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SUMMARY
Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We
use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating
excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex
transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical
resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow,
symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable
causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially
transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory
units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-fre-
quency adaptation. The presented approach provides a powerful means to investigate the resonance prop-
erties of local circuits and probe how these properties transform input and shape transmission.
INTRODUCTION

The brain’s computational abilities arise from communication

within andbetweenneuronal groups, and thedynamicmodulation

of neuronal communication is believed to enable flexible behavior

(Engel et al., 2001; Fries, 2015; Varela et al., 2001). A compelling

means to modulate neuronal communication is synchronization

(Akam and Kullmann, 2010; Azouz and Gray, 2003; Börgers and

Kopell, 2008; Hahn et al., 2014; Palmigiano et al., 2017; Salinas

and Sejnowski, 2001; Wang, 2010). Neuronal synchronization is

determined by cellular and network properties that define intrinsic

timescales for activity. The intrinsic timescale of cells and circuits

can be characterized by resonance, i.e., how inputs are amplified,

or preferentially transmitted. In single neurons, specific combina-

tions of diverse conductances canestablishmembraneand firing-

rate resonances (Fellous et al., 2001; Hutcheon and Yarom, 2000;

Lampl andYarom, 1997; Schreiber et al., 2004). In networks, inter-

actions between recurrently coupled excitatory and inhibitory (E-I)

neurons generate resonancesbasedonconnectivity (Börgers and

Kopell, 2003; Buzsáki and Wang, 2012; Tiesinga and Sejnowski,

2009; Whittington and Traub, 2003).
This is an open access article und
A prominent cortical resonance occurs in the gamma band

(30–90 Hz) (Adesnik and Scanziani, 2010; Cardin et al., 2009;

Etter et al., 2019; Iaccarino et al., 2016; Lu et al., 2015; Ni

et al., 2016; Sohal et al., 2009). The Communication-

through-Coherence (CTC) hypothesis (Fries, 2005, 2015) pro-

poses that gamma-band synchronization between neuronal

groups can flexibly determine their communication. Computa-

tional models have demonstrated that gamma-rhythmic inputs

can entrain a postsynaptic population of recurrently coupled

E-I units, thereby enhancing the impact of the entraining input

and reducing the impact of competing inputs (Börgers and Ko-

pell, 2008; Hahn et al., 2014; Palmigiano et al., 2017). This pro-

posal has accrued considerable correlative evidence, for

example, gamma-rhythmic gain modulation of neuronal and

behavioral responses (Ni et al., 2016); phase-dependent po-

wer-covariation and transfer entropy between neuronal groups

(Besserve et al., 2015; Womelsdorf et al., 2007); and selective

enhancement of interareal gamma-band synchronization by

attention (Bosman et al., 2012; Grothe et al., 2012), which im-

proves behavioral performance (Rohenkohl et al., 2018). How-

ever, it has remained difficult to provide direct causal evidence
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Figure 1. Viral transfection and gamma-band resonance to stimulation

(A–C) Confocal microscopy images of immunohistochemistry performed on slices from area 17 after viral transfection.

(A) Endogenous fluorescence of ChR2-eYFP.

(B) Fluorescence from secondary antibody after staining for GABA+.

(C) Merged images, testing for neuronal co-labeling with ChR2-eYFP and GABA+ antibody. No co-labeled neurons can be found.

(legend continued on next page)
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for selective transmission of coherent inputs via network

resonance.

Direct evidence for a causal role of synchronization in neuronal

communication can be obtained through experimental control of

network input and simultaneous measurement of spike output

(Akam et al., 2012). We emulated excitatory synaptic input to a

local population with millisecond temporal precision using Chan-

nelrhodopsin-2 (ChR2), a light-activated cation channel (Boyden

et al., 2005). We transfected pyramidal cells in the cat visual

cortex, a classical model for investigating cortical information

processing (Douglas and Martin, 2004). Illumination of ChR2-ex-

pressing neurons enabled control of excitation in vivo.

Stimulation with constant light confirmed the previous finding

that cortical networks can transform temporally flat excitatory

input into gamma-rhythmic spike output (Adesnik and Scanziani,

2010; Lu et al., 2015; Ni et al., 2016) with features similar to that

generated by visual stimulation (Fries et al., 1997, 2002; Gray

et al., 1989; Gray and Viana Di Prisco, 1997). Slowly varying

the excitation to the network with ramps and symmetric stimula-

tion profiles revealed that the peak frequency of the gamma

resonance could vary between 30 and 70 Hz, and that there

was pronounced hysteresis for both the power and the fre-

quency. Sinusoidal stimulation demonstrated that network spike

output was entrained by rhythmic input with a fidelity that

increased up to 40 Hz and decreased slightly for 80 Hz.

Finally, we sought to determine if the intrinsic resonance of vi-

sual cortical populations can act as a filter to select coherent

components of external excitatory drive. Direct stimulation of

excitatory cells with temporal white noise dramatically illustrated

that the resonant properties of the local circuit established an

endogenous temporal receptive field, or window of opportunity,

for external excitatory drive. In contrast with periodic signals (like

sinusoids or rhythmic pulse-trains), white noise is not auto-corre-

lated and, therefore, enables a causal analysis of network trans-

mission, i.e., from excitatory input to spike output (Bryant and

Segundo, 1976; Mainen and Sejnowski, 1995; Marmarelis and

Naka, 1972). Spike-triggered averaging of the white-noise light

sequence revealed that spikes were preceded by episodes of

gamma-rhythmic input. Correspondingly, an analysis of Granger

causality between the white-noise input and neuronal spike

output revealed a pronounced gamma-band peak. Simulations

with a well-established recurrent network composed of conduc-

tance-based model neurons (Börgers, 2017) reproduced our

core results. Modeling confirmed the central role of strong, fast

feedback inhibition in gamma-band resonance (Börgers and Ko-

pell, 2003; Sohal et al., 2009; Stark et al., 2014). The essential

resonance phenomena were also evident in a greatly simplified
(D) Counts of GABA+-labeled neurons, EYFP+-labeled neurons, and co-labeled n

(E) Example recording site in area 17 shows strong gamma-band activity in the l

(F) Robust MUA response to constant illumination at the same site.

(G) Spike-triggered LFP for example data shown in (E) and (F).

(H) Average MUA spike density change as a result of optogenetic stimulation. Sm

(I) Average LFP power ratio (optogenetic stimulation versus baseline) spectrum.

(J) Average MUA-LFP PPC spectrum. Note different y axis scales for lower- and

(I and J) Use ±0.5-s epochs for the analyses from 4 to 20 Hz, and ±0.25-s-long e

(F–J) Blue (yellow) lines show data obtained with 473 (594) nm light stimulation.

indicate frequency ranges with statistically significant (p < 0.05) differences betw

including correction for the multiple comparisons across frequencies.
network of leaky-integrate-and-fire (LIF) units. Modeling of the

power and frequency hysteresis effects required the addition

of a non-inactivating potassium current, the M-current, to the

excitatory units. Overall, our results suggest that recurrent E-I

coupling establishes intrinsic temporal scales for neuronal activ-

ity in local circuits. These intrinsic scales are apparent in the

resonant properties of the population, which temporally trans-

form excitatory input, selecting components of time-varying

input coherent with the resonant oscillation and attenuating

non-coherent components.

RESULTS

AAV1 and AAV9 transfect excitatory neurons in the cat
visual cortex, and constant optogenetic stimulation
reveals gamma-band resonance
Recombinant adeno-associated virus (AAV) vectors are widely

used as gene-delivery tools (Vasileva and Jessberger, 2005).

AAV-mediated expression of ChR2 has been used in several

mammalian species, including mice, rats, and non-human pri-

mates (Diester et al., 2011; Gerits et al., 2015; Scheyltjens

et al., 2015). In this study, three pseudo-typed AAVs, AAV1,

AAV5, and AAV9, were applied in the visual cortex of the do-

mestic cat (Felis catus). We injected AAVs carrying the gene

for hChR2(H134R)-eYFP (eYFP = enhanced yellow fluorescent

protein) under the control of the Ca2+/calmodulin-dependent

protein kinase type II alpha (CaMKIIa) promoter. Injections tar-

geted either area 17, the cat homolog of primate area V1, or

area 21a, the cat homolog of primate area V4 (Payne, 1993).

All AAV1 and AAV9 injections resulted in robust transfection

(which was not the case for AAV5; see STAR Methods). Trans-

fection was evident in confocal fluorescence microscopy (and

often in epifluorescence) and in the neuronal responses evoked

by light. In total, we transfected neurons in area 17 in four hemi-

spheres of three cats and in area 21a in four hemispheres of

four cats.

In two cats, after electrophysiological recordings were

completed, brains were histologically processed, and slices

were stained for parvalbumin (PV) and/or gamma-aminobutyric

acid (GABA) (Figures 1 and S1). One cat had been injected

with AAV1-CaMKIIa-hChR2(H134R)-eYFP into area 17. Across

several slices and imaging windows of area 17, we identified

264 unequivocally labeled neurons, which showed ChR2-eYFP

expression or GABA antibody staining; of those, 146 were posi-

tive for GABA and 118 expressed ChR2-eYFP, and there was

zero overlap between these groups (Figures 1A–1D). In the

same cat, across several additional slices and imaging windows
eurons in area 17.

ocal field potential induced by constant illumination.

oothed by a Gaussian function (s = 12.5 ms, truncated at ±2s).

Note different y axis scales for lower and higher frequency ranges.

higher-frequency ranges.

pochs for the analyses from 20 to 150 Hz.

Shaded area indicates ±1 SEM across trials. (H–J) Black bars at the bottom

een blue and yellow light stimulation, based on a cluster-level permutation test
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of area 17, we identified 284 unequivocally labeled neurons,

which showed ChR2-eYFP expression or PV antibody staining;

of those, 145 were positive for PV, and 139 expressed ChR2-

eYFP, with four neurons showing clear ChR2-eYFP fluorescence

and partial (patchy) PV staining (Figures S1A–S1D). The other cat

had been injected with AAV9-CaMKIIa-ChR2-eYFP into area

21a. Across several slices and imaging windows of area 21a,

we identified 182 unequivocally labeled neurons, which showed

ChR2-eYFP expression or PV antibody staining; of those, 73

were positive for PV, 109 expressed ChR2-eYFP, and there

was zero overlap between these groups (Figures S1E–S1H).

Thus, ChR2 expression occurred almost exclusively in excitatory

neurons.

We performed terminal experiments under general anesthesia

4–6 weeks after virus injection. The transfected portion of cortex

was illuminated with blue or yellow laser light (473 or 594 nm),

while neuronal spike and local field potential (LFP) activity was

recorded. Because ChR2 is a light-activated cation channel, illu-

mination of transfected neurons emulates excitatory synaptic in-

puts. The external excitatory drive to the network can thus be

controlled by modulating the intensity of the illumination. Visual

cortex exhibits strong gamma-band synchronization in response

to sustained visual stimulation (Gray et al., 1992; Gray and

Singer, 1989). Gamma-band synchronization has also been re-

ported during optogenetic activation of excitatory cells in the pri-

mary motor cortex of macaque monkeys (Lu et al., 2015), as well

as the primary somatosensory cortex and hippocampus of the

mouse (Adesnik and Scanziani, 2010; Akam et al., 2012; Stark

et al., 2014). We have previously observed gamma-band syn-

chronization in response to constant optogenetic stimulation of

excitatory neurons in the visual cortex of the anesthetized cat

(Ni et al., 2016). We now present a more detailed analysis of

this phenomenon. A single trial of the LFP response to optoge-

netic stimulation with 2 s of constant blue light from area 17 is

shown in Figure 1E. The raw LFP trace reveals strong optoge-

netically induced gamma that emerged immediately after the

onset of stimulation. Figure 1F shows the multi-unit activity

(MUA) of this recording site for many interleaved trials of stimu-

lation with blue or yellow light, confirming that activation was se-

lective for blue light. Activation was also specific to regions of

cortex expressing ChR2, because laser stimulation with blue or

yellow light had no measurable effect for control recordings in

the non-transfected cortex (Figures S1I and S1J). Figure 1G

shows the spike-triggered average (STA) of the LFP, demon-

strating that optogenetic stimulation induced spikes that were

locked to the LFP gamma-band component. Results in area

21a were highly similar, and example data are presented in the

Supplemental information (Figures S2A–S2C).

This pattern was found very reliably across recording sites.

Stimulation with 2 s of constant blue light, as compared with yel-

low control light, induced strong enhancements in firing rate,

which were sustained for the duration of stimulation (Figures

1H and S2D; Wilcoxon rank-sum test = 39,581; p < 0.0001; n =

163 sites in 4 cats). The ratio of LFP power during stimulation

versus pre-stimulation baseline showed an optogenetically

induced gamma-band peak around 70 Hz (Figures 1I and S2E;

Wilcoxon rank-sum test = 14751; p < 0.0001; n = 99 sites in 4

cats). Note that the gamma-band peak frequency varied across
4 Cell Reports 35, 109083, May 4, 2021
animals and recording sessions, as shown previously (Ni et al.,

2016). The LFP gamma-power changes reflected changes in

neuronal synchronization, because optogenetic stimulation

also induced strong MUA-LFP locking in the gamma band, as

quantified by the MUA-LFP PPC (Figures 1J and S2F; PPC =

pairwise phase consistency; Wilcoxon rank-sum test = 9,389;

p < 0.0001; n = 84 sites in 4 cats). In addition to the induction

of gamma-band synchronization, optogenetic stimulation also

reduced LFP power at 4–14 Hz (Figures 1I and S2E, inset) and

MUA-LFP locking at 10–12 Hz (Figures 1J and S2F, inset). These

reductions of lower-frequency synchronization are reminiscent

of effects of visual stimulation and/or selective attention in awake

macaque area V4 (Fries et al., 2008b; Mitchell et al., 2009).

Greater excitation increases magnitude and frequency
of resonance
We next characterized the bandwidth of the network resonance

by varying the excitation in the local network. Models and empir-

ical data have both suggested that the frequency of gamma os-

cillations can increase with increasing excitation (Jia et al., 2013;

Lowet et al., 2017; Ray and Maunsell, 2010; Roberts et al., 2013;

Traub et al., 1996). We therefore slowly increased excitation lin-

early in time (ramp stimulation, 3 s) to generate increasing exci-

tation in the local network. A time-frequency plot for an example

recording site in area 21a is presented in Figure 2A. We found

that the network resonance varied non-linearly with the input

excitation. Rather than scaling linearly with light strength,

network resonance began only after a critical level of excitation

was reached (Figures 2A and 2B), as previously established

in vitro and in models (Börgers et al., 2005; Traub et al., 1996).

Power and frequency increased sub-linearly with increasing

excitation (Figures 2B and 2C). Interestingly, previous studies re-

ported that optogenetic drive of excitatory cells in the somato-

sensory cortex and hippocampus of the mouse with light ramps

resulted in gamma-band synchronization with a constant fre-

quency (Adesnik and Scanziani, 2010; Akam et al., 2012), and

increasing the slope of the ramp gave rise to higher-frequency

synchronization in the somatosensory cortex (Adesnik and

Scanziani, 2010). To further investigate additional non-linearities

in the resonance, we stimulated the network with slow symmet-

ric excitation profiles (single-slow-sine-wave stimulation, 10 s). A

time-frequency plot for an example recording site in area 21a is

presented in Figure 2D. Single-slow-sine-wave stimulation re-

vealed amplitude and frequency hysteresis, with the amplitude

and frequency of the network resonance increasing sub-linearly

after a critical point of excitation was reached and slowing down

more quickly upon waning excitation (Figures 2E and 2F).

Models reveal the potential role of non-inactivating M-
current in hysteresis
To investigate the network mechanisms underlying the observed

resonance phenomena and the hysteresis, we constructed math-

ematical models of recurrently coupled E-I neurons. To this end,

we used awell-establishedbiophysically realistic pyramidal-inter-

neuron network (PING) model (Börgers, 2017), without additional

tuning. We initially investigated a model composed of two popu-

lations of single-compartment neurons implementing Hodgkin-

Huxley dynamics. The excitatory population is based on a
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Figure 2. Bandwidth and hysteresis of gamma-band resonance

(A) Time-frequency plot for an example site in area 21a in response to a slowly increasing ramp stimulus, shown on top.

(B) Group result for ramp stimulation shows that the power of the gamma-band resonance increases sublinearly with increasing excitatory drive (n = 58 sites in 5

cats).

(C) Same as in (B), but for the frequency of the gamma-band resonance.

(D) Time-frequency plot for an example site in area 21a to a slow Gaussian temporal profile, shown on top.

(E) Group results showing the change in power of gamma-band resonance as a function of laser intensity during slow Gaussian stimulation (n = 52 sites in 5 cats).

(F) Same as in (E), but for frequency of gamma-band resonance.

Arrows in (E, F) indicate hysteresis in response to increasing (upper arrow) versus decreasing (lower arrow) laser power.

Shaded areas in (B), (C), (E), and (F) indicate ±1 SEM across recording sites.
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simplified model of pyramidal cells (Traub et al., 1991), and the

inhibitory population is based on a simplifiedmodel of PV+ basket

cells (Wang and Buzsáki, 1996). The network has a synaptic

model that permits a gradual rise of synaptic gating (Wang,

1999). This model produced strong gamma-band synchroniza-

tion, as has been reported extensively (Börgers and Kopell,

2003; Figures S3A and S3B).

The PING network reproduced the experimentally observed

increase in the power and frequency of the resonance with

increased external drive (Figures S3C and S3D). Such in-

creases have also been described in vitro (Traub et al., 1996)

and in simple networks (Wilson and Cowan, 1972). We imple-

mented a simple LIF network and found that it also exhibited

power and frequency increases with increased excitatory drive

(Figures S4A and S4B). However, neither the PING nor the LIF

model were able to reproduce the experimentally observed

hysteresis effects (Figures S3C, S3D, S4A, and S4B). We there-

fore modified the PING model by adding a non-inactivating M-

current to the excitatory population (PING+M model). The M-

current is a potassium current that is active at rest and during
depolarization and raises the threshold for action potential gen-

eration. The PING+M model has lower firing rates and a lower

resonant frequency for equal excitatory drive, as compared

with the PING model (Figures S3E and S3F). The PING+M

model was able to produce both power and frequency hyster-

esis in qualitative concordance with our experimental findings

(Figures S3G and S3H, as compared with Figures 2E and 2F).

The hysteresis evident in the PING+M model was considerably

less pronounced than what was observed experimentally, sug-

gesting that more factors, such as additional currents, or cell

classes, are likely to contribute to the hysteresis observed

in vivo.

Rhythmic input thatmatches resonance is preferentially
transmitted
We next returned to the empirical data and sought to investi-

gate whether the output of the local network, assessed by

spike output, demonstrates a preference for temporally varying

inputs with a timescale matching the network resonance, as

has been suggested by computational models (Sherfey et al.,
Cell Reports 35, 109083, May 4, 2021 5
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2018). We drove rhythmic excitation in the network with sinu-

soidal stimulation of 5, 10, 20, 40, and 80 Hz. Light intensity

was adjusted per recording site (see STAR Methods) and was

kept constant for a given site across the different stimulation

frequencies. Sinusoids of all applied frequencies resulted in

clear increases in firing rate, with strong rhythmicity at the stim-

ulation frequency (Figure 3). We calculated spike density func-

tions, subtracted the baseline values, and averaged them

across recordings sites. Figure 3A shows those average spike

densities for 10, 40, and 80 Hz. Note that 10-Hz stimulation re-

sulted in not only an entrained 10-Hz response but also bursts

of gamma-band synchronization around the peak of excitatory

drive, in agreement with a previous report in rodent hippocam-

pus (Butler et al., 2016). Note also that 80-Hz stimulation did

not result in simple entrainment to the 80-Hz stimulation, but

that the response varies on alternate cycles, exhibiting a prom-
6 Cell Reports 35, 109083, May 4, 2021
inent sub-harmonic to the driving fre-

quency at 40 Hz that was stable for the

entire 2-s stimulation period.

To capture entrainment by the optoge-

netic stimulation, we calculated the

Pearson cross-correlation coefficient be-

tween the respective sinusoid and the re-

sulting spike density as a function of time

lag between the two (Figures 3B and

S5A). We quantified the strength of

entrainment as the peak-to-trough dis-

tance of the cross-correlation functions

(Figure 3B). Sinusoidal stimulation re-

sulted in entrainment that increased with

stimulation frequency to peak at 40 Hz

and weakly decreased at 80 Hz (one-

way ANOVA, p = 1.6E�9, F(4,295) =

11.25). The bandwidth of the preferential

entrainment matches well the bandwidth

found by varying excitation with ramps
and Gaussian stimulation, and the small fall-off at frequencies

above the network resonance is in good agreement with previ-

ous modeling work (Sherfey et al., 2018).

Sinusoidal stimulation of different frequencies enabled estima-

tionof neuronal response latencies by computing the slope of rela-

tive phases between the stimulation signal and the output MUA

across stimulation frequencies (Figures S5B-S5F; see STAR

Methods for an expanded discussion of this method). Figure 3C

presents the relative-phase spectrum and reveals a strictly linear

relationship, a signature of a fixed time lag. The slope of this linear

relationship indicates a latency of 5.5 ms, in good agreement with

previous reports (Boyden et al., 2005; Cardin et al., 2009).

Optogenetic white-noise stimulation reveals a causal
role of gamma
Finally, and crucially, we emulated input with a white-noise char-

acteristic. White noise realizes continuously unpredictable
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Figure 4. The component of white-noise

stimulation coherent with network reso-

nance is transmitted as MUA

(A–C) Example single-trial LFP andMUA response

to optogenetic white-noise stimulation. The bot-

tom panel shows the white-noise time course of

laser intensity. The sequence of vertical lines

above it indicates time points of MUA spike

occurrence. The black continuous line on top

shows the LFP. (B) Spike-triggered average (STA)

of laser power density, triggered by the spikes

recorded at one example recording site. (C)

Granger causality (GC) spectrum for the data

shown in (B). Red line shows GC from light to

spikes; blue line shows GC from spikes to light (as

control).

(D and E) Same as (B) and (C), but for the average

across recording sites (n = 13 sites in 3 cats).
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values (innovation) and thus shows no autocorrelation, i.e., no

correlation with its own past or future. Therefore, time-lagged

correlations between the optogenetically emulated neuronal

input and the neuronal spike output cannot be caused by time-

lagged correlation within the input but can be unequivocally

attributed to a time-lagged correlation between input and output.

A time-lagged correlation between an experimentally controlled

input and the observed spike output provides direct evidence for

a causal role of the input. Importantly, white-noise stimulation

enabled us to determine the causal roles separately for each fre-

quency of the spectrum. That is, white-noise excitatory drive

during recording of spike output allowed us to determine the

directed transfer function of the observed network.

We employed optogenetic stimulation with light intensities

following a Gaussian random process (sampled at z1,000 Hz)

with a flat power spectrum (Figure 4A, bottom trace). This
white-noise stimulus contains the same

energy at all frequencies up to 500 Hz.

Light intensities were titrated such that

firing rates were in the lower half of the

dynamic range of the recorded neurons

in response to optogenetic stimulation.

Figure 4A shows an example LFP and

MUA recording for an example trial of

white-noise stimulation.

To reveal the temporal input patterns

most reliably driving spikes, we aligned

the white-noise time series that drove

the laser to the spikes and averaged it.

Figure 4B shows the resulting STA light

power density for an example recording

site. We found that spikes were pre-

ceded by a characteristic sequence of

increased and decreased light intensity,

with a peak-to-peak cycle length corre-

sponding to 75 Hz, suggesting a causal

role of the gamma band in eliciting

spikes. To quantify this causal influence

in a frequency-resolved manner, we
calculated the Granger causality of the time-varying light inten-

sity onto the spike train. This revealed a clear peak in the gamma

band (Figure 4C, red). As a control, we also calculated the

Granger causality of the spike train onto the light, which

confirmed values close to zero, as expected (Figure 4C, blue).

We found very similar effects in the average over recording sites

(Figures 4D and 4E; n = 13 sites in 3 cats), confirming a predom-

inant role of the gamma band in causing spikes.

Models reveal key role of feedback inhibition in
transmission of coherent input
In order to better understand the network behavior under

external drive with temporal white noise, we first returned to

the PING model without M-current (Figure 5A, inset). When we

stimulated thismodel with white noise, we found the same signa-

ture of frequency-dependent transmission as in our experiments
Cell Reports 35, 109083, May 4, 2021 7
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(Figures 5A–5C, as compared with Figures 4B–4E). This effect

was also evident in the LIF network (Figure S8A) and in a PING

network without I-to-I connectivity (Figure S8B). The model

permitted us to separate excitatory from inhibitory activity, and

we found that input in-phase with network excitation and

phase-advanced with respect to network inhibition is preferen-

tially transmitted (Figure 5A). We computed the Granger causal-

ity spectra between the white-noise input and the MUA in the

network and found a high degree of qualitative similarity to our

empirical spectra (Figure 5B, black line, and Figures 4C and

4E). Again, because we could separate excitation from inhibition

in the model, we could separately investigate the transfer from

the white-noise input to the excitatory (Figure 5B, red line) and

the inhibitory (Figure 5B, blue line) activity of the network (see

Figure S8C for corresponding STAs). This suggests that the

white-noise components transmitted to network excitation are

broader, as compared with the components transmitted to the

inhibition. We further investigated the transfer between the E-I

units of the network (Figure 5C). Excitatory units transmitted vari-

ance at gamma, and additionally significant low-frequency vari-

ance, to the output of the inhibitory network, whereas inhibitory

units transmitted primarily gamma-band components back to

the excitatory units (Figure 5C).

To further understand the mechanisms of preferential transfer,

we next asked whether the excitatory population receiving the

white-noise innovation must project to the inhibitory population

and thereby entrain a rhythm, or whether a resonant pool, iso-

lated from the white-noise innovation, but projecting inhibitory

synapses to that population, could implement selective trans-

mission. We simulated a network with one population of inhibi-

tory neurons and two separate populations of excitatory neurons

(Figure 5D, inset). A first excitatory population (illustrated at the

top of the inset in Figure 5D) was recurrently connected to the

inhibitory population, and when this circuit was driven by
Figure 5. Computational modeling reveals potential mechanism

underlying preferential transmission of coherent input

(A) Spike-triggered average of white-noise input signal (black), network exci-

tation (red), and inhibition (blue) demonstrates preferential transmission of

gamma-frequency input that matches the intrinsic dynamics of the network.

White-noise averaging was triggered by spikes of all excitatory neurons; re-

sults for inhibitory neurons or all neurons (total MUA) are shown in Figure S8C.

Inset depicts a schematic of the PING model.

(B) GC spectrum from white-noise input to total MUA (black), excitatory spikes

(red), and inhibitory spikes (blue). Spectra fromMUA and spikes to white noise

are presented in muted color and overlap near zero.

(C) GC spectra between excitation and inhibition in the network. Spectrum

from excitatory spikes to inhibitory spikes (blue) and vice versa (red).

(D) Spike-triggered averages in the model with two excitatory populations.

Averages display the spike-triggered white noise (black) driving the second

excitatory population and illustrate entrainment by the excitation (red) and

inhibition (blue) of the recurrently coupled PING network. Inset depicts a

schematic of the model. The PING network shown on top, in lighter colors,

contains a first excitatory population and an inhibitory population and gener-

ates gamma upon white-noise input. The resulting rhythmic inhibition is fed

into a second excitatory population, shown on the bottom, which is driven by

independent white noise.

(E) Spike-triggered averages as in (B), but for the PING+Mmodel. Inset depicts

a schematic of PING+M model driven by white noise.

E, excitatory neuron pool; I, inhibitory neuron pool; WN, white-noise input.
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white-noise input, it generated gamma resonance. The resulting

output of the inhibitory population was fed into the second excit-

atory population (illustrated at the bottom of the Figure 5D, inset),

which did not project back to the inhibitory pool. White-noise

input to this second excitatory population was preferentially

transmitted, if it was coherent with and phase-advanced to the

gamma-rhythmic inhibition (Figure 5D). Thus, rhythmic gating

can be exerted by one circuit onto a separate, gated circuit.

Finally, because the M-current had been necessary to explain

the experimentally observed hysteresis effects, we asked

whether selective transmission occurs in the PING+M model

(Figure 5E, inset; Figure S7). Using the same model parameters

as used for the investigation of hysteresis, we performed analysis

of the network under white-noise stimulation. We found that the

PING+Mmodel also exhibited selective transmission (Figure 5E).

Intriguingly, the M-current significantly reduced the timescale of

the selective transmission, producing spike-triggered white

noise in better agreement with that found experimentally (Fig-

ure 5E as compared with Figures 4B and 4D). Together with the

hysteresis results, the close qualitative match between the

experimental and the PING+M spike-triggered white-noise re-

sults suggests the influence of some form of spike-frequency

adaptation. As mentioned above, it is likely that additional cell

classes, or conductances, may play a role in vivo and require

further investigation. In any case, given the potential role of the

M-current suggested by our findings, it would be interesting to

investigate the impact of acetylcholine on the phenomena

described here. Acetylcholine can have an antagonistic effect

on the M-current via muscarinic receptors, and in the PING+M

model this would increase the power and frequency of the circuit

resonance, enhance the amplitude and timescale of selective

transmission, and reduce the hysteresis of the gamma-band

resonance. Intriguingly, a number of previous studies in the cat vi-

sual cortex have already described increased gamma-band syn-

chronization after electrical stimulation of the midbrain reticular

formation (Munk et al., 1996), which appears to depend on

muscarinic receptors (Rodriguez et al., 2004).

DISCUSSION

Visual stimulation induces clear gamma-band synchronization in

the cat visual cortex, both during wakefulness (Fries et al., 2002;

Gray and Viana Di Prisco, 1997) and anesthesia (Gray et al.,

1992). We recorded LFPs and neuronal spike output in the visual

cortex of anesthetized cats, while optogenetically emulating

external, excitatory inputs to pyramidal neurons with precise

experimental control. Controlling external excitatory drive al-

lowed us to investigate the functional consequences of the

cortical gamma-band resonance. Optogenetic excitation with a

variety of temporal patterns produced gamma-band activity

qualitatively similar to that found for visual stimulation. A better

understanding of cortical resonance sheds light on the dynamic

transformations performed by the local circuit and reveals how

time-varying excitation is transmitted.

We confirmed that the visual cortex transforms constant exci-

tation into strong gamma-band synchronization, producing

rhythmic spike output similar to visual stimulation (Ni et al.,

2016). Slowly increasing excitation with ramps increased the
strength and frequency of synchronization and revealed a

threshold of excitation necessary for the ignition of synchroniza-

tion. A positive correlation between excitatory drive and the

strength and frequency of gamma-band synchronization has

been predicted by computational models, demonstrated

in vitro, and is reminiscent of effects seen in vivo for visual

contrast and salience (Fries, 2015; Hadjipapas et al., 2015; Jia

et al., 2013; Lowet et al., 2017; Ray and Maunsell, 2010; Roberts

et al., 2013; Traub et al., 1996). Slow, temporally symmetric exci-

tation profiles demonstrated profound hysteresis in both the

strength and the frequency of the synchronization. Although hys-

teresis in synchronization has so far been unreported to our

knowledge, it is reminiscent of effects seen when visual contrast

is symmetrically varied (for example, see figure 3 of Ray and

Maunsell, 2010). Modeling indicated that hysteresis could arise

from spike-frequency adaptation via a non-inactivating potas-

sium current (M-current), suggesting that acetylcholine effects

on the M-current may modify the dynamics of gamma-band

resonance (Börgers et al., 2005; Fellous and Sejnowski, 2000; Fi-

sahn et al., 1998; Munk et al., 1996; Rodriguez et al., 2004). The

observed hysteresis could play a powerful role in differentiating

populations of cells with increasing versus decreasing excita-

tion, even if the total level of excitation in the populations is equal.

Future studies should elucidate the rich, non-linear features of

the resonance described here, such as the minimal excitatory

drive required for resonance, its dynamic range, and its interac-

tion with neuromodulatory signals.

Varying external drive on faster timescales enabled us to

investigate how cortical resonance selectively transmits compo-

nents of dynamic input. The effect of the network resonance on

variable input was first demonstrated for rhythmic, sinusoidal

excitation. Sinusoidal drive was transformed by the network

into spike output with a fidelity that increased up to 40 Hz and

declined slightly for 80 Hz. Intriguingly, slow sinusoidal input

gave rise to bursts of gamma-band synchronization at the peaks.

Crucially, the precise temporal control afforded by optoge-

netics enabled characterization of the network response to

stochastic, white-noise sequences. White-noise stimulation

facilitated causal analysis of network transmission: from external

excitatory input to neuronal spike output. The gamma-band

component of the stochastic input preferentially drove spiking

in the neuronal population. Thus, feline visual cortex is predis-

posed to transform external excitation with a variety of temporal

profiles into gamma-rhythmic spike output. Further, the resulting

gamma-rhythmic output is ideally suited to preferentially drive

activity in downstream populations.

Network resonance emerges from the interaction between E-I

elements. In computational models, including those presented

here, network resonance is determined largely by feedback inhi-

bition (Börgers and Kopell, 2003; Buzsáki and Wang, 2012; Tie-

singa and Sejnowski, 2009; Whittington and Traub, 2003).

Although resonance arises in reduced models with homoge-

neous cellular properties, the cat visual cortex contains a great

deal of heterogeneity. The dominant gamma-band resonance

we observed could be caused by intracellular mechanisms,

network properties, or combinations of both. Intracellular trans-

fer functions have been characterized for assorted cell classes

using in vitro electrophysiology and optogenetics. Although
Cell Reports 35, 109083, May 4, 2021 9
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there is diversity depending onmorphology and channel compo-

sition, the dominant cell class we drove with light, pyramidal

cells, typically exhibits a low-pass characteristic. Previous

work characterized the transfer function of a variety of opsins,

including the opsin used here (hChR2(H134R)), in cultured pyra-

midal cells and found that transfer peaked at 3 Hz and declined

smoothly for higher frequencies, with currents reduced by half at

�40 Hz (ChR2R in figure 1 of Tchumatchenko et al., 2013).

Therefore, the gamma-band resonance observed in the present

study is most likely not due to the opsin or electrical properties of

the individual neurons, but rather predominantly determined by

feedback inhibition in the network (Buzsáki and Wang, 2012).

This network mechanism is likely assisted and amplified by

cellular mechanisms. Interneurons can show 1:1 phase locking

to suprathreshold sinusoidal current injections up to 50 Hz (Fel-

lous et al., 2001). When the transfer function from injected cur-

rent to spike times is directly measured for cortical interneurons

in slices of ferret prefrontal cortex, it reveals a broad peak in the

gamma range (Hasenstaub et al., 2005). Additionally, specialized

classes of excitatory neurons have been described in cat and

macaque visual cortex, with properties that likely promote

gamma-band resonance (Gray and McCormick, 1996; Onorato

et al., 2020).

Interestingly, the STA revealed that spikes were preceded not

only by rhythmic peaks but also by rhythmic troughs, suggesting

that input that matches the intrinsic timescale of feedback inhibi-

tion is preferentially transmitted. In a driven state, network exci-

tation and inhibition wax and wane with a delay determined by

features of synaptic connectivity. This creates windows of

enhanced susceptibility to the external drive, and the pace of

network inhibition will preferentially permit excitatory cells to

transmit components of their time-varying extrinsic drive that

match the endogenous dynamics (Fries, 2015). Exogenously

driven excitatory spikes will subsequently drive inhibitory neu-

rons and renew the cycle of feedback inhibition. If excitation ar-

rives out of phase with the network rhythm, it can prematurely

drive inhibition in a feedforward manner, and sufficient prema-

ture capture of inhibition will lead to desynchronization of the

inhibitory pool. Such premature forcing is kept in check by the

strong synchronization within the inhibitory pool, via dense I-I

coupling. Thus, exogenous excitation competes with the endog-

enous pace set by strong feedback inhibition.

STA analysis has been used to characterize the input-output

relationship of single neurons, both in terms of their receptive

field properties (Chichilnisky, 2001; Pillow et al., 2008) and their

resonance properties (Bryant and Segundo, 1976; Mainen and

Sejnowski, 1995; Marmarelis and Naka, 1972). It is also routinely

used to estimate the locking of neurons to simultaneous popula-

tion activity, either by spike-triggered LFP averaging (Fries et al.,

1997) or spike-triggered covariance analysis (Pillow et al., 2008).

STA analysis of both intracellularly recorded membrane poten-

tials (Azouz and Gray, 2008; Hasenstaub et al., 2005) and LFPs

(Fries et al., 1997) has revealed strong gamma-band phase-lock-

ing during visual stimulation. As membrane potentials and LFPs

reflect synaptic currents (Pesaran et al., 2018), these observa-

tions are consistent with a scenario in which spikes are

specifically caused by the gamma component of synaptic in-

puts. However, these findings are also consistent with a scenario
10 Cell Reports 35, 109083, May 4, 2021
in which visual stimulation induced gamma-rhythmic neuronal

activity reflected in both spiking and LFP, without a specific

causal role of gamma-rhythmic inputs. Optogenetic white-noise

stimulation allowed us to isolate the effect of external gamma-

rhythmic drive from ongoing synchronization. We were therefore

able to demonstrate the causal role of network resonance in

selectively transmitting the gamma component of time-varying

external input. Importantly, the gamma-rhythmic component of

the spike-triggered white-noise average cannot be explained

by the mere fact that the stimulation induced gamma-rhythmic

neuronal spiking. Rather, it required that spikes were time locked

(and thereby phase locked) to the relevant temporal pattern in

the white noise. If white noise had simply induced spikes that

were gamma rhythmic, but not phase locked, to the gamma

component of the white noise, the STA of the white noise would

have been flat. However, the STA revealed significant modula-

tion in the gamma band, suggesting that spikes were preferen-

tially driven by the input’s gamma components.

The gamma synchronization produced by white-noise input

wasweaker andmore unstable than that producedwith constant

stimulation (Figure S6). During constant stimulation, the exoge-

nous drive lacks temporal structure, and network dynamics are

dominated by the endogenous resonance. However, during

white-noise stimulation, endogenous dynamics are perturbed

by broadband exogenous drive, resulting in irregular, frag-

mented synchronization. Similarly, gamma-band activity in ma-

caque V1 is strong when induced by a smoothly moving grating

and substantially reduced by the addition of random motion

(Kruse and Eckhorn, 1996). Interestingly, temporally variable

exogenous drive leads to precise spike timing, increased stim-

ulus information, and improved perceptual discrimination (Bura-

cas et al., 1998; Christensen et al., 2019; Mainen and Sejnowski,

1995). Complementary results suggest that endogenous gamma

dynamics provide additional temporal structure that can

enhance the information communicated by neurons (Azouz

and Gray, 2003; Harris et al., 2003; Womelsdorf et al., 2012).

Together, these results suggest that networks balance the devi-

ations introduced by exogenous drive with the timescale

imposed by their endogenous dynamics. Indeed, exogenous

transients may function as an external clock to synchronize ac-

tivity and facilitate transmission, while under continuous or

slowly varying drive, resonance may assume the role of time-

keeper and discretize transmission into synchronous packages

so as to maximize their effect on downstream populations. Un-

der such a regimen, temporal information imposed by a variable

stimulus will be faithfully conveyed, and in the absence of exog-

enous temporal structure, the synchronization imposed by

network resonance will endow neuronal communication with

increased reliability and precision (Fries, 2015). The balance of

exogenous and endogenous drive is likely to fluctuate dynami-

cally according to their relative strength or other variables that

can alter the dynamic set point of the circuit. The flexible

balancing of extrinsic and intrinsic factors provides a powerful

means to selectively amplify and propagate or suppress and

gate sensory signals according to the behavioral state or goals.

The experiments reported here were limited to the visual cor-

tex and have focused on the gamma-band resonance prominent

in the activated visual cortex (Brunet et al., 2015; Gray and
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Singer, 1989; Onorato et al., 2020). However, all recurrently

coupled excitatory-inhibitory networks are likely to demonstrate

similar resonances, which will function to selectively filter their

input and temporally tune their output. This reasoning predicts

that spikes in other areas, in which other rhythms predominate

(Brown et al., 1998; Csicsvari et al., 2003; Fries, 2009; Gregoriou

et al., 2009; Pesaran et al., 2002), might be caused predomi-

nantly by the corresponding rhythm in their input. Likewise,

because our experiments were carried out in anesthetized ani-

mals, we could not establish the behavioral relevance of the re-

ported phenomena. Previous work has used white-noise flicker

to investigate the reverberatory nature of visual responses (Van-

Rullen and Macdonald, 2012) and attentional gating of stimulus

information (Grothe et al., 2018). These promising results

suggest that optogenetic stimulation in behaviorally engaged cir-

cuits may provide a powerful means to probe the dynamic rout-

ing of information between relevant brain areas.

The filtering and preferential transmission reported here sug-

gest that resonance is a compelling mechanism by which to

achieve flexible communication (Izhikevich et al., 2003). The

resonant frequency of a circuit or population will determine the

communication channel of that circuit, and coherent input will

be transmitted, whereas non-coherent input is suppressed

(Akam and Kullmann, 2010). Indeed, distinct resonances are

likely to exist within a single cortical area, for example, between

distinct neuronal subpopulations, projections, or laminae. For

example, superficial and deep layers in macaque areas V1, V2,

and V4 show very different rhythms during activation. Although

superficial layers express strong gamma synchronization, deep

layers show an alpha-beta rhythm (Buffalo et al., 2011; van Ker-

koerle et al., 2014). Rhythms can also change dynamically de-

pending on intrinsic or extrinsic factors, such as behavioral state

or cognitive context, and such changes might alter resonances

and input-output functions, perhaps via modulatory signals

(Gulbinaite et al., 2019). A hierarchy of areas with intrinsic reso-

nances could act to selectively distinguish and propagate feed-

forward and feedback signals in the spectral domain, as has

been suggested by functional-anatomical studies (Bastos

et al., 2015; Michalareas et al., 2016; van Kerkoerle et al.,

2014) andmodeling (Lee et al., 2013). It will be a highly interesting

task for future studies to probe resonances in different areas,

layers, projections, or cell classes and especially in different

cognitive contexts. Note that the approach presented here can

also be used to investigate the transfer between input to one

neuronal group and the spike output of another neuronal group,

with the two groups possibly residing in different layers and/or

areas. With recordings at site A and stimulation at sites B and

C, it might be possible to characterize not only the spectral trans-

fer function from B to A but also the frequency-resolved modula-

tory influence of C on this transfer function. By facilitating such

investigations, the presented approach provides a novel frame-

work in which to study the mechanisms underlying flexible

neuronal communication.
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nization of cell assemblies in the hippocampus. Nature 424, 552–556.

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCor-

mick, D.A. (2005). Inhibitory postsynaptic potentials carry synchronized fre-

quency information in active cortical networks. Neuron 47, 423–435.

Hutcheon, B., and Yarom, Y. (2000). Resonance, oscillation and the intrinsic

frequency preferences of neurons. Trends Neurosci. 23, 216–222.

Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham,

T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., et al. (2016). Gamma fre-

quency entrainment attenuates amyloid load and modifies microglia. Nature

540, 230–235.

Izhikevich, E.M., Desai, N.S., Walcott, E.C., and Hoppensteadt, F.C. (2003).

Bursts as a unit of neural information: selective communication via resonance.

Trends Neurosci. 26, 161–167.

Jia, X., Xing, D., and Kohn, A. (2013). No consistent relationship between

gamma power and peak frequency in macaque primary visual cortex.

J. Neurosci. 33, 17–25.

Kruse, W., and Eckhorn, R. (1996). Inhibition of sustained gamma oscillations

(35-80 Hz) by fast transient responses in cat visual cortex. Proc. Natl. Acad.

Sci. USA 93, 6112–6117.

Lampl, I., and Yarom, Y. (1997). Subthreshold oscillations and resonant

behavior: two manifestations of the same mechanism. Neuroscience 78,

325–341.

Lee, J.H., Whittington, M.A., and Kopell, N.J. (2013). Top-down beta rhythms

support selective attention via interlaminar interaction: a model. PLoS Com-

put. Biol. 9, e1003164.

Lowet, E., Roberts, M.J., Peter, A., Gips, B., and De Weerd, P. (2017). A quan-

titative theory of gamma synchronization in macaque V1. eLife 6, e26642.
Lu, Y., Truccolo,W.,Wagner, F.B., Vargas-Irwin, C.E., Ozden, I., Zimmermann,

J.B., May, T., Agha, N.S., Wang, J., andNurmikko, A.V. (2015). Optogenetically

induced spatiotemporal gamma oscillations and neuronal spiking activity in

primate motor cortex. J. Neurophysiol. 113, 3574–3587.

Mainen, Z.F., and Sejnowski, T.J. (1995). Reliability of spike timing in neocor-

tical neurons. Science 268, 1503–1506.

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG-

and MEG-data. J. Neurosci. Methods 164, 177–190.

Marmarelis, P.Z., and Naka, K. (1972). White-noise analysis of a neuron chain:

an application of the Wiener theory. Science 175, 1276–1278.

Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.M., Kennedy, H., and

Fries, P. (2016). Alpha-Beta and Gamma Rhythms Subserve Feedback and

Feedforward Influences among Human Visual Cortical Areas. Neuron 89,

384–397.

Mitchell, J.F., Sundberg, K.A., and Reynolds, J.H. (2009). Spatial attention de-

correlates intrinsic activity fluctuations in macaque area V4. Neuron 63,

879–888.

Munk, M.H., Roelfsema, P.R., König, P., Engel, A.K., and Singer, W. (1996).

Role of reticular activation in the modulation of intracortical synchronization.

Science 272, 271–274.

Ni, J., Wunderle, T., Lewis, C.M., Desimone, R., Diester, I., and Fries, P. (2016).

Gamma-Rhythmic Gain Modulation. Neuron 92, 240–251.

Nichols, T.E., and Holmes, A.P. (2002). Nonparametric permutation tests for

functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25.

Onorato, I., Neuenschwander, S., Hoy, J., Lima, B., Rocha, K.S., Broggini,

A.C., Uran, C., Spyropoulos, G., Klon-Lipok, J., Womelsdorf, T., et al. (2020).

A Distinct Class of Bursting Neurons with Strong Gamma Synchronization

and Stimulus Selectivity in Monkey V1. Neuron 105, 180–197.e5.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.M. (2011). FieldTrip:

Open source software for advanced analysis of MEG, EEG, and invasive elec-

trophysiological data. Comput. Intell. Neurosci. 2011, 156869.

Palmigiano, A., Geisel, T., Wolf, F., and Battaglia, D. (2017). Flexible informa-

tion routing by transient synchrony. Nat. Neurosci. 20, 1014–1022.

Payne, B.R. (1993). Evidence for visual cortical area homologs in cat and ma-

caque monkey. Cereb. Cortex 3, 1–25.

Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P., and Andersen, R.A. (2002).

Temporal structure in neuronal activity during working memory in macaque

parietal cortex. Nat. Neurosci. 5, 805–811.

Pesaran, B., Vinck, M., Einevoll, G.T., Sirota, A., Fries, P., Siegel, M., Truccolo,

W., Schroeder, C.E., and Srinivasan, R. (2018). Investigating large-scale brain

dynamics using field potential recordings: analysis and interpretation. Nat.

Neurosci. 21, 903–919.

Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky, E.J.,

and Simoncelli, E.P. (2008). Spatio-temporal correlations and visual signalling

in a complete neuronal population. Nature 454, 995–999.

Ray, S., and Maunsell, J.H. (2010). Differences in gamma frequencies across

visual cortex restrict their possible use in computation. Neuron 67, 885–896.

Roberts, M.J., Lowet, E., Brunet, N.M., Ter Wal, M., Tiesinga, P., Fries, P., and

De Weerd, P. (2013). Robust gamma coherence between macaque V1 and V2

by dynamic frequency matching. Neuron 78, 523–536.

Rodriguez, R., Kallenbach, U., Singer, W., and Munk, M.H. (2004). Short- and

long-term effects of cholinergic modulation on gamma oscillations and

response synchronization in the visual cortex. J. Neurosci. 24, 10369–10378.

Rohenkohl, G., Bosman, C.A., and Fries, P. (2018). Gamma Synchronization

between V1 and V4 Improves Behavioral Performance. Neuron 100, 953–

963.e3.

Salinas, E., and Sejnowski, T.J. (2001). Correlated neuronal activity and the

flow of neural information. Nat. Rev. Neurosci. 2, 539–550.

Scheyltjens, I., Laramée, M.E., Van den Haute, C., Gijsbers, R., Debyser, Z.,

Baekelandt, V., Vreysen, S., and Arckens, L. (2015). Evaluation of the expres-

sion pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different pro-

moters in the mouse visual cortex. J. Comp. Neurol. 523, 2019–2042.
Cell Reports 35, 109083, May 4, 2021 13

http://refhub.elsevier.com/S2211-1247(21)00416-2/sref42
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref42
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref42
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref43
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref43
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref43
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref44
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref44
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref44
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref45
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref45
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref45
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref46
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref46
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref46
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref47
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref47
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref47
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref48
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref48
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref48
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref49
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref49
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref49
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref50
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref50
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref50
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref51
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref51
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref51
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref51
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref52
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref52
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref52
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref53
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref53
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref54
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref54
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref54
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref55
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref55
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref56
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref56
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref56
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref56
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref57
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref57
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref57
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref58
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref58
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref58
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref59
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref59
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref59
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref60
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref60
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref60
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref61
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref61
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref61
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref62
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref62
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref63
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref63
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref63
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref63
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref64
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref64
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref65
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref65
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref66
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref66
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref67
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref67
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref67
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref67
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref68
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref68
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref68
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref69
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref69
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref69
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref70
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref70
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref71
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref71
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref72
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref72
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref72
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref72
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref73
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref73
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref73
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref74
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref74
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref75
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref75
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref76
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref76
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref76
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref77
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref77
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref77
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref77
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref78
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref78
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref78
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref79
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref79
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref80
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref80
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref80
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref81
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref81
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref81
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref82
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref82
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref82
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref83
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref83
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref84
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref84
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref84
http://refhub.elsevier.com/S2211-1247(21)00416-2/sref84


Article
ll

OPEN ACCESS
Schoffelen, J.M., Oostenveld, R., and Fries, P. (2005). Neuronal coherence as

a mechanism of effective corticospinal interaction. Science 308, 111–113.

Schreiber, S., Fellous, J.M., Tiesinga, P., and Sejnowski, T.J. (2004). Influence

of ionic conductances on spike timing reliability of cortical neurons for supra-

threshold rhythmic inputs. J. Neurophysiol. 91, 194–205.

Sherfey, J.S., Ardid, S., Hass, J., Hasselmo, M.E., and Kopell, N.J. (2018).

Flexible resonance in prefrontal networks with strong feedback inhibition.

PLoS Comput. Biol. 14, e1006357.

Sohal, V.S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin neu-

rons and gamma rhythms enhance cortical circuit performance. Nature 459,

698–702.

Stark, E., Roux, L., Eichler, R., Senzai, Y., Royer, S., and Buzsáki, G. (2014).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eight adult domestic cats (felis catus; four females; mean age 4.2 years; range 3-8 years) were used in this study. We used cats

because the physiology with regard to gamma is highly similar to human and non-human primates (Fries et al., 2008a), both during

wakefulness (Fries et al., 2002; Gray and Viana Di Prisco, 1997) and light anesthesia (Gray et al., 1992). Data from the same animals

were used in a previous study (Ni et al., 2016). All procedures complied with the German law for the protection of animals and were

approved by the regional authority (Regierungspräsidium Darmstadt). After an initial surgery for the injection of viral vectors and a 4-

6 week period for opsin expression, recordings were obtained during a terminal experiment under general anesthesia.

METHOD DETAILS

Viral vector injection
For the injection surgery, anesthesia was induced by intramuscular injection of ketamine (10mg/kg) and dexmedetomidine (0.02 mg/

kg), cats were intubated, and anesthesia wasmaintained with N2O:O2 (60/40%), isoflurane (�1.5%) and remifentanil (0.3 mg/kg/min).

Four cats were injected in area 17 and another four cats in area 21a. Rectangular craniotomies were made over the respective areas

(Area 17: AP [0,�7.5] mm;ML: [0, 5] mm; area 21a: AP [0,-8] mm,ML [9, 15] mm). The areas were identified by the pattern of sulci and

gyri, and the dura mater was removed over part of the respective areas. Three to four injection sites were chosen, avoiding blood

vessels, with horizontal distances between injection sites of at least 1 mm. At each site, a Hamilton syringe (34 G needle size; World

Precision Instruments) was inserted with the use of a micromanipulator and under visual inspection to a cortical depth of 1 mmbelow

the piamater. Subsequently, 2 ml of viral vector dispersion was injected at a rate of 150 nl/min. After each injection, the needle was left

in place for 10 min before withdrawal, to avoid reflux. Upon completion of injections, the dura opening was covered with silicone foil

and a thin layer of silicone gel, the trepanation was filled with dental acrylic, and the scalp was sutured.

We first tried to transfect with AAV5, because this serotype had been successfully used in many studies on different species (Diester

et al., 2011). In one cat, area 17 of the left hemisphere was injected with AAV5-CamKIIa-ChR2-eYFP (titer 4*1013 GC/ml). However, this

did not result in detectable ChR2-eYFP expression. This failure of AAV5 expression is consistent with one previous study suggesting
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that AAV5 is not able to provide transduction in the cerebral cortex of the cat (Vite et al., 2003). Subsequently, we tried both AAV1 and

AAV9 and found robust transfection with both of these serotypes. In one cat, area 17 in the left hemisphere was injected with AAV1-

CamKIIa-hChR2(H134R)-eYFP (titer 8.97*1012 GC/ml) and area 17 in the right hemisphere with AAV9-CamKIIa-ChR2-eYFP (titer

1.06*1013 GC/ml). In two cats, area 17 of the left hemisphere was injected with AAV1-CamKIIa-hChR2(H134R)-eYFP (titer:

1.22*1013 GC/ml). In four cats, area 21a of the left hemisphere was injected with AAV9-CamKIIa-hChR2(H134R)-eYFP (titer:

1.06*1013 GC/ml). The DNA plasmids were provided by Dr. Karl Deisseroth (Stanford University, Stanford, CA). AAV5 viral vectors

were obtained from UNC Vector Core (UNC School of Medicine, University of North Carolina, USA); AAV1 and AAV9 viral vectors

were obtained from Penn Vector Core (Perelman School of Medicine, University of Pennsylvania, USA).

Neurophysiological recordings
For the recording experiment, anesthesia was induced and initially maintained as during the injection surgery, only replacing intuba-

tion with tracheotomy and remifentanyl with sufentanil. After surgery, during recordings, isoflurane concentration was lowered to

0.6%–1.0%, eye lid closure reflex was tested to verify narcosis, and vecuronium (0.25mg/kg/h i.v.) was added for paralysis during

recordings. Throughout surgery and recordings, Ringer solution plus 10% glucose was given (20 ml/h during surgery; 7 ml/h during

recordings), and vital parameters were monitored (ECG, body temperature, expiratory gases).

Each recording experiment consisted of multiple sessions. For each session, we inserted either single or multiple tungsten micro-

electrodes (�1 MU at 1 kHz; FHC), or three to four 32-contact probes (100 mm inter-contact spacing, �1 MU at 1 kHz; NeuroNexus

or ATLAS Neuroengineering). In one cat, one 16-contact probe with 150 mm inter-contact spacing and one 46 mm optic fiber, and

one 16-contact probe with 150 mm inter-contact spacing and four 46 mm optic fibers were used (Plexon V- and U-probe, respectively).

Standard electrophysiological techniques (Tucker Davis Technologies, TDT) were used to obtain multi-unit activity (MUA) and LFP re-

cordings. For MUA recordings, the signals were filtered with a passband of 700 to 7000 Hz, and a threshold was set to retain the spike

times of small clusters of units. For LFP recordings, the signals were filteredwith a passband of 0.7 to 250Hz and digitized at 1017.1 Hz.

Photo-stimulation
Optogenetic stimulation was done with a 473 nm (blue) laser or with a 470 nm (blue) LED (Omicron Laserage). A 594 nm (yellow) laser

was used as control. Laser light was delivered to cortex through a 100 mmor a 200 mmdiameter multimode fiber (Thorlabs), LED light

through a 2mm diameter polymer optical fiber (Omicron Laserage). Fiber endings were placed just above the cortical surface, imme-

diately next to the recording sites with a slight angle relative to the electrodes. Laser waveform generation used custom circuits in

TDT, and timing control used Psychtoolbox-3, a toolbox in MATLAB (MathWorks) (Brainard, 1997).

For white noise stimulation, the laser was driven by normally distributed white noise, with light intensities updated at a frequency of

1017.1 Hz. For each recording session, the mean of the normal distribution was chosen to fall into the lower half of the dynamic range

of the laser-response curve of the recordedMUA. This resulted inmean values in the range of 3-12mW/mm2 (13MUA recording sites

in the 3 cats showing expression of ChR2 in area 17). The standard deviation (SD) of the normal distribution was scaled to be 1/2 the

mean. The resulting distributions were truncated at 3.5 SDs. The resulting range of laser intensities always excluded both zero and

maximal available laser intensities and thereby avoided clipping.

Histology
After conclusion of recordings, approximately five days after the start of the terminal experiment and still under narcosis, the animal

was euthanized with pentobarbital sodium and transcardially perfused with phosphate buffered saline (PBS) followed by 4% para-

formaldehyde. The brain was removed, post-fixed in 4% paraformaldehyde and subsequently soaked in 10%, 20% and 30% su-

crose-PBS solution, respectively, until the tissue sank. The cortex was sectioned in 50 mm thick slices, which were mounted on glass

slides in antifade medium, protected with coverslips, and subsequently imaged with a confocal laser scanning microscope (CLSM,

Nikon C2 90i, Nikon Instruments) for eYFP-labeled neurons.

Immunohistochemistry
In two cats, one with injections in area 17 and one with injections in area 21a, slices were processed as described above and addi-

tionally stained for parvalbumin (PV) and gamma-Aminobutyric acid (GABA). To this end, slices were preincubated in 10% normal

goat serum (NGS) with 1% bovine serum albumin (BSA) and 0.5% Triton X-100 in phosphate buffer (PB) for 1 h at room temperature

to block unspecific binding sites. Floating slices were stained for PV (overnight, rabbit anti-Parvalbumin, NB 120-11427, Novus Bi-

ologicals) and GABA (48 hours, rabbit anti-GABA, ABN131, Merck Millipore) in 3% NGS containing 1% BSA and 0.5% Triton X-100.

After washing two times 15 min in PB, the slices were incubated with the secondary antibody (goat anti-rabbit Alexa Fluor 647, A-

21244, Thermo Fisher Scientific) in 3% NGS containing 1% BSA and 0.5% Triton X-100 for 1 h at room temperature. Finally, slices

were again washed in PB, protected with coverslips and imaged with a Zeiss CLSM, using a 25X water immersion objective.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information about the relevant statistical test can be found in the corresponding results section with additional information concern-

ing data preprocessing and selection in the following Data analysis section. Information about sample variables and size is indicated
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in the results section, and information pertaining to figure panels can be found in the corresponding figure legend. In general, we

applied non-parametric statistical tests, thereby avoiding assumptions about the distributions of our empirical data.

Data analysis
All data analysis was performed using custom code and the Fieldtrip toolbox (Oostenveld et al., 2011), both written in MATLAB

(MathWorks).

Spike densities, MUA-laser cross-correlation, LFP power spectra, and MUA-LFP PPCs
MUA rate was smoothed with a Gaussian (for constant light stimulation: SD = 12.5 ms; for stimulation with pulse trains and sinusoids:

SD = 1.25 ms; in each case truncated at ± 2 SD) to obtain the spike density.

To quantify the locking of neuronal responses to optogenetic stimulation, we calculated the Pearson correlation coefficient be-

tween MUA spike density and laser intensity as a function of time shift between them.

LFP power spectra were calculated for data epochs that were adjusted for each frequency to have a length of 4 cycles and moved

over the data in a sliding-window fashion in 1 ms steps. Each epoch was multiplied with a Hann taper, Fourier transformed, squared

and divided by the window length to obtain power density per frequency. For the different stimulation frequencies f, LFP power is

shown as ratio of power during stimulation versus pre-stimulation baseline (�0.5 s to �0.2 s relative to stimulation onset).

MUA-LFP locking was quantified by calculating theMUA-LFP PPC (pairwise phase consistency), a metric that is not biased by trial

number, spike count or spike rate (Vinck et al., 2010). Spike and LFP recordingswere always taken fromdifferent electrodes. For each

spike, the surrounding LFP was Hann tapered and Fourier transformed. Per spike and frequency, this gave the MUA-LFP phase,

which should be similar across spikes, if they are locked to the LFP. This phase similarity is quantified by the PPC as the average

phase difference across all possible pairs of spikes. For a given MUA channel, MUA-LFP PPC was calculated relative to all LFPs

from different electrodes and then averaged.

Estimation of response latency with sinusoidal stimulation
Sinusoidal stimulation of different frequencies enabled estimation of neuronal response latencies. This is highly relevant when opto-

genetic stimulation is used to produce temporal activation patterns at high frequencies. In addition, it validates that the responses we

observe are a result of optogenetic stimulation: Neuronal response latencies to optogenetic stimulation are typically on the order of 3-

8 ms; By contrast, shorter latency responses are likely to reflect photo-electric artifacts (Cardin et al., 2010). To investigate response

latencies, we averaged MUA responses aligned to the peaks of the sinusoids (Figures S5B–S5F). During sinusoidal stimulation, the

light was modulated between the respective maximal intensity and nearly zero intensity. Thus, the light crossed the threshold for

effective neuronal stimulation at an unknown intensity, and it is not possible to calculate response latencies in the same way as

has been done for pulse trains. Therefore, we used a technique of latency estimation that has been developed in the study of syn-

chronized oscillations, and that is based on the slope of the spectrum of the relative phase between two signals (Schoffelen et al.,

2005), in our case the light intensity and the MUA. Figure 3C shows this relative-phase spectrum and reveals a strictly linear relation-

ship between relative phase and frequency. A linear frequency-phase relation is a signature of a fixed time lag, because a given time

lag translates into increasing phase lags for increasing frequencies (Schoffelen et al., 2005). The slope of this linear relationship al-

lowed us to infer a latency of 5.5 ms, in good agreement with previous reports of neuronal latencies.

Estimation of Granger causality (GC) between light time course and MUA spike trains
The GC spectrum was first estimated separately for each recording site and subsequently averaged over sites. For each trial, we

estimated the Fourier transforms of the input (laser) and the output (MUA). Specifically, each trial was segmented into non-overlap-

ping epochs of 500 ms length. Per epoch, the time series of the input and the output were multiplied with a Hann taper, they were

zero-padded to a length of 1000 ms, and their Fourier transforms (FTs) were obtained. The FTs were used to calculate the power-

spectral densities (PSDs) of the input and of the output, and the cross-spectral density (CSD) between input and output. CSDs

andPSDswere averaged over trials and used for the estimation of GCbymeans of non-parametric spectral matrix factorization (Dha-

mala et al., 2008). For the example GC spectrum (Figure 4C), the error region was determined by a bootstrap procedure, with 100

iterations, each time randomly choosing 30% of the trials. The shown error boundary is the region containing 95% of the bootstrap-

ped estimates. For the average GC spectrum (Figure 4E), the error region indicates the standard error of the mean across the

recording sites.

Statistical testing
All inferences were based on the combined data of all animals, for which a given experiment was performed. The resulting inferences

are limited to the studied sample of animals, as in most neurophysiological in-vivo studies.

High-resolution spectra of LFP power changes andMUA-LFP PPCwere compared between stimulation with blue light and control

stimulation with yellow light (Figures 1I and 1J). We calculated paired t tests between spectra obtained with blue and yellow light,

across recording sites. Statistical inference was not based directly on the t tests (and therefore corresponding assumptions will

not limit our inference), but the resulting t-values were merely used as a well-normalized difference metric for the subsequent clus-

ter-based non-parametric permutation test. For each of 10,000 permutations, we did the following: 1) We made a random decision
Cell Reports 35, 109083, May 4, 2021 e3



Article
ll

OPEN ACCESS
per recording site to either exchange the spectrum obtained with blue light and the spectrum obtained with yellow light or not; 2) We

performed the t test; 3) Clusters of adjacent frequencies with significant t-values (p < 0.05) were detected, and t-values were summed

over all frequencies in the cluster to form the cluster-level test statistic. 4) The maximum and the minimum cluster-level statistic were

placed intomaximum andminimum randomization distributions, respectively. For the observed data, clusters were derived as for the

randomized data. Observed clusters were considered significant if they fell below the 2.5th percentile of the minimum randomization

distribution or above the 97.5th percentile of the maximum randomization distribution (Maris and Oostenveld, 2007). This corre-

sponds to a two-sided test with correction for the multiple comparisons performed across frequencies (Nichols and Holmes, 2002).

PING model
The neurons in the PING model are Hodgkin-Huxley-like point neurons. The excitatory population consists of a simplified version of

model pyramidal neurons introduced by (Traub et al., 1991), the reduced Traub-Miles (RTM). The inhibitory population consists of

model basket cells introduced by (Wang and Buzsáki, 1996). The parameters for the model are presented in the tables below,

and we refer to the original publication of the model for more details (Börgers, 2017).

PING Neuron parameters:
C (mF/cm2) vNa (mV) vK (mV) vL (mV) gNa (mS/cm2) gK (mS/cm2) gL (mS/cm2)

E (RTM) 1 50 �100 �67 100 80 0.1

I (WB) 1 55 �90 �65 35 9 0.1
PING Network parameters:
NE 200

NI 50

IE 1.5 mA/cm2

sE 0.05 mA/cm2

II 0 mA/cm2

gEE 0 mS/cm2

gEI 0.25 mS/cm2

gII 0.25 mS/cm2

pEI 0.5

pIE 0.5

pII 0.5

tr,E 0.5 ms

tpeak,E 0.5 ms

td,E 3 ms

vrev,E 0 mV

tr,I 0.5 ms

tpeak,I 0.5 ms

td,I 9 ms

vrev,I �75 mV
PING+M model
In order to reproduce the experimentally observed hysteresis effects, we implemented spike frequency adaption in the model pyra-

midal neurons. The PING+Mmodel is taken from the Adaptation-based, DeterministicWeak PINGmodel fromBörgers (Chapter 32 of

(Börgers, 2017)). In this model, the previous PING model is modified by the addition of a model M-Current to the pyramidal neurons.

Otherwise, the network is identical to the PING model described above.

PING+M Neuron parameters:
gM 0.4
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LIF model
In order to investigate the generality of themodel results, we next implemented a simple network of leaky-integrate-and-fire neurons.

This network was composed of 80%excitatory neurons and 20% inhibitory neurons, coupled via instantaneous synapses. Excitatory

neurons were not mutually connected, while the remaining connectivity was all-to-all, with synapse magnitude randomly distributed

uniformly between 0 and the respective post-synaptic-potential (PSP) value. Each neuron accumulates postsynaptic potentials until

the threshold for spiking is reached. Upon spiking, each neuron transmits to its synaptic partners a post synaptic event and its po-

tential is reset. The membrane voltage of the model LIF neurons is given by: dV/dt = - V/C + I/C, with the membrane timescale tau =

R*C, where R is the input resistance of the neuron, C is the membrane capacitance, and I includes both basal and synaptic currents.

We drove the network with symmetric single slow sine waves or with white noise. The dynamics of the network were evaluated

numerically at a resolution of tau using the Euler method.

V = V + dt � ð � ðV � EÞ + I � RÞ = tau

LIF Network parameters:
NE 200

NI 50

IE 1.5 nA

sE 0.05 mA

II 0 mA

PSPEE 1.1 mV

PSPIE 0.6 mV

PSPEI �0.8 mV

PSPII �0.8 mV

Dt 0.5 ms

C 0.6 nF

R 40 Mohms

Vspike 30 mV

Vthresh �40 mV

Vreset �75 mV

Vleak �60 mV
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