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Notes S1. Leaf Pi-resorption efficiency 

Leaf Pi-resorption efficiency is an essential metric for dynamic vegetation models (Fleischer et al., 2019); it is 

defined as the percentage of remobilized nutrients in fully senesced leaves compared with those in mature 

green leaves (Van Heerwaarden et al., 2003; Killingbeck, 2004). However, the relationship between leaf Pi-

resorption efficiency and soil P availability is still ambiguous due to contrasting observations. Various field 

studies and meta-analyses have shown a robust negative relationship between Pi-resorption efficiency and 

soil P concentrations (Yuan & Chen, 2009; Hidaka & Kitayama, 2011; Han et al., 2013; Hayes et al., 2014; Tsujii 

et al., 2017; Wang et al., 2018; He et al., 2020), while others showed weak or no relationships (Aerts, 1996; 

Vitousek, 1998; Aerts & Chapin III, 1999; Eckstein et al., 1999; Wright & Westoby, 2003; Tang et al., 2013). This 

controversy might have resulted from methodological inconsistencies among studies, which have been 

extensively covered in the literature (Van Heerwaarden et al., 2003; Killingbeck, 2004; Luyssaert et al., 2005; 

Ares & Gleason, 2007). Most importantly, Van Heerwaarden et al. (2003) show leaf mass and leaf area loss 

during senescence should be accounted for in leaf Pi-resorption efficiency as these losses can underestimate 

resorption efficiency by 20% 10%, respectively. 

Most studies involving natural soil P gradients show evidence of soil P effects on leaf Pi-resorption efficiency, 

at least partially. Along a strong soil P gradient in an Australian dune chronosequence, mean PRE across 

different species varied from zero in high-P soils to 79% in low-P soils (Hayes et al., 2014). Similarly, a strong 

negative relationship between leaf Pi-resorption efficiency and soil P concentrations was found in the 

rainforests of Borneo (Hidaka & Kitayama, 2011; Tsujii et al., 2017). For instance, Tsujii et al. (2017) found 

community-level mean leaf Pi-resorption efficiency varied from 24 to 93% and estimated that 20 to 37% of 

this variation was explained by the site, while 25 to 43% was explained by the genus, highlighting the role of 

adaptations in nutrient resorption. At the species level, variation in leaf Pi-resorption efficiency of a common 

species in neotropical forests was explained by soil Pi availability and the reproductive status of the plant, as 

individuals with high reproductive demands resorbed greater P amounts than those with no reproductive 

demands (Tully et al., 2013). 

Although leaf Pi-resorption efficiency has not been measured along fertility gradients in Amazonia, several 

small-scale studies show high variability across species and communities. In central Amazonia, mean leaf Pi-

resorption efficiency among species varied from 53% to 74% (Gomes & Luizão, 2012; Machado et al., 2016), 

in north Amazonia from 41% to 82% (Scott et al., 1992; Reich et al., 1995), and in northeastern Amazonia, PRE 

varied from 26% to 89% (Hättenschwiler et al., 2011). At the community level, in a forest succession 

chronosequence (6 to 200 years) in eastern Amazonia, PRE varied from 53% to 73% (Reed et al., 2012). Thus, 

leaf Pi-resorption efficiency in Amazonia is similar to the range of 24% and 93% found along the P gradient of 

tropical forests of Borneo (Tsujii et al., 2017). We hypothesize that community-level leaf Pi-resorption 
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efficiency in Amazonia follows the same negative relationship with soil P concentrations. Studies focused on 

the relationships between leaf Pi-resorption efficiency and soil P concentrations in Amazonia, following 

standardized methodologies, have the potential to offer valuable insights into this plant P-use strategy. 
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Notes S2. Effects of N on acid phosphatase exudation and activity 

Root expression of phosphatases is regulated by plant Pi demand (McGill & Cole, 1981). Therefore, it is 

expected that as soil Pi availability decreases, C and N investments in phosphatases increase. An increase in 

root PME activity with N fertilization has been observed in tropical forests in Hawaii (Treseder & Vitousek, 

2001) and other ecosystems (Marklein & Houlton, 2012). In contrast, N fertilization did not affect root PME 

activity in forests of central Amazonia (Lugli et al., 2021) and Borneo (Yokoyama et al., 2017), suggesting N is 

not a limiting factor for PME release in these forests. N and P co-limitation may happen in montane Andean 

forests, in the western region of Amazonia in Ecuador and Peru, where N limitation appears to increase with 

increasing elevation (Wullaert et al., 2010; Homeier et al., 2012; Fisher et al., 2013), and might happen in 

white-sand forests (Vitousek & Sanford Jr, 1986; Martinelli et al., 1999). However, currently, there is no 

evidence of widespread N and P co-limitation in Amazonia (Quesada et al., 2010). 

It has been suggested that N-fixing plants might have an advantage in P acquisition by investing excess N in 

the expression of phosphatases (Houlton et al., 2008). In soils beneath N-fixing species, phosphatase activity 

was three times greater than that of other species (Houlton et al., 2008). Similarly, in tropical forests in Costa 

Rica and Panama and a coastal dune ecosystem in Australia, phosphatase activity was significantly greater in 

roots of N-fixing than non-N-fixing species (Nasto et al., 2014; Png et al., 2017; Batterman et al., 2018). 

However, high root phosphatase activities in N-fixing species were most likely a result of a phylogenetically 

conserved strategy (Png et al., 2017; Batterman et al., 2018). In Amazonia, legume species are mostly 

facultative N-fixers and do not seem to be fixing substantial amounts of N (Vitousek et al., 2002; Nardoto et 

al., 2014). Rates of biological N fixation in a primary forest in southeastern Amazonia were about 20% of the 

average of other tropical forests (Wong et al., 2019). This might be explained by the high N availability in most 

soils of Amazonia (Vitousek et al., 2002; Quesada et al., 2010). Alternatively, low P and low molybdenum 

availability could be the reason for slow rates of biological N fixation, as these might be limiting factors (Reed 

et al., 2013; Wong et al., 2019). However, increased soil P and molybdenum concentrations did not alter rates 

of biological N fixation in low-P soils of southeastern Amazonia (Wong et al., 2019). 

Currently, the few studies on root PME activity in Amazonia suggest that soil N availability is not a limiting 

factor in most areas. However, more studies are needed to clarify the role of soil N availability in root PME 

expression and the role of plant species, such as N-fixing species. 
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Notes S3. Cluster roots in Amazonia 

Little is currently known about the formation of cluster roots in Amazonia and other tropical forests. One of 

the plant families most commonly cited for cluster-root formation, Proteaceae (Lambers et al., 2008), has at 

least 13 species described in Amazonia in the Database of Brazilian plant species (REFLORA, 

http://floradobrasil.jbrj.gov.br/). For instance, Roupala montana, a widespread species in Amazonia and other 

neotropical forests, did not form cluster roots in soils of the Brazilian Cerrado with over 220 mg Pt kg-1 (mean 

resin-Pi varied from 5.2 to 6.6 mg kg-1) but formed associations with arbuscular mycorrhizal fungi (da Silva 

Coutinho Detmann et al., 2019). The authors suggested that soil P availability might have been high enough 

for these plants to still benefit from the symbiosis (da Silva Coutinho Detmann et al., 2019). Although it is not 

typical for Proteaceae species to form associations with mycorrhizas, it has been previously observed in earlier 

studies (Boulet & Lambers, 2005; Lambers et al., 2015). In another study, cluster roots in R. montana only 

developed in the treatment with no added P. Roots of R. montana were associated with significantly higher 

phosphatase activity and use of phytate when compared with three mycorrhizal species (Steidinger et al., 

2014). Although root organic acid exudation was not measured in Steidinger et al. (2014), the superior ability 

of R. montana to use phytate suggest that rapid rates of root organic acid exudation could have been the 

reason, even without the formation of cluster roots, as phytate is thought to be strongly adsorbed to the soil 

matrix (see Box 4; Gerke, 2015). Moreover, another species known to form cluster roots, Euplassa cantareirae 

(Proteaceae), most commonly found in the Brazilian Atlantic tropical forest, has been studied in a greenhouse 

experiment, and formation of its cluster roots did not depend on P supply (de Britto Costa et al., 2016). More 

studies are necessary to find out how common the formation of cluster roots is in Amazonia and other tropical 

forests, under what conditions they form, and their role in P acquisition.  
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Table S1. Summary table of the cited studies along soil P gradients. *Mehlich-1. **Resin-Pi. ***Soil Pt concentration data. 

Strategy/trait Place Soil Pt (mg kg-1) Results Reference 

Leaf Pi resorption 
proficiency 

Northeastern Amazonia 7 to 600 

Senesced leaf P concentrations 
decreased with decreasing soil Pt  

Soong et al. (2020) 

Northwestern Amazonia 40 to 480 Lips and Duivenvoorden (1996) 

Hawaii  280 to 980 Vitousek (1998); Olander and Vitousek (2000)*** 

Mount Kinabalu, Borneo 20 to 417  Hidaka and Kitayama (2011) 

Mount Kinabalu, Borneo 20 to 417  Tsujii et al. (2017) 

Eastern China  378 to 1290  Tang et al. (2013) 

New Zealand ~100 to 900  Richardson et al. (2005); Richardson et al. (2004)*** 

Southwestern Australia 6.6 to 432.2  Hayes et al. (2014) 

SRL 

Atlantic forest, Brazil 5.4 to 8.9* 

Higher in the low-P sites 

Zangaro et al. (2008) 

Northeastern Amazonia 3 to 36* Metcalfe et al. (2008) 

New Zealand 108 to 804 Holdaway et al. (2011); Richardson et al. (2004)*** 

SRA 
Borneo  20 to 417  

Increased with declining soil P 
Ushio et al. (2015) 

Northeastern Amazonia 3 to 36* Metcalfe et al. (2008) 

Fine root length 

Costa Rica, Panama, 
Peru 

200 to 1552  

Increased with declining soil P 

Powers et al. (2005) 

Hawaii 280 to 980 Ostertag (2001) 

Northwest Borneo 83 to 151 Kochsiek et al. (2013) 

Atlantic forest, Brazil 5.4 to 8.9* Zangaro et al. (2008) 

Fine root tissue density  
New Zealand 108 to 804 Increased with declining soil P Holdaway et al. (2011); Richardson et al. (2004)*** 

Borneo  20 to 417  Unchanged Ushio et al. (2015) 

Root diameter 

New Zealand 108 to 804 

Declined with declining soil P 

Holdaway et al. (2011); Richardson et al. (2004)*** 

Atlantic forest, Brazil 5.4 to 8.9* Zangaro et al. (2008) 

Borneo 20 to 417  Ushio et al. (2015) 
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Table S1. Continuation. 

Strategy/trait Place Soil Pt (mg kg-1) Results Reference 

AMF root colonization 

Hawaii 280 to 980 
Unchanged 

Treseder and Allen (2002); Olander and Vitousek (2000)*** 

Costa Rica 665 and 1601 Nasto et al. (2014) 

Atlantic forest  5.4 to 8.9* Increased with declining soil P Zangaro et al. (2008) 

AMF Abundance in soil 

Costa Rica, Panama, 
Peru 

1552 to 600 Unchanged Powers et al. (2005) 

Hawaii 280 to 980 

Declined with declining soil P 

Treseder and Allen (2002); Olander and Vitousek (2000)*** 

Australian Dune 
Chronosequence 

456 to 4  Teste et al. (2016) 

Hawaii 280 to 980 Balser et al. (2005)  

Northeastern 
Amazonia 

7 to 600 Soong et al. (2020) 

Root PME activity 

Costa Rica 665 and 1601 

Increased with declining soil P 

Nasto et al. (2014) 

Borneo 20 to 417 Ushio et al. (2015) 

Puerto Rico 60 to 570  Cabugao et al. (2017); Cabugao et al. (2021) 

Panama 1.1 to 19.4** Guilbeault-Mayers et al. (2020) 

Root LMWOA exudation Borneo 20 to 417 Increased with declining soil P Aoki et al. (2012) 
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Table S2. Phosphorus concentrations in leaf litter in different regions of Amazonia. *Species-level measurements; unmarked references refer to 

community-level measurements. Although soil P concentrations were not reported in some of the studies in the north, east, and central Amazonia, these 

areas are considered to have very low P concentrations overall (Quesada et al., 2010). Note that these studies used different methodological approaches, 

e.g., litter collection timing from traps, most notably, which can affect results as litter can be rapidly decomposed. 

Amazon forest region Min (mg g-1) Max (mg g-1) Soil Pt (mg kg-1) Author 

Northeast (French Guiana) 0.18 ± 0.01 0.56 10  Fanin et al. (2012)* 

Northeast (French Guiana) 0.09 0.6 23 Hättenschwiler et al. (2008)* 

North (Roraima, BR) 0.4 0.6 61 Scott et al. (1992) 

Northwest (Colombia) 0.1 0.4 40 to 480  Lips and Duivenvoorden (1996) 

North (Venezuela) 0.2 0.5 Not reported Cuevas and Medina (1986) 

East (Pará, BR) 0.2 0.25 Not reported Hayashi et al. (2012) 

East (Pará, BR) 0.41 0.75 Not reported Dantas and Phillipson (1989) 

Central (Manaus, BR) 0.2 0.6 Not reported Klinge (1977) 
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Table S3. Summary table of results from Pi fertilization studies. Total soil P concentrations refer to control plots. *Soil Pt concentration data. 

Indicators Location Soil Pt (mg kg-1) Results References 

Leaf Pi-resorption proficiency 

Indonesia 80 to 237 
Decreased 

Mirmanto et al. (1999) 

Hawaii 280 Vitousek (1998); Olander and Vitousek (2000)* 

Panama 600 Tended to decrease Mayor et al. (2014); Wright et al. (2011)* 

Hawaii 980 
Unchanged 

Vitousek (1998); Olander and Vitousek (2000)* 

Costa Rica 1690 Alvarez-Clare and Mack (2015) 

Specific root length 

Central Amazonia 85 

Unchanged 

Lugli et al. (2021) 

Subtropical China 410 Liu et al. (2015) 

Panama 600 Wurzburger and Wright (2015); Wright et al. (2011)* 

Fine root length 

Panama 600 
Tended to increase 

Wurzburger and Wright (2015); Wright et al. (2011)* 

Hawaii 700 and 280  Ostertag (2001) 

Ecuador  450 to 525 Unchanged Camenzind et al. (2016); Dietrich et al. (2016)* 

Subtropical China 410 Decreased Liu et al. (2015) 

Fine root tissue density 

Central Amazonia 85 

Unchanged 

Lugli et al. (2021) 

Subtropical China 410 Liu et al. (2015) 

Panama 600 Wurzburger and Wright (2015); Wright et al. (2011)* 

Diameter 
Central Amazonia 85 Increased Lugli et al. (2021) 

Subtropical China 410 Unchanged Liu et al. (2015) 

AMF root colonization 

Central Amazonia 85 

Unchanged 

Lugli et al. (2021) 

Ecuador 344 ± 31 Camenzind et al. (2014) 

Ecuador 450 to 525 Camenzind et al. (2016); Dietrich et al. (2016)* 

Panama 600 Increased Wurzburger and Wright (2015); Wright et al. (2011)* 

Hawaii  280 

Tended to decrease 

Treseder and Allen (2002); Olander and Vitousek (2000)* 

Subtropical China 410 Liu et al. (2015) 

Hawaii 980 Treseder and Allen (2002); Olander and Vitousek (2000)* 
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Table S3. Continuation. 

Indicators Location Soil Pt (mg kg-1) Results References 

AMF abundance in soil 

Hawaii 280 
Increased 

Treseder and Allen (2002); Olander and Vitousek (2000)* 

Ecuador 450 to 525 Camenzind et al. (2016); Dietrich et al. (2016)* 

Panama 600 
Decreased 

Sheldrake et al. (2018); Wright et al. (2011)* 

Hawaii 980 Treseder and Allen (2002); Olander and Vitousek (2000)* 

Root PME activity 

Central Amazonia 85 

Decreased  

Lugli et al. (2021) 

Hawaii 980 to 280 Treseder and Vitousek (2001) 

Borneo 1.0 and 1.5 (Bray P) Yokoyama et al. (2017) 
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Table S4. Root morphological traits in Amazonia, other tropical forests, and meta-analyses. Root 

morphological traits: specific root length (SRL, km kg-1), specific root area (SRA, m2 kg-1), and root tissue 

density (RTD, mg cm-3). N/A, not applicable (meta-analysis). *Values refer to Mehlich-1 P. 

Trait Region Soil Pt (mg kg-1) Trait variation References 

SRL Eastern Amazon 3 to 36* 8 to 10 Metcalfe et al. (2008) 

SRL Central Amazon 118 to 217.4 5.9 to 41.5 Lugli et al. (2020) 

SRL Tropical forest in Panama 443 8 to 19.89 Wurzburger and Wright (2015) 

SRL Tropical Atlantic forest 8.9* 18.3  Zangaro et al. (2008) 

SRL Peruvian elevation gradient 628 to 1154 20.3 to 39.8    Girardin et al. (2013) 

SRL Tropical forests N/A 7.4 to 79.3 Addo-Danso et al. (2020) 

SRL Tropical forests N/A 12.2 Jackson et al. (1996) 

SRA Eastern Amazon 3 to 36* 24 to 34 Metcalfe et al. (2008) 

SRA Central Amazon 118 to 217.4 14 to 56 Lugli et al. (2020) 

SRA Amazon elevation gradient 628 to 1154 44 to 76 Girardin et al. (2013) 

SRA Tropical forests N/A 7.9 to 87.9 Addo-Danso et al. (2020) 

RTD Central Amazon 118 to 217.4 141.78 to 419.22 Lugli et al. (2020) 

RTD Tropical forest Borneo 20 to 417 ~280 Ushio et al. (2015) 

RTD Tropical forest Panama 443 71.8 to 328.1 Wurzburger and Wright (2015) 

RTD Tropical forests N/A 130 to 680 Addo-Danso et al. (2020) 
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Table S5. Potential root acid phosphomonoesterase activity (PME) in Amazonia and other tropical 

forests. PME activity is given in µmol of substrate cleaved g-1 root hr-1. Para-nitrophenyl phosphate 

(pNPP); 4-methylumbelliferyl phosphate (MUF). Note that phosphatase activity seasonally fluctuates 

with changes in precipitation (Turner & Wright, 2014), which may confound comparisons among 

one-point-in-time measurements. *Approximate mean values for N2-fixing and non-fixing species, 

respectively.  

Location PME activity Substrate Soil Pt (mg kg-1) References 

Mount Kinabalu, Borneo 94 to 180 pNPP 35 to 92 Kitayama (2013) 

Central Amazon  40.8 MUF 85 Lugli et al. (2021) 

Central Amazon  36.05  MUF 148 Lugli et al. (2020) 

Mount Kinabalu, Borneo 118 to 164 pNPP 123 to 170  Kitayama (2013) 

Puerto Rico 60 pNPP 170  Cabugao et al. (2017) 

Mount Kinabalu, Borneo 105 pNPP 274 Kitayama (2013) 

Puerto Rico 36 pNPP 290  Cabugao et al. (2017) 

Puerto Rico 25 pNPP 410  Cabugao et al. (2017) 

Pacific, Costa Rica ~8.6 and ~6.8* MUF 665  Nasto et al. (2014) 

Caribbean, Costa Rica ~6.6 and ~5.3* MUF 1601 Nasto et al. (2014) 
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Table S6. Plant and mycorrhizal responses to eCO2 in meta-analyses; AMF (Arbuscular mycorrhizas), 

ECM (Ectomycorrhizas). *Mycorrhizal abundance refers to a group of indices that include percent root 

length/tip colonized, spore count, and extraradical hyphal length. 

Mycorrhiza Measure eCO2 Effect (%) References 

AMF and ECM Mycorrhizal abundance* +47 Treseder (2004) 

AMF and ECM Root colonization +36 Treseder (2004) 

AMF Fungal response ratio +21 Alberton et al. (2005) 

ECM Fungal response ratio +34 Alberton et al. (2005) 

AMF Host-plant response ratio +25 Alberton et al. (2005) 

ECM Host-plant response ratio +26 Alberton et al. (2005) 

AMF and ECM Host-plant biomass +20 ± 3 Terrer et al. (2016) 

AMF Host-plant biomass +7 ± 4 Terrer et al. (2016) 

ECM Host-plant biomass +30 ± 3 Terrer et al. (2016) 

AMF and ECM Host-plant biomass +26 Dong et al. (2018) 

AMF and ECM Extraradical hyphal length +23 Dong et al. (2018) 

AMF and ECM Colonization length +15 Dong et al. (2018) 

AMF and ECM Fungal biomass +22 Dong et al. (2018) 

AMF Fungal biomass +7 Dong et al. (2018) 

ECM Fungal biomass +30 Dong et al. (2018) 

AMF Host-plant biomass +34 Dong et al. (2018) 

ECM Host-plant biomass +20 Dong et al. (2018) 

AMF Host-plant N and P content +22 and +19 Dong et al. (2018) 

ECM Host-plant N and P content -4 and -13 Dong et al. (2018) 
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