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Abstract 

We examine the structure of compact metal nanoparticles (NPs) forming polyhedral sections of 

the ideal cubic lattice, face centered (fcc), body centered (bcc), and simple (sc), cubic, which are 

confined by facets characterized by densest, second, and third densest {hkl} monolayers of the 

lattice. Together with the constraint that the NPs exhibit the same point symmetry as the ideal 

cubic lattice, i.e. Oh, different types of generic NPs serve for the definition of general compact 

polyhedral cubic NPs. Their structural properties, such as shape, size, and surface facets, are dis-

cussed in analytical detail with visualization of characteristic examples. This illustrates the com-

plexity of seemingly simple nanoparticles in a quantitative account. The geometric relationships 

of the model particles can also be used to estimate shapes and sizes of real compact metal nano-

particles observed by experiment. 
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I.  Introduction 

Nanoparticles of many sizes, shapes, and composition have become the target of a large num-

ber of recent experimental and theoretical studies. This is due to their exciting physical and 

chemical properties [1, 2] which deviate from those of corresponding bulk material. Here we 

mention only important applications in medicine [3] or in catalytic chemistry where metal nano-

particles have become ubiquitious [4, 5]. 

Physical and chemical properties of real metal nanoparticles (NP) observed by experiment are 

intimately connected with their size and shape since the individual NP atoms are exposed to dif-

ferent local environments. Atoms close to the particle surface experience fewer neighbors com-

pared to those inside the particle bulk which influences their interatomic binding and, hence, 

their physical behavior. The variation of atom environments in finite particles depends strongly 

on the particle size since the relative number of surface atoms compared with those of the parti-

cle bulk becomes smaller with increasing size. This suggests that deviations from a crystalline 

bulk structure with its equivalent atom centers arranged in three-dimensional periodicity become 

less important as the particle size increases. 

In many cases, structural properties of metal NPs with only a few atoms do not reflect those 

of corresponding bulk crystals and there are no general guidelines as to interatomic distances or 

angles or as to symmetry. This is illustrated by theoretical studies on silver NPs up to Ag12 [6] 

where equilibrium structures are found to deviate substantially from those of local sections of the 

face-centered cubic crystal describing bulk silver. Further, very small NPs offer different stable 

isomers with varying shape and structure [6]. Larger compact metal NPs can also exhibit sym-

metry properties which are not compatible with those of bulk crystals. As examples, many alka-

line earth and transition metal (Nickel, Cobalt) NPs in gas phase with up to 5000 atoms [7, 8] are 

believed to form compact particles with icosahedral symmetry Ih including 5-fold rotational axes 

which cannot appear in perfect bulk crystals. Their structure can be described by the concept of 

polyhedral atom shell filling which yields preferred NP sizes connected with so-called magic 

numbers of atoms [8, 9]. 

Many larger metal NPs have been shown by experiment to exhibit internal cubic Oh symmetry 

which can be associated with compact sections of cubic bulk crystal structures, both face- and 

body-centered cubic, or can be approximated accordingly [10]. Examples are Aluminum and In-

dium NPs between 1000 and 10000 atoms [7]. They are suggested to form compact polyhedral 
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particles of internal face-centered cubic structure where confining facets are described by sec-

tions of densest (low Miller index) monolayers referring to different {hkl} families. Amongst 

these, cuboctahedral shapes enclosed by both triangular {111} and square {100} facets, have 

been discussed [7]. The corresponding NPs represent a reasonable approximation to spherical 

NPs since the atoms at the different facet surfaces do not vary too much in their distance from 

the NP center. Also other high-symmetry structures representing compact sections of face-cen-

tered cubic bulk crystals have been proposed as possible structures of compact metal NPs in the 

literature where we mention only octahedral NPs [7, 8]. Finally, metal NPs of Oh symmetry de-

scribed by sections of body-centered cubic bulk crystals have been reported [7, 11]. Here theo-

retical structure studies can help to describe and classify ideal compact cubic nanoparticles 

which allows to identify structural properties of real metal nanoparticles observed in experiment. 

In this work, extending a previous theoretical analysis [12], we examine theoretical nanoparti-

cles forming polyhedral sections of the ideal cubic lattice, face centered (fcc) and body centered 

(bcc) cubic which can be considered models of real metal particles. In addition simple (sc), cubic 

nanoparticles are included for completeness. These particles are assumed to be confined by fac-

ets describing finite sections of densest, second, and third densest monolayers described by Mil-

ler indexed {hkl} families, {100}, {110}, and {111}. Together with the constraint that the NPs 

exhibit the same point symmetry as the ideal cubic lattice, i.e. Oh, there are different types of ge-

neric NPs which serve for the definition of general polyhedral NPs as examples of finite crystal-

lographic objects. Their structural properties , such as shape, size, and surface facets, are dis-

cussed in detail with visualization of characteristic examples. This illustrates the complexity the 

seemingly simple model nanoparticles in a quantitative account. The different examples can also 

be used as a repository for structures of compact NPs with internal cubic lattice. 

All analytical results of this work have been obtained by extended calculus based on number 

theory and verified by mathematical proofs of induction, not discussed in detail, as well as by ex-

tended visualization using the Balsac software developed by the author [13]. The paper is 

grouped in three sections dealing with the three types of cubic lattices separately where the sec-

tions are structured identically and presented in parts with very similar phrasing to enable easy 

comparison. Further structural details can also be found in the Supplement. 
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II.  Formalism and Discussion 

In the following we discuss structural properties of highly symmetric nanoparticles with atom 

arrangements reflecting local sections of the simple (sc), body centered (bcc), and face centered 

(fcc) cubic bulk. Thus, atom positions inside the nanoparticle are given by 

R  =  n1 R1  +  n2 R2  +  n3 R3  +  o (A.1) 

where R1, R2, R3 are lattice vectors of the corresponding crystal lattice and n1, n2, n3 are integer 

multiples describing the bulk periodicity. Further, vector o denotes the lattice origin describing a 

high symmetric site (Oh symmetry) of the cubic lattice where o is assumed to form the origin of a 

Cartesian coordinate system, i.e. o = (0, 0, 0). In the following, we treat discuss nanoparticles re-

flecting the three different cubic lattice structures separately. 

A.  Face Centered Cubic (fcc) Nanoparticles  

The face centered cubic (fcc) lattice can be defined as a non-primitive simple cubic lattice by 

lattice vectors R1, R2, R3 in Cartesian coordinates together with four lattice basis vectors r1 to r4 

according to 

R1 = ao (1, 0, 0) , R2 = ao (0, 1, 0) , R3 = ao (0, 0, 1) (A.1a) 

r1 = ao (0, 0, 0) , r2 = ao/2 (0, 1, 1) , r3 = ao/2 (1, 0, 1) , r3 = ao/2 (1, 1, 0) (A.1b) 

where ao is the lattice constant. The three densest monolayer families {hkl} of the fcc lattice are 

described by six {100} netplanes (square mesh), twelve {110} (rectangular mesh), and eight 

{111} netplanes (hexagonal mesh, highest atom density) where distances between adjacent par-

allel netplanes are given by 

d{100} = ao/2 , d{110} = ao/(22) , d{111} = ao/3 (A.2) 

The point symmetry of the fcc lattice is characterized by Oh with high symmetry centers at all 

atom sites and at the void centers of each elementary cell. 

Compact face centered cubic nanoparticles (NPs) are confined by finite sections of monolay-

ers (facets) whose structure is described by different netplanes (hkl). If they exhibit central Oh 

symmetry and show an (hkl) oriented facet they must also include all other symmetry related fac-

ets characterized by orientations of the complete {hkl} family. Thus, surfaces of general fcc NPs 

of Oh symmetry are described by facets whose orientation can be defined by those of different 

{hkl} families (denoted {hkl} facets in the following). As an example, we mention the {111} 

family with its eight netplane orientations (1 1 1). These facets are confined by edges which 
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can be described by families of Miller index directions <hkl> (denoted <hkl> edges in the fol-

lowing). In addition, NP corners can be characterized by directions <hkl> pointing from the NP 

center to the corresponding corner (denoted <hkl> corners in the following). Further, according 

to the symmetry of the fcc host lattice possible NP centers can only be atom sites or Oh sym-

metry void sites of the lattice. Thus, we distinguish between atom centered and void centered fcc 

NPs denoted ac and vc in the following. 

Assuming an fcc NP to be confined by facets of the three cubic netplane families, {100},  

{110}, and {111}, its size and shape can be described by three integer parameters, N, M, K  

(polyhedral NP parameters), which refer to the distances D{100}, D{110}, D{111} (NP diameters) be-

tween parallel monolayer facets of a given netplane family expressed by multiples of corre-

sponding netplane distances where 

D{100} = 2N d{100} , D{110} = 2M d{110} , D{111} = K d{111} (A.3) 

with d{hkl} according to (A.2), Thus, in the most general case fcc NPs can be denoted  

fcc(N, M, K). If a facet type does not appear in the NP the corresponding parameter value N, M, 

or K is replaced by a minus sign. As an example, an fcc NP with only {100} and {111} facets is 

denoted fcc(N, -, K). These notations will be used in the following. Further, auxiliary parameters 

g, h, h’ with 

g = 0     (ac; K even) , = 1     (vc; K odd) (A.4) 

h = 0     (N + K even) , = 1     (N + K odd) (A.5) 

h’ = 0     (M + K even) , = 1     (M + K odd) (A.6) 

will be used throughout Sec. A. 

A.1.  Generic fcc Nanoparticles, fcc(N, -, -), (-, M, -), and (-, -, K) NPs 

Generic fcc nanoparticles (NPs) of Oh symmetry are confined by facets with orientations of 

only one netplane family {hkl}. Here we focus on {100}, {110}, and {111} facets derived from 

the densest monolayers of the fcc lattice which offer the flattest NP facets. This allows to distin-

guish between different generic NP types. 

(a) Generic cubic fcc NPs, denoted fcc(N, -, -) (the notation is explained above), are confined 

by all six {100} monolayers with distances D{100} = 2N d{100} between parallel monolayers. 

This yields six {100} facets as well as possibly eight {111} facets, see Fig. A.1. 
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The {100} facets for ac, N even or vc, N odd are square shaped with <100> edges of length 

N ao while for ac, N odd or vc, N even they are octagonal (capped square) with alter-

nating edges, four <100> of length (N - 1) ao and four <110> of length ao/2. 

The {111} facets appear only for ac, N odd or vc, N even and are triangular shaped with 

three <110> edges of length ao/2. 

(a)  (b)  

Figure A.1.  Atom ball models of atom centered generic cubic NPs,  

(a) fcc(6, -, -,) and (b) fcc(7, -, -,). The black lines sketch the square and 

octagonal {100} facets as well as the triangular {111} facet. 

The total number of NP atoms, Nvol(N, -, -), and the number of facet atoms, Nfacet(N, -, -), 

(outer polyhedral shell), are given with (A.5) by 

Nvol(N, -, -) = [(2N + 1)3 + 1]/2 - h (A.7) 

Nfacet (N, -, -) = 12N2 + 2 (1 - h) (A.8) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given with (A.5) by 

s<100>(N, -, -) = N d{100} (A.9a) 

s<110>(N, -, -) = 2N d{110} (A.9b) 

s<111>(N, -, -) = (3N - h)/2 d{111} (A.9c) 

with d{hkl} according to (A.2). These quantities will be used in Secs. A.2. 

(b) Generic rhombohedral fcc NPs, denoted fcc(-, M, -), are confined by all twelve {110} 

monolayers with distances D{110} = 2M d{110} between parallel monolayers. This yields 

twelve {110} facets as well as possibly six smaller {100} and eight {111} facets, see  

Figs. A.2, A.3. Corresponding edge parameters n, m, k depending on M are given in  

Table A.1 where M is represented by M = 4p + x with p, x integer. 
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The {100} facets appear only for ac, M odd or vc, M even and are square shaped with four 

<100> edges of length n ao. 

The {110} facets are rhombic, hexagonal, or octagonal shaped with two <100> edges of 

length n ao,  two <110> edges of length m ao/2, and four <111> edges of length  

k 3ao. 

The {111} facets are triangular shaped with three <110> edges of length m ao/2. 

Centering M = 4p M = 4p + 1 M = 4p + 2 M = 4p + 3 

ac n = 0 

m = 0 

k = M/4 

n = 1 

m = 3 

k = (M - 5)/4 

n = 0 

m = 2 

k = (M - 2)/4 

n = 1 

m = 1 

k = (M - 3)/4 

vc n = 1 

m = 2 

k = (M - 4)/4 

n = 0 

m = 1 

k = (M - 1)/4 

n = 1 

m = 0 

k = (M - 2)/4 

n = 0 

m = 3 

k = (M - 3)/4 

 

Table A.1.  Edge parameters n, m, k of {100}, and {110} and {111} fac-

ets of fcc(-, M, -) NPs, see text. Values n = m = 0 result in rhombic,  

n = 0, m  0 or n  0, m = 0 in hexagonal, and n  0, m  0 in octagonal 

facets. 

(a)  (b)  

Figure A.2.  Atom ball models of atom centered generic rhombohedral 

NPs for M even, (a) fcc(-, 12, -) and (b) fcc(-, 10, -). The black lines 

sketch the (capped) rhombic {110} and triangular {111} facets. 
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(a)  (b)  

Figure A.3.  Atom ball models of atom centered generic rhombohedral 

NPs for M odd, (a) fcc(-, 13, -) and (b) fcc(-, 11, -). The black lines 

sketch the (capped) rhombic {110} and triangular {111} facets. 

The total number of NP atoms, Nvol(-, M, -), and the number of facet atoms, Nfacet(-, M, -), 

(outer polyhedral shell) are given by 

Nvol(-, M, -) = (2 M3 + 3 M2 + 2 M + b)/2 (A.10) 

Nfacet(-, M, -) = 3 M2 + c (A.11) 

with 

Centering M = 4p M = 4p + 1 M = 4p + 2 M = 4p + 3 

ac b = 2 

c = 2 

b = -5 

c = 11 

b = 6 

c = 6 

b = -1 

c = 3 

vc b = 0 

c = 6 

b = 5 

c = 3 

b = -4 

c = 2 

b = 1 

c = 11 

 

Table A.2.  Constants b, c used for number of NP atoms of  

fcc(-, M, -) NPs, see text. 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(-, M, -) = M d{100} (ac, M even; vc, M odd) (A.12a) 

 = (M - h’) d{100} (ac, M odd; vc, M even) (A.12b) 

s<110>(-, M, -) = M d{110}  (A.12c) 

s<111>(-, M, -) = 3M/4 d{111} (ac, M = 4p; vc, M = 4p + 2) (A.12d) 

 = (3M - 3)/4 d{111} (ac, M = 4p + 1; vc, M = 4p + 3) (A.12e) 

 = (3M - 2)/4 d{111} (ac, M = 4p + 2; vc, M = 4p) (A.12f) 

 = (3M - 1)/4 d{111} (ac, M = 4p + 3; vc, M = 4p + 1) (A.12g) 
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with d{hkl} according to (A.2). These quantities will be used in Secs. A.2. 

(c) Generic octahedral fcc NPs, denoted fcc(-, -, K), are confined by all eight {111} mono-

layers with distances D{111} = K d{111} between parallel monolayers. This yields eight 

{111} facets, see Fig. A.4 where ac (K even) and vc (K odd) NPs are structurally identical. 

All {111} facets are triangular shaped with three <110> edges of length K ao/2. 

 

Figure A.4.  Atom ball model of an atom centered generic octahedral 

NP, fcc(-, -, 12). The black lines sketch the triangular {111} facet shapes. 

The total number of NP atoms, Nvol(-, -, K), and the number of facet atoms, Nfacet(-, -, K), 

(outer polyhedral shell), are given by 

Nvol(-, -, K) = (K + 1) [2 (K + 1)2 + 1]/3 (A.13) 

Nfacet(-, -, K) = 4 K2 + 2 (A.14) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(-, -, K) = K d{100} (A.15a) 

s<110>(-, -, K) = K d{110} (A.15b) 

s<111>(-, -, K) = K/2 d{111} (A.15c) 

with d{hkl} according to (A.2). These quantities will be used in Secs. A.2. 
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Table A.3 collects types, constraints, and shapes of all generic fcc NPs. 

Generic type Constraints Facets Corners 

Cubic 

   fcc(N, -, -) 

ac, N even, 

vc, N odd 

{100}  6 

{110}  0 

{111}  0 

<100>  0 

<110>  0 

<111>  8 

 ac, N odd, 

vc, N even 

{100}  6 

{110}  0 

{111}  8 

<100>  0 

<110>  0 

<111>  8 & 

Rhombohedral 

   fcc(-, M, -) 

ac, M = 4p {100}  0 

{110}  12 

{111}  0 

<100>  6 

<110>  0 

<111>  8 

 ac, M = 4p + 1 

 M = 4p + 3 

vc, M = 4p 

{100}  6 

{110}  12 

{111}  8 

<100>  6 & 

<110>  0 

<111>  8 & 

 ac, M = 4p + 2 

vc, M = 4p + 1 

 M = 4p + 3 

{100}  0 

{110}  12 

{111}  8 

<100>  6 

<110>  0 

<111>  8 & 

 vc,  M = 4p + 2 {100}  6 

{110}  12 

{111}  0 

<100>  6 & 

<110>  0 

<111>  8 

Octahedral 

   fcc(-, -, K) 

ac, K even {100}  0 

{110}  0 

{111}  8 

<100>  6 

<110>  0 

<111>  0 

 vc, K odd {100}  6 + 

{110}  12 

+ 

{111}  8 

<100>  6 & 

<110>  0 

<111>  0 

 

Table A.3.  Types and notations of all generic fcc NPs where “ac“ de-

notes atom centered and “vc“ void centered NPs. Further, the superscript 

label “&” denotes corner quadruplets about <100> and corner triplets 

about <111>. 

A.2.  Non-generic fcc Nanoparticles 

Non-generic fcc nanoparticles of Oh symmetry can be either atom or void centered and show 

facets with orientations of several {hkl} netplane families. This can be considered as combining 

confinements of the corresponding generic NPs discussed in Sec. A.1 with suitable polyhedral 

parameters N, M, K sharing their symmetry center (atom or void). Here we discuss non-generic 

fcc NPs which combine constraints of up to three generic NPs, cubic fcc(N, -, -), rhombohedral 

fcc(-, M, -), and octahedral fcc(-, -, K). These allow {100}, {110}, as well as {111} facets and 
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will be denoted fcc(N, M, K) in the following. Clearly, the corresponding polyhedral parameters 

N, M, K depend on each other and determine the overall NP shape. In particular, if a participating 

generic NP encloses another participant it will not contribute to the overall NP shape and the re-

spective {hkl} facets will not appear at the surface of the non-generic NP. In the following, we 

consider the three types of non-generic NPs which combine constraints due to two generic NPs 

(Secs. A.2.1-3) before we discuss the most general case of fcc(N, M, K) NPs in Sec. A.2.4. 

A.2.1  Combining (100) and (110) Facets, fcc(N, M, -) NPs 

Non-generic cubo-rhombic NPs, denoted fcc(N, M, -), are confined by facets referring to the 

two generic NPs, fcc(N, -, -) (cubic) and fcc(-, M, -) (rhombohedral). Thus, they can show {100} 

as well as {110} facets (apart from {111} microfacets) depending on the polyhedral parameters 

N, M. Clearly, both generic NPs must exhibit the same centering, atom centered (ac) or void (vc) 

centered, to result in a non-generic fcc NP of Oh symmetry. If the edges of the cubic NP  

fcc(N, -, -) lie inside the rhombohedral NP fcc(-, M, -) the resulting combination fcc(N, M, -) will 

be generic cubic which can be expressed formally by 

s<110>(N, -, -)  s<110>(-, M, -) (A.16) 

leading, according to (A.9), (A.12), to 

2N  M (A.17) 

for both ac and vc NPs. On the other hand, if the corners of the rhombohedral NP fcc(-, M, -) lie 

inside the cubic NP fcc(N, -, -) the resulting combination fcc(N, M, -) will be generic rhombohe-

dral which can be expressed formally by 

s<100>(-, M, -)  s<100>(N, -, -) (A.18) 

leading, according to (A.9), (A.12) with (A.6), to 

N  (M - h’) (A.19) 

Thus, the two generic NPs intersect and define a true non-generic NP fcc(N, M, -) offering both 

{100} and {110} facets only for polyhedral parameters N, M where with (A.6) 

N + h’ < M < 2N (A.20) 

while fcc(N, M, -) is generic cubic for larger M according to (A.17) and generic rhombohedral 

for smaller M according to (A.19). This suggests that generic cubic and rhombohedral fcc NPs 

can be considered as special cases of non-generic NPs fcc(N, M, -) where with (A.6) 

fcc(N, -, -) = fcc(N, M = 2N, -) (cubic) (A.21a) 

fcc(-, M, -) = fcc(N = M - h’, M, -) (rhombohedral) (A.21b) 
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Parameters N, M provide additional information about geometric properties of the NPs de-

scribing the shape and all facet edges. In the most general case, cubo-rhombic fcc(N, M, -) NPs 

exhibit six {100} facets, twelve {110} facets, and eight smaller {111} facets, see Figs. A.5, A.6. 

Corresponding edge parameters n, m, k depending on N, M are given in Table A.4 where M is 

represented by M = 4p + x with p, x integer. 

The {100} facets for ac, N even or vc, N odd are square shaped with four <100> edges of length  

n ao while for ac, N odd or vc, N even they are octagonal (capped square) with alternating 

edges, four <100> of length (n - 2) ao and four <110> of length ao/2. 

The {110} facets are octagonal (hexagonal) shaped with two <100> edges of length n ao,  two 

<110> edges of length m ao/2, and four <111> edges of length k 3ao. 

The {111} facets are triangular shaped with three <110> edges of length m ao/2. 

 

Centering M = 4p M = 4p + 1 M = 4p + 2 M = 4p + 3 

ac 

N even 

n = M - N 

m = 0 

k = (2N - M)/4 

n = M - N 

m = 3 

k = (2N - M - 3)/4 

n = M - N 

m = 2 

k = (2N - M - 2)/4 

n = M - N 

m = 1 

k = (2N - M - 1)/4 

ac 

N odd 

n = M - N + 1 

     + ext 

m = 0 

k = (2N - M - 2)/4 

n = M - N + 1 

     + ext 

m = 3 

k = (2N - M - 5)/4 

n = M - N + 1 

     + ext 

m = 2 

k = (2N - M - 4)/4 

n = M - N + 1 

     + ext 

m = 1 

k = (2N - M - 3)/4 

vc 

N odd 

n = M - N 

m = 2 

k = (2N - M - 2)/4 

n = M - N 

m = 1 

k = (2N - M - 1)/4 

n = M - N 

m = 0 

k = (2N - M)/4 

n = M - N 

m = 3 

k = (2N - M - 3)/4 

vc 

N even 

n = M - N + 1 

     + ext 

m = 2 

k = (2N - M - 4)/4 

n = M - N + 1 

     + ext 

m = 1 

k = (2N - M - 3)/4 

n = M - N + 1 

     + ext 

m = 0 

k = (2N - M - 2)/4 

n = M - N + 1 

     + ext 

m = 3 

k = (2N - M - 5)/4 

 

Table A.4.  Edge parameters n, m, k of {100}, and {110} and {111} fac-

ets of fcc(N, M, -) NPs, see text. Values m = 0 result in hexagonal rather 

than octagonal facets. Further, “+ ext” indicates that each {110} facet is 

extended by two atom rows of length (M - N - 1) ao along <100>. 
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(a)  (b)  

Figure A.5.  Atom ball models of atom centered cubo-rhombic NPs for 

M even, (a) fcc(12, 16, -) and (b) fcc(13, 18, -). The black lines sketch the 

(capped) square {100}, (capped) hexagonal {110} and triangular {111} 

facets. 

(b)  (d)  

Figure A.6.  Atom ball models of atom centered cubo-rhombic NPs, for 

M odd, (b) fcc(13, 17, -) and (d) fcc(12, 15, -). The black lines sketch the 

(capped) square {100}, (capped) hexagonal {110} and triangular {111} 

facets. 

The total number of NP atoms, Nvol(N, M, -), and the number of facet atoms, Nfacet(N, M, -), 

(outer polyhedral shell) are given with (A.10), (A.11) by 

Nvol(N, M, -) = Nvol(-, M, -) - (M - N) [4 (M - N)2 - 1] - a (A.22) 

a = 0 (N + M even) 

 = 3 (N + M odd: ac, M even; vc, M odd) 

 = -3 (N + M odd: ac, M odd; vc, M even) 

Nfacet(N, M, -) = Nfacet (-, M, -) - c (A.23) 

c = 0     (ac, N even; vc, N odd) , = 6     (ac, N odd; vc, N even) 
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The present discussion allows a classification of fcc(N, M, -) NPs for all combinations of pol-

yhedral parameters N, M. This includes generic NPs where one parameter defines the structure 

already uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table A.5 illustrates all possible NP types. 

 

Constraints NP types  fcc Isomorphs 

M  2N Generic cubic (N, -, -) = 

(N, M = 2N, -) 

N  M  2N Cubo-rhombic (N, M, -) 

M  N Generic rhombohedral (-, M, -) = 

(N = M - h’, M, -) 

 

Table A.5.  Constraints and types including isomorphs of atom (ac) and 

void centered (vc) fcc(N, M, -) NPs with (A.6). 

A.2.2  Combining (100) and (111) Facets, fcc(N, -, K) NPs 

Non-generic cubo-octahedral NPs, denoted fcc(N, -, K), are confined by facets referring to 

the two generic NPs, fcc(N, -, -) (cubic) and fcc(-, -, K) (octahedral). Thus, they can show {100} 

as well as {111} facets depending on the polyhedral parameters N, K. Clearly, both generic NPs 

must exhibit the same centering, atom centered (ac, K even) or void centered (vc, K odd), to 

yield a non-generic fcc NP of Oh symmetry. If the (capped) corners of the cubic NP fcc(N, -, -) 

lie inside the octahedral NP fcc(-, -, K) the resulting combination fcc(N, -, K) will be generic cu-

bic which can be expressed formally by 

s<111>(N, -, -)  s<111>(-, -, K) (A.24) 

leading, according to (A.9), (A.15) with (A.5) to 

3N  K + h (A.25) 

for ac and vc NPs. On the other hand, if the corners of the octahedral NP fcc(-, -, K) lie inside the 

cubic NP fcc(N, -, -) the resulting combination fcc(N, -, K) will be generic octahedral which can 

be expressed formally by 

s<100>(-, -, K)  s<100>(N, -, -) (A.26) 

leading, according to (A.9), (A.15), to 

N  K (A.27) 
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Thus, the two generic NPs intersect and define a true non-generic NP fcc(N, -, K) offering both 

{100} and {111} facets only for polyhedral parameters N, K where with (A.5) 

N < K < 3N - h (A.28) 

while fcc(N, -, K) is generic cubic for larger K according to (A.25) and generic octahedral for 

smaller K according to (A.27). This suggests that generic cubic and octahedral fcc NPs can be 

considered as special cases of non-generic NPs fcc(N, -, K) where with (A.5) 

fcc(N, -, -) = fcc(N, -, K = 3N - h) (cubic) (A.29a) 

fcc(-, -, K) = fcc(N = K, -, K) (octahedral) (A.29b) 

Further, amongst the true intersecting cubo-octahedral NPs according to (A.28) we can distin-

guish between so-called truncated octahedral NPs where K < 2N and truncated cubic NPs for 

K > 2N as will be discussed in the following. 

Parameters N, K provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, cubo-octahedral NPs  

fcc(N, -, K), both ac and vc, exhibit six {100} and eight {111} facets, see Figs. A.7, A.8. 

Truncated octhedral NPs (K < 2N), Fig. A.7a, can be characterized by their facets as follows. 

The {100} facets are square shaped with four <110> edges of length (K - N) ao/2. 

The {111} facets are hexagonal shaped with <110> edges of alternating lengths  

(K - N) ao/2 and (2N - K) ao/2. 

(a)  (b)  

 

Figure A.7.  Atom ball models of cubo-octahedral NPs, (a) ac  

fcc(13, -, 16) (truncated octahedral) and (b) vc fcc(11, -, 27) (truncated 

cubic) . The black lines sketch the square/octagonal {100} and the hexag-

onal/triangular {111} facets.  
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The total number of NP atoms, Nvol(N, -, K), and the number of facet atoms, Nfacet(N, -, K), 

(outer polyhedral shell) are given with (A.13), (A.14) by 

Nvol(N, -, K) = Nvol(-, -, K) - H (H + 1) (2H + 1) , H = K - N (A.30) 

Nfacet(N, -, K) = Nfacet(-, -, K) - 6 (K - N)2 (A.31) 

Truncated cubic NPs (K > 2N), Fig. A.7b, can be characterized by their facets as follows. 

The {100} facets are octagonal shaped with alternating edges, four <100> of length  

(K - 2N) ao and four <110> of length (3N - K) ao/2, respectively. 

The {111} facets are triangular shaped with <110> edges of length (3N - K) ao/2. 

The total number of NP atoms, Nvol(N, -, K), for ac and vc NPs and the number of facet atoms, 

Nfacet(N, -, K), (outer polyhedral shell) are given with (A.7), (A.8), (A.5) by 

Nvol(N, -, K) = Nvol(N, -, -) - H (H + 2) (2H - 1)/3 + h H = 3N - K (A.32) 

Nfacet(N, -, K) = Nfacet(N, -, -) - 2H2 + 2h  (A.33) 

There are fcc NPs which can be assigned to both truncated cubic and truncated octahedral type, 

the generic cuboctahedral fcc(N, -, K) NPs, defined by K = 2N. These NPs exist only as atom 

centered variants since K must be even. They exhibit six {100} and eight {111} facets, see  

Fig. A.8. All {100} facets are square shaped with four <110> edges of length N ao/2 while all 

{111} facets are triangular with three <110> edges of length N ao/2 shared with those of the 

{100} facets. 

 

Figure A.8.  Atom ball model of an atom centered generic cuboctahedral 

fcc(10, -, 20). The black lines sketch the triangular {111} and octago-

nal/square {100}facet shapes. 
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The present discussion allows a classification of fcc(N, -, K) NPs for all combinations of poly-

hedral parameters N, K. This includes generic NPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table A.6 illustrates all possible NP types. 

Constraints NP types  fcc Isomorphs 

K  3N - h Generic cubic  (N, -, -) = 

(N , -, K = 3N - h) 

2N  K  3N - h Cubo-octahedral 

truncated cubic 

(N, -, K) 

K = 2N Cuboctahedral (N, -, K = 2N) , 

(N = K/2, -, K) 

N  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) 

K  N Generic octahedral (-, -, K) = 

(N = K, -, K) 

 

Table A.6.  Constraints and types including isomorphs of atom (K even) 

and void centered (K odd) fcc(N, -, K) NPs. 

A.2.3  Combining (110) and (111) Facets, fcc(-, M, K) NPs 

Non-generic rhombo-octahedral NPs, denoted fcc(-, M, K), are confined by facets referring 

to the two generic NPs, fcc(-, M, -) (rhombohedral) and fcc(-, -, K) (octahedral). Thus, they can 

show {110} as well as {111} facets (apart from small {100} facets) depending on the polyhedral 

parameters M, K. Clearly, both generic NPs must exhibit the same centering, atom centered  

(ac, K even) or void centered (vc, K odd), to yield a non-generic fcc NP of Oh symmetry. If the 

corners of the rhombohedral NP fcc(-, M, -) lie inside the octahedral NP fcc(-, -, K) the resulting 

combination fcc(-, M, K) will be generic rhombohedral which can be expressed formally by 

s<111>(-, M, -)  s<111>(-, -, K) (A.34) 

leading, according to (A.12), (A.15), to 

3M  2K (ac, M = 4p; vc, M = 4p + 2) (A.35a) 

3M  2K + 3 (ac, M = 4p + 1; vc, M = 4p + 3) (A.35b) 

3M  2K + 2 (ac, M = 4p + 2; vc, M = 4p) (A.35c) 

3M  2K + 1 (ac, M = 4p + 3; vc, M = 4p + 1) (A.35d) 
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On the other hand, if the corners of the octahedral NP fcc(-, -, K) lie inside the rhombohedral NP 

fcc(-, M, -) the resulting combination fcc(-, M, K) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, K)  s<100>(-, M, -) (A.36) 

leading, according to (A.12), (A.15), (A.6) to 

K  M - h’ (A.37) 

Thus, the two generic NPs intersect and define a true non-generic NP fcc(-, M, K) offering both 

{110} and {111} facets only for polyhedral parameters M, K where with (A.4) 

2M - 2g < 2K <  M - 2g (M = 4p) (A.38a) 

2M - 2(1 - g) < 2K < 3M - 1 - 2(1 - g) (M = 4p + 1) (A.38b) 

2M - 2g < 2K < 3M - 2(1 - g) (M = 4p + 2) (A.38c) 

2M - 2(1 - g) < 2K < 3M - 1 - 2g (M = 4p + 3) (A.38d) 

while fcc(-, M, K) is generic rhombohedral for larger K according to (A.35) and generic octahe-

dral for smaller K according to (A.37). This suggests that generic rhombohedral and octahedral 

fcc NPs can be considered as special cases of non-generic NPs fcc(-, M, K) where with (A.4) 

fcc(-, M, -) = fcc(-, M, 3M/2) (rhombohedral, M = 4p + 2g) (A.39a) 

 = fcc(-, M, (3M - 3)/2) ( M = 4p + 1 + 2g) (A.39b) 

 = fcc(-, M, (3M - 2)/2) ( M = 4p + 2 - 2g) (A.39c) 

 = fcc(-, M, (3M - 1)/2) ( M = 4p + 3 - 2g) (A.39d) 

fcc(-, -, K) = fcc(-, K, K) (octahedral) (A.40) 

Parameters M, K provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, rhombo-octahedral NPs  

fcc(-, M, K) exhibit twelve {110}, eight {111} facets, and six possible {100} facets, see  

Figs. A.9, A.10. 

The {100} facets appear only for ac, M odd or vc, M even and are square shaped with <100> 

edges of length ao. 

The {110} facets for ac, M even or vc, M odd are hexagonal (capped rhombic) shaped with four 

<111> edges of length (K - M)/2 3ao and two <110> edges of (3M - 2K) ao/2.  

For ac, M odd or vc, M even the facets are octagonal shaped with four <111> edges of 

length (K - M - 1)/2 3ao and two <110> edges of (3M - 2K) ao/2. 

The {111} facets are triangular shaped with three <110> edges of length (3M - 2K) ao/2. 
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(a)  (b)  

Figure A.9.  Atom ball models of atom centered rhombo-octahedral NPs,  

(a) fcc( -, 16, 20) and (b) fcc( -, 15, 20). The black lines sketch the hexag-

onal/octagonal{110,}triangular {111}, and small square {100} facets. 

(a)  (b)  

Figure A.10.  Atom ball models of void centered rhombo-octahedral 

NPs, (a) fcc( -, 15, 19) and (b) fcc( -, 14, 19). The black lines sketch the 

hexagonal/octagonal{110,}triangular {111}, and small square {100} fac-

ets. 

The total number of NP atoms, Nvol(-, M, K), and the number of facet atoms, Nfacet(-, M, K), 

(outer polyhedral shell) are given with (A.6) by 

Nvol(-, M, K) = (2 M3 + 3 M2 + 2 M)/2 - H (2 H2 - 3 H - 8)/6 + 1 - 3h’ (A.41) 

Nfacet(-, M, K) = 3 M2 + H2 + 2 H = 3M - 2K (A.42) 

The present discussion allows a classification of fcc(-, M, K) NPs for all combinations of pol-

yhedral parameters M, K. This includes generic NPs where one parameter defines the structure 

already uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table A.7 illustrates all possible NP types where parameter Ka inside the table is 

defined by  
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Ka(N, M) = 3M/2 (ac, M = 4p; vc, M = 4p + 2) (A.43a) 

 = (3M - 3)/2 (ac, M = 4p + 1; vc, M = 4p + 3) (A.43b) 

 = (3M - 2)/2 (ac, M = 4p + 2; vc, M = 4p) (A.43c) 

 = (3M - 1)/2 (ac, M = 4p + 3; vc, M = 4p + 1) (A.43d) 

and will be used later on. 

Constraints NP types fcc Isomorphs 

K  Ka Generic rhombohedral (-, M, -) = 

(-, M, K = Ka) 

M  K  Ka Rhombo-octahedral (-, M, K) 

K  M Generic octahedral (-, -, K) = 

(-, M = K, K) 

 

Table A.7.  Constraints and types including isomorphs of atom centered 

(ac, K even) and void centered (vc, K odd) fcc(-, M, K) NPs. 

A.2.4  Combining (100), (110), and (111) Facets, fcc(N, M, K) NPs 

Non-generic cubo-rhombo-octahedral NPs, denoted fcc(N, M, K), are confined by facets re-

ferring to all three generic NPs, fcc(N, -, -) (cubic), fcc(-, M, -) (rhombohedral), and fcc(-, -, K) 

(octahedral). Thus, they can show {100}, {110}, and {111} facets depending on the polyhedral 

parameters N, M, K. Clearly, the three generic NPs must exhibit the same centering, atom cen-

tered (ac, K even) or void centered (vc, K odd), to yield a non-generic fcc NP of Oh symmetry.  

A general discussion of these NPs requires a number of different scenarios using results of for 

generic and non-generic NPs with one or two types of facets, Secs. A.1, A.2.1-3, as will be de-

tailed in the following. 

First, we consider the general notation for generic fcc NPs discussed in Sec. A.1. Cubic NPs 

fcc(N, -, -) are surrounded by rhombohedral NPs fcc(-, M, -) if M  2N according to (A.17) and 

by octahedral NPs fcc(-, -, K) if N, K satisfy relations (A.25). This allows a notation fcc(N, M, K) 

where 

fcc(N, -, -) = fcc(N, M = 2N, K = 3N - h) (A.44) 

Further, rhombohedral NPs fcc(-, M, -) are surrounded by cubic NPs fcc(N, -, -) if M, N satisfy 

relations (A.19) and by octahedral NPs fcc(-, -, K) if M, K satisfy relations (A.35). This allows a 

notation fcc(N, M, K) where with (A.43), (A.4) 

fcc(-, M, -) = fcc(N = M - g, M, Ka) (A.45) 
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In addition , the octahedral NPs fcc(-, -, K) are surrounded by cubic NPs fcc(N, -, -) if N  K ac-

cording to (A.27) and by rhombohedral NPs fcc(-, M, -) if M  K according to (A.37). This al-

lows a notation fcc(N, M, K) where 

fcc(-, -, K) = fcc(N = K, M = K, K) (A.46) 

General notations for non-generic fcc NPs discussed in Secs. A.2.1-3 are obtained by analo-

gous arguments. According to Sec. A.2.1, true cubo-rhombic NPs fcc(N, M, -) with both {100} 

and {110} facets are subject to N (+ 1)  M  2N according to (A.20). They are surrounded by 

octahedral NPs fcc(-, -, K) if K  Ka with Ka defined by (A.43). This allows a general notation 

fcc(N, M, K) where 

fcc(N, M, -) = fcc(N, M, K = Ka) (A.47) 

According to Sec. A.2.2, true cubo-octahedral NPs fcc(N, -, K) with both {100} and {111} 

facets are subject to N  K  3N (- 1) according to (A.28). They are surrounded by rhombohedral 

NPs fcc(-, M, -) if M  Ma with 

Ma(N, K) = min(K, 2N)  (A.48) 

This allows a general notation fcc(N, M, K) where 

fcc(N, -, K) = fcc(N, M = Ma, K) (A.49) 

According to Sec. A.2.3, true rhombo-octahedral NPs fcc(-, M, K) with both {110} and {111} 

facets are subject to M  K  3M/2 etc., see (A.38). They are surrounded by cubic NPs  

fcc(N, -, -) if N  Na with 

Na(M, K) = M - h’ (A.50) 

This allows a general notation fcc(N, M, K) where 

fcc(-, M, K) = fcc(N = Na, M, K) (A.51) 

In the most general case of a true fcc(N, M, K) NP with {100}, {110}, and {111} facets we 

start from a true cubo-rhombic NP, fcc(N, M, -), with its constraints N  M  2N (ac, M even;  

vc, M odd) or N + 1  M  2N (ac, M odd; vc, M even) and add constraints of a generic octahe-

dral NP, fcc(-, -, K), where according to the discussion above K values are below Ka. This allows 

to distinguish four different ranges of parameter K, defined by separating values Ka  Kb  Kc, 

with Ka given by (A.43) and 
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Kb(N, M) = 2M - N - h (A.52) 

Kc(N, M) = M - h’ (A.53) 

which result in different NP shapes starting from the initial cubo-rhombic NP fcc(N, M, Ka) as 

illustrated for the ac NP fcc(20, 26, 38) in Fig. A.11. 

 

Figure A.11.  Atom ball model of an atom centered cubo-rhombic NP, 

fcc(20, 26, 38) (K = Ka, all atom balls), with its cubo-rhombo-octahedral 

NP components, fcc(20, 26, 32) (K = Kb), and fcc(20, 26, 26) (K = Kc). 

The boundaries between dark, light yellow, and white balls reflect the 

separations of the different K ranges at K = Kc (inner vs. lower central ) 

and at K = Kb, (lower vs. upper central), respectively, see text. 

Outer K range of fcc(N, M, K) where with (A.43) 

K  Ka (A.54) 

For these K values the NP becomes cubo-rhombohedral and does exhibits only small trian-

gular {111} facets of 1, 3, 6, or 10 atoms depending on M, see Sec. A.2.1. It is isomorphic 

with fcc(N, M, Ka) as discussed above and in Sec. A.2.1. 

Upper central K range of fcc(N, M, K) where with (A.43), (A.52) 

Kb  K  Ka (A.55) 

For these K values the initial fcc(N, M, Ka) NP is capped at its <111> corners forming eight 

larger {111} facets of equilateral triangular shape. Altogether, these NPs exhibit six {100} 

facets, twelve {110} facets, and eight {111} facets, see Fig. A.12. 
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The {100} facets for N + K even are square shaped with four <100> edges of length  

(M - N) ao. For N + K odd the facets are octagonal shaped with alternating edges, 

four <100> of length (M - N - 1) ao and four <110> of length ao/2. 

The {110} facets are octagonal or rectangular (K = Kb) shaped with two <110>edges of 

length (3M - 2K) ao/2, two <100> edges of (M - N + h) ao, and four <111> edges of 

(K +N - 2M - h)/2 3ao with (A.5). 

The {111} facets are triangular shaped with three <110> edges of length (3M - 2K) ao/2. 

The NP structures are illustrated in Fig. A.12 for the ac NP fcc(20, 24, 30) (Ka = 36,  

Kb = 28) and the vc NP fcc(20, 24, 31) (Ka = 36, Kb = 27), both shown by yellow atom 

balls where white atom balls above the {111} facets are added to yield the corresponding 

cubo-rhombic fcc(N, M, Ka) NP. 

(a)  (b)  

Figure A.12.  Atom ball model of cubo-rhombo-octahedral NPs, (a) 

atom centered fcc(20, 24, 30) and (b) void centered fcc(20, 24, 31). The 

NPs are shown by yellow balls with white atom balls added for comple-

tion, see text. The black lines sketch the square/octaonal {100}, octago-

nal{110}, and triangular {111} facets. 

The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (A.22), (A.23) by 

Nvol(N, M, K) = Nvol(N, M, -) - (2 H3 - 3 H2 + 8 H)/6 + b (A.56) 

Nfacet(N, M, K) = Nfacet(N, M, -) + H2 - c H = 3M - 2K (A.57) 

with 
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Centering M = 4p M = 4p + 1 M = 4p + 2 M = 4p + 3 

ac, K even b = 0 

c = 0 

b = -3 

c = 9 

b = 12 

c = 4 

b = 9 

c = 1 

vc, K odd b = 12 

c = 4 

b = 9 

c = 1 

b = 0 

c = 0 

b = -3 

c = 9 

 

Table A.8.  Constants b, c used for number of NP atoms of  

fcc(N, M, K) NPs, see text. 

For K = Kb, the fcc(N, M, K) NP assumes a particular shape. Its six {100} facets are 

square/octahedral shaped with alternating edges, four <100> of length (M - N - h) ao and 

four <110> of length h ao/2. Its twelve {110} facets are rectangular shaped with two 

<110> edges of length (2N - M) ao/2 and two <100> edges of (M - N - h) ao. Finally, its 

eight {111} facets are triangular/hexagonal shaped with alternating edges, three <110> of  

length (2N - M) ao/2 and three <110> of length h ao/2. In all cases, h is given by (A.5). 

The NP structures are illustrated in Fig. A.13 for (a) fcc(14, 18, 22) (Kb = 22) and (b) 

fcc(14, 18, 21) (Kb = 21). 

(a)  (b)  

Figure A.13.  Atom ball model of cubo-rhombo-octahedral NPs,  

(a) atom centered fcc(14, 18, 22), (b) void centered fcc(14, 18, 21). The 

black lines sketch the square {100}, rectangular {110}, and triangular 

{111} facets. 

  



25 

 

Lower central K range of fcc(N, M, K) where with (A.52), (A.53) 

Kc  K  Kb (A.58) 

For these K values the capping of the initial fcc(N, M, Kb) along the <111> directions is 

continued to yield eight hexagonal {111} facets. As before, these NPs exhibit six {100} 

facets, twelve {110} facets, and eight {111} facets, see Fig. A.14. 

The {100} facets are octagonal shaped with alternating edges, four <100> of length  

(K - M) ao and four <110> of length (Kb - K) ao/2. 

The {110} facets are rectangular shaped with two <110> edges of length (2N - M) ao/2 

and two <100> edges of length (K - M) ao. 

The {111} facets are hexagonal shaped with <110> edges of alternating lengths  

(Kb - K) ao/2 and (2N - M) ao/2. 

This is illustrated in Fig. A.14 for the vc NP fcc(15, 21, 23) (Kb = 27, Kc = 21) where white 

atom balls above the {111} facets are added to fcc(N, M, K) to yield the corresponding 

fcc(N, M, Kb) NP. 

 

Figure A.14.  Atom ball model of a void centered cubo-rhombo-octahe-

dral NP, fcc(15, 21, 23) shown by yellow balls with white atom balls 

completing the NP, see text. The black lines sketch the octagonal {100}, 

rectangular{110}, and hexagonal/triangular {111} facets. 

The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (A.56), (A.57), (A.5) by 

Nvol(N, M, K) = Nvol(N, M, Kb) 

 - 2/3 H {(H+2) (2 H + 12 G - 1 + 6h)/2 + 3 G (G - 5 + 4h)} (A.59) 

Nfacet(N, M, K) = Nfacet(N, M, Kb) + 2H (2G - H - 2h) (A.60) 
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H = Kb - K , G = 2N - M 

Inner K range of fcc(N, M, K) where with (A.53) 

K  Kc (A.61) 

For these K values the NP becomes cubo-octahedral and does not exhibit any {110} facets. 

It is isomorphic with fcc(N, Ma, K) as discussed above and in Sec. A.2.2. 

The present discussion allows a classification of fcc(N, M, K) NPs for all combinations of pol-

yhedral parameters N, M, K. This includes NPs where one or two parameters define the structure 

already uniquely. Table A.9 illustrates all possible NP types. 
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Constraints 1 Constraints 2 NP types  fcc Isomorphs 

M  2N K  3N Generic cubic (N, -, -) = 

(N, 2N, 3N) 

2N  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) = 

(N, 2N, K) 

K = 2N (K even) Cuboctahedral (N, -, K) = 

(N, 2N, 2N) 

N  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, K, K) 

K  N Octahedral (-, -, K) = 

(K, K, K) 

N + h‘  M  2N 

 

Mu = N + h‘ 

K  Ka Cubo-rhombohedral (N, M, -) = 

(N, M, Ka) 

Kb  K  Ka Cubo-rhombo-oct. 

upper central 

(N, M, K) 

Kc  K  Kb Cubo-rhombo-oct. 

lower central 

(N, M, K) 

N  K  Kc Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, K, K) 

K  N Octahedral (-, -, K) = 

(K, K, K) 

M  N + h‘ K  Ka Generic 

rhombohedral 

(-, M, -) = 

(Na, M, Ka) 

M - h‘  K  Ka Octo-rhombohedral (-, M, K) = 

(Na, M, K) 

K  M - h‘ Generic octahedral (-, -, K) = 

(Na, Ma, K) 

 

Table A.9.  Constraints and types including isomorphs of fcc(N, M, K) 

NPs, (a) atom centered (K even) and (b) void centered (K odd). Polyhe-

dral parameters Na, Ma, Ka are defined above.  

Altogether, true cubo-rhombo-octahedral NPs, fcc(N, M, K) with {100}, {110}, and {111} 

facets can exist only if the polyhedral parameters N, M, K fulfill the two inequalities 

N + h‘  M  2N , Kc  K  Ka (A.62) 

with (A.43), (A.53). 
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B.  Body Centered Cubic (bcc) Nanoparticles  

The body centered cubic (bcc) lattice can be defined as a non-primitive simple cubic lattice by 

lattice vectors R1, R2, R3 in Cartesian coordinates together with two lattice basis vectors r1, r2 ac-

cording to 

R1 = ao (1, 0, 0) , R2 = ao (0, 1, 0) , R3 = ao (0, 0, 1) (B.1a) 

r1 = ao (0, 0, 0) , r2 = ao/2 (1, 1, 1)  (B.1b) 

in Cartesian coordinates where ao is the lattice constant. The three densest monolayer families 

{hkl} of the bcc lattice are described by six {100} netplanes (square mesh), twelve {110} (cen-

tered rectangular mesh, highest atom density), and eight {111} netplanes (hexagonal mesh) 

where distances between adjacent parallel netplanes are given by 

d{100} = ao/2 ,  d{110} = ao/2 , d{111} = ao/(23) (B.2) 

The point symmetry of the bcc lattice is characterized by Oh with high symmetry centers at all 

atom sites. 

Compact body centered cubic nanoparticles (NPs) are confined by finite sections of monolay-

ers (facets) whose structure is described by different netplanes (hkl). If they exhibit central Oh 

symmetry and show an (hkl) oriented facet they must also include all other symmetry related fac-

ets characterized by orientations of the complete {hkl} family. Thus, general bcc NPs of Oh sym-

metry are described by facets whose orientation can be defined by those of different {hkl} fami-

lies (denoted {hkl} facets in the following). As an example, we mention the {110} family with 

its twelve netplane orientations (1 1 0), (1 0 1), (0 1 1). These facets are confined by 

edges which can be described by families of Miller index directions <hkl> (denoted <hkl> edges 

in the following). In addition, NP corners can be characterized by directions <hkl> pointing from 

the NP center to the corresponding corner (denoted {hkl} corners in the following). Further, ac-

cording to the symmetry of the bcc host lattice possible NP centers can only be atom sites of the 

lattice, the NPs are always atom centered. 

Assuming a bcc NP to be confined by facets of the three cubic netplane families, {100}, 

{110}, and {111}, its size and shape can be described by three integer type structure parameters, 

N, M, K (polyhedral NP parameters), which refer to the distances D{100}, D{110}, D{111} (NP diam-

eters) between parallel monolayer facets of a given netplane family expressed by multiples of 

corresponding netplane distances where 

D{100} = 2N d{100} , D{110} = 2M d{110} , D{111} = 2K d{111} (B.3) 
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with d{hkl} according to (B.2), Thus, in the most general case bcc NPs can be denoted  

bcc(N, M, K). If a facet type does not appear in the NP the corresponding parameter value N, M, 

or K is replaced by a minus sign. As an example, a bcc NP with only {100} and {110} facets is 

denoted bcc(N, M, -). These notations will be used in the following. Further, auxiliary parameters 

g, h with 

g = 0     (K even) , = 1     (K odd) (B.4) 

h = 0     (N + K even) , = 1     (N + K odd) (B.5) 

will be used throughout Sec. B. 

B.1.  Generic bcc Nanoparticles, bcc(N, -, -), (-, M, -), and (-, -, K) NPs 

Generic bcc nanoparticles (NPs) of Oh symmetry are confined by facets with orientations of 

only one {hkl} netplane family. Here we focus on {100}, {110}, and {111} facets derived from 

the densest monolayers of the bcc lattice which offer the flattest NP facets. This allows to distin-

guish between three different generic NP types 

(a) Generic cubic bcc NPs, denoted bcc(N, -, -) (the notation is explained above), are con-

fined by all six {100} monolayers with distances D{100} = 2N d{100} between parallel mono-

layers. This yields six {100} facets, see Fig. B.1. The {100} facets are square shaped with 

<100> edges of length N ao. 

 

Figure B.1.  Atom ball model of a generic cubic bcc NP, bcc(5, -, -). The 

black lines sketch the square {100} facets. 
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The total number of NP atoms, Nvol(N, -, -), and the number of facet atoms, Nfacet(N, -, -), 

(outer polyhedral shell), are given by 

Nvol(N, -, -) = (N + 1)3 + N3 (B.6) 

Nfacet(N, -, -) = 6N2 + 2 (B.7) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(N, -, -) = N d{100} (B.8a) 

s<110>(N, -, -) = N d{110} (B.8b) 

s<111>(N, -, -) = 3N d{111} (B.8c) 

with d{hkl} according to (B.2). These quantities will be used in Secs. B.2. 

(b) Generic rhombohedral bcc NPs, denoted bcc(-, M, -), are confined by all twelve {110} 

monolayers with distances D{110} = 2M d{110} between parallel monolayers. This yields 

twelve {110} facets, see Fig. B.2. 

The {110} facets are rhombic shaped with <111> edges of length M/2 3ao. Thus, the NPs 

can be described as rhombic dodecahedra reminding of the shape of Wigner-Seitz 

cells of the face centered cubic (fcc) crystal lattice [14]. 

 

Figure B.2.  Atom ball model of a generic cubic bcc(-, 6, -) NP. The 

black lines sketch the rhombic {110}facet shapes. 

The total number of NP atoms, Nvol(-, M, -), and the number of facet atoms, Nfacet(-, M, -), 

(outer polyhedral shell), are given by 

Nvol(-, M, -) = (2M + 1) [(2M + 1)2 + 1]/2 (B.9) 

Nfacet(-, M, -) = 12M2 + 2 (B.10) 



31 

 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(-, M, -) = 2M d{100} (B.11a) 

s<110>(-, M, -) = M d{110} (B.11b) 

s<111>(-, M, -) = 3M d{111} (B.11c) 

with d{hkl} according to (B.2). These quantities will be used in Secs. B.2. 

(c) Generic octahedral bcc NPs, denoted bcc(-, -, K), are confined by all eight {111} mono-

layers with distances D{111} = 2K d{111} between parallel monolayers. This yields eight 

{111} facets as well as possibly twelve {110} facets, see Fig. B.3. 

The {111} facets are triangular shaped with three <110> edges of length K ao/2 for  

K even and of length (K - 3) ao/2 for K odd. 

The {110} facets appear only for K odd and are hexagonal shaped with two <110> edges 

of length (K - 3) ao/2 and four <111> edges of length 1/2 3ao.  

(a)  (b)  

Figure B.3.  Atom ball models of generic octahedral bcc NPs,  

(a) bcc(-, -, 14) and (b) bcc(-, -, 15). The black lines sketch the triangular 

{111} and the stripped {110} facet shapes. 

The total number of NP atoms, Nvol(-, -, K), and the number of facet atoms, Nfacet(-, -, K), 

(outer polyhedral shell), are given with (B.4) by 

Nvol(-, -, K) = {(K+1) [(K+1)2 + 1] + K3 + 4 - 9g}/6 (B.12) 

Nfacet(-, -, K) = K2 + 2 - 3g (B.13) 
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The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given with (B.4) by 

s<100>(-, -, K) = (K - g) d{100} (B.14a) 

s<110>(-, -, K) = (K - g)/2 d{110} (B.14b) 

s<111>(-, -, K) = K d{111} (B.14c) 

with d{hkl} according to (B.2). These quantities will be used in Secs. B.2. 

Table B.1 collects types, constraints, and shapes of all generic bcc NPs. 

Generic type Constraints Facets Corners 

Cubic 

   bcc(N, -, -) 

 {100}  6 

{110}  0 

{111}  0 

<100>  0 

<110>  0 

<111>  8 

Rhombohedral 

   bcc(-, M, -) 

 {100}  0 

{110}  12 

{111}  0 

<100>  6 

<110>  0 

<111>  8 

Octahedral 

   bcc(-, -, K)    

K even {100}  0 

{110}  0 

{111}  8 

<100>  6 

<110>  0 

<111>  0 

 K odd {100}  0 

{110}  12 

{111}  8 

<100>  6 

<110>  0 

<111>  0 

 

Table B.1.  Types and notations of all generic bcc NPs. 

B.2.  Non-generic bcc Nanoparticles 

Non-generic bcc nanoparticles of Oh symmetry are always atom centered and show facets 

with orientations of several {hkl} netplane families. This can be considered as combining con-

finements of the corresponding generic NPs discussed in Sec. B.1 with suitable polyhedral pa-

rameters N, M, K sharing their symmetry center. Here we discuss non-generic bcc NPs which 

combine constraints of up to three generic NPs, cubic bcc(N, -, -), rhombohedral bcc(-, M, -), and 

octahedral bcc(-, -, K). These allow {100}, {110}, as well as {111} facets and will be denoted 

bcc(N, M, K) in the following. Clearly, the corresponding polyhedral parameters N, M, K depend 

on each other and determine the overall NP shape. In particular, if a participating generic NP en-

closes another participant it will not contribute to the overall NP shape and the respective {hkl} 

facets will not appear at the surface of the non-generic NP. In the following, we consider the 
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three types of non-generic NPs which combine constraints due to two generic NPs  

(Secs. B.2.1-3) before we discuss the most general case of bcc(N, M, K) NPs in Sec. B.2.4. 

B.2.1  Combining (100) and (110) Facets, bcc(N, M, -) NPs 

Non-generic cubo-rhombic NPs, denoted bcc(N, M, -), are confined by facets referring to the 

two generic NPs, bcc(N, -, -) (cubic) and bcc(-, M, -) (rhombohedral). Thus, they can show 

{100} as well as {110} facets depending on relations between the polyhedral parameters N, M. If 

the edges of the cubic NP bcc(N, -, -) lie inside the rhombohedral NP bcc(-, M, -) the resulting 

combination bcc(N, M, -) will be generic cubic which can be expressed formally by 

s<110>(N, -, -)  s<110>(-, M, -) (B.15) 

leading, according to (B.8), (B.11), to 

N  M (B.16) 

On the other hand, if the corners of the rhombohedral NP bcc(-, M, -) lie inside the cubic NP 

bcc(N, -, -) the resulting combination bcc(N, M, -) will be generic rhombohedral which can be 

expressed formally by 

s<100>(-, M, -)  s<100>(N, -, -) (B.17) 

leading, according to (B.8), (B.11), to 

N  2M (B.18) 

Thus, the two generic NPs intersect and define a true non-generic NP bcc(N, M, -) offering both 

{100} and {110} facets only for polyhedral parameters N, M with 

M < N < 2M (B.19) 

while bcc(N, M, -) is generic cubic for smaller N according to (B.16) and generic rhombohedral 

for larger N according to (B.18). This suggests that generic cubic and rhombohedral bcc NPs can 

be considered as special cases of non-generic NPs bcc(N, M, -) where 

bcc(N, -, -) = bcc(N, M = N, -) (cubic) (B.20a) 

bcc(-, M, -) = bcc(N = 2M, M, -) (rhombohedral) (B.20b) 

Parameters N, M provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, cubo-rhombic NPs  

bcc(N, M, -) exhibit six {100} facets and twelve {110} facets, see Fig. B.4.  

The {100} facets are square shaped with four <100> edges of length (2M - N) ao. 
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The {110} facets are hexagonal shaped with four <111> edges of length (N - M)/2 3ao and two 

<100> edges of length (2M - N) ao. 

 

Figure B.4.  Atom ball model of the cubo-rhombic NP bcc(7, 5, -). The 

black lines sketch the square {100} and hexagonal {110} facet shapes. 

The total number of NP atoms, Nvol(N, M, -), and the number of facet atoms, Nfacet(N, M, -), 

(outer polyhedral shell) are given with (B.9), (B.10) by 

Nvol(N, M, -) = Nvol(-, M, -) - H (H + 1) (2H + 1) , H = 2M - N (B.21) 

Nfacet(N, M, -) = Nfacet(-, M, -) - 6 (2M - N)2 (B.22) 

The present discussion allows a classification of bcc(N, M, -) NPs for all combinations of pol-

yhedral parameters N, M. This includes generic NPs where one parameter defines the structure 

already uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table B.2 illustrates all possible NP types. 

Constraints NP types  bcc Isomorphs 

N  2M  Generic rhombohedral (-, M, -) = 

(N = 2M, M, -) 

M  N  2M  Cubo-rhombic (N, M, -) 

N  M Generic cubic (N, -, -) = 

(N, M = N, -) 

 

Table B.2.  Constraints and types including isomorphs of cubo-rhombic 

bcc(N, M, -) NPs. All NPs are atom centered.  
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B.2.2  Combining (100) and (111) Facets, bcc(N, -, K) NPs 

Non-generic cubo-octahedral NPs, denoted bcc(N, -, K), are confined by facets referring to 

the two generic NPs, bcc(N, -, -) (cubic) and bcc(-, -, K) (octahedral). Thus, they can show {100} 

as well as {111} facets (apart from {110} microstrips) depending on the polyhedral parameters 

N, K. Clearly, both generic NPs must be atom centered to yield a non-generic sc NP of Oh sym-

metry. If the corners of the cubic NP bcc(N, -, -) lie inside the octahedral NP bcc(-, -, K) the re-

sulting combination bcc(N, -, K) will be generic cubic which can be expressed formally by 

s<111>(N, -, -)  s<111>(-, -, K) (B.23) 

leading, according to (B.8), (B.14), to 

3N  K (B.24) 

On the other hand, if the corners of the octahedral NP bcc(-, -, K) lie inside the cubic NP  

bcc(N, -, -) the resulting combination bcc(N, -, K) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, K)  s<100>(N, -, -) (B.25) 

leading, according to (B.8), (B.14), to 

N  K - g (B.26) 

Thus, the two generic NPs intersect and define a true non-generic NP bcc(N, -, K) offering both 

{100} and {111} facets only for polyhedral parameters N, K with 

N + g < K < 3N (B.27) 

while bcc(N, -, K) is generic cubic for larger K according to (B.24) and generic octahedral for 

smaller K according to (B.26). This suggests that generic cubic and octahedral bcc NPs can be 

considered as special cases of non-generic NPs bcc(N, -, K) where 

bcc(N, -, -) = bcc(N, -, K = 3N) (cubic) (B.28a) 

bcc(-, -, K) = bcc(N = K - g, -, K) (octahedral) (B.28b) 

Further, amongst the true intersecting cubo-octahedral NPs according to (B.27) we can distin-

guish between so-called truncated octahedral NPs where K < 2N and truncated cubic NPs for 

K > 2N as will be discussed in the following. 

Parameters N, K provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, cubo-octahedral NPs  

bcc(N, -, K) exhibit six {100}, twelve {110}, and eight {111} facets, see Figs. B.5, B.6, B.7. 
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Truncated octhedral NPs (K < 2N), Figs. B.5, B.6, can be characterized by their facets as fol-

lows. 

The {100} facets for N even are square shaped with four <110> edges of length  

(K - N)/2 2ao (with K even) or (K - N - 1)/2 2ao (with K odd). For N odd the facets 

are octagonal (capped square) shaped with alternating edges, four <100> of length ao 

and four <110> of length (K - N - 3)/2 2ao (with K even) or (K - N - 2)/2 2ao (with 

K odd). 

The {111} facets are hexagonal shaped with three <110> edges of alternating lengths  

(K - N + b)/2 2ao and (2N - K + c)/2 2ao where constants b, c are given in the fol-

lowing table. 

 b c 

N even K even 

 K odd 

0 

-1 

0 

-1 

N odd K even 

 K odd 

1 

-2 

-2 

1 

 

Table B.3.  Constants b, c used for edge lengths of {111} facets of 

bcc(N, -, K) NPs, see text.  

The {110} facets appear only for K odd and are for N even hexagonal shaped with two 

<110> edges of lengths (2N - K - 1)/2 2ao and four <111> edges of length 1/2 3ao. 

For N odd the facets are rectangular shaped with two <110> edges of lengths  

(2N - K + 1)/2 2ao and two <100> edges of length ao. 
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(a)  (b)  

Figure B.5.  Atom ball models of cubo-octahedral bcc NPs of truncated 

octahedral type, (a) bcc(12, -, 20) and (b) bcc(13, -, 21). The black lines 

sketch the square / octagonal {100}, the hexagonal {111} facets, and 

connecting {110} facets, see text.  

(a)  (b)  

Figure B.6.  Atom ball models of cubo-octahedral bcc NPs of truncated 

octahedral type, (a) bcc(12, -, 21) and (b) bcc(13, -, 20). The black lines 

sketch the square / octagonal {100} and the hexagonal {111} facets. The 

light color balls indicate one (a) {111} and (b) {100}facet, see text. 

The total number of NP atoms, Nvol(N, -, K), and the number of facet atoms, Nfacet(N, -, K), 

(outer polyhedral shell) are given with (B.12), (B.13), (B.4), (B.5) by 

Nvol(N, -, K) = Nvol(-, -, K) - H (H2 - 1) - 3h (H + 1 - 2g) , H = K - N (B.29) 

Nfacet(N, -, K) = Nfacet(-, -, K) + 6h (2g - 1) (B.30) 
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Truncated cubic NPs (K > 2N), Fig. B.7, can be characterized by their facets as follows. 

The {100} facets are octagonal shaped with alternating edges, four <110> of length  

(3N - K + h)/2 2ao and four <100> of length (K - 2N - h) ao with (B.5). 

The {111} facets are triangular shaped with three <110> edges of length (3N - K)/2 2ao  

(if N + K even) or of length (3N - K - 3)/2 2ao (if N + K odd). 

(a)  (b)  

Figure B.7.  Atom ball models of cubo-octahedral bcc NPs of truncated 

cubic type, (a) bcc(12, -, 26) and (b) bcc(12, -, 27). black lines sketch the 

octagonal {100} and the triangular {111} facets. The light color balls in-

dicate one {111} facet, see text. 

The total number of NP atoms, Nvol(N, -, K), and the number of facet atoms, Nfacet(N, -, K), 

(outer polyhedral shell) are given with (B.6), (B.7), (B.5) by 

Nvol(N, -, K) = Nvol(N, -, -) - (H + 1) (H2 + 2H +9h)/3 , H = 3N - K (B.31) 

Nfacet(N, -, K) = Nfacet(N, -, -) - 2 (K - 3N)2 - 6h (B.32) 

There are bcc NPs which can be assigned to both truncated cubic and truncated octahedral type, 

the generic cuboctahedral bcc(N, -, K) NPs, defined by K = 2N. These NPs exhibit six {100}, 

eight {111}, and twelve possible {110} facets, see Fig. B.8. 

The {100} facets are square shaped with four <110> edges of length N/2 2ao if N even while 

for N odd the facets are octagonal (capped square) shaped with alternating edges, four 

<110> of length (N - 3)/2 2ao and four <100> of length ao. 

The {110} facets appear only for N odd and are hexagonal shaped with two <100> edges of 

length ao and four <111> edges of length 1/2 3ao. 
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The {111} facets are triangular shaped with <110> edges of length N/2 2ao if N even and of 

length (N - 3)/2 2ao if N odd. 

(a)  (b)  

Figure B.8.  Atom ball models of cuboctahedral bcc NPs,  

(a) bcc(12, -, 24) and (b) bcc(11, -, 22). black lines sketch the square / oc-

tagonal {100}and triangular {111} facets with connecting hexagonal 

{110} facets and {112} strips. The light color balls indicate one {111} 

facet, see text. 

The present discussion allows a classification of bcc(N, -, K) NPs for all combinations of pol-

yhedral parameters N, K. This includes generic NPs where one parameter defines the structure 

already uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table B.4 illustrates all possible NP types. 
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Constraints NP types  bcc Isomorphs 

K  3N Generic cubic  (N, -, -) = 

(N , -, K = 3N) 

2N  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) 

K = 2N Cuboctahedral (N, -, K = 2N) , 

(N = K/2, -, 2K) 

N  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) 

K  N 

 

Nu = K, K even 

 = K - 1 K odd 

Generic octahedral (-, -, K) = 

(N = Nu, -, K) 

 

Table B.4.  Constraints and types including isomorphs of bcc(N, -, K) 

NPs. 

B.2.3  Combining (110) and (111) Facets, bcc(-, M, K) NPs 

Non-generic rhombo-octahedral NPs, denoted bcc(-, M, K), are confined by facets referring 

to the two generic NPs, bcc(-, M, -) (rhombohedral) and bcc(-, -, K) (octahedral). Thus, they can 

show {110} as well as {111} facets depending on the polyhedral parameters M, K. Clearly, both 

generic NPs must be atom centered to yield a non-generic sc NP of Oh symmetry. If the corners 

of the rhombohedral NP bcc(-, M, -) lie inside the octahedral NP bcc(-, -, K) the resulting combi-

nation bcc(-, M, K) will be generic rhombohedral which can be expressed formally by 

s<111>(-, M, -)  s<111>(-, -, K) (B.33) 

leading, according to (B.11), (B.14), to 

3M  K (B.34) 

On the other hand, if the corners of the octahedral NP bcc(-, -, K) lie inside the rhombohedral NP 

bcc(-, M, -) the resulting combination bcc(-, M, K) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, K)  s<100>(-, M, -) (B.35) 

leading, according to (B.11), (B.14), to 

2M  K - g (B.36) 

Thus, the two generic NPs intersect and define a true non-generic NP bcc(-, M, K) offering both 

{110} and {111} facets only for polyhedral parameters M, K with 
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2M + g < K < 3M (B.37) 

while bcc(-, M, K) is generic rhombohedral for larger K according to (B.34) and generic octahe-

dral for smaller K according to (B.36). This suggests that generic rhombohedral and octahedral 

bcc NPs can be considered as special cases of non-generic NPs bcc(-, M, K) where 

bcc(-, M, -) = bcc(-, M, 3M) (rhombohedral) (B.38a) 

bcc(-, -, K) = bcc(-, K/2, K) (octahedral, K even) (B.38b) 

bcc(-, -, K) = bcc(-, (K - 1)/2, K) (octahedral, K odd) (B.38c) 

Parameters M, K provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, rhombo-octahedral NPs  

bcc(-, M, K) exhibit twelve {110} and eight {111} facets, see Fig. B.9. 

The {110} facets are hexagonal shaped with four <111> edges of length (K - 2M)/2 3ao and two 

<110> edges of length (3M - K) 2ao. 

The {111} facets are triangular shaped with three <110> edges of length (3M - K) 2ao. 

 

Figure B.9.  Atom ball models of the rhombo-octahedral NP 

bcc( -, 11, 26). The black lines sketch the hexagonal {110}and triangular 

{111} facets. One {111} facet is emphasized by atom balls of light color. 

The total number of NP atoms, Nvol(-, M, K), and the number of facet atoms, Nfacet(-, M, K), 

(outer polyhedral shell) are given with (B.9), (B.10) by 

Nvol(-, M, K) = Nvol(-, M, -) - 4H (H + 1) (H + 2)/3 , H = 3M - K (B.39) 

Nfacet(-, M, K) = Nfacet(-, M, -) - 8 (3M - K)2 (B.40) 
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The present discussion allows a classification of bcc(-, M, K) NPs for all combinations of pol-

yhedral parameters M, K. This includes generic NPs where one parameter defines the structure 

already uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table B.5 illustrates all possible NP types. 

Constraints NP types  bcc Isomorphs 

K  3M Generic rhombohedral  (-, M, -) = 

(-, M, K = 3M) 

2M  K  3M Rhombo-octahedral 

 

(-, M, K) 

K  2M 

 

Mu = K/2 K even 

 = (K - 1)/2 K odd 

Generic octahedral (-, -, K) = 

(-, M = Mu, K) 

 

Table B.5.  Constraints and types including isomorphs of bcc(-, M, K) 

NPs. 

B.2.4  Combining (100), (110), and (111) Facets, bcc(N, M, K) NPs 

Non-generic cubo-rhombo-octahedral NPs, denoted bcc(N, M, K), are confined by facets 

referring to all three generic NPs, bcc(N, -, -) (cubic), bcc(-, M, -) (rhombohedral), and  

bcc(-, -, K) (octahedral). Thus, they can show {100}, {110}, and {111} facets depending on the 

polyhedral parameters N, M, K. Clearly, bcc(N, M, K) NPs must contain an atom at their center 

to yield a non-generic bcc NP of Oh symmetry. A general discussion of these NPs requires a 

number of different scenarios using results of for generic and non-generic NPs with one or two 

types of facets, Secs. B. 1, B.2.1-3, as will be detailed in the following. 

First, we consider the general notation for generic bcc NPs discussed in Sec. B.1. Cubic NPs 

bcc(N, -, -) are surrounded by rhombohedral NPs bcc(-, M, -) if M  N according to (B.16) and 

by octahedral NPs bcc(-, -, K) if K  3N according to (B.24). This allows a notation bcc(N, M, K) 

where 

bcc(N, -, -) = bcc(N, M = N, K = 3N) (B.41) 

Further, rhombohedral NPs bcc(-, M, -) are surrounded by cubic NPs bcc(N, -, -) if N  2M ac-

cording to (B.18) and by octahedral NPs bcc(-, -, K) if K  3M according to (B.34). This allows a 

notation bcc(N, M, K) where 

bcc(-, M, -) = bcc(N = 2M, M, K = 3M) (B.42) 
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In addition , the octahedral NPs bcc(-, -, K) are surrounded by cubic NPs bcc(N, -, -) if N, K sat-

isfy relations (B.26) and by rhombohedral NPs bcc(-, M, -) if M, K satisfy relations (B.36). This 

allows a notation bcc(N, M, K) where 

bcc(-, -, K) = bcc(N = K - g, M = (K - g)/2, K) (B.43) 

General notations for non-generic bcc NPs discussed in Secs. B.2.1-3 are obtained by analo-

gous arguments. According to Sec. B.2.1, true cubo-rhombic NPs bcc(N, M, -) with both {100} 

and {110} facets are subject to M  N  2M according to (B.19). They are surrounded by octahe-

dral NPs bcc(-, -, K) if K  Ka with 

Ka(N, M) = min(3N, 3M) = 3M (B.44) 

This allows a general notation bcc(N, M, K) where 

bcc(N, M, -) = bcc(N, M, K = Ka) (B.45) 

According to Sec. B.2.2, true cubo-octahedral NPs bcc(N, -, K) with both {100} and {111} 

facets are subject to N (+ 1)  K  3N (K even) according to (B.27). They are surrounded by 

rhombohedral NPs bcc(-, M, -) if M  Ma with 

Ma(N, K) = min((K - g)/2, N) (B.46) 

This allows a general notation bcc(N, M, K) where 

bcc(N, -, K) = bcc(N, M = Ma, K) (B.47) 

According to Sec. B.2.3, true rhombo-octahedral NPs bcc(-, M, K) with both {110} and {111} 

facets are subject to 2M (+ 1)  K  3M according to (B.37). They are surrounded by cubic NPs 

bcc(N, -, -) if N  Na with 

Na(M, K) = min(2M, K) = 2M (B.48) 

This allows a general notation bcc(N, M, K) where 

bcc(-, M, K) = bcc(N = Na, M, K) (B.49) 

In the most general case of a true bcc(N, M, K) NP with {100}, {110}, and {111} facets we 

start from a true cubo-rhombic NP, bcc(N, M, -), with its constraints M  N  2M and add con-

straints of a generic octahedral NP, bcc(-, -, K), where according to the discussion above K val-

ues are below Ka. This allows to distinguish four different ranges of parameter K, defined by sep-

arating values Ka  Kb  Kc, with Ka given by (B.44) and 
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Kb(N, M) = 4M - N  (B.50) 

Kc(N, M) = 2M (N even) (B.51a) 

 = 2M + 1 (N odd) (B.51b) 

which result in different NP shapes starting from the initial cubo-rhombic NP bcc(N, M, Ka) as 

illustrated for bcc(18, 12, 36) in Fig. B.10. 

 

Figure B.10.  Atom ball model of a cubo-rhombic NP, bcc(18, 12, 36)  

(K = Ka, all atom balls), with its cubo-rhombo-octahedral NP compo-

nents, bcc(18, 12, 30) (K = Kb), and bcc(18, 12, 24) (K = Kc). The bound-

aries between dark, light yellow, and white balls reflect the separations of 

the different K ranges at K = Kc (inner vs. lower central ) and at K = Kb, 

(lower vs. upper central), respectively, see text. 

Outer K range of bcc(N, M, K) where with (B.44) 

K  Ka (B.52) 

For these K values the NP becomes cubo-rhombohedral and does not exhibit any {111} 

facets (except for microfacets with three atoms). It is isomorphic with bcc(N, M, Ka) as dis-

cussed above and in Sec. B.2.1. 

Upper central K range of bcc(N, M, K) where with (B.50), (B.51) 

Kb  K  Ka (B.53) 

For these K values the initial bcc(N, M, Ka) NP is capped at its <111> corners forming 

eight additional {111} facets of equilateral triangular shape. Altogether, these NPs exhibit 

six {100} facets, twelve {110} facets, and eight {111} facets, see Fig. B.11. 



45 

 

The {100} facets are square shaped with four <100> edges of length (2M - N) ao. 

The {110} facets are octagonal or rectangular (K = Kb) shaped with two <110> edges of 

length (3M - K) 2ao, two <100> of length (2M - N) ao, and two <111> of length  

(K + N - 4M)/2 3ao. 

The {111} facets are triangular shaped with three <110> edges of length (3M - K) 2ao. 

The NP structure is illustrated in Fig. B.11 for the NP bcc(18, 10, 26) (Ka = 30, Kb = 22, 

yellow atom balls) where white balls above the {111} facets are added to yield the corre-

sponding cubo-rhombic bcc(N, M, Ka) NP. 

 

Figure B.11.  Atom ball model of a cubo-rhombo-octahedral bcc NP, 

bcc(18, 10, 26), shown by yellow balls with white atom balls completing 

the NP, see text. The black lines sketch the square {100}, octago-

nal{110}, and triangular {111} facets. 

The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (B.21), (B.22) by 

Nvol(N, M, K) = Nvol(N, M, -) - 4H (H + 1) (H + 2)/3 , H = 3M - K (B.54) 

Nfacet(N, M, K) = Nfacet(N, M, -) - 8 H2  (B.55) 

For K = Kb, the bcc(N, M, K) NP assumes a particular shape where its twelve {110} facets 

are rectangular with two edges of length (N - M) 2ao and of (2M - N) ao while the {100} 

and {111} facets are square and triangular shaped as described before. This is illustrated in 

Fig. B.12 for the NP bcc(12, 8, 20) (Kb = 20). 
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Figure B.12.  Atom ball model of a cubo-rhombo-octahedral bcc NP, 

void centered bcc(12, 8, 20). The black lines sketch the square {100}, 

rectangular {110}, and triangular {111} facets. 

Lower central K range of bcc(N, M, K) where with (B.51) 

Kc  K  Kb (B.56) 

For these K values the capping of the initial bcc(N, M, Kb) along the <111> directions is 

continued to yield eight hexagonal {111} facets. As before, these NPs exhibit six {100} 

facets, twelve {110} facets, and eight {111} facets, see Fig. B.13. 

The {100} facets are octagonal shaped with alternating edges, four <100> of length  

(K - 2M) ao and four <110> of length (4M - N - K)/2 2ao. 

The {110} facets are rectangular shaped with two <110> edges of length (N - M) 2ao and 

two <100> edges of length (K - 2M) ao. 

The {111} facets are hexagonal shaped with <110> edges of alternating lengths  

(4M - N - K)/2 2ao and (N - M) 2ao.  

The NP structure is illustrated in Fig. B.13 for the NP bcc(18, 12, 26) (Kb = 30, Kc = 24) 

where white atom balls above the {111} facets are added to bcc(N, M, K) to yield the cor-

responding bcc(N, M, Kb) NP. 
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Figure B.13.  Atom ball model of a cubo-rhombo-octahedral bcc NP, 

atom centered bcc(18, 12, 26) shown by yellow balls with white atom 

balls completing the NP, see text. The black lines sketch the octagonal 

{100}, rectangular{110}, and hexagonal/triangular {111} facets. 

The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (B.54), (B.55), (B.5) by 

Nvol(N, M, K) = Nvol(N, M, Kb) - 

 - H {(H + 2) (H+ 12G + 1)/3 + 4 G2 + 3h} - 3h (B.57) 

Nfacet(N, M, K) = Nfacet(N, M, Kb) - 2H (H + 8G) - 6h (B.58) 

H = 4M - N - K , G = N - M 

Inner K range of bcc(N, M, K) where with (B.51) 

K  Kc (B.59) 

For these K values the NP becomes cubo-octahedral and does not exhibit {110} facets (ex-

cept for possible microstrips). It is isomorphic with bcc(N, Ma, K) as discussed above and 

in Sec. B.2.2. 
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The present discussion allows a classification of bcc(N, M, K) NPs for all combinations of 

polyhedral parameters N, M, K. This includes NPs where one or two parameters define the struc-

ture already uniquely. Table B.6 illustrates all possible NP types. 

Constraints 1 Constraints 2 NP types  bcc Isomorphs 

N  2M K  3M Generic rhombohe-

dral 

(-, M, -) = 

(Na, M, Ka) 

 2M + g  K  3M Rhombo-octahedral (-, M, K) = 

(Na, M, K) 

 K  2M + g Generic octahedral (-, -, K) = 

(Na, Ma, K) 

M  N  2M K  3M Cubo-rhombohedral (N, M, -) = 

(N, M, Ka) 

4M - N  K  3M Cubo-rhombo-oct. 

upper central 

(N, M, K) 

2M  K  4M - N Cubo-rhombo-oct. 

lower central 

(N, M, K) 

N + g  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, Ma, K) 

K  N + g Generic octahedral (-, -, K) = 

(Na, Ma, K) 

N  M K  3N Generic cubic (N, -, -) = 

(N, Ma, Ka) 

2N  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) = 

(N, Ma, K) 

K = 2N K even Cuboctahedral (N, Ma, K) 

N + g  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, Ma, K) 

K  N + g Octahedral (-, -, K) = 

(Na, Ma, K) 

 

Table B.6.  Constraints and types including isomorphs of bcc(N, M, K) 

NPs. Polyhedral parameters Na, Ma, Ka are defined above. 

Altogether, true cubo-rhombo-octahedral NPs, bcc(N, M, K) with {100}, {110}, and {111} 

facets can exist only if the polyhedral parameters N, M, K fulfill the two inequalities 

M  N  2M , 2M  K  3M (B.60) 
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C.  Simple Cubic (sc) Nanoparticles 

The simple cubic (sc) lattice is defined by lattice vectors R1, R2, R3 according to 

R1 = ao (1, 0, 0) , R2 = ao (0, 1, 0) , R3 = ao (0, 0, 1) (C.2) 

in Cartesian coordinates where ao is the lattice constant. The three densest monolayer families  

{hkl} of the sc lattice are described by six {100} netplanes (square mesh, highest atom density), 

twelve {110} (rectangular mesh), and eight {111} netplanes (hexagonal mesh) where distances 

between adjacent parallel netplanes are given by 

d{100} = ao , d{110} = ao/2 , d{111} = ao/3 (C.3) 

The point symmetry of the sc lattice is characterized by Oh with high symmetry centers at all 

atom sites and at the void centers of each elementary cell. 

Compact simple cubic nanoparticles (NPs) are confined by finite sections of monolayers (fac-

ets) whose structure is described by different netplanes (hkl). If they exhibit central Oh symmetry 

and show an (hkl) oriented facet they must also include all other symmetry related facets charac-

terized by orientations of the complete {hkl} family. Thus, surfaces of general sc NPs of Oh sym-

metry are described by facets whose orientation can be defined by those of different {hkl} fami-

lies (denoted {hkl} facets in the following). As an example, we mention the {100} family with 

its six netplane orientations (1 0 0), (0 1 0), (0 0 1). These facets are confined by edges 

which can be described by families of Miller index directions <hkl> (denoted <hkl> edges in the 

following). In addition, NP corners can be characterized by directions <hkl> pointing from the 

NP center to the corresponding corner (denoted <hkl> corners in the following). Further, accord-

ing to the symmetry of the sc host lattice possible NP centers can only be atom sites or Oh sym-

metry void sites of the lattice. Thus, we distinguish between atom centered and void centered sc 

NPs denoted ac and vc in the following. 

Assuming an sc NP to be confined by facets of the three cubic netplane families, {100},  

{110}, and {111}, its size and shape can be described by three integer type structure parameters, 

N, M, K (polyhedral NP parameters), which refer to the distances D{100}, D{110}, D{111} (NP diam-

eters) between parallel monolayer facets of a given netplane family expressed by multiples of 

corresponding netplane distances where 

D{100} = N d{100} , D{110} = 2M d{110} , D{111} = K d{111} (C.4) 
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with d{hkl} according to (C.3), Thus, in the most general case sc NPs can be denoted sc(N, M, K). 

If a facet type does not appear in the NP the corresponding parameter value N, M, or K is re-

placed by a minus sign. As an example, an sc NP with only {100} and {111} facets is denoted  

sc(N, -, K). These notations will be used in the following. Further, auxiliary parameters g, h with 

g = 0     (ac; N, K even) , = 1     (vc; N, K odd) (C.5) 

h = 0     (M + N even; M + K even) , = 1     (M + N odd; M + K odd) (C.6) 

will be used throughout Sec. C. 

C.1.  Generic sc Nanoparticles, sc(N, -, -), (-, M, -), and (-, -, K) NPs 

Generic sc nanoparticles (NPs) of Oh symmetry are confined by facets with orientations of 

only one {hkl} netplane family. Here we focus on {100}, {110}, and {111} facets derived from 

the densest monolayers of the sc lattice which offer the flattest NP facets. This allows to distin-

guish between three different generic NP types 

(a) Generic cubic sc NPs, denoted sc(N, -, -) (the notation is explained above), are confined 

by all six {100} monolayers with distances D{100} = N d{100} between parallel monolayers. 

This yields six {100} facets, see Fig. C.1. The {100} facets for both ac (N even) and  

vc (N odd) are square shaped with <100> edges of length N ao. 

 

 

Figure C.1.  Atom ball model of a generic atom centered NP, sc(6, -, -). 

The black lines sketch the square {100} facets. 
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The total number of NP atoms, Nvol(N, -, -), and the number of facet atoms, Nfacet(N, -, -), 

(outer polyhedral shell), are given by 

Nvol(N, -, -) = (N + 1)3 (C.7) 

Nfacet(N, -, -) = 6N2 + 2 (C.8) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, for  

<hkl> = <100>, <110>, and <111>, is given by 

s<100>(N, -, -) = N/2 d{100} (C.9a) 

s<110>(N, -, -) = N d{110} (C.9b) 

s<111>(N, -, -) = 3N/2 d{111} (C.9c) 

with d{hkl} according to (C.3). These quantities will be used in Secs. C.2. 

(b) Generic rhombohedral sc NPs, denoted sc(-, M, -) are confined by all twelve {110} mon-

olayers with distances D{110} = 2M d{110} between parallel monolayers. This yields twelve 

{110} facets as well as possibly six smaller {100} and eight {111} facets, see Fig. C.2, 

C..3. Corresponding edge parameters n, m, k depending on M are given in Table C.1. 

The {100} facets appear only for void NPs and are square shaped with four <100> edges of 

length ao. 

The {110} facets are rhombic, hexagonal, or octagonal shaped with two <100> edges of 

length n ao,  two <110> edges of length m ao/2, and four <111> edges of length  

k 3ao. For ac NPs with M even the NPs can be described as rhombic dodecahedra 

reminding of the shape of Wigner-Seitz cells of the face centered cubic (fcc) crystal 

lattice [14]. 

The {111} facets appear only for ac, M odd or vc, M even and are triangular shaped with 

three <110> edges of length m ao/2. 
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Centering M even M odd 

ac n = 0 

m = 0 

k = M/2 

n = 0 

m = 2 

k = (M - 1)/2 

vc n = 1 

m = 2 

k = (M - 2)/2 

n = 1 

m = 0 

k = (M - 1)/2 

 

Table C.1.  Edge parameters n, m, k of {100}, and {110} and 

{111} facets of sc(-, M, -) NPs, see text. Values n = m = 0 result in 

rhombic, n = 0, m  0 or n  0, m = 0 in hexagonal, and n  0, m  

0 in octagonal facets. 

(a)  (b)  

Figure C.2.  Atom ball models of generic rhombohedral atom centered 

NPs, (a) sc(-, 4, -) and (b) sc(-, 5, -). The black lines sketch the (capped) 

rhombic {110} and triangular {111} microfacets. 

(a)  (b)  

Figure C.3.  Atom ball models of generic rhombohedral void centered 

NPs, (a) sc(-, 5, -) and (b) vc (-, 6, -). The black lines sketch the capped 

rhombic {110}, the square {100}, and the triangular {111} microfacets. 
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The total number of NP atoms, Nvol(-, M, -), and the number of facet atoms, Nfacet(-, M, -), 

(outer polyhedral shell), are given with (C.6) by 

Nvol(-, M, -) = M (2M2 + 3M + 2) +1 - h (C.10) 

Nfacet(-, M, -) = 6M2 + 2(1 - h) (C.11) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given with (C.5), (C.6) by 

s<100>(-, M, -) = (2M - g)/2 d{100}  (C.12a) 

s<110>(-, M, -) = M d{110}  (C.12b) 

s<111>(-, M, -) = (3M - h)/2 d{111}  (C.12c) 

with d{hkl} according to (C.3). These quantities will be used in Secs. C.2. 

(c) Generic octahedral sc NPs, denoted sc(-, -, K), are confined by all eight {111} monolay-

ers with distances D{111} = K d{111} between parallel monolayers. This yields eight {111} 

facets as well as possibly six smaller {100} and twelve {110} facets, see Fig. C.4. 

The {100} facets appear only for vc, K odd NPs and are square shaped with four <100> 

edges of length ao. 

The {111} facets are triangular shaped with three <110> edges of length K ao/2 for  

ac, K even and of length (K - 3) ao/2 for vc K odd. 

The {110} facets appear only for vc, K odd NPs and are rectangular shaped with two 

<100> edges of length ao and two <110> edges of length (K - 3) ao/2. 

(a)  (b)  

Figure C.4.  Atom ball models of generic octahedral NPs, (a) atom cen-

tered sc(-, -, 12) and (b) void centered sc(-, -, 13). The black lines in 

sketch the triangular {111}, the stripped {110}, and the square {100} mi-

crofacets. 
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The total number of NP atoms, Nvol(-, -, K), and the number of facet atoms, Nfacet(-, -, K), 

(outer polyhedral shell), are given with (C.5) by 

Nvol(-, -, K) = (K+1) [(K+1)2 + 5 - 9g]/6 (C.13) 

Nfacet(-, -, K) = K2 + 2 - 3g (C.14) 

The largest distance from the NP center to its surface along <hkl> directions, s<hkl>, is 

given with (C.5) by 

s<100>(-, -, K) = (K - 2g)/2 d{100}  (C.15a) 

s<110>(-, -, K) = (K - g)/2 d{110}  (C.15b) 

s<111>(-, -, K) = K/2 d{111}  (C.15c) 

with d{hkl} according to (C.3). These quantities will be used in Secs. C.2. 

Table C.2 collects types, constraints, and shapes of all generic sc NPs. 

Generic type Constraints Facets Corners 

Cubic 

   sc(N, -, -) 

ac, N even, 

vc, N odd 

{100}  6 

{110}  0 

{111}  0 

<100>  0 

<110>  0 

<111>  8 

Rhombohedral ac 

   sc(-, M, -) 

M even {100}  0 

{110}  12 

{111}  0 

<100>  6 

<110>  0 

<111>  8 

 M odd {100}  0 

{110}  12 

{111}  8 

<100>  6 

<110>  0 

<111>  8 & 

Rhombohedral vc 

   sc(-, M, -) 

M even {100}  6 

{110}  12 

{111}  8 

<100>  6 & 

<110>  0 

<111>  8 & 

 M odd {100}  6 

{110}  12 

{111}  0 

<100>  6 & 

<110>  0 

<111>  8 

Octahedral 

   sc(-, -, K) 

ac, K even {100}  0 

{110}  0 

{111}  8 

<100>  6 

<110>  0 

<111>  0 

 vc, K odd {100}  6 

{110}  12 

{111}  8 

<100>  6 & 

<110>  0 

<111>  0 

 

Table C.2.  Types and notations of all generic sc NPs where “ac“ denotes 

atom centered and “vc“ void centered NPs. Further, the superscript label 

“&” denotes corner quadruplets about <100> and corner triplets about 

<111>. 
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C.2.  Non-generic sc Nanoparticles 

Non-generic sc nanoparticles of Oh symmetry can be either atom or void centered and show 

facets with orientations of several {hkl} netplane families. This can be considered as combining 

confinements of the corresponding generic NPs discussed in Sec. C.1 with suitable polyhedral 

parameters N, M, K sharing their symmetry center (atom or void). Here we discuss non-generic 

sc NPs which combine constraints of up to three generic NPs, cubic sc(N, -, -), rhombohedral 

sc(-, M, -), and octahedral sc(-, -, K). These allow {100}, {110}, as well as {111} facets and will 

be denoted sc(N, M, K) in the following. Clearly, the corresponding polyhedral parameters  

N, M, K depend on each other and determine the overall NP shape. In particular, if a participating 

generic NP encloses another participant it will not contribute to the overall NP shape and the re-

spective {hkl} facets will not appear at the surface of the non-generic NP. In the following, we 

consider the three types of non-generic NPs which combine constraints due to two generic NPs 

(Secs. C.2.1-3) before we discuss the most general case of sc(N, M, K) NPs in Sec. C.2.4. 

C.2.1  Combining {100} and {110} Facets, sc(N, M, -) NPs 

Non-generic cubo-rhombic NPs, denoted sc(N, M, -), are confined by facets referring to the 

two generic NPs, sc(N, -, -) (cubic) and sc(-, M, -) (rhombohedral). Thus, they can show {100} 

as well as {110} facets (apart from {111} microfacets) depending on the polyhedral parameters 

N, M. Clearly, both generic NPs must exhibit the same centering, atom centered (ac, N even) or 

void centered (vc, N odd), to yield a non-generic sc NP of Oh symmetry. If the edges of the cubic 

NP sc(N, -, -) lie inside the rhombohedral NP sc(-, M, -) the resulting combination sc(N, M, -) 

will be generic cubic which can be expressed formally by 

s<110>(N, -, -)  s<110>(-, M, -) (C.16) 

leading, according to (C.9), (C.12), to 

N  M (C.17) 

for both ac and vc NPs. On the other hand, if the corners of the rhombohedral NP sc(-, M, -) lie 

inside the cubic NP sc(N, -, -) the resulting combination sc(N, M, -) will be generic rhombohe-

dral which can be expressed formally by 

s<100>(-, M, -)  s<100>(N, -, -) (C.18) 

leading, according to (C.9), (C.12) with (C.5) to 

N  2M - g (C.19) 



56 

 

Thus, the two generic NPs intersect and define a true non-generic NP sc(N, M, -) offering both 

{100} and {110} facets only for polyhedral parameters N, M  where with (C.5) 

M < N < 2M - g (ac, N even) (C.20) 

while sc(N, M, -) is generic cubic for smaller N according to (C.17) and generic rhombohedral 

for larger N according to (C.19). This suggests that generic cubic and rhombohedral sc NPs can 

be considered as special cases of non-generic NPs  

sc(N, M, -) where with (C.5) 

sc(N, -, -) = sc(N, M = N, -) (cubic) (C.21a) 

sc(-, M, -) = sc(N = 2M - g, M, -) (rhombohedral) (C.21b) 

Parameters N, M provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, cubo-rhombic NPs  

sc(N, M, -) exhibit six {100} facets, twelve {110} facets, and eight smaller {111} facets,  

see Fig. C.5.  

The {100} facets are square shaped with four <100> edges of length (2M - N) ao. 

The {110} facets for (N + M) even are hexagonal shaped with four <111> edges of length  

(N - M)/2 3ao and two <100> edges of length (2M - N) ao . For (N + M) odd, the facets are 

octagonal (capped hexagonal) with four <111> edges of length (N - M - 1)/2 3ao, two 

<100> edges of length (2M - N) ao, and two <110> edges of length 2ao. 

The {111} facets appear only for (N + M) odd and are triangular shaped with three <110> edges 

of length 2ao. 

  



57 

 

(a)  (b)  

Figure C.5.  Atom ball models of cubo-rhombic NPs, (a) atom centered 

sc(12, 8, -) and (b) void centered sc(13, 10, -). The black lines sketch the 

square {100}, (capped) hexagonal {110} and triangular {111} microfac-

ets. 

The total number of NP atoms, Nvol(N, M, -), and the number of facet atoms, Nfacet(N, M, -), 

(outer polyhedral shell) are given with (C.10), (C.11) by 

Nvol(N, M, -) = Nvol(-, M, -) - H (H2 - 1) , H = 2M - N (C.22) 

Nfacet(N, M, -) = Nfacet(-, M, -) (C.23) 

The present discussion allows a classification of sc(N, M, -) NPs for all combinations of poly-

hedral parameters N, M. This includes generic NPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table C.3 illustrates all possible NP types. 

(a)  Atom centered (ac) sc(N, M, -), N even 

Constraints NP types  sc Isomorphs 

N  2M Generic rhombohedral (-, M, -) = 

(N = 2M, M, -) 

M  N  2M  Cubo-rhombic (N, M, -) 

N  M Generic cubic (N, -, -) = 

(N, M = N, -) 
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(b)  Void centered (vc) sc(N, M, -), N odd 

Constraints NP types  sc Isomorphs 

N  2M - 1 Generic rhombohedral (-, M, -) = 

(N = 2M - 1, M, -) 

M  N  2M - 1 Cubo-rhombic (N, M, -) 

N  M Generic cubic (N, -, -) = 

(N, M = N, -) 

 

Table C.3.  Constraints and types including isomorphs of (a) atom and 

(b) void centered sc(N, M, -) NPs. 

C.2.2  Combining {100} and {111} Facets, sc(N, -, K) NPs 

Non-generic cubo-octahedral NPs, denoted sc(N, -, K), are confined by facets referring to the 

two generic NPs, sc(N, -, -) (cubic) and sc(-, -, K) (octahedral). Thus, they can show {100} as 

well as {111} facets (apart from {110} microstrips) depending on the polyhedral parameters  

N, K. Clearly, both generic NPs must exhibit the same centering, atom centered (ac,  

both N, K even) or void centered (vc, both N, K odd), to yield a non-generic sc NP of Oh sym-

metry. If the corners of the cubic NP sc(N, -, -) lie inside the octahedral NP sc(-, -, K) the result-

ing combination sc(N, -, K) will be generic cubic which can be expressed formally by 

s<111>(N, -, -)  s<111>(-, -, K) (C.24) 

leading, according to (C.9), (C.15), to 

3N  K  (C.25) 

for both ac and vc NPs. On the other hand, if the corners of the octahedral NP sc(-, -, K) lie in-

side the cubic NP sc(N, -, -) the resulting combination sc(N, -, K) will be generic octahedral 

which can be expressed formally by 

s<100>(-, -, K)  s<100>(N, -, -) (C.26) 

leading, according to (C.9), (C.15) and with (C.5) to 

N  K - 2g (C.27) 

Thus, the two generic NPs intersect and define a true non-generic NP sc(N, -, K) offering both 

{100} and {111} facets only for polyhedral parameters N, K where with (C.5) 

N + 2g < K < 3N (ac, N, K even) (C.28) 
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while sc(N, -, K) is generic cubic for larger K according to (C.25) and generic octahedral for 

smaller K according to (C.27). This suggests that generic cubic and octahedral sc NPs can be 

considered as special cases of non-generic NPs sc(N, -, K) where with (C.5) 

sc(N, -, -) = sc(N, -, K = 3N) (cubic) (C.29a) 

sc(-, -, K) = sc(N = K - 2g, -, K) (octahedral) (C.29b) 

Further, amongst the true intersecting cubo-octahedral NPs according to (C.28) we can distin-

guish between so-called truncated octahedral NPs where K < 2N and truncated cubic NPs for 

K > 2N as will be discussed in the following. 

Parameters N, M provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, cubo-octahedral NPs  

sc(N, -, K) exhibit six {100}, twelve {110}, and eight {111} facets, see Figs. C.6, C.7.  

Truncated octhedral NPs (K < 2N), Fig. C.6, can be characterized by their facets as follows. 

The {100} facets for N, K even are square shaped with four <110> edges of length  

(K - N)/2 2ao. For N, K odd the facets are octagonal (capped square) shaped with 

alternating edges, four <110> of length (K - N - 2)/2 2ao and four <100> of length 

ao. 

The {110} facets appear only for N, K odd and are rectangular shaped with two <110> 

edges of length (2N - K + 1)/2 2ao and two <100> edges of length ao. 

The {111} facets are hexagonal shaped with alternating <110> edges of lengths  

(K - N)/2 2ao and (2N - K)/2 2ao for N, K even while for N, K odd the alternating 

edges are of lengths (K - N - 2)/2 2ao and (2N - K + 1)/2 2ao. 
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(a)  (b)  

Figure C.6.  Atom ball models of cubo-octahedral NPs of truncated octa-

hedral type, (a) atom centered sc(14, -, 20) and (b) void centered  

sc(13, -, 19). The black lines sketch the square {100}, the stripped {110}, 

and the hexagonal {111} facets.  

The total number of NP atoms, Nvol(N, -, K), and the number of facet atoms, Nfacet(N, -, K), 

(outer polyhedral shell) are given with (C.13), (C.14), (C.5) by 

Nvol(N, -, K) = Nvol(-, -, K) - H (H2 + 2 - 6g)/2 , H = K - N (C.30) 

Nfacet(N, -, K) = Nfacet(-, -, K) (C.31) 

 (a)  (b)  

Figure C.7.  Atom ball models of atom centered NPs, (a) cubo-octahe-

dral sc(10, -, 24) (truncated cubic ) and (b) generic cuboctahedral  

sc(10, -, 20). The black lines sketch the octagonal/square {100}, triangu-

lar {111} facets. 
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Truncated cubic NPs (K > 2N), Fig. 7, can be characterized by their facets as follows. 

The {100} facets are octagonal shaped with alternating edges, four <100> of length  

(K - 2N) ao and four <110> of length (3N - K)/2 2ao.  

The {111} facets are triangular shaped with <110> edges of length (3N - K)/2 2ao. 

The total number of NP atoms, Nvol(N, -, K), and the number of facet atoms, Nfacet(N, -, K), 

(outer polyhedral shell) are given with (C.7), (C.8) by 

Nvol(N, -, K) = Nvol(N, -, -) - H (H + 2) (H + 4)/6  (C.32) 

Nfacet(N, -, K) = Nfacet(N, -, -) - 2H2 , H = 3N - K (C.33) 

There are sc NPs which can be assigned to both truncated cubic and truncated octahedral type, 

the generic cuboctahedral sc(N, -, K) NPs, defined by K = 2N. These NPs exist only as atom 

centered variants since both N and K must be even. They exhibit six {100} and eight {111} fac-

ets, see Fig. C.7b. All {100} facets are square shaped with four <110> edges of length N/2 2ao 

while all {111} facets are triangular shaped with three<110> edges of length N/2 2ao shared 

with those of the {100} facets. 

The present discussion allows a classification of sc(N, -, K) NPs for all combinations of poly-

hedral parameters N, K. This includes generic NPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table C.4 illustrates all possible NP types. 

(a)  Atom centered (ac) sc(N, -, K), N, K even 

Constraints NP types  sc Isomorphs 

K  3N Generic cubic  (N, -, -) = 

(N , -, K = 3N) 

2N  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) 

K = 2N Cuboctahedral (N, -, K = 2N) , 

(N = K/2, -, K) 

N  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) 

K  N Generic octahedral (-, -, K) = 

(N = K, -, K) 
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(b)  Void centered (vc) sc(N, -, K), N, K odd 

Constraints NP types  sc Isomorphs 

K  3N Generic cubic  (N, -, -) = 

(N , -, K = 3N) 

2N + 1  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) 

N + 2  K  2N - 1 Cubo-octahedral 

truncated octahedral 

(N, -, K) 

K  N + 2 Generic octahedral (-, -, K) = 

(N = K - 2, -, K) 

 

Table C.4.  Constraints and types including isomorphs of (a) atom and 

(b) void centered sc(N, -, K) NPs. 

C.2.3  Combining {110} and {111} Facets, sc(-, M, K) NPs 

Non-generic rhombo-octahedral NPs, denoted sc(-, M, K), are confined by facets referring 

to the two generic NPs, sc(-, M, -) (rhombohedral) and sc(-, -, K) (octahedral). Thus, they can 

show {110} as well as {111} facets (apart from {100} microfacets) depending on the polyhedral 

parameters M, K. Clearly, both generic NPs must exhibit the same centering, atom centered  

(ac, K even) or void centered (vc, K odd), to yield a non-generic sc NP of Oh symmetry. If the 

corners of the rhombohedral NP sc(-, M, -) lie inside the octahedral NP sc(-, -, K) the resulting 

combination sc(-, M, K) will be generic rhombohedral which can be expressed formally by 

s<111>(-, M, -)  s<111>(-, -, K) (C.34) 

leading, according to (C.12), (C.15) and with (C.6), to 

3M  K + h (C.35) 

On the other hand, if the corners of the octahedral NP sc(-, -, K) lie inside the rhombohedral NP 

sc(-, M, -) the resulting combination sc(-, M, K) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, K)  s<100>(-, M, -) (C.36) 

leading, according to (C.12), (C.15) and with (C.5) to 

2M  K - g  (C.37) 

Thus, the two generic NPs intersect and define a true non-generic NP sc(-, M, K) offering both 

{110} and {111} facets only for polyhedral parameters M, K where with (C.5), (C.6) 

2M + g < K < 3M - h (C.38) 
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while sc(-, M, K) is generic rhombohedral for larger K according to (C.35) and generic octahe-

dral for smaller K according to (C.37). This suggests that generic rhombohedral and octahedral 

sc NPs can be considered as special cases of non-generic NPs sc(-, M, K) where with (C.5), (C.6) 

sc(-, M, -) = sc(-, M, K = 3M - h) (rhombohedral) (C.39a) 

sc(-, -, K) = sc(-, M = (K - g)/2, K) (octahedral) (C.39b) 

Parameters M, K provide additional information about geometric properties of the NPs de-

scribing their shapes and all facet edges. In the most general case, rhombo-octahedral NPs sc(-, 

M, K) exhibit twelve {110} and eight {111} facets with six possible {100} microfacets, see Fig. 

C.8. 

The {100} facets appear only for N, K odd and are square shaped with <100> edges of length ao. 

The {110} facets for N, K even are hexagonal shaped with four <111> edges of length  

(K - 2M)/2 3ao and two <110> edges of length (3M - K) 2ao. For N, K odd the facets are 

octagonal shaped with four <111> edges of length (K - 2M - 1)/2 3ao, two <100> edges of 

length ao, and two <110> edges of length (3M - K) 2ao. 

The {111} facets are triangular shaped with three <110> edges of length (3M - K) 2ao. 

(a)  (b)  

Figure C.8.  Atom ball models of rhombo-octahedral NPs, (a) atom cen-

tered sc( -, 10, 26) and (b) void centered sc( -, 10, 25). The black lines 

sketch the hexagonal/octagonal{110}and triangular {111} facets with 

square {100} microfacets. 

The total number of NP atoms, Nvol(-, M, K), and the number of facet atoms, Nfacet(-, M, K), 

(outer polyhedral shell) are given with (C.10), (C.11), (C.6) by 

Nvol(-, M, K) = Nvol(-, M, -) - H (H + 2) (2H - 1)/3 + h , H = 3M - K (C.40) 

Nfacet(-, M, K) = Nfacet(-, M, -) - 2H2 + 2h  (C.41) 
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The present discussion allows a classification of sc(-, M, K) NPs for all combinations of poly-

hedral parameters M, K. This includes generic NPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic NP. Table C.5 illustrates all possible NP types. 

(a)  Atom centered (ac) sc(-, M, K), K even 

Constraints NP types  sc Isomorphs 

K  3M - h Generic rhombohedral  (-, M, -) = 

(-, M, K = 3M - h) 

2M  K  3M - h Rhombo-octahedral (-, M, K) 

K  2M Generic octahedral (-, -, K) = 

(-, M = K/2, K) 

 

(b)  Void centered (vc) sc(-, M, K), K odd 

Constraints NP types  sc Isomorphs 

K  3M - h Generic rhombohedral  (-, M, -) = 

(-, M, K = 3M - h) 

2M + 1  K  3M - h Rhombo-octahedral (-, M, K) 

K  2M + 1 Generic octahedral (-, -, K) = 

(-, M = (K - 1)/2, K) 

 

Table C.5.  Constraints and types including isomorphs of (a) atom and 

(b) void centered sc(-, M, K) NPs. 

C.2.4  Combining {100}, {110}, and {111} Facets, sc(N, M, K) NPs 

Non-generic cubo-rhombo-octahedral NPs, denoted sc(N, M, K), are confined by facets re-

ferring to all three generic NPs, sc(N, -, -) (cubic), sc(-, M, -) (rhombohedral), and sc(-, -, K) (oc-

tahedral). Thus, they can show {100}, {110}, and {111} facets depending on the polyhedral pa-

rameters N, M, K. Clearly, the three generic NPs must exhibit the same centering, atom centered 

(ac, both N, K even) or void centered (vc, both N, K odd), to yield a non-generic sc NP of Oh 

symmetry. A general discussion of these NPs requires a number of different scenarios using re-

sults of for generic and non-generic NPs , Secs. C.1, C.2.1-3, respectively, as will be detailed in 

the following. 
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First, we consider the general notation for generic sc NPs discussed in Sec. C.1. Cubic NPs 

sc(N, -, -) are surrounded by rhombohedral NPs sc(-, M, -) if M  N according to (C.17) and by 

octahedral NPs sc(-, -, K) if K  3N according to (C.25). This allows a notation sc(N, M, K) 

where 

sc(N, -, -) = sc(N, M = N, K = 3N) (C.42) 

Further, rhombohedral NPs sc(-, M, -) are surrounded by cubic NPs sc(N, -, -) if N, M satisfy re-

lations (C.19) and by octahedral NPs sc(-, -, K) if M, K satisfy relations (C.35). This allows a no-

tation sc(N, M, K) where with (C.5), (C.6) 

sc(-, M, -) = sc(N = 2M - g, M, K = 3M - h) (C.43) 

In addition , the octahedral NPs sc(-, -, K) are surrounded by cubic NPs sc(N, -, -) if if N, K sat-

isfy relations (C.27) and by rhombohedral NPs sc(-, M, -) if M, K satisfy relations (C.37). This 

allows a notation sc(N, M, K) where with (C.5) 

sc(-, -, K) = sc(N = K - 2g, M = (K - g)/2, K) (C.44) 

General notations for non-generic sc NPs discussed in Secs. C.2.1-3 are obtained by analo-

gous arguments. According to Sec. C.2.1, true cubo-rhombic NPs sc(N, M, -) with both {100} 

and {110} facets are subject to M  N  2M (- 1) according to (C.20). They are surrounded by 

octahedral NPs sc(-, -, K) if K  Ka where with (C.6) 

Ka(N, M) = min(3N, 3M - h) = 3M - h (C.45) 

This allows a general notation sc(N, M, K) where 

sc(N, M, -) = sc(N, M, K = Ka) (C.46) 

According to Sec. C.2.2, true cubo-octahedral NPs sc(N, -, K) with both {100} and {111} fac-

ets are subject to N (+ 2)  K  3N according to (C.28). They are surrounded by rhombohedral 

NPs sc(-, M, -) if M  Ma were with (C.5) 

Ma(N, K) = min((K - g)/2, N) (C.47) 

This allows a general notation sc(N, M, K) where 

sc(N, -, K) = sc(N, M = Ma, K) (C.48) 

According to Sec. C.2.3, true rhombo-octahedral NPs sc(-, M, K) with both {110} and {111} 

facets are subject to 2M (+ 1)  K  3M (- 1) according to (C.38). They are surrounded by cubic 

NPs sc(N, -, -) if N  Na were with (C.5) 
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Na(M, K) = min(2M - g, K - 2g) (C.49) 

This allows a general notation sc(N, M, K) where 

sc(-, M, K) = sc(N = Na, M, K) (C.50) 

In the most general case of a true sc(N, M, K) NP with {100}, {110}, and {111} facets we 

start from a true cubo-rhombic NP, sc(N, M, -), with its constraints M  N  2M and add con-

straints of a generic octahedral NP, sc(-, -, K), where according to the discussion above K values 

are below Ka. This allows to distinguish four different ranges of parameter K, defined by separat-

ing values Ka  Kb  Kc, with Ka given by (C.45) and 

Kb(N, M) = 4M - N  (C.51) 

Kc(N, M) = 2M  (C.52) 

which result in different NP shapes starting from the initial cubo-rhombic NP sc(N, M, Ka) as il-

lustrated for the ac NP sc(20, 14, 42) in Fig. C.9. 

 

Figure C.9.  Atom ball model of an atom centered cubo-rhombic NP, 

sc(20, 14, 42) (K = Ka, all atom balls), with its cubo-rhombo-octahedral 

NP components, sc(20, 14, 36) (K = Kb), and sc(20, 14, 28) (K = Kc). The 

boundaries between dark, light yellow, and white balls reflect the separa-

tions of the different K ranges at K = Kc (inner vs. lower central ) and at 

K = Kb, (lower vs. upper central), respectively, see text. 
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Outer K range of sc(N, M, K) where with (C.45) 

K  Ka (C.53) 

For these K values the NP becomes cubo-rhombohedral and does not exhibit any {111} 

facets (except for microfacets with three atoms). It is isomorphic with sc(N, M, Ka) as dis-

cussed above and in Sec. C.2.1. 

Upper central K range of sc(N, M, K) where with (C.45), (C.51) 

Kb  K  Ka (C.54) 

For these K values the initial sc(N, M, Ka) NP is capped at its <111> corners forming eight 

additional {111} facets of equilateral triangular shape. Altogether, these NPs exhibit six 

{100} facets, twelve {110} facets, and eight {111} facets, see Fig. C.10. 

The {100} facets are square shaped with four <100> edges of length (2M - N) ao. 

The {110} facets are octagonal or rectangular (K = Kb) shaped with two <110> edges of 

length (3M - K) 2ao, two <100> edges of (2M - N) ao, and four <111> edges of  

(K + N - 4M)/2 3ao. 

The {111} facets are triangular shaped with three <110> edges of length (3M - K) 2ao. 

The NP structure is illustrated in Fig. C.10 for the ac NP sc(24, 14, 36) (Ka = 42, Kb = 32, 

yellow atom balls) where white balls above the {111} facets are added to yield the corre-

sponding cubo-rhombic sc(N, M, Ka) NP. 

 

Figure C.10.  Atom ball model of an atom centered cubo-rhombo-octa-

hedral NP, sc(24, 14, 36), shown by yellow balls with white atom balls 

completing the NP, see text. The black lines sketch the square {100}, oc-

tagonal{110}, and triangular {111} facets. 
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The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (C.22), (C.23), (C.6) by 

Nvol(N, M, K) = Nvol(N, M, -) - H (H + 2) (2H - 1)/3 + h (C.55) 

Nfacet(N, M, K) = Nfacet(N, M, -) - 2H2 + 2h , H = 3M - K (C.56) 

For K = Kb, the sc(N, M, K) NP assumes a particular shape where its twelve {110} facets 

are rectangular with two edges of length (N - M) 2ao and of (2M - N) ao while the {100} 

and {111} facets are square and triangular shaped as described before. This is illustrated in 

Fig. C.11 for the vc NP sc(15, 9, 21) (Kb = 21). 

 

Figure C.11.  Atom ball model of a void centered cubo-rhombo-octahe-

dral NP, sc(15, 9, 21). The black lines sketch the square {100}, rectangu-

lar {110}, and triangular {111} facets. 

Lower central K range of sc(N, M, K) where with (C.51), (C.52) 

Kc  K  Kb (C.57) 

For these K values the capping of the initial sc(N, M, Kb) along the <111> directions is 

continued to yield eight hexagonal {111} facets. As before, these NPs exhibit six {100} 

facets, twelve {110} facets, and eight {111} facets, see Fig. C.12. 

The {100} facets are octagonal shaped with alternating edges, four <100> of length  

(K - 2M) ao and four <110> of length (4M - N - K)/2 2ao. 

The {110} facets are rectangular shaped with two <110> edges of length (N - M) 2ao and 

two <100> edges of length (K - 2M) ao. 

The {111} facets are hexagonal shaped with <110> edges of alternating lengths  

(4M - N - K)/2 2ao and (N - M) 2ao.  
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The NP structure is illustrated in Fig. C.12 for the NP sc(22, 14, 30) (Kb = 34, Kc = 28) 

where white atom balls above the {111} facets are added to sc(N, M, K) to yield the corre-

sponding sc(N, M, Kb) NP. 

 

Figure C.12.  Atom ball model of an atom centered cubo-rhombo-octa-

hedral NP, sc(22, 14, 30) shown by yellow balls with white atom balls 

completing the NP, see text. The black lines sketch the octagonal {100}, 

rectangular{110}, and hexagonal/triangular {111} facets. 

The total number of NP atoms, Nvol(N, M, K), and the number of facet atoms,  

Nfacet(N, M, K), (outer polyhedral shell) are given with (C.55), (C.56), (C.6) by 

Nvol(N, M, K) = Nvol(N, M, Kb) - H [G (G + 2) - 2/3 (H2 - 4)]/2 (C.58) 

Nfacet(N, M, K) = Nfacet(N, M, -) - 2(N - M)2 - 2G H + 2h (C.59) 

H = 4M - N - K , G = 2M + N - K 

Inner K range of sc(N, M, K) where with (C.52) 

K  Kc (C.60) 

For these K values the NP becomes cubo-octahedral and does not exhibit {110} facets (ex-

cept for possible microstrips). It is isomorphic with sc(N, Ma, K) as discussed above and in 

Sec. C.2.2. 

The present discussion allows a classification of sc(N, M, K) NPs for all combinations of pol-

yhedral parameters N, M, K. This includes NPs where one or two parameters define the structure 

already uniquely. Table C.6 illustrates all possible NP types. 
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Constraints 1 Constraints 2 NP types  sc Isomorphs 

N  2M K  3M Generic rhombohe-

dral 

(-, M, -) = 

(Na, M, Ka) 

2M  K  3M Rhombo-octahedral (-, M, K) = 

(Na, M, K) 

K  2M Generic octahedral (-, -, K) = 

(Na, Ma, K) 

M  N  2M K  3M Cubo-rhombohedral (N, M, -) = 

(N, M, Ka) 

4M - N  K  3M Cubo-rhombo-oct. 

upper central 

(N, M, K) 

2M  K  4M - N Cubo-rhombo-oct. 

lower central 

(N, M, K) 

N + 2g  K  2M Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, Ma, K) 

K  N + 2g Generic octahedral (-, -, K) = 

(Na, Ma, K) 

N  M K  3N Generic cubic (N, -, -) = 

(N, Ma, Ka) 

2N  K  3N Cubo-octahedral 

truncated cubic 

(N, -, K) = 

(N, Ma, K) 

K = 2N (ac) Cuboctahedral (N, Ma, K) 

N + 2g  K  2N Cubo-octahedral 

truncated octahedral 

(N, -, K) = 

(N, Ma, K) 

K  N + 2g Generic octahedral (-, -, K) = 

(Na, Ma, K) 

 

Table C.6.  Constraints and types including isomorphs of sc(N, M, K) 

NPs for atom centered (ac, N, K even) and void centered (vc, N, K odd) 

with (C.5). Polyhedral parameters Na, Ma, Ka are defined above. 

Altogether, true cubo-rhombo-octahedral NPs, sc(N, M, K) with {100}, {110}, and {111} fac-

ets can exist only if the polyhedral parameters N, M, K fulfill the two inequalities 

M  N  2M , 2M  K  3M (C.61) 
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III.  Conclusion 

The present work gives a full theoretical account of the shape and structure of nanoparti-

cles (NPs) forming compact polyhedral sections of the ideal cubic lattice where simple, body 

centered, and face centered variants are considered. We focus on particles of Oh symmetry which 

are confined by facets of densest, second, and third densest monolayers of the lattice reflecting 

Miller index families {100}, {110}, and {111}. The structure evaluation identifies different 

types of generic NPs which serve for the definition of general polyhedral NPs. These can be clas-

sified according to three integer valued polyhedral parameters N, M, K which are connected with 

particle diameters along corresponding facet normal directions reflecting {hkl} monolayer fami-

lies of the underlying lattice. Detailed structural properties of the general polyhedral NPs, such 

as shape, size, and surfaces, are discussed in analytical and numerical detail with visualization of 

characteristic examples. This illustrates the complexity of seemingly simple nanoparticles in a 

quantitative account. 

Clearly, the present results deal only with ideal cubic NPs and cannot account for all possi-

ble structures of the most general metal nanoparticles observed, for example, by electron micros-

copy [15]. Realistic NPs may exhibit very different shapes, including less compact particles, and 

symmetry, including local structural disorder and deviations from (or incompatibility with) the 

crystal lattice structure in their inner core. This can only be examined in case-by-case studies 

where exact quantitative data are difficult to obtain. However, the present results can be used to 

estimate typical particle sizes and shapes of metal NPs as well as for a repository of possible 

structures of compact NPs with internal cubic lattice.  
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V.  Supplementary Information 

Here we give additional information and further analytic relationships of structure properties rel-

evant to cubic (sc, bcc, and fcc) nanoparticles discussed in the previous sections. 

S.1.  Symmetry Centers 

The cubic NPs, sc(N, M, K), bcc(N, M, K), and fcc(N, M, K) of Oh symmetry contain atoms or 

high symmetry voids at their center depending on the lattice type and on parameters N, M, K. 

The simple cubic lattice offers two different centers of Oh symmetry, an atom site and a high 

symmetry void site as shown in Fig. S.1. This discriminates between two symmetry types of 

sc(N, M, K) NPs, those about an atom center and those about a high symmetry void. 

(a)    (b)    

Figure S.1.  Oh symmetry centers of the simple cubic lattice, (a) atom 

site, (b) high symmetry void site. The symmetry centers are emphasized 

by white color and connected with their nearest neighbor atoms. 

This discriminates between two types of octahedral and cubic sc[N, M, K) NPs, about an atom 

center and about a high symmetry void, depending on the parities (even, odd, any) of parameters 

N, M, K as spelled out in table S.1. 

NP center type N M K 

atom even any even 

void odd any odd 

 

Table S.1.  Parity of N, M, K for atom and void centered  

sc[N, M, K) NPs, see text. 

The body centered cubic lattice offers only one center of Oh symmetry which coincides with an 

atom site as shown in Fig. S.2. This allows for one symmetry type of bcc(N, M, K) NPs, about an 

atom center, independent of the parities of parameters N, M, K. 
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Figure S.2.  Oh symmetry center of the body centered cubic lattice at 

atom site. The center is emphasized by white color and connected with its 

nearest neighbor atoms. 

The face centered cubic lattice offers two different centers of Oh symmetry, an atom site and a 

high symmetry void as shown in Fig. S.3. 

(a)    (b)    

Figure S.3.  Oh symmetry centers of the face centered cubic lattice, (a) 

atom site, (b) high symmetry void site. The centers are emphasized by 

white color and connected with their nearest neighbor atoms (void site) 

and next nearest neighbors (atom site), respectively. 

This discriminates between two symmetry types of octahedral and cubic fcc(N, M, K) NPs, about 

an atom center and about a high symmetry void, depending on the parities (even, odd, any) of 

parameters N, M, K as spelled out in table S.2. 

NP center type N M K 

atom any any even 

void any any odd 

 

Table S.2.  Parity of N, M, K for atom and void centered  

fcc[N, M, K) NPs, see text. 
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S.2.  Alternative Descriptions of Cubic (N, M, K) Nanoparticles  

S.2.1  Face Centered Cubic NPs  

There are two strategies to describe a general fcc(N, M, K) NP which differ from that dis-

cussed in Sec. A.2.4. They start from either a true cubo-octahedral NP, fcc(N, -, K), or from true 

rhombo-octahedral NP, fcc(-, M, K). Both strategies yield the same fcc(N, M, K) NP description 

as given in Sec. A.2.4 and will be mentioned only briefly in the following. 

Starting from a true cubo-octahedral NP, fcc(N, -, K), with its constraints  

N  K  3N (N + K even) or N  K  3N - 1 (N + K odd) and adding constraints of a generic 

rhombohedral NP, fcc(-, M, -), to yield the cubo-rhombo-octahedral NP fcc(N, M, K) requires, 

according to the discussion above, M values below Ma where 

Ma(N, K) = min(K, 2N)  (S.1) 

with truncated octahedral and truncated cubic fcc(N, -, K) NPs defined by (K  2N) and  

(K  2N), respectively. In this scenario we can distinguish four different ranges of parameter  

M, defined by separating values Ma  Mb  Mc, with (S.1), (A.4) and 

Mb(N, K) = (N + K)/2  (S.2) 

Mc(N, K) = 2K/3       = (2K + 3)/3 K = 6p + 3g (S.3a) 

 = (2K + 2)/3 K = 6p + 2 + 3g (S.3b) 

 = (2K + 1)/3 K = 6p + 4 - 3g (S.3c) 

(where Mb(N, K), Mc(N, K) may be fractional) which result in different NP shapes starting from 

the initial cubo-octahedral NP fcc(N, Ma, K) as illustrated for fcc(16, 26, 26) (ac, truncated octa-

hedral) in Fig. S.8a and for fcc(16, 32, 36) (ac, truncated cubic) in Fig. S.8b. 
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(a)  (b)  

Figure S.8.  Atom ball models of atom centered cubo-octahedral NPs,  

(a) fcc(16, 26, 26) (M = Ma, all atom balls), with its cubo-rhombo-octahe-

dral NP components, fcc(16, 21, 26) (M = Mb), and fcc(16, 18, 26)  

(M = Mc); (b) fcc(16, 32, 36) (M = Ma, all atom balls), with its cubo-

rhombo-octahedral NP components, fcc(16, 26, 36) (M = Mb), and 

fcc(16, 24, 36) (M = Mc). The boundaries between dark, light yellow, and 

white balls reflect the separations of the different M ranges at M = Mc (in-

ner vs. lower central ) and at M = Mb, (lower vs. upper central), respec-

tively, see text. 

Analogous to the discussion above, we discriminate between an outer M range, M  Ma, (all 

atom balls in Fig. S.8) where the fcc(N, M, K) NP becomes cubo-octahedral with the isomorph 

fcc(N, Ma, K), an upper, Mb  M  Ma, (white atom balls in Fig. S.8) and lower central M 

range, Mc  M  Mb, (light yellow atom balls in Fig. S.8) where the fcc(N, M, K) NP becomes 

truly cubo-rhombo-octahedral, and an inner M range, M  Mc, (dark yellow atom balls in Fig. 

S.8) where the fcc(N, M, K) NP becomes cubo-rhombohedral with the isomorph fcc(N, M, Ka) or 

rhombo-octahedral with the isomorph fcc(Na, M, K). Altogether, true cubo-rhombo-octahedral 

NPs, fcc(N, M, K) with {100}, {110}, and {111} facets can exist only if the polyhedral parame-

ters N, M, K fulfill the two inequalities given in (A.62). 

Starting from a true rhombo-octahedral NP, fcc(-, M, K), with its constraints M  K  3M/2, 

etc., see (A.38). and adding constraints of a generic cubic NP, fcc(N, -, -), to yield the cubo-

rhombo-octahedral NP fcc(N, M, K) requires, according to the discussion above, N values below 

Na. where with (A.6) 

Na(M, K) = M - h’ (M + K even) (S.4) 
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In this scenario we can distinguish four different ranges of parameter N, defined by separating 

values Na  Nb  Nc, with (S.4) and 

Nb(M, K) = 2M - K  (S.5) 

Nc(M, K) = M/2 (M even) (S.6a) 

 = (M - 1)/2 (M odd) (S.6b) 

which result in different NP shapes starting from the initial rhombo-octahedral NP fcc(Na, M, K) 

as illustrated for fcc(24, 24, 32) in Fig. S.9. 

 

Figure S.9.  Atom ball model of an atom centered rhombo-octahedral 

NP, fcc(24, 24, 32) (N = Na, all atom balls), with its cubo-rhombo-octa-

hedral NP components, fcc(16, 24, 32) (N = Nb), and fcc(12, 24, 32)  

(N = Nc). The boundaries between dark, light yellow, and white balls re-

flect the separations of the different N ranges at N = Nc (inner vs. lower 

central ) and at N = Nb, (lower vs. upper central), respectively, see text. 

Analogous to the discussion above, we discriminate between an outer N range, N  Na, (all atom 

balls in Fig. S.9) where the fcc(N, M, K) NP becomes rhombo-octahedral with the isomorph 

fcc(Na, M, K), an upper, Nb  N  Na, (white atom balls in Fig. S.9) and lower central N range, 

Nc  N  Nb, (light yellow atom balls in Fig. S.9) where the fcc(N, M, K) NP becomes truly cubo-

rhombo-octahedral, and an inner N range, N  Nc, (dark yellow atom balls in Fig. S.8) where 

the fcc(N, M, K) NP becomes cubo-octahedral with the isomorph fcc(N, Ma, K). Altogether, true 

cubo-rhombo-octahedral NPs, fcc(N, M, K) with {100}, {110}, and {111} facets can exist only if 

the polyhedral parameters N, M, K fulfill the two inequalities given in (A.62). 
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S.2.2  Body Centered Cubic NPs  

There are two strategies to describe a general bcc(N, M, K) NP which differ from that dis-

cussed in Sec. B.2.4. They start from either a true cubo-octahedral NP, bcc(N, -, K), or from true 

rhombo-octahedral NP, bcc(-, M, K). Both strategies yield the same bcc(N, M, K) NP description 

as given in Sec. B.2.4 and will be mentioned only briefly in the following. 

Starting from a true cubo-octahedral NP, bcc(N, -, K), with its constraints  

N  K  3N (K even) or N + 1  K  3N (K odd) and adding constraints of a generic rhombohe-

dral NP, bcc(-, M, -), to yield the cubo-rhombo-octahedral NP bcc(N, M, K) requires, according 

to the discussion above, M values below Ma. Here we distinguish between truncated octahedral 

bcc(N, -, K) NPs where K  2N and truncated cubic NPs with K  2N where 

Ma(N, K) = K/2 (K  2N, K even) (S.7a) 

 = (K - 1)/2 (K  2N + 1, K odd) (S.7b) 

 = N (K  2N) (S.7c) 

In this scenario we can distinguish four different ranges of parameter M, defined by separating 

values Ma  Mb  Mc, with (S.7) and 

Mb(N, K) = (N + K)/4  (S.8) 

Mc(N, K) = K/3  (S.9) 

(where Mb(N, K), Mc(N, K) may be fractional) which result in different NP shapes starting from 

the initial cubo-octahedral NP bcc(N, Ma, K) as illustrated for bcc(18, 15, 30) (truncated octahe-

dral) in Fig. S.6a and for bcc(17, 17, 39) (truncated cubic) in Fig. S.6b. 
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(a)  (b)  

Figure S.6.  Atom ball models of cubo-octahedral NPs,  

(a) bcc(18, 15, 30) (M = Ma, all atom balls), with its cubo-rhombo-octa-

hedral NP components, bcc(18, 12, 30) (M = Mb), and bcc(18, 10, 30) (M 

= Mc); (b) bcc(17, 17, 39) (M = Ma, all atom balls), with its cubo-

rhombo-octahedral NP components, bcc(17, 14, 39) (M = Mb), and 

bcc(17, 13, 39) (M = Mc). The boundaries between dark, light yellow, 

and white balls reflect the separations of the different M ranges at M = Mc 

(inner vs. lower central ) and at M = Mb, (lower vs. upper central), re-

spectively, see text. 

Analogous to the discussion above, we discriminate between an outer M range, M  Ma, (all 

atom balls in Fig. S.6) where the bcc(N, M, K) NP becomes cubo-octahedral with the isomorph 

bcc(N, Ma, K), an upper, Mb  M  Ma, (white atom balls in Fig. S.6) and lower central M 

range, Mc  M  Mb, (light yellow atom balls in Fig. S.6) where the bcc(N, M, K) NP becomes 

truly cubo-rhombo-octahedral, and an inner M range, M  Mc, (dark yellow atom balls in Fig. 

S.6) where the bcc(N, M, K) NP becomes cubo-rhombohedral with the isomorph bcc(N, M, Ka) 

or rhombo-octahedral with the isomorph bcc(Na, M, K). Altogether, true cubo-rhombo-octahedral 

NPs, bcc(N, M, K) with {100}, {110}, and {111} facets can exist only if the polyhedral parame-

ters N, M, K fulfill the two inequalities given in (B.60). 

Starting from a true rhombo-octahedral NP, bcc(-, M, K), with its constraints 2M  K  3M 

and adding constraints of a generic cubic NP, bcc(N, -, -), to yield the cubo-rhombo-octahedral 

NP bcc(N, M, K) requires, according to the discussion above, N values below Na. where 

Na(M, K) = 2M (S.10) 

In this scenario we can distinguish four different ranges of parameter N, defined by separating 

values Na  Nb  Nc, with (S.10) and 
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Nb(M, K) = 4M - K  (S.11) 

Nc(M, K) = M  (S.12) 

which result in different NP shapes starting from the initial rhombo-octahedral NP bcc(Na, M, K) 

as illustrated for bcc(26, 13, 33) in Fig. S.7. 

 

Figure S.7.  Atom ball model of a rhombo-octahedral NP,  

bcc(26, 13, 33) (N = Na, all atom balls), with its cubo-rhombo-octahedral 

NP components, bcc(20, 13, 33) (N = Nb), and bcc(13, 13, 33) (N = Nc). 

The boundaries between dark, light yellow, and white balls reflect the 

separations of the different N ranges at N = Nc (inner vs. lower central ) 

and at N = Nb, (lower vs. upper central), respectively, see text. 

Analogous to the discussion above, we discriminate between an outer N range, N  Na, (all atom 

balls in Fig. S.7) where the bcc(N, M, K) NP becomes rhombo-octahedral with the isomorph 

bcc(Na, M, K), an upper, Nb  N  Na, (white atom balls in Fig. S.7) and lower central N range, 

Nc  N  Nb, (light yellow atom balls in Fig. S.7) where the bcc(N, M, K) NP becomes truly 

cubo-rhombo-octahedral, and an inner N range, N  Nc, (dark yellow atom balls in Fig. S.7) 

where the bcc(N, M, K) NP becomes cubo-octahedral with the isomorph bcc(N, Ma, K). Alto-

gether, true cubo-rhombo-octahedral NPs, bcc(N, M, K) with {100}, {110}, and {111} facets can 

exist only if the polyhedral parameters N, M, K fulfill the two inequalities given in (B.60). 
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S.2.3  Simple Cubic NPs  

There are two strategies to describe a general sc(N, M, K) NP which differ from that discussed 

in Sec. C.2.4. They start from either a true cubo-octahedral NP, sc(N, -, K), or from true rhombo-

octahedral NP, sc(-, M, K). Both strategies yield the same sc(N, M, K) NP description as given in 

Sec. C.2.4 and will be mentioned only briefly in the following. 

Starting from a true cubo-octahedral NP, sc(N, -, K), with its constraints N  K  3N (ac) or  

N + 2  K  3N (vc) and adding constraints of a generic rhombohedral NP, sc(-, M, -), to yield 

the cubo-rhombo-octahedral NP sc(N, M, K) requires, according to the discussion above, M val-

ues below Ma where with (C.5) 

Ma(N, K) = (K - g)/2 (K  2N) (S.13a) 

 = N (K  2N) (S.13b) 

with truncated octahedral and truncated cubic sc(N, -, K) NPs defined by (K  2N) and (K  2N), 

respectively. In this scenario we can distinguish four different ranges of parameter M, defined by 

separating values Ma  Mb  Mc, with (S.13) and 

Mb(N, K) = (N + K)/4  (S.14) 

Mc(N, K) = K/3  (S.15) 

(where Mb(N, K), Mc(N, K) may be fractional) which result in different NP shapes starting from 

the initial cubo-octahedral NP sc(N, Ma, K) as illustrated for sc(20, 18, 36) (truncated octahedral) 

in Fig. S.4a and for sc(20, 20, 44) (truncated cubic) in Fig. S.4b. 
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(a)  (b)  

Figure S.4.  Atom ball models of atom centered cubo-octahedral NPs,  

(a) truncated octahedral sc(20, 18, 36) (M = Ma, all atom balls), with its 

cubo-rhombo-octahedral NP components, sc(20, 14, 36) (M = Mb), and 

sc(20, 12, 36) (M = Mc); (b) truncated cubic sc(20, 20, 44) (M = Ma, all 

atom balls), with its cubo-rhombo-octahedral NP components,  

sc(20, 16, 44) (M = Mb), and sc(20, 15, 44) (M = Mc). The boundaries be-

tween dark, light yellow, and white balls reflect the separations of the 

different M ranges at M = Mc (inner vs. lower central ) and at M = Mb, 

(lower vs. upper central), respectively, see text. 

Analogous to the discussion above, we discriminate between an outer M range, M  Ma, (all 

atom balls in Fig. S.4) where the sc(N, M, K) NP becomes cubo-octahedral with the isomorph 

sc(N, Ma, K), an upper, Mb  M  Ma, (white atom balls in Fig. S.4) and lower central M range, 

Mc  M  Mb, (light yellow atom balls in Fig. S.4) where the sc(N, M, K) NP becomes truly 

cubo-rhombo-octahedral, and an inner M range, M  Mc, (dark yellow atom balls in Fig. S.4) 

where the sc(N, M, K) NP becomes cubo-rhombohedral with the isomorph sc(N, M, Ka) or 

rhombo-octahedral with the isomorph sc(Na, M, K). Altogether, true cubo-rhombo-octahedral 

NPs, sc(N, M, K) with {100}, {110}, and {111} facets can exist only if the polyhedral parame-

ters N, M, K fulfill the two inequalities given in (C.61). 

Starting from a true rhombo-octahedral NP, sc(-, M, K), with its constraints 2M  K  3M and 

adding constraints of a generic cubic NP, sc(N, -, -), to yield the cubo-rhombo-octahedral NP 

sc(N, M, K) requires, according to the discussion above, N values below Na. where with (C.5) 

Na(M, K) = 2M - g (S.16) 

In this scenario we can distinguish four different ranges of parameter N, defined by separating 

values Na  Nb  Nc, with (S.16) and 
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Nb(M, K) = 4M - K  (S.17) 

Nc(M, K) = M  (S.18) 

which result in different NP shapes starting from the initial rhombo-octahedral NP sc(Na, M, K) 

as illustrated for sc(28, 14, 34) in Fig. S.5. 

 

Figure S.5.  Atom ball model of an atom centered rhombo-octahedral 

NP, sc(28, 14, 34) (N = Na, all atom balls), with its cubo-rhombo-octahe-

dral NP components, sc(22, 14, 34) (N = Nb), and sc(14, 14, 34) (N = Nc). 

The boundaries between dark, light yellow, and white balls reflect the 

separations of the different N ranges at N = Nc (inner vs. lower central ) 

and at N = Nb, (lower vs. upper central), respectively, see text. 

Analogous to the discussion above, we discriminate between an outer N range, N  Na, (all atom 

balls in Fig. S.5) where the sc(N, M, K) NP becomes rhombo-octahedral with the isomorph 

sc(Na, M, K), an upper, Nb  N  Na, (white atom balls in Fig. S.5) and lower central N range, 

Nc  N  Nb, (light yellow atom balls in Fig. S.5) where the sc(N, M, K) NP becomes truly cubo-

rhombo-octahedral, and an inner N range, N  Nc, (dark yellow atom balls in Fig. S.4) where 

the sc(N, M, K) NP becomes cubo-octahedral with the isomorph sc(N, Ma, K). Altogether, true 

cubo-rhombo-octahedral NPs, sc(N, M, K) with {100}, {110}, and {111} facets can exist only if 

the polyhedral parameters N, M, K fulfill the two inequalities given in (C.61). 
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S.3.  Cubic Macroparticles 

Compact particles with cubic lattices and of Oh symmetry, discussed in Secs. A - C, are 

uniquely described by polyhedral NP parameters N, M, K referring to distances D{100}, D{110}, 

D{111} (NP diameters) between parallel monolayer facets of given netplane families. This de-

scription becomes particularly simple if N, M, K assume very large values and can be approxi-

mated by real rather than integer quantities. As a consequence, {hkl} monolayer planes can still 

be defined by their normal directions in Cartesian coordinates but their distribution becomes con-

tinuous rather than discrete. Further, {hkl} facets confining the macroparticles (MP) are not re-

stricted to discrete variations but may vary continuously as long as the overall Oh symmetry is 

conserved. Thus, assuming a confinement by facets of the three cubic netplane families, {100}, 

{110}, and {111} NP diameters of these macroparticles can be written as  

D{100} = A ,     D{110} = B/2 ,     D{111} = C/3 (D.1) 

with A, B, C real valued. And in the most general case the particles can be denoted cb(A, B, C). 

If a facet type does not appear in the MP the corresponding parameter value A, B, or C is re-

placed by a minus sign. As an example, a cubic MP with only {100} and {110} facets is denoted  

cb(A, B, -). These notations will be used in the following discussion. 

S.3.1.  Generic Cubic Macroparticles , cb(A, -, -), (-, B, -), (-, -, C) 

Generic cubic macroparticles (MPs) of Oh symmetry are confined by facets with orientations 

of only one {hkl} netplane family. Here we focus on {100}, {110}, and {111} facets derived 

from the densest monolayers of the cubic lattice. This allows to distinguish between three differ-

ent generic MP types 

(a) Generic cubic MPs, denoted cb(A, -, -) (the notation is explained above), are confined by 

all six {100} monolayers with distances D{100} = A between parallel monolayers. This 

yields six square shaped {100} facets with <100> edges of length A and eight polyhedral 

<111> atom corners, see Fig. D.1.  
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Figure D.1.  Generic cubic MP filled with atom balls of an sc lattice. The 

corners are emphasized by dark color and the black lines are meant to 

outline the MP. 

The largest distance from the MP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(A, -, -) = A/2 (D.2a) 

s<110>(A, -, -) = 2 A/2 (D.2b) 

s<111>(A, -, -) = 3 A/2 (D.2c) 

These quantities will be used in Secs. S.3.2. 

(b) Generic rhombohedral MPs, denoted cb(-, B, -), are confined by all twelve {110} mono-

layers with distances D{110} = B/2 between parallel monolayers. This yields twelve com-

plete rhombic {110} facets with <111> edges of length 3 B/4, see Fig. D.2. As a result, 

these MPs include atoms at six <100> and eight <111> corners and can be described as 

rhombic dodecahedra reminding of the shape of Wigner-Seitz cells of the face centered cu-

bic (fcc) crystal lattice  [14]. 
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Figure D.2.  Generic rhombohedral MP filled with atom balls of a bcc 

lattice. The corners are emphasized by dark color and the black lines are 

meant to outline the MP. 

The largest distance from the MP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(-, B, -) = B/2 (D.3a) 

s<110>(-, B, -) = 2 B/4 (D.3b) 

s<111>(-, B, -) = 3 B/4 (D.3c) 

These quantities will be used in Secs. S.3.2. 

(c) Generic octahedral MPs, denoted cb(-, -, K), are confined by all eight {111} monolayers 

with distances D{111} = C/3 between parallel monolayers. This yields eight {111} facets 

forming equilateral triangles with <110> edges of length 2 C/2 and six polyhedral <100> 

atom corners , see Fig. D.3. 
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Figure D.3.  Generic octahedral MP filled with atom balls of an fcc lat-

tice. The corners are emphasized by dark color and the black lines are 

meant to outline the MP. 

The largest distance from the MP center to its surface along <hkl> directions, s<hkl>, is 

given by 

s<100>(-, -, C) = C/2 (D.4a) 

s<110>(-, -, C) = 2 C/4 (D.4b) 

s<111>(-, -, C) = 3 C/6 (D.4c) 

These quantities will be used in Secs. S.3.2. 

Table D.1 collects types and shapes of all generic cb MPs. 

Generic type Facets Corners 

Cubic 

   cb(N, -, -) 

{100}  6 

{110}  0 

{111}  0 

<100>  0 

<110>  0 

<111>  8 

Rhombohedral 

   cb(-, M, -) 

{100}  0 

{110}  12 

{111}  0 

<100>  6 

<110>  0 

<111>  8 

Octahedral 

   cb(-, -, K)    

{100}  0 

{110}  0 

{111}  8 

<100>  6 

<110>  0 

<111>  0 

 

Table D.1.  Types and notations of all generic cb MPs. 
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S.3.2.  Non-generic Cubic Macroparticles 

Non-generic cubic nanoparticles of Oh symmetry show facets with orientations of several 

{hkl} netplane families. This can be considered as combining confinements of the corresponding 

generic MPs discussed in Sec. S.3.1 with suitable polyhedral parameters A, B, C sharing their 

symmetry center. Here we discuss non-generic MPs which combine constraints of up to three ge-

neric MPs, cubic cb(A, -, -), rhombohedral cb(-, B, -), and octahedral cb(-, -, C). These allow 

{100}, {110}, as well as {111} facets and will be denoted cb(A, B, C) in the following. Clearly, 

the corresponding polyhedral parameters A, B, C depend on each other and determine the overall 

MP shape. In particular, if a participating generic MP encloses another participant it will not con-

tribute to the overall MP shape and the respective {hkl} facets will not appear at the surface of 

the non-generic MP. In the following, we consider the three types of non-generic MPs which 

combine constraints due to two generic MPs (Secs. S.3.2.1-3) before we discuss the most general 

case of cb(A, B, C) MPs in Sec. S.3.2.4. 

S.3.2.1.  Truncated cb(A, B, -) Macroparticles 

Non-generic cubo-rhombic MPs, denoted cb(A, B, -), are confined by facets referring to the 

two generic MPs, cb(A, -, -) (cubic) and cb(-, B, -) (rhombohedral). Thus, they can show {100} 

as well as {110} facets depending on relations between the polyhedral parameters A, B. If the 

edges of the cubic MP cb(A, -, -) lie inside the rhombohedral MP cb(-, B, -) the resulting combi-

nation cb(A, B, -) will be generic cubic which can be expressed formally by 

s<110>(A, -, -)  s<110>(-, B, -) (D.5) 

leading, according to (D.2), (D.3), to 

B  2A (D.6) 

On the other hand, if the corners of the rhombohedral MP cb(-, B, -) lie inside the cubic MP 

cb(A, -, -) the resulting combination cb(A, B, -) will be generic rhombohedral which can be ex-

pressed formally by 

s<100>(-, B, -)  s<100>(A, -, -) (D.7) 

leading, according to (D.2), (D.3), to 

B  A (D.8) 

Thus, the two generic MPs intersect and define a true non-generic MP cb(A, B, -) offering both 

{100} and {110} facets only for polyhedral parameters N, M with 

A < B < 2A (D.9) 
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while cb(A, B, -) is generic cubic for B  2A and generic rhombohedral for B  A. This suggests 

that generic cubic and rhombohedral MPs can be considered as special cases of non-generic MPs 

cb(N, M, -) where 

cb(A, -, -) = cb(A, B = 2A, -) (cubic) (D.10a) 

cb(-, B, -) = cb(A = B, B, -) (rhombohedral) (D.10b) 

Parameters A, B provide additional information about geometric properties of the MPs de-

scribing their shapes and all facet edges. In the most general case, cubo-rhombic MPs  

cb(A, B, -) exhibit six {100} facets of square shape with <100> edges of length (B - A) and all 

twelve {110} facets, see Fig. D.4. The {110} facets are shaped as hexagons defined by four 

<111> edges of length 3/4 (2A - B) and two <100> edges of length (B - A) where triplets of ad-

joining <111> edges form a <111> corner. 

 

Figure D.4.  Cubo-rhombic MP filled with atom balls of a bcc lattice. 

The corners are emphasized by dark color and the black lines are meant 

to outline the MP. 

The present discussion allows a classification of cb(A, B, -) MPs for all combinations of poly-

hedral parameters A, B. This includes generic MPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic MP. Table D.2 illustrates all possible MP types. 
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Constraints MP types  Isomorphs 

B  2A Generic cubic  (A, -, -) = 

(A, B = 2A, -) 

A  B  2A  Cubo-rhombic (A, B, -) 

B  A Generic rhombohedral (-, B, -) = 

(A = B, B, -) 

 

Table D.2.  Constraints and types including isomorphs of cubo-rhombic 

cb(A, B, -) MPs. 

S.3.2.2.  Truncated cb(A, -, C) Macroparticles 

Non-generic cubo-octahedral MPs, denoted cb(A, -, C), are confined by facets referring to 

the two generic MPs, cb(A, -, -) (cubic) and cb(-, -, C) (octahedral). Thus, they can show {100} 

as well as {111} facets depending on the polyhedral parameters A, C. If the corners of the cubic 

MP cb(A, -, -) lie inside the octahedral MP cb(-, -, C) the resulting combination cb(A, -, C) will 

be generic cubic which can be expressed formally by 

s<111>(A, -, -)  s<111>(-, -, C) (D.11) 

leading, according to (D.2), (D.4), to 

C  3A (D.12) 

On the other hand, if the corners of the octahedral MP cb(-, -, C) lie inside the cubic MP  

cb(A, -, -) the resulting combination cb(A, -, C) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, C)  s<100>(A, -, -) (D.13) 

leading, according to (D.2), (D.4), to 

C  A (D.14) 

Thus, the two generic MPs intersect and define a true non-generic MP cb(A, -, C) offering both 

{100} and {111} facets only for polyhedral parameters A, C with 

A < C < 3A (D.15) 

while cb(A, -, C) is generic cubic for C  3A and generic octahedral for C  A. This suggests that 

generic cubic and octahedral cb MPs can be considered as special cases of non-generic MPs 

cb(A, -, C) where 

cb(A, -, -) = cb(A, -, C = 3A) (cubic) (D.16a) 

cb(-, -, C) = cb(A = C, -, C) (octahedral) (D.16b) 
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Further, amongst the true intersecting cubo-octahedral MPs according to (D.15) we can distin-

guish between so-called truncated octahedral MPs where C < 2A and truncated cubic MPs for 

C > 2A with cuboctahedral MPs for C = 2A separating between the two types as will be dis-

cussed in the following. 

Parameters A, C provide additional information about geometric properties of the MPs de-

scribing their shapes and all facet edges. In the most general case, cubo-octahedral MPs cb(A, -, 

C) include six {100} and eight {111} facets. 

Truncated octhedral MPs cb(A, -, C) (C < 2A) exhibit {100} facets of square shape with <110> 

edges of length 2 (C - A)/2, see Fig. D.5a. The {111} facets are of hexagonal shape with <110> 

edges of alternating lengths 2 (C - A)/2 and 2 (2A - C)/2. 

(a)  (b)  

Figure D.5.  Cubo-octahedral MPs filled with atom balls of an fcc lattice, 

(a) truncated octahedral, (b) truncated cubic type. The corners are empha-

sized by dark color and the black lines are meant to outline the MPs. 

Truncated cubic MPs cb(A, -, C) (C > 2A) exhibit {100} facets of square shape with <110> 

edges of length 2 (C - A)/2, see Fig. D.5b. The {111} facets are of triangular shape with <110> 

edges of length 2 (3A - C)/2. 

Cuboctahedral MPs cb(A, -, C = 2A) exhibit {100} facets of square shape with <110> edges of 

length A/2, see Fig. D.6. The {111} facets form equilateral triangles with <110> edges of 

length A/2 shared with those of the {100} facets. 
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Figure D.6.  Cuboctahedral MP filled with atom balls of an fcc lattice. 

The corners are emphasized by dark color and the black lines are meant 

to outline the MPs. 

The present discussion allows a classification of cb(A, -, C) MPs for all combinations of poly-

hedral parameters A, C. This includes generic MPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic MP. Table D.3 illustrates all possible MP types. 

Constraints MP types  Isomorphs 

C  3A Generic cubic  (A, -, -) = 

(A , -, C = 3A) 

2A  C  3A Cubo-octahedral 

truncated cubic 

(A, -, C) 

C = 2A Cuboctahedral (A, -, C = 2A) , 

(A = C/2, -, C) 

A  C  2A Cubo-octahedral 

truncated octahedral 

(A, -, C) 

C  A Generic octahedral (-, -, C) = 

(A = C, -, C) 

 

Table D.3.  Constraints and types including isomorphs of cb(A, -, C) 

MPs. 

S.3.2.3.  Truncated cb(-, B, C) Macroparticles 

Non-generic rhombo-octahedral MPs, denoted cb(-, B, C), are confined by facets referring 

to the two generic MPs, cb(-, B, -) (rhombohedral) and cb(-, -, C) (octahedral). Thus, they can 

show {110} as well as {111} facets depending on the polyhedral parameters B, C. If the corners 
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of the rhombohedral MP cb(-, B, -) lie inside the octahedral MP cb(-, -, C) the resulting combina-

tion cb(-, B, C) will be generic rhombohedral which can be expressed formally by 

s<111>(-, B, -)  s<111>(-, -, C) (D.17) 

leading, according to (D.3), (D.4), to 

C  3/2 B (D.18) 

On the other hand, if the corners of the octahedral MP cb(-, -, C) lie inside the rhombohedral MP 

cb(-, B, -) the resulting combination cb(-, B, C) will be generic octahedral which can be ex-

pressed formally by 

s<100>(-, -, C)  s<100>(-, B, -) (D.19) 

leading, according to (D.3), (D.4), to 

C  B (D.20) 

Thus, the two generic MPs intersect and define a true non-generic MP cb(-, B, C) offering both 

{110} and {111} facets only for polyhedral parameters B, C with 

B < C < 3/2 B (D.21) 

while cb(-, B, C) is generic rhombohedral for C  3/2 and generic octahedral for C  B. This sug-

gests that generic rhombohedral and octahedral cb MPs can be considered as special cases of 

non-generic MPs cb(-, B, C) where 

cb(-, B, -) = cb(-, B, C = 3/2 B) (rhombohedral) (D.22a) 

cb(-, -, C) = cb(-, B = C, C) (octahedral) (D.22b) 

Parameters B, C provide additional information about geometric properties of the MPs de-

scribing their shapes and all facet edges. In the most general case, rhombo-octahedral MPs  

cb(-, B, C) exhibit twelve {110} and eight {111} facets, see Fig. D.7. The MPs, show {110} fac-

ets of hexagonal shape with four <111> edges of length (C - B)/2 3 and two <110> edges of 

(3/2 B - C) 2. The <110> edges confine also the triangular {111} facets. 



94 

 

 

Figure D.7.  Rhombo-octahedral MP filled with atom balls of an fcc lat-

tice. The corners are emphasized by dark color and the black lines are 

meant to outline the MP. 

The present discussion allows a classification of cb(-, B, C) MPs for all combinations of poly-

hedral parameters B, C. This includes generic MPs where one parameter defines the structure al-

ready uniquely while the other can be chosen arbitrarily above a minimum value specifying the 

isomorphic MP. Table D.4 illustrates all possible MP types. 

Constraints MP types  Isomorphs 

C  3/2 B Generic rhombohedral  (-, B, -) = 

(-, B, C = 3/2 B) 

B  C  3/2 B Rhombo-octahedral (-, B, C) 

C  B Generic octahedral (-, -, C) = 

(-, B = C, C) 

 

Table D.4.  Constraints and types including isomorphs of cb(-, B, C) 

MPs. 

S.3.2.4.  Truncated cb(A, B, C) Macroparticles 

Non-generic cubo-rhombo-octahedral MPs, denoted cb(A, B, C), are confined by facets re-

ferring to all three generic MPs, cb(A, -, -) (cubic), cb(-, B, -) (rhombohedral), and cb(-, -, C) (oc-

tahedral). Thus, they can show {100}, {110}, and {111} facets depending on the polyhedral pa-

rameters A, B, C. A general discussion of these MPs requires a number of different scenarios us-

ing results of for generic and non-generic MPs with one or two types of facets, Secs. S.3.1, 

S.3.2.1-3, as will be detailed in the following. 
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First, we consider the general notation for generic cb MPs discussed in Sec. S.3.1. Cubic MPs 

cb(A, -, -) are surrounded by rhombohedral MPs cb(-, B, -) if B  2A and by octahedral MPs  

cb(-, -, K) if C  3A. This allows a notation cb(A, B, C) where 

cb(A, -, -) = cb(A, B = 2A, C = 3A) (D.23) 

Further, rhombohedral MPs cb(-, B, -) are surrounded by cubic MPs cb(A, -, -) if A  B and by 

octahedral MPs cb(-, -, C) if C  3/2 B. This allows a notation cb(A, B, C) where 

cb(-, B, -) = cb(A = B, B, C = 3/2 B) (D.24) 

In addition , the octahedral MPs cb(-, -, C) are surrounded by cubic MPs cb(A, -, -) if A  C and 

by rhombohedral MPs cb(-, B, -) if B  C. This allows a notation cb(A, B, C) where 

cb(-, -, C) = cb(A = C, B = C, C) (D.25) 

General notations for non-generic cb MPs discussed in Secs. S.3.2.1-3 are obtained by analo-

gous arguments. 

According to Sec. S.3.2.1, true cubo-rhombic MPs cb(A, B, -) with both {100} and {110} fac-

ets are subject to A  B  2A. They are surrounded by octahedral MPs cb(-, -, C) if C  Ca with 

Ca(A, B) = min(3A, 3/2 B) = 3/2 B (D.26) 

This allows a general notation cb(A, B, C) where 

cb(A, B, -) = cb(A, B, C = Ca) (D.27) 

According to Sec. S.3.2.2, true cubo-octahedral MPs cb(A, -, C) with both {100} and {111} 

facets are subject to A  C 3A. They are surrounded by rhombohedral MPs cb(-, B, -) if B  Ba 

with 

Ba(A, C) = min(2A, C)  (D.28a) 

 = 2A (truncated cubic) (D.28b) 

 = C (truncated octahedral) (D.28c) 

This allows a general notation cb(A, B, C) where 

cb(A, -, C) = cb(A, B = Ba, C) (D.29) 

According to Sec. S.3.2.3, true rhombo-octahedral MPs cb(-, B, C) with both {110} and 

{111} facets are subject to B  C  3/2 B. They are surrounded by cubic MPs cb(A, -, -) if A  Aa 

with 

Aa(B, C) = min(B, C) = B (D.30) 

This allows a general notation cb(A, B, C) where 
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cb(-, B, C) = cb(A = Aa, B, C) (D.31) 

In the most general case of a true cb(A, B, C) MP with {100}, {110}, and {111} facets we 

start from a true cubo-rhombic MP, cb(A, B, -), with its constraints A  B  2A and add con-

straints of a generic octahedral MP, cb(-, -, C), where according to the discussion above C values 

are below Ca. This allows to distinguish four different ranges of parameter C, defined by separat-

ing values Ca  Cb  Cc, with Ca given by (D.26) and 

Cb(A, B) = 2B - A (D.32) 

Cc(A, B) = B (D.33) 

which result in different MP shapes starting from the initial cubo-rhombic MP cb(A, B, Ca) as il-

lustrated in Fig. D.8. 

 

Figure D.8.  Cubo-rhombic MP cb(A, B, Ca) filled with atom balls of an 

fcc lattice (all atom balls) with its cubo-rhombo-octahedral MP compo-

nents cb(A, B, Cb) (dark and light yellow), and cb(A, B, Cc) (dark yel-

low). The corners are emphasized by dark color and the black lines are 

meant to outline the boundaries of the MP. 

Outer C range of cb(A, B, C) where with (D.26) 

C  Ca (D.34) 

For these C values the MP becomes cubo-rhombohedral and does not exhibit any {111} 

facets. It is isomorphic with cb(A, B, -) = cb(A, B, Ca) as discussed above and in  

Sec. S.3.2.1. 

  



97 

 

Upper central C range of cb(A, B, C) where with (D.26), (D.32) 

Cb  C  Ca (D.35) 

For these C values the initial cb(A, B, Ca) MP is capped at its <111> corners forming eight 

additional {111} facets of equilateral triangular shape with edges of length (3B - 2C)/2. 

This creates, in addition to the {111} facets, twelve {110} facets of octagonal/rectangular 

shape with two edges of length (3B - 2C)/2, two edges of (B - A), and two of  

(C - Cb)/2 3. Further, the cb(A, B, C) MP exhibits six {100} facets of square shape with 

edge lengths of (B - A). This is illustrated in Fig. D.9 for the MP filled by yellow atom 

balls where white balls above the {111} facets are added to yield the corresponding cubo-

rhombic cb(A, B, Ca) MP. 

 

Figure D.9.  Cubo-rhombo-octahedral MP cb(A, B, C) for Cb < C < Ca 

filled with atom balls of an fcc lattice (yellow balls) with white balls 

completing the MP to cubo-rhombic, see text. The corners are empha-

sized by dark color and the black lines are meant to outline the bounda-

ries of the MP. 

For C = Cb, the cb(A, B, C) MP assumes a particular shape, see Fig. D.10. Its eight {111} 

facets are equilateral triangular with edge lengths of (2A - B)/2 and its twelve {110} fac-

ets are rectangular with two edges of length (2A - B)/2 and of (B - A). In addition, there 

are six {100} facets of square shape with edge lengths of (B - A). This is illustrated in  

Fig. D.10 for the MP cb(14, 20, 26) (Cb = 26). 
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Figure D.10.  Cubo-rhombo-octahedral MP cb(A, B, Cb) filled with atom 

balls of an fcc lattice. The corners are emphasized by dark color and the 

black lines are meant to outline the boundaries of the MP. 

Lower central C range of cb(A, B, C) where with (D.32), (D.33) 

Cc  C  Cb (D.36) 

For these C values the capping of the initial cb(A, B, Cb) along the <111> directions is con-

tinued to yield eight hexagonal {111} facets with <110> edges of alternating lengths  

(Cb - C)/2 and (2A - B)/2. Further, there are twelve rectangular {110} facets of length 

(2A - B)/2 and width (C - B). Finally, the MP exhibits six octagonal {100} facets with al-

ternating edges, four <100> of length (C - B) and four <110> of length (Cb - C)/2. This is 

illustrated in Fig. D.11 for the MP filled by yellow atom balls where white balls above the 

{111} facets are added to yield the corresponding cb(A, B, Cb) MP. 
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Figure D.11.  Cubo-rhombo-octahedral MP cb(A, B, C) for Cc < C < Cb 

filled with atom balls of an fcc lattice (yellow balls) with white balls 

completing the MP to cb(A, B, Cb), see text. The corners are emphasized 

by dark color and the black lines are meant to outline the boundaries of 

the MP. 

Inner C range of cb(A, B, C) where with (D.33) 

C  Cc (D.37) 

For these C values the MP becomes cubo-octahedral and does not exhibit any {110} facets. 

It is isomorphic with cb(A, -, C) = cb(A, Ba, C) as discussed above and in Sec. S.3.2.2. 

The present discussion allows a classification of cb(A, B, C) MPs for all combinations of pol-

yhedral parameters A, B, C. This includes MPs where one or two parameters define the structure 

already uniquely. Table D.5 illustrates all possible MP types. 
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Constraints 1 Constraints 2 MP types  Isomorphs 

B  2A C  3A Generic cubic (A, -, -) = 

(A, Ba, Ca) 

2A  C  3A Cubo-octahedral 

truncated cubic 

(A, -, C) = 

(A, Ba, C) 

C = 2A Cuboctahedral (A, Ba, C) 

A  C  2A Cubo-octahedral 

truncated octahedral 

(A, -, C) = 

(A, Ba, C) 

C  A Generic octahedral (-, -, K) = 

(Na, Ma, K) 

A  B  2A C  Ca 

Ca = 3/2 B 

Cubo-rhombohedral (A, B, -) = 

(A, B, Ca) 

Cb  C  Ca 

Cb = 2B - A 

Cubo-rhombo-oct. 

upper central 

(A, B, C) 

Cc  C  Cb 

Cc = B 

Cubo-rhombo-oct. 

lower central 

(A, B, C) 

A  C  Cc 

 

Cubo-octahedral 

truncated octahedral 

(A, -, C) = 

(A, Ba, C) 

C  A Generic octahedral (-, -, C) = 

(Aa, Ba, C) 

B  A C  3/2 B Generic 

rhombohedral 

(-, B, -) = 

(Aa, B, Ca) 

B  C  3/2 B Rhombo-octahedral (-, B, C) = 

(Aa, B, C) 

C  B Generic 

octahedral 

(-, -, C) = 

(Aa, Ba, C) 

 

Table D.5.  Constraints and types including isomorphs of cb(A, B, C) 

MPs. Polyhedral parameters Ca, Cb, Cc are defined above. 

Altogether, true cubo-rhombo-octahedral MPs, cb(A, B, C) with {100}, {110}, and {111} fac-

ets can exist only if the polyhedral parameters N, M, K fulfill the two inequalities 

A  B  2A , B  C  3/2 B (D.38) 


