subsets of the database were used.20

4 Convergence of the original MPE model

The original version of the direct MPE model20 partitioned space only into the cavity and

the dielectric medium, as defined in eqs. (7a) and (7b). The basis set for the dielectric

response inside the cavity ΦR were the regular solid harmonics {Rl
m} centered around the

geometric center of the molecule. Within the perspective of the present generalization, we will

henceforth call this model MPE-1c, with 1c indicating the single cavity XR. Correspondingly,

we will also denote electrostatic solvation free energies as ∆Gelstat
solv (nc) to indicate that they

have been computed with an n cavity model. In this section, we explore the capabilities

and limitations of MPE-1c, making no conceptual modifications with respect to the original

publication.

4.1 Insufficiency of the solid harmonic basis

To highlight the initially mentioned multipole expansion issues of the MPE-1c model, we

analyze the convergence behavior of ∆Gelstat
solv (lRmax; 1c) with increasing expansion order lRmax of

ΦR using the test systems described in section 3. Specifically, we test lRmax = 2, 4, 6, 8, 12, 16

and 20. For ΦQ, we use lQmax = 6.20 As a reference, we use the ∆Gelstat
solv (lRmax = 20;nc) obtained

for the same systems with our new method MPE-nc at lRmax = 20 and lQmax = 8. Further

explaining this new method in section 5, we show in section 6.1 that these reference values

themselves are converged up to on average . 1 meV and thus constitute a firm reference.
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Additionally, we test the convergence of the adjusted coefficient of determination R̄2 of the

solution to the discretized boundary conditions eqs. (13a) and (13b).
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Figure 1: Convergence of the electrostatic contribution to the solvation free energy
∆Gelstat

solv (lRmax; 1c) (blue) and adjusted coefficient of determination R̄2 (red) of the discretized
boundary conditions eqs. (13a) and (13b) with expansion order lRmax of the MPE potential
inside the cavity ΦR in MPE-1c. Individual lines refer to individual systems contained in the
test set as described in section 3. The root mean-square error over all systems is shown as
a thick black line. As reference, we use ∆Gelstat

solv (lRmax = 20;nc) calculated with the MPE-nc
model (see section 5), the same reference as also in fig. 9.

The results are compiled in fig. 1 and show clearly that MPE-1c systematically underes-

timates the electrostatic interaction between solute and solvent at the originally published

lRmax = 8.20 Even at the significantly higher lRmax = 20, there are several test systems with

errors in the order of 100 meV. The root mean-square error (RMSE) at that expansion order,

in contrast, is only 9.6 meV. Below we will show that the larger errors are not outliers, but
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rather a systematic error occurring for larger solutes. The RMSE is only relatively low, be-

cause smaller molecules are over-represented in the test set. Furthermore, for some systems,
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Figure 2: Relative error of the electrostatic contribution to the solvation free energy
∆Gelstat

solv (1c) in MPE-1c vs. the MPE-nc reference. Individual lines reflect the individual
systems contained in the test set. The lines are colored according to the adjusted coefficient
of determination R̄2 of the discretized boundary conditions eqs. (13a) and (13b) at lRmax = 8,
which is the originally published value for this parameter.20

even at lRmax = 20 the solid harmonic basis is insufficient to solve the electrostatic boundary

conditions eqs. (13a) and (13b), as indicated by R̄2 < 1. It can straightforwardly be seen

that the error in ∆Gelstat
solv is related to an insufficient solution of the electrostatic problem,

by relating the relative error of ∆Gelstat
solv (1c) to R̄2 as depicted in fig. 2.

Finally, fig. 3 shows that these errors in the electrostatic potential are related to the size

of the molecules. The fraction of solutes with R̄2 ≈ 1 decreases with increasing number

of non-hydrogen (non-H) atoms in the solute. Given the dominance of small molecules

(≤ 10 non-H atoms), the relatively low RMSE in ∆Gelstat
solv , apparent in fig. 1, is thus only
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Figure 3: Histogram of the number of non-H atoms per solute in the test set, colored accord-
ing to the adjusted coefficient of determination R̄2 of the discretized boundary conditions
eqs. (13a) and (13b) at lRmax = 8.

representative for such smaller molecules, with increasingly larger errors to be expected for

larger molecules.

Taking all of these findings into account, we conclude that MPE-1c with the originally

published parameters20 suffers from a systematic underestimation of the electrostatic solute-

solvent interaction. While negligibly small for small molecules, this error increases signifi-

cantly for larger molecules.

4.2 The wrong basis functions or too few?

An intuitive explanation why MPE-1c fails for larger molecules would be that arbitrary

harmonic potentials ∇2Φharm(r ∈ X) = 0 can be approximated to arbitrary accuracy in a

finite series in {Rl
m}, if X is strictly convex. This follows from the translation theorem48,49
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for arbitrary Rl
m being exact, truncated at the same order l, and converging everywhere in

R3. For larger molecules, however, we expect the cavities XR to deviate further from convex

shapes. It is then not generally possible to know beforehand if the expansion will converge

fast, or at all. It is worth noting here that except for the simplest systems, cavities are never

perfectly convex in practice, yet most systems do actually converge.

Theoretical considerations about whether or not arbitrary harmonic potentials can be

expanded in {Rl
m} in any given cavity XR are of limited use. On one hand, even if we know

that the infinite series converges, we do not generally know if it converges to desired accuracy

at a practically applicable expansion order. On the other hand, even if harmonic functions

exist for which the expansion does not converge, for ΦR in particular it may still converge.

Figure 4: Na and Cl atom at 10�A separation with discretized isodensity cavity surfaces at
ρiso = 0.01 e

�A3 . Despite the two cavities being completely disjoint, one single expansion in

regular solid harmonics around the center between the two is sufficient to solve the electro-
static problem. Note that by ‘one single expansion’ we mean not only that the same basis
is used in both cavities, but also the expansion coefficients are the same.

The latter aspect can be illustrated by the following example: We consider one Na and

one Cl atom at 10�A separation, as shown in fig. 4. We run a DFT calculation in solution
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with ε = 78.36 and ρiso = 0.01 e
�A3 . Based on the above considerations, we would expect

MPE-1c to fail for this system. The cavities of the two atoms are completely disjoint and

there is no straightforward reason to assume that ΦR in both cavities could be described by

the same multipole expansion with the same expansion coefficients. In practice, however, at

lRmax = 8, we get a R̄2 = 0.9957, which suggests that the electrostatic boundary conditions

are almost exactly fulfilled. When we use separate multipole expansions for ΦR in both

cavities (a specific case of the general method described in the following sections), we, of

course, obtain a R̄2 = 1, but the error in the electrostatic contribution to the solvation free

energy made by the single expansion in comparison to the separate expansion is only 12 meV.

Using two different multipole expansions effectively doubles the number of basis functions

for ΦR, from 81 to 162 (although at each point r only 81 are used, they still amount to 162

degrees of freedom in eq. (14)). Going back to the single expansion, we can use lRmax = 12 to

reach 169 basis functions. With this, we then get R̄2 = 0.9982 and the error with respect to

the two-center expansion is reduced to a mere 1.8 meV. By simply increasing the number of

basis functions to approximately the same amount, we have thus achieved almost the same

improvement as by using separate multipole expansions in both cavities.

This raises the question if the error for larger solutes in MPE-1c might simply be due to

the basis set being too small. Indeed, already in the original publications19,20 it was noted

that for larger solutes, higher expansion orders than the originally published lRmax = 8 may be

necessary. Specifically, some number of basis functions per non-H atom might exist at which

∆Gelstat
solv is reliably converged and R̄2 ≈ 1. We test this hypothesis by picking all test systems

(58 in total) with R̄2(lRmax = 20) ≤ 0.99 and running additional calculations at lRmax = 40, 60

and 90. The data from fig. 1 together with these additional calculations, plotted against the

number of basis functions per non-H atom, is shown in fig. 5.

While a remarkable portion of test systems converges somewhere around 100 basis func-

tions per non-H atom, there are some systems which do not converge to reasonable accuracy

even within the enlarged range of lRmax. It is worth looking at the systems for which the model
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Figure 5: Same as fig. 1, but now showing the convergence with respect to the number of
basis functions per non-H atom (on a logarithmic scale) for ΦR in MPE-1c.

performs worst in some detail. We identify the systems for which at least one calculation

was successfully conducted which fulfills the following two conditions: First, the number of

basis functions for ΦR per non-H atom is at least 81, and second, R̄2 < 0.98 and/or the error

in ∆Gelstat
solv is > 20 meV. We will show in section 6.1 that these conditions do not apply for

any of our test systems studied with the new model described in the following sections.

The six systems identified in this way are shown in fig. 6 and their parameters and results

listed in table 1. For all these systems, XR deviates far from a convex shape, confirming our

explanation from the beginning of this section at least in the sense that when the original

method20 fails, it is linked to cavities being strongly non-convex. Yet, the inverse conclusion,

that non-convex cavities necessarily lead to failure, is not true.
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From this data alone it is not entirely clear if the non-convergence is due to incompleteness

of the basis for ΦR alone. As described at the beginning of section 4.1, we compare MPE-1c

with lQmax = 6 to a reference with lQmax = 8. The objective was to assess the performance

of MPE-1c as originally published in ref. 20, where a value of 6 was proposed for use with

tight integration grids in FHI-aims.20,25–29 We note that the lower expansion order does not

automatically mean a smaller basis for ΦQ, because MPE-1c places expansion centers on

all solute nuclei, whereas our reference places them only on non-H nuclei, cf. section 5.1.

Nonetheless, we verify that the basis for ΦQ does not cause the observed errors by rerunning

the six systems in table 1 with lQmax = 8, ensuring a larger (or equally large in the case

of octafluorocyclobutane) basis for ΦQ than in the reference. While minor improvements

to both R̄2 and Gel are observed, the larger basis for ΦQ clearly does not solve the issue,

confirming that it is, indeed, tied to an incomplete basis for ΦR.

Table 1: Systems with R̄2 < 0.98 and/or electrostatic solvation free energy error ∆∆Gelstat
solv >

20 meV in MPE-1c at number nbf,rel ≥ 81 of basis functions for ΦR per non-H atom. N is
the number of non-H atoms. Solutes are identified by their entry number in the Minnesota
Solvation Database.12 For each system, of all calculations fulfilling these conditions, only the
one with the lowest lRmax is shown.

solute N ρiso

1 me�A−3 ε nbf,rel lQmax R̄2 ∆∆Gelstat
solv

1 meV

0445pho 16 59.8 6.51 105.1 6 0.981 23.9
8 0.982 22.3

0925dec 17 82.4 3.19 98.9 6 0.939 114.4
8 0.943 110.3

test1010 19 94.7 4.12 88.5 6 0.983 28.4
8 0.984 26.4

test1020 27 30.1 5.18 137.8 6 0.986 22.3
8 0.988 20.3

test1031 19 64.4 346.30 88.5 6 0.975 63.0
8 0.977 58.0

test2023 12 49.5 6.61 140.1 6 0.975 5.2
8 0.979 3.7

Overall, six systems with unsatisfactory solutions to the electrostatic problem may not

sound like a lot. All of these system do, however, lie in the sparsely sampled upper end of our
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test set regarding molecular size (cf. fig. 3). Furthermore, their ρiso all lie in the upper end

of the sampled range, where we generally expect more complicated cavity shapes. Looking

only at systems with 16 or more non-H atoms and ρiso ≥ 30 me�A−3
, we find that of only 12

such systems in our test set, 5 failed in the above described sense. Thus, even after weighting

the basis set size by the number of non-H atoms, larger molecules in combination with high

isodensities still show a much worse convergence (or possibly none at all) with expansion

order than the smaller molecules or systems with lower isodensities.

One may argue that these errors are due to small voids in the solutes. Such voids can

be assigned to the dielectric medium XQ following only the simplistic cavity definition in

eqs. (7a) and (7b). If they are smaller than a solvent molecule, the resulting model is

obviously unphysical. Indeed, such voids are observed in some of the problematic cases

described above, probably most evidently in decamethyltetrasiloxane (entry 0925dec in the

Minnesota Solvation Database,12 top right in fig. 6). There exist solutions to this issue, e.g.

using so-called solvent-aware interfaces.32 Implementing such a method is, however, beyond

the scope of the present work.

For the time being, we state that although the convergence with expansion order may

improve with a more physically motivated cavity definition, the issues presented in this

section still persist. First, we observe the issue also in some systems without obviously un-

physical cavity shapes, particularly chlorimuron-ethyl (test1020 in the Minnesota Solvation

Database12) and octafluorocyclobutane (test2023 in the Minnesota Solvation Database12)

(center right and bottom right in fig. 6). Second, our model is agnostic of the solvent’s

molecular size and ideally the solution ansatz should work independent of cavity choice. On

a similar notion, when going to larger solutes than our test set, e.g. biomolecules or catalytic

surfaces, the issue of non-convex cavities will inevitably emerge again.

We conclude that for small molecules, MPE-1c exhibits remarkable robustness once lRmax

is chosen based on the number of basis functions per non-H atom. For a significant portion

of the larger solutes, however, the basis expansion converges slowly or not at all. In the
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Figure 6: Systems described in table 1, in the same order (row first). Cavity surface sampling
density is arbitrary and does not represent the sampling density in the calculations shown
in the table.

following sections we therefore develop a modified MPE model which solves this issue, aiming

at reliable convergence with expansion order.
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5 Subcavity method

As a remedy for the issues discussed above, we modify the MPE method,20 putting particular

emphasis on the solution of the electrostatic problem in arbitrarily shaped cavities. The main

idea of our method, which we call MPE-nc, is to formally not solve the problem for one single

cavity XR, but for multiple small ‘subcavities’ XR,K . A minimal example for the user input

required to use our method in FHI-aims20,25–29 is provided in the SI.

5.1 Separation into subcavities

We separate XR into subcavities XR,K around multiple centers rK .

XR,K = {r : r ∈ XR, ‖r− rK‖ < ‖r− rK′‖ ∀K ′ 6= K} . (19)

In principle, fast convergence of a series expansion in {Rl
m}K in these subcavities is to be

expected for any choice of rK , as long as the cavity can approximately be described as

a superposition of spheres around these centers. The straightforward choice is to use the

positions of all non-H nuclei of the solute. We use this set of rK throughout the rest of this

work. An example of such a partition is shown in fig. 7. The basic idea of decomposing an

implicit solvent cavity into atom-centered domains and solving the individual electrostatic

problems in a mutually consistent way has previously been applied to COSMO.22–24 Here,

we discuss the application of this idea to the MPE model.

ΦMPE is defined piece-wise in each of these subcavities

ΦMPE(r ∈ XR,K) = ΦR,K(r) (20)

The reaction field ΦR,K in the respective subcavities can be expanded according to eq. (11),20

ΦR,K(r) =

lRmax∑
l=0

l∑
m=−l

R
(l,m)
K Rl

m(r− rK) . (21)
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Figure 7: Orthographic view of chlorimuron-ethyl (entry test1020 in Minnesota Solvation
Database,12 cf. fig. 6, center right) with discretized cavity surface (blue) and subcavity-
subcavity boundaries (red). Interfaces cut along the plane of the heteroaromatic ring.

Similarly, the external potential ΦQ can be expanded according to eq. (12),20

ΦQ(r) =
Jmax∑
J=1

lQmax∑
l=0

l∑
m=−l

Q
(l,m)
J I lm(r− rJ) . (22)

While the choice of expansion centers is, once again, arbitrary within certain limits, we use

the same set of expansion centers {rJ} = {rK} as for the reaction field in the subcavities,

i.e. the non-H nuclear positions of the solute. This is different from the original version20

of the method, which placed expansion centers for ΦQ also on hydrogen cores. We show

in section 6.1 that ΦQ still converges using this smaller basis set, saving computational

resources. Similarly, it is in principle possible to use different expansion orders for different

centers. Since all our centers are, however, qualitatively similar, there is no need to do this.

Therefore, we use only two different expansion orders - one for all ΦR,K and one for ΦQ.

In complete analogy to MPE-1c, the boundaries Bij are discretized into a finite set

of points, aiming at some target degree of determination ddet of the overall linear system
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eq. (14). Additionally, the algorithm tries to sample all boundaries with approximately

the same density of points. The exact discretization procedure for the subcavity-subcavity

boundaries BRK,RK′ , and a modification to the discretization of the subcavity surfaces BQ,RK

with respect to the original method20 are described in the SI. There, we also describe how the

uniform coordinate scaling used to improve matrix conditioning19 is adjusted to MPE-nc.

The matrix A in the central linear system eq. (14) becomes sparse with this piecewise

multipole expansion, because the columns corresponding to the basis functions for one region

Xi have non-zero elements only in the rows corresponding to points on boundaries Bij which

are in contact with Xi.
19 The exact structure of A, as well as an implementation of the

iterative LSQR50 solver that exploits this sparsity, are elaborated in the SI. Alternatively,

one can use one of the direct solution algorithms reported in ref. 20. First, QR factoriza-

tion of A is performed. For well-conditioned systems, eq. (14) can afterwards be solved

straightforwardly. We call this procedure the ‘QR’ solver henceforth. If the resulting matrix

R is rank deficient, however, it can be further factorized in a singular value decomposition

(SVD), and a regularized solution can be obtained by applying a cutoff in the inversion of

the singular values. We call the latter option the ‘QR+SVD’ solver henceforth. Note that

the QR and QR+SVD solvers do not exploit sparsity. The implications of this issue are

discussed in section 6.3.

5.2 Charge conservation

We take the opportunity of generalizing MPE implicit solvation to address another, minor

issue which is not directly related to those described in sections 4.1 and 4.2.

From Gauss’s law it follows that

∮
A⊂XQ

∇ΦQ dA = 0 (23)

for arbitrary closed surfaces A lying entirely in XQ. In principle, this should be fulfilled
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automatically, if eq. (13b) is fulfilled exactly on all boundaries Bij. Our method is, however,

approximate by nature and boundary conditions are fulfilled only in a least-squares sense.

Usually, this does not lead to any severe or systematic errors. In the case of eq. (23),

however, the error formally amounts to a charge, altering the effective charge
∮
A⊂XQ

D dA

of the system in solution. We note that this is unrelated to the so-called outlying charge

error concerning explicit electron density, which was already discussed and resolved in refs.

19,20. The error discussed here concerns solely the implicit potential. The existence of a

spurious charge alone may, in some cases, be enough to introduce a systematic error in the

electrostatic energy. It is therefore worth enforcing eq. (23) not in a least-squares fashion,

but exactly (up to numeric precision). The technical details on the constrained solution

algorithm are explained in the SI.

6 Results and discussion

With the details of the method now in place we turn to the performance of MPE-nc and

provide numeric parameters for practical applications.

6.1 Convergence with numeric parameters

We test the convergence of ∆Gelstat
solv (nc) and R̄2 with expansion orders l

R/Q
max and target degree

of determination ddet. For each of the three parameters, values are sampled on respective

grids lRmax = 2, 4, 6, 8, 12, 16, 20, lQmax = 0, 2, 4, 6, 8, 12, 16 and ddet = 3, 4, 5, 6, 8, 10. We vary

each of the three convergence parameters separately and set the respective other two to

their ‘really tight ’ defaults, as discussed below. These are lRmax = 12, lQmax = 8 and ddet = 5.

These values were determined from preparatory runs, which were then confirmed in the here

reported results. We therefore do not give an extra account of these initial runs, but rather

focus on the full results summarized in figs. 8 to 10. In order to illustrate the convergence with

these values, we use ∆Gelstat
solv (nc) at lRmax = 20 for the lRmax convergence study, at lQmax = 16
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for the lQmax convergence study and at ddet = 10 for the ddet convergence study as a converged

reference, respectively.
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Figure 8: Convergence of the electrostatic contribution to the solvation free energy Gelstat
solv

(blue) and adjusted coefficient of determination R̄2 (red) of the discretized boundary condi-
tions eqs. (13a) and (13b) with target degree of determination ddet of the SLE.

As depicted in fig. 8, the target degree of determination ddet appears to have no no-

ticeable influence. The RMSE with respect to the reference value is consistently smaller

than 1 meV and shows little dependence on ddet. Furthermore, no significant outliers are

observed. Nonetheless, to avoid parts of the SLE becoming underdetermined, ddet should

not be chosen too small.19 Indeed, the ratio of non-zero rows to columns for individual po-

tentials Φi may be smaller than 2ddet, as regions Xi have different numbers of basis functions

and discretized points in adjacent interfaces Bij. Choosing a safe, large enough ddet does not
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increase the computational cost too dramatically, as it enters the matrix size only linearly.

All in all, ddet can be considered a fairly uncritical parameter and can be chosen higher or

lower where needed. For the rest of the present work, we use the previously established20

value of ddet = 5, which yielded an RMSE of 0.15 meV with respect to the reference value in

our convergence study.

2 4 6 8 12 16 20
l

0

20

40

60

80

100

G
el

st
at

so
lv

(l
R m

ax
=

l)
G

el
st

at
so

lv
(l

R m
ax

=
20

) i
n 

m
eV

0.8

0.85

0.9

0.95

1.0

R
2

Figure 9: Same as fig. 8, but showing convergence with expansion order lRmax of the MPE
potential inside the subcavities.

A more significant convergence behavior of ∆Gelstat
solv is instead obtained with increasing

expansion orders l
R/Q
max as depicted in figs. 9 and 10. In both cases, no noticeable changes in

∆Gelstat
solv occur at the upper end of the range of sampled values, indicating that the solution

to the electrostatic problem is then, indeed, converged. This is further supported by R̄2 of

the discretized boundary conditions eqs. (13a) and (13b) converging to 1. MPE-nc shows
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Figure 10: Same as fig. 8, but showing convergence with expansion order lQmax of the MPE
potential outside the cavity.

convergence for all of the test cases, even those that failed to converge with MPE-1c. To

illustrate the advantage of MPE-nc over MPE-1c we plot in fig. 11 the convergence with

overall basis set size of ΦR. Contrary to MPE-1c, the new subcavity method starts to

converge for all geometries at around 50 basis functions per non-H atom.

Similarly to the single cavity case, solvation free energies at too low expansion orders are

typically higher than the reference values, indicating a systematic underestimation of the

electrostatic solute-solvent interaction at these expansion orders. The error is, however, not

strictly variational as overestimation can be observed occasionally.

Assuming that the errors introduced by the individual parameters are uncorrelated, we
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Figure 11: Convergence of the electrostatic contribution to the solvation free energy ∆Gelstat
solv

(blue) and adjusted coefficient of determination R̄2 (red) of the discretized boundary condi-
tions eqs. (13a) and (13b) with number of basis functions per non-H atom (on a logarithmic
scale) for ΦR in the original (left) and our modified method (right).

can estimate the total root mean-square error as

RMSEest(l
R
max, l

Q
max, ddet) =√

RMSE(lRmax)2 + RMSE(lQmax)2 + RMSE(ddet)2 ,

(24)

where RMSE(x) is the root mean-square error of ∆Gelstat
solv at the respective value of x with

respect to ∆Gelstat
solv at the largest tested value of x. Given that the error with respect to ddet

stays mostly constant we omit if from further consideration. With respect to the other two

error components, though, we can use RMSEest to estimate the expected errors for given

combinations of lRmax, l
Q
max. Given that the computational cost of the method rises steeply

with increased MPE expansion order it useful to define default values for different levels of
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expected accuracy. In analogy to the electronic basis sets of the FHI-aims20,25–29 code itself

we therefore define three convergence levels

• ‘really tight ’: lRmax = 12, lQmax = 8

solver: QR+SVD

RMSEest = 0.58 meV

RMSE(lRmax) = 0.51 meV, RMSE(lQmax) = 0.23 meV

• ‘tight ’: lRmax = 8, lQmax = 6

solver: any

RMSEest = 2.0 meV

RMSE(lRmax) = 1.7 meV, RMSE(lQmax) = 0.93 meV

• ‘light ’: lRmax = 6, lQmax = 4

solver: any

RMSEest = 3.8 meV

RMSE(lRmax) = 3.2 meV, RMSE(lQmax) = 2.1 meV

As further explained in the SI, for really tight defaults, the error introduced by non-regularized

solvers for ill-conditioned matrices can reach the order of some 10−5 eV. Aiming for some

10−4 eV accuracy, the regularized QR+SVD solver is then the safer choice. For the smaller

basis sets, the error introduced by the solver is smaller and the error from the basis set is

larger, so any solver can be used in that case.

For neutral solutes, the solvation free energies ∆Gsolv typically lie in the order of some

tens to some hundreds of meV.21 Tolerating even higher errors than for the suggested light

settings would thus introduce systematic errors in the order of magnitude of the quantity we

want to determine and is therefore not advisable. Furthermore, the number and maximum

value of outliers in figs. 9 and 10 increase dramatically beyond this point. This was also

taken into consideration when choosing lQmax = 6 for the tight settings. Although the RMSE
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for lQmax = 4 is closer to that for lRmax = 8, at lQmax = 6 the number of systems with errors

> 10 meV is significantly smaller, hinting at higher reliability.

6.2 Model parameterization

Exactly analogously to the original MPE-1c case, the physical model parameters ρiso and α of

MPE-nc need to be fitted to experimental reference data. Given that in the original MPE-

1c method errors in the electrostatic contribution to the solvation free energy were likely

compensated by non-electrostatic contributions, we cannot re-use the parameters computed

for that model. Instead, we re-fit ρiso and α following the procedure outlined in earlier work.20

We apply the process mostly unchanged, simplifying a few technical details and sampling ρiso

on a logarithmic grid. DFT calculations for all test molecules are correspondingly performed

both in vacuum and in implicit solvent at isodensities ρiso = 10x e
�A3 with x sampled on a grid

from −3 to −1 in steps of 0.25. The error function

P (x, α) =
molecules∑

M

(
∆Gexp

solv,M −
(
∆Gelstat

solv,M(x) + αAM(x)
))2

(25)

is minimized, where ∆Gelstat
solv,M(x) and AM(x) are cubic splines between the values of x for

which actual DFT calculations with ρiso(x) were performed.51

All parameterization DFT calculations employed the really tight settings of the MPE-nc

solvation model. All other settings, such as the electronic basis sets and integration grids

were set to the tight defaults of FHI-aims.20,25–29 First, parameterization with the PBE38

functional was performed. The optimized isodensity value was found to lie in the upper part

of the sampling grid. For subsequent parameterizations we thus only sampled the range from

−2 to −1. In addition to PBE, parameters were optimized using the revPBE,52 RPBE,53

HSE06,39,40 BLYP,54,55 B3LYP56 and SCAN57 functionals. As a consistency check, we also

conducted a parameterization with PBE using MPE-1c with the original parameters lRmax = 8

and lRmax = 6.20 The parameterization results are shown in table 2.
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Table 2: Optimized parameters and RMSE of ∆Gsolv with respect to experimental references
for water, using different solvent models and xc functionals. For the MPE-nc solvent model,
the really tight expansion orders from the previous section were used throughout. For MPE-
1c, the originally published values20 of lRmax = 8 and lRmax = 6 were used. In the rightmost
column, RMSEs calculated with the respective functional, but with α and ρiso optimized for
HSE06 (cf. highlighted values) are shown.

xc solvent ρiso

1 me�A−3
α

1 meV�A−2
RMSE
1 meV

RMSE
1 meV

(p. HSE)

HSE06 MPE-nc 33.68 1.805 120 120

PBE MPE-nc 33.75 1.609 129 132

revPBE MPE-nc 33.35 1.557 129 134

RPBE MPE-nc 33.11 1.527 133 138

B3LYP MPE-nc 33.02 1.710 127 127

BLYP MPE-nc 32.74 1.513 137 141

SCAN MPE-nc 35.48 1.835 121 123
PBE MPE-1c 33.36 1.281 125

The PBE family of xc functionals yields overall better results than the BLYP family,

both for the generalized gradient approach (GGA) functionals (PBE, revPBE and RPBE

vs. BLYP) and for the hybrid functionals (HSE06 vs. B3LYP). Within the PBE family of

GGAs, the original PBE functional and revPBE yield a smaller RMSE than RPBE. The

hybrid functionals generally yield an improvement of ≈ 10 meV compared to their GGA

counterparts. The SCAN meta-GGA functional yields remarkably good agreement with

experiment, almost matching the HSE06 hybrid functional and even outperforming B3LYP.

In fig. 12, we show calculated ∆Gsolv of the solutes in the training set plotted against the

experimental reference values for some selected functionals. It becomes clear that anionic

solutes receive the largest improvement going from GGA to hybrid or meta-GGA functionals.

A systematic underestimation (in terms of absolute values) of ∆Gsolv, observed using GGA,

is significantly improved by the hybrid and meta-GGA functionals, although it still persists

to a lesser degree.

We also performed the parameterization using the alternative non-electrostatic model

eq. (16) that employs also the cavity volume. No significant improvement of our model’s

agreement with experiment compared to the simpler model eq. (17) was obtained. For BLYP,
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Figure 12: Calculated solvation free energies of solvation ∆Gcalc
solv of our training set as cal-

culated by MPE-nc plotted against experimental reference ∆Gexp
solv, using 3 different xc func-

tionals and with the optimized parameters from table 2. Grey dashed lines correspond to
perfect agreement with experimental reference. The constituent terms of ∆Gcalc

solv, namely
∆Gelstat

solv and αA were calculated from cubic splines between the sampled values, see text.
In the bottom right plot, the PBE functional was used together with parameters α and ρiso

optimized for HSE06.

it would for instance reduce the RMSE of ∆Gsolv by 2 meV, and for all other xc functionals,

the improvement is even smaller. We do thus not recommend usage of this alternative model

and refrain from reporting the respective parameters to avoid confusion.

The parameters found for MPE-1c are in very good agreement with those found in earlier
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work19 using a slightly smaller training set. Remarkably, the RMSE of ∆Gsolv is approxi-

mately the same as with MPE-nc with the same xc functional, slightly smaller in fact. This

reflects the aforediscussed combination of error cancellation and the smaller electrostatic er-

ror for the dominant smaller molecules in the test set. We have shown in section 4.1 that the

error in ∆Gelstat
solv is correlated with molecular size. Our descriptor for the non-electrostatic

free energy contributions, A, is also correlated with molecular size by construction. A size-

dependent systematic overestimation (on a signed scale) of ∆Gelstat
solv can thus be compensated

for by a size-dependent systematic underestimation of ∆Gnon−elstat
solv . This can be seen in the

optimized parameter α being much smaller for MPE-1c than for MPE-nc, leading to such

an underestimation.

Interestingly, for MPE-nc smaller RMSEs seem to be correlated with higher α, as shown

in table 2. One possible interpretation is that some error cancellation of the above described

kind still occurs with MPE-nc, presumably due to underestimation of the solute’s polariza-

tion in the less exact functionals. Further research is needed to investigate this hypothesis.

We point out that the major part of the error cancellation in MPE-1c can be attributed

to the choice of lRmax = 8 in our, as well as the original19,20 parameterization of MPE-1c.

We have seen in section 4.1 that this expansion order can be insufficient already for rather

small solutes. In contrast, the number of solutes in the database12 for which MPE-1c would

not converge even at high expansion orders is small and makes only a minor contribution

to the error cancellation in the original parameterization. However, this only concerns the

parameterization process itself. In practical applications with large solutes, the problem of

non-convergence in MPE-1c will emerge even when going to higher expansion orders.

This leads to the issue of transferability in MPE-1c. Consider a large solute. If we

want to use parameters optimized at lRmax = 8, we do not know which lRmax to use for the

large solute. On one hand, the systematic error cancellation at lRmax = 8 results from the

parameterization process only for relatively small molecules, which make up the major part

of the training data. The error in ∆Gnon−elstat
solv depends linearly on the cavity surface area A.
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There is no reason to assume that the same holds strictly for ∆Gelstat
solv . Therefore, the error

cancellation is not guaranteed to work for large molecules at lRmax = 8. On the other hand, let

us assume that ∆Gelstat
solv does converge with lRmax—we have shown in section 4.2 that this can

in some cases work even for large solutes. Simply picking a converged expansion order does

not solve the problem then either. If ∆Gelstat
solv is converged, then ∆Gnon−elstat

solv compensates

for a non-existent error. One would have to guess at which expansion order the errors match

in absolute value. The error cancellation is thus not transferable.

MPE-nc does not suffer from these transferability problems. Some error cancellation may

still occur, as described above. However, this is due to inaccuracies in the xc functional, for

which the assumption of linear correlation with system size is much more reasonable. As a

safe choice, one may use the parameters optimized for HSE06, of which α is fairly repulsive,

and apply them also when using other functionals. The resulting ∆Gelstat
solv will then be an

upper estimate—on a signed scale—but not a strict upper boundary. In fact, this does

not significantly impact agreement with experiment, as shown in the rightmost column of

table 2. These parameters can thus be considered general parameters, as similarly suggested

in earlier work.20 An exception is SCAN, for which the optimized α is actually larger than

for HSE06. Here, the parameters optimized for SCAN itself should be at least equally as

safe.

Despite these improvements, MPE-nc still calculates ∆Gsolv only to ≈ 100 meV accuracy.

Possible sources of error are the simplistic model eq. (17) for non-electrostatic solute-solvent

interactions, which accounts for dispersive and repulsive interactions only in a statistical

manner, the assumption of solute geometries which are rigid and also identical in vacuum

and solution, and finally the lack of hydrogen bonds in our model. Generally lower errors

for non-aqueous solvents in a similar model58 suggest that hydrogen bonds actually account

for a considerable portion of the error, although the data sets used for these solvents in the

cited study contained fewer solutes, which may also lead to lower errors.
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6.3 Computational performance

We test the computational performance of our method directly in the context in which it

is implemented, as a feature of FHI-aims20,25–29 . To have a state-of-the-art reference, we

recompiled our method in a more recent version of FHI-aims20,25–29 than the one used for

the calculations shown in previous sections, namely version 211010. All tests reported in

the following were conducted on an AMD Ryzen Threadripper 3970X 32-Core Processor.

The GNU Fortran (Gentoo 10.3.0 p1) 10.3.0 compiler with flags -O3 -march=native

-fallow-argument-mismatch -ffree-line-length-none was used for compilation. Per-

formance relevant libraries used are AMD optimized ScaLAPACK 3.0,46 AMD BLIS 3.0,59

AMD optimized libFLAME 3.0,60 ELPA 2020.05.00161,62 and Open MPI v4.0.5.63 We find

for molecules in the size range considered here, that no considerable computational speedup

is gained when increasing the number of cores beyond 16, as shown below. Thus, the scaling

of computational cost with molecular size is tested using only 8 cores, to avoid artifacts due

to inefficient parallelization. ‘Cores’, in this section, refers to physical CPU cores.

In section 6.2, we used the really tight expansion orders from section 6.1 to obtain as exact

parameters as possible. For most practical applications, however, the smaller tight expansion

orders should be sufficient. These also allow for usage of the computationally more efficient

QR or LSQR solvers, in contrast to the regularized QR+SVD solver necessary to deal with

ill-conditioning at very high expansion orders. We test the scaling of computational time

and memory requirement with solute size for the QR and LSQR solvers at tight expansion

orders, using the same test systems as in our convergence studies, cf. section 3.

The scaling of computational time is compared to another commonly used implemen-

tation of an implicit solvation model, namely the SCCS model implemented in the Envi-

ron package,21 version 2.0. Already MPE-1c found agreement with experiment compara-

ble to SCCS, making the latter an appropriate reference for such a performance test. For

both models, mean absolute errors (MAE) around 50 meV for neutral (SCCS)21 or neu-

tral and cationic (MPE-1c)20 solutes in water were reported, depending to some degree on
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the model parameters and specifics of the underlying DFT calculations. We used the elec-

tronic structure program PWSCF v.7.0rc1 of the Quantum ESPRESSO package64–66 as

a host for Environ. The GNU Fortran (Gentoo 10.3.0 p1) 10.3.0 compiler with flags

-O3 -march=native -fallow-argument-mismatch was used for compilation. Performance

relevant libraries used are AMD optimized ScaLAPACK 3.0, AMD BLIS 3.0, AMD optimized

libFLAME 3.0 and Open MPI v4.0.5. The H.pbe-rrkjus psl.1.0.0.UPF (H) and

x.pbe-n-rrkjus psl.1.0.0.UPF (all other elements) ultrasoft pseudopotentials (USPP)

from http://www.quantum-espresso.org were used. Energy cutoffs for charge density

and wavefunctions were chosen as suggested in the pseudopotential files. The parabolic

point-counter-charge (PCC) correction scheme67,68 implemented in Environ was used to re-

move interactions with periodic images in all directions, both in vacuum and implicit solvent

calculations. The PCC correction, in its current implementation, requires cubic simulation

cells. Cell sizes of a = 1.1 dmax + 5�A were used, with dmax = max(dx, dy, dz), where dx/y/z

is the extent of the solute in x/y/z direction. These extents were calculated taking into

account the van-der-Waals radii of the atoms, as obtained from the Atomic Simulation En-

vironment ASE.69 To keep the simulation cells small, prior to determining the cell size the

solute molecules were rotated such that the axis corresponding to the lowest principal mo-

ment of inertia was oriented along the space diagonal. Environ’s ‘full’ cavity definition was

used. The same randomized ε as for the MPE calculations were used. The randomized ρiso

were converted to the density thresholds ρmin, ρmax of SCCS using the transformation formula

from ref. 58, with the generic smoothness parameter δn = 2.0 reported therein. Pressure,

surface tension and electrolyte concentration were all set to 0.

Our method is implemented for parallel execution. The scaling with physical cores is

tested on the largest of the test systems (entry number test1012 in the Minnesota Solvation

Database12), containing 28 non-H atoms.

The main results of these tests are reported in figs. 13 and 14. While the LSQR solver

takes consistently more time for one SCF step than the QR solver, it is never the bottleneck
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Figure 13: Scaling of CPU time with solute size on 8 cores (left) and with number of cores
for largest solute in test set (right), all on a double logarithmic scale. Hypothetical linear
scaling shown at arbitrary offset for reference. Negative outliers excluded from analysis.
Overhead calculated as difference between values in implicit solvent and vacuum calcula-
tion. Left: Mean over solutes of same size shown as dot, root mean square deviation shown
as error bar, both calculated in logarithmic space. Overhead of Environ21 in a Quantum
ESPRESSO64–66 calculation shown for reference. Timing for Quantum ESPRESSO with-
out implicit solvation not shown. Top: Time for 1 SCF step, averaged over all SCF steps
except the last, which is typically shorter. Bottom: Time for SCF initialization. ‘Other
overhead’ calculated as overhead minus time for (blockwise) QR factorization.

of the calculation in the sampled size range, except for very small solutes. Both solver

types seem to scale almost linearly with system size, making the overhead of our method in

one SCF step generally unproblematic. In the SCF initialization, both solver types cause

a significant overhead. Typically, the initialization is not the bottleneck of a calculation

in FHI-aims20,25–29 , so the overhead here is negligible as long as it does not exceed the

initialization time of a vacuum calculation by orders of magnitude. In the sampled size

range, this is never the case. However, it is clear that the scaling for the QR factorization
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Figure 14: Scaling of highest tracked memory across all processes with solute size on 8
cores (left) and with number of cores for largest solute in test set (right), all on a double
logarithmic scale. FHI-aims20,25–29 does not track small arrays and scalars; real memory
usage will be slightly larger.

in the QR solver is unfavorable, and this step will eventually become a bottleneck for larger

solutes. The scaling of the blockwise QR factorization in the LSQR solver is not linear

either, but it is generally much faster than for the QR solver, making LSQR more suitable

for very large systems. Overhead other than the factorizations seems to scale no worse than

the encompassing DFT initialization in both cases, with a higher offset for LSQR. Similar

observations can be made in the memory requirements. Again, the scaling of the QR solver

with system size is unfavorable, approximately quadratic in this case. For the LSQR solver,

it is, again, much flatter, albeit not perfectly linear.

Compared to Environ,21 MPE-nc with both solvers is consistently faster in the SCF steps,

within the sampled size range. In the SCF initialization, the overhead is comparable in the

sampled size range. This comparison is, to some degree, biased by the different design choices

in the SCCS and MPE-nc models, as well as the characteristics of the electronic structure

software used as host. Most importantly, Quantum ESPRESSO64–66 is a plane wave

code, formally requiring periodic boundary conditions (PBC) which are then compensated

for e.g. by the PCC67,68 scheme for non-periodic systems. The necessity of PBC can increase

computational costs if significant portions of the simulation cell are empty. FHI-aims20,25–29

on the other hand uses atom-centered basis functions, allowing it to conduct the computation
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entirely in real space. This difference also affects the respective implicit solvation methods.

Despite these limitations, this comparison illustrates the computational efficiency of MPE-

nc, not only in the given context of FHI-aims20,25–29 .

In terms of parallelization over cores, both solvers scale fairly well. Within one SCF step,

the LSQR solver scales approximately equally as well as the encompassing DFT calculation.

No considerable speedup is gained for the test system when going beyond 16 cores. This

is the case both for the MPE method and the vacuum calculation. For larger solutes,

parallelization over a larger number of cores will likely become more efficient. For the QR

solver, no clear scaling is observed here, but the overhead is already negligibly small. In the

SCF initialization, all parts of our method scale well within a certain range. Again, both

for the encompassing DFT calculation and the MPE method, no speedup is gained when

going beyond 16 cores, although MPE appears to reach a plateau already at slightly fewer

cores. Nonetheless, all parts of both solvers consistently stay below the time for the DFT

initialization. In terms of memory, the distribution is trivial and scales linearly with the

number of cores for both solvers.

Finally, we briefly address computational scaling from a more theoretical point of view.

The size of the central matrix A in eq. (14) scales O(N2) with system size N . Each non-H

atom adds a constant number (lRmax +1)2 +(lQmax +1)2 of columns to A. The (target) number

of rows depends linearly on the number of columns via ddet. The computational time of the

QR factorization will thus become the bottleneck at some point. The LSQR solver largely

circumvents this issue by exploiting sparsity. In the (lRmax +1)2 columns corresponding to the

basis set of one subcavity, only approximately 2ddet(l
R
max + 1)2 rows are filled. Each non-H

atom thus only adds an approximately constant number of non-zero matrix elements in these

blocks. Nonetheless, the matrix block corresponding to the basis set for ΦQ does not get

sparser in the present method. Each non-H atom adds (lQmax + 1)2 columns, which have filled

rows for all cavity surface points, the number of which also grows approximately linearly

with system size. Thus, the LSQR solver will approach at least O(N2) scaling in the limit
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of very large solutes, as well. However, it does so at a significantly lower offset than the QR

solver. The issue of choosing the basis set for ΦQ in a way that will sparsify A is beyond the

scope of the present paper and left to future work.

7 Conclusions and outlook

We have shown that MPE-1c with the standard lRmax = 8 leads to a systematic underesti-

mation of the electrostatic solute-solvent interaction. Already in the original publication20

it was noted that potentially much higher expansion orders would be necessary for large

solutes. We have shown, however, that the issue can sometimes occur already in relatively

small molecules. Furthermore, we have seen that for larger solutes, especially using high

ρiso, increasing the expansion order is not always a viable solution, with the multipole series

converging slowly or not at all.

As a remedy for this issue, we have modified the MPE method, termed the MPE-nc

method, by separating the solvent cavity into small subcavities, centered around the solute’s

non-H nuclei. The dielectric response of the solvent is expanded in an individual multipole

series in each of the subcavities. In practice, this ensures a fast convergence of the multipole

series. We have parameterized an implicit solvation model for water using our modified

electrostatic MPE-nc approach and a simplistic model for non-electrostatic free energy con-

tributions. Comparing our results to an equivalent parameterization using MPE-1c reveals

a systematic error cancellation between electrostatic and non-electrostatic model terms in

MPE-1c. While yielding surprisingly accurate results, this error cancellation can not be

expected to hold for larger, more complex solutes, limiting the original method’s transfer-

ability. These problems are not present in the MPE-nc approach which allows for a much

more reliable reproduction of the dielectric response of a polarizable medium.

The practical applicability of our method is currently limited by the lack of atomic forces.

While these lie beyond the scope of the present, self-contained work, their derivation and
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implementation are an obvious next step which we plan to address in future work.
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