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ABSTRACT
A factorization of the matrix elements of the Dyall Hamiltonian in N-electron valence state perturbation theory allowing their eval-
uation with a computational effort comparable to the one needed for the construction of the third-order reduced density matrix
at the most is presented. Thus, the computational bottleneck arising from explicit evaluation of the fourth-order density matrix is
avoided. It is also shown that the residual terms arising in the case of an approximate complete active space configuration inter-
action solution and containing even the fifth-order density matrix for two excitation classes can be evaluated with little additional
effort by choosing again a favorable factorization of the corresponding matrix elements. An analogous argument is also provided
for avoiding the fourth-order density matrix in complete active space second-order perturbation theory. Practical calculations indi-
cate that such an approach leads to a considerable gain in computational efficiency without any compromise in numerical accuracy or
stability.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0072129

I. INTRODUCTION

The complete active space self-consistent field (CASSCF)
method1 offers a possibility to account for static electron correla-
tion in cases where the electronic state of a molecule cannot even be
approximately described by a single Slater determinant. This hap-
pens if chemical bonds are broken and also in many transition metal
complexes. The wave function resulting from this approach serves
as a starting point for the treatment of dynamic electron correla-
tion. However, the multiconfigurational nature of such wave func-
tions leads to complications compared to the single reference case.
Multireference configuration interaction (MRCI) based on uncon-
tracted wave functions2,3 is, in general, far too expensive and shares
the lack of size consistency with any limited configuration interac-
tion (CI) approach. This, of course, also holds for the more effi-
cient contracted MRCI versions4–10 where double excitation opera-
tors are applied to the reference wave function instead of individual

configuration state functions (CSFs). Multireference coupled cluster
(MRCC)11–17 theory is complex from a theoretical point of view and
still too expensive if applied to larger systems. Extensions of the cou-
pled electron pair approximation (CEPA) to the multireference case
have been proposed but have not yet reached the stage of practical
applicability.18–24 Thus, one is left with multireference perturbation
theory as a viable alternative for the treatment of dynamic elec-
tron correlation in the multireference case. The most popular meth-
ods in this context are complete active space second-order pertur-
bation theory (CASPT2)25,26 and second-order N-electron valence
state perturbation theory (NEVPT2).27–29 The computational bot-
tleneck in the fully internally contracted (FIC) version of both of
these methods is the appearance of the fourth-order density matrix
in certain matrix elements. Apart from the possibility to avoid
higher-order density matrices altogether by using an uncontracted
ansatz for certain excitation classes,30 time-dependent NEVPT2 the-
ory equivalent to a Laplace transformation of energy denominators
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and yielding uncontracted results,31,32 a stochastic approach in the
context of strongly contracted NEVPT2 (SC-NEVPT2),33 alternative
post-CASSCF treatments such as the driven similarity renormal-
ization group second-order perturbation theory (DSRG-PT2),34–37

or the multireference adiabatic connection (AC) formalism,38 sev-
eral approximations for the evaluation of the fourth-order density
matrix have been suggested. The cumulant (CU) approximation has
been applied for both CASPT239–41 and NEVPT2.42 However, “false”
intruder states arising from the application of this approximation
to NEVPT242 indicate a lack of reliability. Another possibility to
approximate the fourth-order density matrix arises from prescreen-
ing (PS) and extended PS (EPS).43 While this approach leads to
computational savings and also to reliable quantitative results for
sufficiently conservative thresholds, it does not change the unfa-
vorable scaling behavior inherent in the construction of the fourth-
order density matrix. A possibility to compute the terms involving
the fourth-order density matrix with the same computational cost
as those involving the third-order density matrix has been found by
Kurashige and Yanai44 for the CASPT2 method based on a density
matrix renormalization group (DMRG) CASSCF reference function.
Another strategy for the contraction of the Fock matrix with the
fourth-order density matrix in the context of DMRG-CASPT2 has
been suggested by Wouters et al.45 An important and more gen-
eral idea to reduce the computational effort for the evaluation of
matrix elements involving the fourth-order density matrix with-
out making any approximation has been presented by Chatterjee
and Sokolov46 for NEVPT2. The factorization suggested by these
authors has also been used in the efficient implementation of inter-
nally contracted multireference configuration interaction theory,6,47

and it benefits from a shift of all creation and annihilation operators
involved in the contraction with two-electron repulsion integrals
toward the left end of the operator chain, thus reducing the com-
putational effort to a level comparable to the one needed for the
evaluation of the third-order density matrix. A modified version of
this approach adapting to a formulation of the corresponding matrix
elements in terms of excitation operators as given in the original
paper of Angeli et al.29 will be presented in the following. Another
problem concerns only NEVPT2. As a consequence of the “rank
reduction trick,” there is a residual with matrix elements involving
even the fifth-order density matrix, which vanishes in the case of an
exact complete active space configuration interaction (CASCI) solu-
tion but not for approximate solutions such as the density matrix
renormalization group (DMRG),48–50 full configuration interaction
Quantum Monte Carlo (FCIQMC),51 the semistochastic heat-bath
configuration interaction (SHCI) method,52 selected CI methods
(CIPSI: configuration interaction using a perturbative selection car-
ried out iteratively),2,53–60 or the iterative configuration expansion
(ICE),61 which are needed for large active spaces where an exact
solution is no longer affordable. Such approximative solutions of
the CASCI problem have been used with NEVPT2.62–66 Although
false intruder states have been reported in this context,64 their ori-
gin has been investigated only recently using the full rank NEVPT2
(FR-NEVPT2) method,67 which takes into account the above-
mentioned residual. It will be shown that this residual can also be
factorized such that the computational effort becomes comparable to
the one needed for the evaluation of the third-order density matrix.
The same holds for the matrix elements involving the fourth-order
density matrix in CASPT2 as will also be demonstrated.

II. AVOIDING THE EVALUATION OF THE
FOURTH-ORDER AND FIFTH-ORDER DENSITY
MATRICES IN THE MATRIX ELEMENTS OF THE DYALL
HAMILTONIAN

Using indices p, q, . . ., i, j, . . ., t, u, . . ., and a, b, . . . for general,
doubly occupied, active, and virtual orbitals, respectively, and defin-
ing electron and hole excitation operators summed up over spin
(spin label: σ) as

Êpq = ∑
σ

â†
pσ âqσ (1)

and

ˆ̃Epq = 2δpq − Êqp, (2)

the Dyall Hamiltonian68 used in NEVPT2 reads

ĤD = Ĥi + Ĥv (3)

with

Ĥi = ∑
ij

FijÊij +∑
ab

FabÊab + C (4)

and

Ĥv = ∑
tu

heff
tu Êtu + 1

2 ∑tuvw
⟨tv∣uw⟩(ÊtuÊvw − δuvÊtw), (5)

where the Fock matrix is given by

Fpq = heff
pq +∑

tu
⟨Êtu⟩(⟨pt∣qu⟩ − 1

2
⟨pt∣uq⟩) (6)

with

heff
pq = hpq +∑

k
(2⟨pk∣qk⟩ − ⟨pk∣kq⟩). (7)

The constant C in Eq. (4) is chosen such that

ĤD∣Ψ0⟩ = E0∣Ψ0⟩ (8)

with E0 = ⟨Ψ0∣Ĥ∣Ψ0⟩. ∣Ψ0⟩ = ∑ICi∣ΦI⟩ is a CASCI eigenfunction
given as a linear combination of configuration state functions (CSFs)
∣ΦI⟩ and E0 is the corresponding eigenvalue.

In the following, we consider the fully internally contracted
version of NEVPT2 (FIC-NEVPT2). The matrix elements of the
Dyall Hamiltonian that require most of the computational effort
are the ones involving doubly excited fully internally contracted
wave functions ∣Ψav

tu ⟩ = ÊatÊvu∣Ψ0⟩ and ∣Ψtv
iu ⟩ = ÊtiÊvu∣Ψ0⟩. Using

the abbreviation ⟨Êtu ⋅ ⋅ ⋅⟩ = ⟨Ψ0∣Êtu ⋅ ⋅ ⋅ ∣Ψ0⟩ for the density matrices,
the corresponding matrix elements can be written as
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⟨Ψt′v′
i′u′ ∣ĤD − E0∣Ψtv

iu ⟩ = ⟨Ψ0∣(Êt′i′ Êv′u′)†[ĤD, ÊtiÊvu]∣Ψ0⟩ + ⟨Ψ0∣(Êt′i′ Êv′u′)†ÊtiÊvu(ĤD − E0)∣Ψ0⟩
= −Fii′⟨Êu′v′

ˆ̃Et′tÊvu⟩ + δi′i(K1′
t′v′u′ ,tvu + R1′

t′v′u′ ,tvu),
⟨Ψa′v′

t′u′ ∣ĤD − E0∣Ψav
tu ⟩ = ⟨Ψ0∣(Êa′t′ Êv′u′)†[ĤD, ÊatÊvu]∣Ψ0⟩ + ⟨Ψ0∣(Êa′t′ Êv′u′)†ÊatÊvu(ĤD − E0)∣Ψ0⟩
= Fa′a⟨Êu′v′ Êt′tÊvu⟩ + δa′a(K−1′

t′v′u′ ,tvu + R−1′
t′v′u′ ,tvu). (9)

Equation (9) contains Koopmans matrices with the following elements:

K−1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′ Êt′tÊwu⟩ + ∑

wxy
⟨wx∣vy⟩⟨Êu′v′ Êt′tÊwuÊxy⟩ −∑

w

he f f
uw ⟨Êu′v′ Êt′tÊvw⟩

− ∑
wxy
⟨ux∣wy⟩⟨Êu′v′ Êt′tÊxyÊvw⟩ −∑

w

(he f f
tw −∑

x
⟨xt∣wx⟩)⟨Êu′v′ Êt′wÊvu⟩ − ∑

wxy
⟨xt∣yw⟩⟨Êu′v′ Êt′wÊxyÊvu⟩ (10)

and

K1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′

ˆ̃Et′tÊwu⟩ + ∑
wxy
⟨wx∣vy⟩⟨Êu′v′

ˆ̃Et′tÊwuÊxy⟩ −∑
w

he f f
uw ⟨Êu′v′

ˆ̃Et′tEvw⟩

− ∑
wxy
⟨ux∣wy⟩⟨Êu′v′

ˆ̃Et′tÊxyÊvw⟩ +∑
w

he f f
wt ⟨Eu′v′

ˆ̃Et′wEvu⟩ + ∑
wxy
⟨wx∣ty⟩⟨Êu′v′

ˆ̃Et′wÊxyÊvu⟩. (11)

The expressions in Eqs. (10) and (11) differ from those given by
Angeli et al.29 by the order of the excitation operators in the oper-
ator chains with four excitation operators. This leads to a slightly
more compact notation. The original form given by Angeli et al. can
be restored by using the commutator relation

[Exy, Evw] = Exwδvy − Evyδwx (12)

for shifting the excitation operators to appropriate positions. Equa-
tion (9) also illustrates the “rank reduction trick”68 based on a shift
of the Dyall Hamiltonian to the very right of the operator chain and
resulting in residuals

R−1′
t′v′u′ ,tvu = ⟨Ψ0∣Êu′v′ Êt′tÊvu(ĤD − E0)∣Ψ0⟩ (13)

and
R1′

t′v′u′ ,tvu = ⟨Ψ0∣Êu′v′
ˆ̃Et′tÊvu(ĤD − E0)∣Ψ0⟩, (14)

which vanish for an exact solution of the CASCI problem within the
CASSCF procedure because the corresponding CASCI wave func-
tion ∣Ψ0⟩ is also an exact eigenfunction of the Dyall Hamiltonian.
Thus, the residuals that contain the fifth-order density matrix can be
avoided in such a case. For large active spaces, however, it is often not
possible to obtain an exact CASCI solution within a reasonably small
period of time so that it becomes necessary to resort to approxima-
tions. However, the eigenvalue spectrum of the Dyall Hamiltonian

is very sensitive with respect to such approximations if the residual
terms are neglected. Thus, even very small deviations from the exact
CASCI solution can lead to a serious deterioration of the eigenvalue
spectrum of the Dyall Hamiltonian, as indicated by “false” intruder
states.42 The neglect of the residuals is then no longer possible. Both
the factorization of the Koopmans matrices and the residuals will be
considered in the following.

A. Factorization of the Koopmans matrices
Looking at the elements of the Koopmans matrices as given by

Eqs. (10) and (11), it can be seen that they involve elements of the
fourth-order density matrix, the evaluation of which, in general, rep-
resents the computational bottleneck in NEVPT2 calculations. It is,
therefore, desirable to keep the computational cost for the evalua-
tion of these matrix elements as low as possible. For a more favorable
factorization of these matrix elements, we adopt an idea of Chatter-
jee and Sokolov46 who shifted all operators in the operator chain of
the density matrices with indices involved in the contraction with
two-electron integrals to the left end of the chain. With the matrix
elements given by Eqs. (10) and (11), we find it more convenient to
shift these operators to the right end. Following this strategy, i.e.,
shifting the excitation operator involving two summation indices
to the very right of the operator chain and the excitation operator
involving one summation index to the neighboring position left of
the former if necessary and using Eq. (2), one ends up with

K−1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′ Êt′tÊwu⟩ + ∑

wxy
⟨wx∣vy⟩⟨Êu′v′ Êt′tÊwuÊxy⟩ −∑

w

he f f
uw ⟨Êu′v′ Êt′tÊvw⟩ − ∑

wxy
⟨ux∣wy⟩⟨Êu′v′ Êt′tÊvwÊxy⟩

− ∑
wxy
⟨ux∣wy⟩⟨Êu′v′ Êt′t[Êxy, Êvw]⟩ −∑

w

(he f f
tw −∑

x
⟨xt∣wx⟩)⟨Êu′v′ Êt′wÊvu⟩ − ∑

wxy
⟨xt∣yw⟩⟨Êu′v′ ÊvuÊt′wÊxy⟩

− ∑
wxy
⟨xt∣yw⟩⟨Êu′v′[Êt′wÊxy, Êvu]⟩ (15)
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and

K1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′

ˆ̃Et′tÊwu⟩ + ∑
wxy
⟨wx∣vy⟩⟨Êu′v′

ˆ̃Et′tÊwuÊxy⟩ −∑
w

he f f
uw ⟨Êu′v′

ˆ̃Et′tEvw⟩

− ∑
wxy
⟨ux∣wy⟩⟨Êu′v′

ˆ̃Et′tÊvwÊxy⟩ − ∑
wxy
⟨ux∣wy⟩⟨Êu′v′

ˆ̃Et′t[Êxy, Êvw]⟩ +∑
w

he f f
wt ⟨Eu′v′

ˆ̃Et′wEvu⟩

+ 2∑
xy
⟨t′x∣ty⟩⟨Êu′v′ ÊxyÊvu⟩ − ∑

wxy
⟨wx∣ty⟩⟨Êu′v′ ÊvuÊwt′ Êxy⟩ − ∑

wxy
⟨wx∣ty⟩⟨Êu′v′[Êwt′ Êxy, Êvu]⟩. (16)

Defining the intermediates
XI

tu = ∑
wxy
⟨ΦI ∣EwtExy⟩⟨wx∣uy⟩,

Y I
tu = ∑

uvw
⟨ΦI ∣EtwExy⟩⟨ux∣wy⟩,

(17)

inserting the unit operator∑I ∣ΦI⟩⟨ΦI ∣ in the CASCI space in front of the excitation operators involved in the contraction with two-electron
repulsion integrals, and using the commutator relation in Eq. (12), one ends up with

K−1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′ Êt′tÊwu⟩ +∑

I
⟨Êu′v′ Êt′t ∣ΦI⟩XI

uv −∑
w

(he f f
uw −∑

x
⟨ux∣xw⟩)⟨Êu′v′ Êt′tÊvw⟩

−∑
I
⟨Êu′v′ Êt′t ∣ΦI⟩Y I

vu −∑
wx
⟨ux∣wv⟩⟨Êu′v′ Êt′tÊxw⟩ −∑

w

(he f f
tw −∑

x
⟨xt∣wx⟩)⟨Êu′v′ Êt′wÊvu⟩

−∑
I
⟨Êu′v′ Êvu∣ΦI⟩Y I

t′t −∑
wx
⟨xt∣vw⟩⟨Êu′v′ Êt′wÊxu⟩ +∑

wy
⟨ut∣yw⟩⟨Êu′v′ Êt′wÊvy⟩

−∑
xy
⟨xt∣yv⟩⟨Êu′v′ Êt′uÊxy⟩ + δt′u∑

wxy
⟨xt∣yw⟩⟨Êu′v′ ÊvwÊxy⟩ (18)

and

K1′
t′v′u′ ,tvu = ∑

w

he f f
wv ⟨Êu′v′

ˆ̃Et′tÊwu⟩ +∑
I
⟨Êu′v′

ˆ̃Et′t ∣ΦI⟩XI
uv −∑

w

(he f f
uw −∑

x
⟨ux∣xw⟩)⟨Êu′v′

ˆ̃Et′tEvw⟩

−∑
I
⟨Êu′v′

ˆ̃Et′t ∣ΦI⟩Y I
vu −∑

wx
⟨ux∣wv⟩⟨Êu′v′

ˆ̃Et′tÊxw⟩ +∑
w

he f f
wt ⟨Eu′v′

ˆ̃Et′wEvu⟩ + 2∑
xy
⟨t′x∣ty⟩⟨Êu′v′ ÊxyÊvu⟩

−∑
I
⟨Êu′v′ Êvu∣ΦI⟩XI

t′t −∑
wx
⟨wx∣tv⟩⟨Êu′v′ Êwt′ Êxu⟩ +∑

wy
⟨wu∣ty⟩⟨Êu′v′ Êwt′ Êvy⟩

− δvt′∑
wxy
⟨wx∣ty⟩⟨Êu′v′ ÊwuÊxy⟩ +∑

xy
⟨ux∣ty⟩⟨Êu′v′ Êvt′ Êxy⟩. (19)

Writing the third-order density matrix as

⟨Eu′v′Et′tEvu⟩ = ∑
I
⟨Eu′v′Et′t ∣ΦI⟩CI

vu

with

CI
vu = ⟨ΦI ∣Evu⟩, (20)

it can easily be seen that the terms containing the matrices XI and YI

in Eqs. (18) and (19) have the same structure so that the computa-
tional effort for their evaluation is reduced to a level comparable to
the one needed for the evaluation of the third-order density matrix,
which should thus lead to a considerable speed-up of NEVPT2 cal-
culations. Note that these intermediates can be evaluated at a low
computational cost. Their size of NCSF∗N2

act (NCSF : number of CSF’s,
Nact : number of active orbitals) should not pose any memory prob-
lems because intermediates of the same size generally appear in the

evaluation of density matrices. The remaining terms in Eqs. (18)
and (19) involve only the third-order density matrix, which has to
be evaluated anyway. The intermediates in Eqs. (18) and (19) differ
from the ones used by Chatterjee and Sokolov46 insofar, as the latter
contain a different number of creation and annihilation operators,
whereas these numbers are, of course, equal in the present case. This
is a consequence of using excitation operators instead of separate
creation and annihilation operators.

B. Factorization of the residuals
The residuals Eqs. (13) and (14) can be analyzed in an anal-

ogous fashion. It is, of course, the active part Ĥv of the Dyall
Hamiltonian, which leads to the appearance of even fifth-order den-
sity matrix elements in the residuals. Inserting the unit operator
∑I ∣ΦI⟩⟨ΦI ∣ in the CASCI space in front of the Hamiltonian, the
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relevant term in the residual Eq. (13) reads

⟨Ψ0∣Eu′v′Et′tEvuĤv ∣Ψ0⟩ = ∑
I
⟨Eu′v′Et′tEvu∣ΦI⟩ZI (21)

with
ZI = ⟨ΦI ∣Ĥv ∣Ψ0⟩. (22)

The structural analogy of Eq. (21) to the third-order density matrix
as given by

⟨Eu′v′Et′tEvu⟩ = ∑
I
⟨Eu′v′Et′tEvu∣ΦI⟩CI (23)

is again obvious.

III. AVOIDING THE EVALUATION OF THE
FOURTH-ORDER DENSITY MATRICES IN CASPT2

The “trick” used in Sec. II B for the evaluation of the resid-
ual in NEVPT2 can also be applied to avoid the evaluation of the
fourth-order density matrix in fully internally contracted CASPT2
(FIC-CASPT2). The most expensive matrix elements from a com-
putational point of view are again those involving doubly excited
fully internally contracted wave functions ∣Ψav

tu ⟩ = ÊatÊvu∣Ψ0⟩ and
∣Ψtv

iu ⟩ = ÊtiÊvu∣Ψ0⟩. These can be written as

⟨Ψt′v′
i′u′ ∣Ĥ0 − E0∣Ψtv

iu ⟩ = −Fii′⟨Êu′v′
ˆ̃Et′tÊvu⟩ + δii′(∑

w

Fwv⟨Êu′v′
ˆ̃Et′tÊwu⟩ −∑

w

Fuw⟨Êu′v′
ˆ̃Et′tÊvw⟩ +∑

w

Fwt⟨Êu′v′
ˆ̃Et′wÊvu⟩

+ ∑
ww′

Fww′(⟨Êu′v′
ˆ̃Et′tÊvuÊww′⟩ − ⟨Êu′v′

ˆ̃Et′tÊvu⟩⟨Êww′⟩)),

⟨Ψa′v′
t′u′ ∣Ĥ0 − E0∣Ψav

tu ⟩ = Faa′⟨Êu′v′ Êt′tÊvu⟩ + δaa′(∑
w

Fwv⟨Êu′v′ Êt′tÊwu⟩ −∑
w

Fuw⟨Êu′v′ Êt′tÊvw⟩ −∑
w

Ftw⟨Êu′v′ Êt′wÊvu⟩

+ ∑
ww′

Fww′(⟨Êu′v′ Êt′tÊvuÊww′⟩ − ⟨Êu′v′ Êt′tÊvu⟩⟨Êww′⟩)), (24)

where Ĥ0 is the zeroth-order Hamiltonian of CASPT2. Note that the
excitation operators corresponding to Fock matrix elements have
been shifted to the very right end of the operator chain in an analogy
to the “rank reduction trick” in NEVPT2. The terms involving the
fourth-order density matrices in Eq. (24) have the same structure as
the corresponding term in Eq. (21) of the NEVPT2 residual and can
be simplified analogously. One has

∑
ww′

Fww′(⟨Êu′v′ Êt′tÊvuÊww′⟩ = ∑
I
⟨Eu′v′Et′tEvu∣ΦI⟩ZI (25)

with
ZI = ∑

ww′
Fww′⟨ΦI ∣Êww′ ∣Ψ0⟩. (26)

The structural analogy of Eq. (25) to the third-order density matrix
is again obvious.

IV. NUMERICAL RESULTS

The approach described in Secs. II and III has been imple-
mented in the ORCA program package (version 5.0),69 which
has been used for the results presented in the following. Trans-
stilbene with a relatively large (14,14) CAS has been chosen as an
example. The calculations for this molecule have been carried out
with a single core on a machine with four processors “Intel Xeon
E7-8867 v3 @ 2.50 GHz” and a total of 3 TB available memory. The
def2-TZVP basis set70 has been used in combination with the RIJK71

approximation and the Def2/JK auxiliary basis.72 The geometry of
the molecule is identical to the one given in a previous calcula-
tion43 and also shown in the supplementary material. The factor-
ization described in Secs. II and III has been combined with the
prescreening approach.43 Table I shows the computation times for

TABLE I. Computation time for NEVPT2 and CASPT2 calculations of trans-stilbene with a (14,14) CAS in hours as a function
of the threshold TPS for the prescreening. The results are shown for the old default implementation of NEVPT2 in ORCA
[NEVPT2 (old)] and the new factorization without (NEVPT2) and with inclusion of the residual (FR-NEVPT2) along with the
results for the efficient ORCA implementation of CASPT2. Computation times for the terms involving the fourth-order density
matrix (D4), for the residual in the case of FR-NEVPT2 (res), and for the iterative solution of a system of linear equations taking
into account the interclass interaction for CASPT2 (iter) are given in addition to the total time for the respective perturbation
calculation. The time for the CASSCF calculation preceding the perturbative treatment is also shown.

NEVPT2 (old) NEVPT2 FR-NEVPT2 CASPT2

TPS CASSCF D4 Total D4 Total D4 res Total D4 iter Total

10−14 8.28 130.55 132.31 3.59 5.01 3.59 1.56 6.57 2.55 0.66 4.59
10−12 8.28 121.16 122.54 3.55 4.98 3.54 1.55 6.53 2.56 0.65 4.56
10−10 8.28 75.95 77.32 3.20 4.62 3.21 1.46 6.08 2.57 1.11 5.04
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various perturbation methods, i.e., NEVPT2 for both the old ORCA
implementation and the new factorization described in this contri-
bution, NEVPT2 including the residuals given by Eqs. (13) and (14)
(FR-NEVPT2), and CASPT2 results for the efficient implementa-
tion avoiding the fourth-order density matrix. Apart from the total
computation time for a distinct perturbation method, Table I also
contains the time needed to evaluate the terms involving the ele-
ments of the fourth-order density matrix, i.e., their contraction with
two-electron repulsion integrals (D4) and the time needed for the
evaluation of the residual in the case of FR-NEVPT2 (res). Since
CASPT2 takes into account the interclass interaction,25,26 it requires
the iterative solution of a system of linear equations. The time con-
sumed for this step is a function of the number of iteration cycles,
which, in turn, depends on the prescreening parameter TPS. Results
for three different values of this parameter are given in Table I. Sta-
ble solutions are obtained for TPS = 10−14 and TPS = 10−12, whereas
intruders in the sense of the appearance of negative energy denom-
inators in the perturbation expansion are observed for TPS = 10−10

for both NEVPT2 and CASPT2. This increases the number of itera-
tion cycles needed for the solution of the system of linear equations
in the case of CASPT2 from seven (TPS = 10−14 and TPS = 10−12) to
twelve (TPS = 10−10). Thus, the time consumed in this step is also
given in Table I (iter). The computation time for the CASSCF cal-
culation preceding the perturbation treatment shown in Table I is
only intended to give a rough estimate because it can vary strongly
depending on the initial guess for the orbitals, the methods used
for the update of the orbitals and CASCI coefficients, and other
parameters. Here, we used the super-CI-PT approach73,74 for the
orbital update and MP2 natural orbitals as an initial guess, result-
ing in 38 CASSCF iterations. Looking at the numbers in Table I,
one arrives at the following conclusions: (1) comparing NEVPT2
results, the gain in efficiency arising from the new factorization is
impressive. The evaluation of the terms involving the fourth-order
density matrix is still the most expensive step of the perturbation
calculation, but the total time is now even lower than that of the pre-
ceding CASSCF calculation in this particular example. It should also
be noted that no additional memory is needed for the new imple-
mentation compared to the old implementation. The peak memory
usage was about 10 gigabyte in both cases for the stilbene example.
(2) FR-NEVPT2 calculations including the residual are now afford-
able because the additional time needed for the evaluation of the
latter is fairly small. (3) The dependence of the computation time on
the prescreening parameter TPS is strongly reduced for the new fac-
torization of NEVPT2. Thus, one can use much smaller values for it,
which increases the stability of the results.43 In the case of CASPT2,
this dependence is even negligible for this particular example. With-
out going into the details, we mention that this is due to the fact that
the reduction in TPS reduces the length of the CI expansion but has
almost no effect on the size of the RI space needed for the evaluation
of density matrices. The numbers in Table I even suggest an oppo-
site effect, i.e., an increase in the computation time for the D4 terms
with decreasing prescreening parameter, but this is the consequence
of a certain spread in the determination of computation times that
are never exactly reproducible.

Table II shows the errors of the total electronic energy as a
function of the threshold TPS. Contrary to what one would expect,
one also observes that the errors due to prescreening are differ-
ent for the old and the new approaches. This is a consequence of

TABLE II. Errors of the total electronic energy for a NEVPT2 calculation of trans-
stilbene with a (14,14) CAS as a function of the threshold TPS for the prescreening
in μH. The results are shown for the old default implementation of NEVPT2 in ORCA
[NEVPT2 (old)] and the new factorization without (NEVPT2) and with inclusion of the
residual (FR-NEVPT2) along with the results for the efficient ORCA implementation
of CASPT2.

TPS NEVPT2 (old) NEVPT2 FR-NEVPT2 CASPT2

10−14 0 −1 −1 0
10−12 −1 4 4 6
10−10 34 −26 −86 −49

the use of different working equations for the evaluation of the
Koopmans matrices. While the old approach is based on the for-
mulas given by Angeli et al. in their original paper,29 the new
approach employs Eqs. (18) and (19). Thus, the contraction of the
elements of the fourth-order density matrix with the electron repul-
sion integrals is different in the two cases, leading to different results
due to the limited accuracy of the mathematical operations per-
formed by the computer. It is important to note in this context
that the prescreening constant TPS and, thus, the CASCI wave func-
tion are varied only for the evaluation of the fourth-order den-
sity matrix, and not, however, for the density matrices of lower
order.

Further calculations have been performed for two transition
metal complexes. First, a [Fe(II)-TPP] complex has been chosen for
which a state-averaged CASSCF calculation for the triplet ground
and three excited states with a (12,15) CAS comprising the Fe 3d, the
equatorial sigma bonding ligand orbital, the empty Fe 4d orbitals,
and the four Gouterman orbitals75 has been performed. The sub-
sequent perturbation theory calculations also involved these four
states. They have been carried out with 8 cores on a machine with
four processors “Intel Xeon E7-8867 v3 @ 2.50 GHz” and a total of
3 TB available memory, whereas 16 cores on the same machine have
been used for the CASSCF calculation. The geometry of the molecule
is shown in the supplementary material. The second example is a
spin-frustrated [Co(depa)Cl]3 complex, the geometry of which is
given in the supplementary material. The calculations have been
performed for the degenerate doublet ground state with a (21,15)
CAS involving the Co 3d orbitals. 16 cores on a machine with four
processors “Intel Xeon E7-8867 v4 @ 2.50 GHz” and a total of
3 TB available memory have been employed for this calculation. The
def2-TZVP basis set70 has been used for both complexes. In addi-
tion, the two-electron integrals entering the CASSCF gradient and
the perturbation theory are approximated using the resolution of
identity with the Def2-TZVP/C auxiliary basis set.76 The Fock matri-
ces are also approximated using the RIJCOSX approximation77,78

in conjunction with the Def2/J auxiliary basis set79 in the case of
the [Fe(II)-TPP] complex and the RIJK approximation71 with the
Def2/JK72 auxiliary basis for [Co(depa)Cl]3. The latter consists of
105 atoms with 2115 basis functions, whereas the former comprises
89 atoms with 1873 basis functions. It should be noted that the
interclass interaction in the CASPT2 calculations had to be omit-
ted (CASPT2-D) as the present (canonical) implementation requires
substantial hard disk space for the storage of the wave function. The
timings obtained with a prescreening constant of TPS = 10−14 are
shown in Table III. One observes basically the same trends as for
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TABLE III. Computation time for NEVPT2 and CASPT2 calculations of [Fe(II)-TPP] with a (12,15) CAS and [Co(depa)Cl]3
with a (21,15) CAS in hours for TPS

= 10−14. The results are shown for the old default implementation of NEVPT2 in ORCA
[NEVPT2 (old)] and the new factorization without (NEVPT2) and with inclusion of the residual (FR-NEVPT2) along with results
for the efficient ORCA implementation of CASPT2. Computation times for the terms involving the fourth-order density matrix
(D4) and for the residual in the case of FR-NEVPT2 (res) are given in addition to the total time for the respective perturbation
calculation. The time for the CASSCF calculation preceding the perturbative treatment is also shown.

NEVPT2 (old) NEVPT2 FR-NEVPT2 CASPT2-D

CASSCF D4 Total D4 Total D4 res Total D4 Total

[Fe(II)-TPP] 10.88 319.69 325.79 6.50 12.69 6.51 0.01 12.71 4.42 11.45
[Co(depa)Cl]3 2.45 4.76 6.96 0.34 2.50 0.33 0.12 2.62 0.27 2.97

stilbene, i.e., large computational savings for the expensive D4 terms
and negligible computational effort for the evaluation of the residual
in FR-NEVPT2.

V. CONCLUSIONS
It has been shown that all relevant matrix elements in FIC-

NEVPT2 can be calculated at a computational cost comparable to
the one needed for the evaluation of the third-order density matrix
at the most. In the case of prescreening, i.e., a truncated CASCI wave
function, it will be somewhat higher for two reasons. First, the sum
in Eq. (23) or Eq. (20) runs over the CSFs contained in the truncated
CI space, whereas the corresponding sums for the intermediates XI

uv ,
Y I

uv , and ZI run over the CI space needed for a resolution of the
identity (RI), which is larger than the truncated CI space. Second,
the RI space needed for the evaluation of the third-order density
matrix comprises all CSFs obtained from Etu∣ΦI⟩ with ∣ΦI⟩ being
CSFs in the truncated CI space. The corresponding RI space in the
matrix elements ∑I⟨Êv′u′ Êt′t ∣ΦI⟩XI

uv and Eq. (21) is larger because
it consists of all possible CSFs obtained from EtuEvw ∣ΦI⟩. Thus, the
evaluation of the terms involving the fourth-order density matrix
still represents the most expensive part of the perturbation calcula-
tions. Nonetheless, the factorization given in this contribution leads
to a total speed-up by almost two orders of magnitude compared
to the old ORCA implementation for NEVPT2 calculations with a
large CAS. It can even be faster than the preceding CASSCF calcu-
lation and can be applied to any approach based on the RI method
for the evaluation of higher-order density matrices. Moreover, it can
be used in conjunction with any CASCI eigensolver. In summary, we
think that the factorization of matrix elements presented in this con-
tribution represents an important step forward in the development
of efficient multireference methods.

SUPPLEMENTARY MATERIAL

The Cartesian coordinates of the molecules treated in Sec. IV
are given in the supplementary material.
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