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a b s t r a c t 

Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is 

a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological 

reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius ( 𝑟 eff). 

Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined 

arithmetic mean radius ( 𝑟 arith ) on small ensembles of axons, it is unsuited to estimate the tail-weighted 𝑟 eff. 

We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a 

representative reference for 𝑟 eff. In a human corpus callosum, we assessed estimation accuracy and bias of 𝑟 arith and 

𝑟 eff. Furthermore, we investigated whether mapping anatomy-related variation of 𝑟 arith and 𝑟 eff is confounded by 

low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error 

due to outstandingly large axons in 𝑟 eff. Compared to 𝑟 arith , 𝑟 eff was estimated with higher accuracy (maximum 

normalized-root-mean-square-error of 𝑟 eff: 8.5 %; 𝑟 arith : 19.5 %) and lower bias (maximum absolute normalized- 

mean-bias-error of 𝑟 eff: 4.8 %; 𝑟 arith : 13.4 %). While 𝑟 arith was confounded by variation of the image intensity, 

variation of 𝑟 eff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to 𝑟 eff. In 

conclusion, the proposed method is a step towards representatively estimating 𝑟 eff at MRI voxel resolution. Further 

investigations are required to assess generalization to other brains and brain areas with different axon radii 

distributions. 
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. Introduction 

The MRI signal generated by an ensemble of protons probing the lo-

al, microscopic environment in human brain tissue can contain infor-

ation about microstructural tissue features such as the axonal radius

 Alexander et al., 2010; Andersson et al., 2020; Assaf et al., 2008; Ve-

aart et al., 2020 ). The axonal radius is a key to determine neuronal

ommunication in the human brain because it is related to, e.g., the

euronal conduction velocity ( Drakesmith et al., 2019; Schmidt and

nösche, 2019; Waxman, 1980 ). The estimation of the axonal radius

nd other microstructural features via biophysical modeling of the MRI

ignal ( Alexander et al., 2019 ) is an active area of research because of

ts potential to partially replace or complement invasive ex-vivo his-

ology with non-invasive, in-vivo, quantitative MRI approaches ( Stikov

t al., 2015; Weiskopf et al., 2021 ). However, before these models can
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e used, they need to be validated against a robust histological reference

 Weiskopf et al., 2021 ). 

The validation for the MRI-visible, effective radius ( 𝑟 eff) is currently

acking a robust, histological reference for human brain tissue. Since 𝑟 eff

s indicative of large, sparsely occurring axons, i.e., the tail of the axon

adii distribution ( Burcaw et al., 2015; Sepehrband et al., 2016; Veraart

t al., 2020 ), large ensembles of axons need to be evaluated to repre-

entatively estimate 𝑟 eff for MRI voxels of a human MRI system ( 1 mm 

3 

r larger). Previous studies have compared estimates of the effective ra-

ius from diffusion-weighted MRI (dMRI) against small ensembles of ax-

ns in histological reference data of rats ( Kakkar et al., 2018; Xu et al.,

014 ). However, representative histological validation of 𝑟 eff, i.e., us-

ng the same cross-sectional scale in histology and MRI, has only been

ttempted on perfusion-fixed rats for ultra-high-resolution MRI voxels

 ∼ 100 μm 

3 ) of a preclinical MRI system ( Veraart et al., 2020 ). It is un-

lear whether the validation of MRI-based models on rats can be trans-
ry 2022 
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List of Symbols and Acronyms 

Axon radii 

r individual axon radius 

Axon radii ranges 

𝑠𝑚𝑎𝑙𝑙 axons with 𝑟 < 0 . 3 μm 

𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑠𝑖𝑧𝑒𝑑 axons with 0 . 3 μm ≤ 𝑟 < 1 . 6 μm 

𝑙𝑎𝑟𝑔𝑒 axons with 𝑟 ≥ 1 . 6 μm 

𝑏𝑢𝑙𝑘 𝑠𝑚𝑎𝑙𝑙 and 𝑚𝑒𝑑𝑖𝑢𝑚 − 𝑠𝑖𝑧𝑒𝑑 axons 

𝑡𝑎𝑖𝑙 𝑙𝑎𝑟𝑔𝑒 axons 

Arithmetic mean axon radius 

𝑟 arith arithmetic mean radius 

𝜌arith reference arithmetic mean radius 

𝑟̂ arith estimated arithmetic mean radius 

MRI-visible, effective axon radius 

𝑟 eff effective radius 

𝜌eff reference effective radius based on  eff

𝜌eff↓ reference effective radius based on  eff↓

𝜌eff↑ reference effective radius based on  eff↑ 

𝑟̂ eff estimated effective radius 

𝑟̂ eff, rng estimated effective radius based on an axon radii dis- 

tribution with erroneous radii in axon radii range rng ∈
{ small , medium , large } 

Axon radii distribution 

 eff axon radii distribution of 𝜌eff

 eff↓ axon radii distribution of 𝜌eff↓ with underrepresented 

𝑏𝑢𝑙𝑘 (scaled according to 𝑓 ↓) 

 eff↑ axon radii distribution of 𝜌eff↑ with overrepresented 𝑏𝑢𝑙𝑘 

(scaled according to 𝑓 ↑ ) 

Bulk scaling factor 

𝑓 𝑏𝑢𝑙𝑘 scaling factor 

𝑓 ↓ lower bound for 𝑏𝑢𝑙𝑘 scaling factor 

𝑓 ↑ upper bound for 𝑏𝑢𝑙𝑘 scaling factor 

𝑓 interp ( 𝑠 ) interpolated 𝑏𝑢𝑙𝑘 scaling factor 

𝑠 sweep variable 

Subsections 

𝑆 EM 

small-field-of-view EM subsection 

𝑆 LM 

small-field-of-view lsLM subsection 

𝑆 lsLM 

large-field-of-view lsLM subsection 

Acronyms 

CNN convolutional neural network 

COD cause of death 

CV cross-validation 

dMRI diffusion-weighted MRI 

EM electron microscopy 

lsLM high-resoution, large-scale light microscopy 

NMBE normalized-mean-bias-error 

NRMSE normalized-root-mean-square-error 

NRSD normalized-residual-standard-deviation 

PMD post-mortem delay 

ated to the human brain. As the tail of the axon radii distribution may

ary between humans and other mammals ( Biedenbach et al., 1986; Lee-

en et al., 1982 ), 𝑟 eff for humans may be shifted with respect to other

pecies. This shift may be further reinforced by the reduced capability

o resolve small axons in human MRI systems when compared to pre-

linical MRI systems ( Drobnjak et al., 2016; Nilsson et al., 2017; Veraart

t al., 2020 ). For human brain, the current gold standard for the vali-

ation of 𝑟 eff ( Alexander et al., 2010; Horowitz et al., 2015; Innocenti

t al., 2015; Veraart et al., 2020 ) stems from neuroanatomical studies
2 
 Aboitiz et al., 1992; Caminiti et al., 2009; Graf von Keyserlingk and

chramm, 1984; Liewald et al., 2014 ) of small ensembles of axons (100-

000 axons), aiming to evaluate the arithmetic mean radius ( 𝑟 arith ) on

anually annotated electron microscopy images (EM). As 𝑟 arith is deter-

ined by the bulk of the axon radii distribution, it can be expected that

stimates of 𝑟 arith are less sensitive to the ensemble size as compared to

 eff. For 𝑟 eff, however, small-ensemble estimates can strongly under- or

verestimate 𝑟 eff ( Mordhorst et al., 2021 ) of typical MRI voxels, because

he tail of the axon radii distribution is insufficiently sampled. 

Albeit high-resolution, large-scale light microscopy (lsLM) cannot re-

olve small axons as accurately as EM, an lsLM-based approach might be

ppropriate to generate a histological gold standard for the validation

f MRI-based radius estimation in human brain tissue. Because of the

arge field-of-view of lsLM, covering cross-sections of 1 mm 

2 or larger,

t is possible to capture large ensembles of axons including 10 5 to 10 6 
xons per section and thus sample the tail of the axon radii distribu-

ion more accurately. Moreover, lsLM has the advantage of being fast,

heap and simple to perform compared to EM. As the assessment of

xon radii on large field-of-view microscopy data renders manual anno-

ation infeasible, automated approaches, e.g., methods based on convo-

utional neural networks (CNN), are required. So far, CNN-based meth-

ds based on large two- or three dimensional scanning or transmission

lectron microscopy (SEM/TEM) sections have been trained on images

f perfusion-fixed mice or rats ( Abdollahzadeh et al., 2021; Zaimi et al.,

018 ). However, it is unlikely that the models generated in these studies

ranslate well to immersion-fixed human brain tissue with higher tissue

egradation. 

In this study, we investigate the potential of lsLM and CNN-based

egmentation to map the distribution of axon radii in a human corpus

allosum specimen. We quantify the capability of the proposed method

o estimate the MRI-visible 𝑟 eff and 𝑟 arith , which is commonly reported

n neuroanatomical studies, by evaluating the estimation errors on six

sLM sections. While reference data for the frequency-weighted 𝑟 arith 

an be generated through manual annotation with reasonable effort,

he tail-weighting of 𝑟 eff introduces the necessity to accurately capture

he tail of the axon radii distribution and thus investigate larger ensem-

les of axons than can be realistically annotated. To address this chal-

enge, we merge manually annotated radii from different sources into

omposite axon radii distributions, combining the accurate resolution of

he bulk of axon radii in EM with representative sampling of the tail of

he axon radii distribution on large-field-of-view lsLM subsections. Ad-

itionally, we investigate whether our method is capable of capturing

natomy-related, spatial variation of 𝑟 arith and 𝑟 eff in the presence of low-

requency image intensity variation, e.g., due to staining heterogeneity.

inally, we analyze the potential error due to individual, outstandingly

arge axons in 𝑟 eff. 

. Materials and methods 

.1. Ensemble mean axon radii 

For a discrete axon radii distribution of 𝐵 individual radii with 𝑛 ( 𝑘 ) 
xons with radius 𝑟 ( 𝑘 ) in bin 𝑘 , the arithmetic mean radius can be defined

s 

 arith = 

𝐾 ∑
𝑘 =1 

𝑤 arith , ( 𝑘 ) ⋅ 𝑟 ( 𝑘 ) 

𝑤 arith , ( 𝑘 ) = 

𝑛 ( 𝑘 ) 

𝐵 

(1) 

he MRI-visible, effective mean radius ( 𝑟 eff) ( Burcaw et al., 2015;

epehrband et al., 2016; Veraart et al., 2020 ) can be estimated from the

ntra-axonal signal of dMRI. Clinical acquisition employs pulse-gradient

pin echo dMRI sequences with wide pulses, i.e. using pulse widths
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Table 1 

The dataset of human tissue samples. The following tissue 

samples were investigated: a corpus callosum (CC), a corti- 

cospinal tract (CST) an optic chiasm (OC) and an anterolat- 

eral system (AS). Sections were assigned exclusively to the 

training or test dataset. 

Sections 

Sample Type Size [mm 

2 ] Total Training Test 

OC lsLM 2.49 1 1 

CST lsLM 12.71 1 1 

AS lsLM 4.86 1 1 

CC lsLM 0.34 to 9.16 10 4 6 

CC EM 0.01 6 6 
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 10 ms ( Burcaw et al., 2015 ). In the wide-pulse limit, 

𝑟 eff = 

4 

√ √ √ √ 

𝐾 ∑
𝑘 =1 

𝑤 eff, ( 𝑘 ) ⋅ 𝑟 ( 𝑘 ) with 

 eff, ( 𝑘 ) = 

𝑛 ( 𝑘 ) 

𝐵 

⋅
𝑟 5 ( 𝑘 ) 

1 
𝐵 

∑𝐾 

𝑗=1 𝑛 ( 𝑗 ) 𝑟 
2 
( 𝑗 ) 

. (2) 

hile 𝑟 arith is frequency-weighted ( 𝑤 arith , ( 𝑘 ) ) and therefore determined

y the bulk of the axon radii distribution, 𝑟 eff is weighted ( 𝑤 eff, ( 𝑘 ) ) to-

ards the tail of the axon radii distribution because 𝑤 eff, ( 𝑘 ) scales with

he fifth power of 𝑟 ( 𝑘 ) . Each radius 𝑟 ( 𝑘 ) denotes the radius of a circular

pproximation of the axonal body of a myelinated axon with equivalent

rea ( West et al., 2016 ) (hereafter denoted as circular equivalent). 

.2. Axon radii ranges 

Throughout this manuscript, we generated composite axon radii dis-

ributions by combining axon radii distributions from different sources

t particular thresholds. As a consequence, we partitioned the axon radii

istribution into three parts: 

• Large axons ( 𝑟 ≥ 1 . 6 μm ) represent the tail of the axon radii distri-

bution and therefore have a strong contribution towards the tail -

weighted 𝑟 eff. The threshold was chosen so that the estimated 𝑟 eff

was decreased by 50 % when axons above this threshold were re-

moved from the pooled axon radii ensemble of the corpus callosum

lsLM sections evaluated with a prototype of the proposed method. 
• Small axons ( 𝑟 < 0 . 3 μm ) are below the resolution limit of lsLM. 
• Medium-sized axons ( 0 . 3 μm ≤ 𝑟 < 1 . 6 μm ) constitute the bulk of the

axon radii distribution together with small axons. 

.3. Data acquisition 

Tissue preparation Four human white matter samples of four different

ubjects were used in this study: a corpus callosum (CC, male, 74 years,

ostmortem delay (PMD): 24 hours, cause of death (COD): multi organ

ailure), a corticospinal tract (CST, female, 89 years, PMD: 24 hours,

OD: heart failure), an optic chiasm (OC, male, 59 years, PMD: 48 hours,

OD: multi organ failure) and a sample obtained from the area dorsolat-

ral of the olivary nucleus including the anterolateral system (AS, male,

1 years, PMD: 24 hours, COD: multi organ failure). Following stan-

ard procedures, blocks were immersion-fixed in 3 % paraformaldehyde

nd 1 % glutaraldehyde in phosphate-buffered saline at pH 7.4. Then,

maller blocks of 1 to 4 mm edge length were cut, contrasted with os-

ium tetroxide and uranyl acetate, dehydrated in graded acetones, em-

edded in Durcupan resin and cut into semi- ( ∼ 500 nm ) and ultra-thin

 ∼ 50 nm ) sections. Semi-thin sections were stained with 1 % toluidine

lue for imaging with lsLM. 

Microscopy In total, 13 lsLM images were acquired of semi-thin sec-

ions using a Zeiss AxioScan.Z1 (objective: 40×, numerical aperture:

.95, resolution: 0 . 1112 μm /pixel; resolution limit: 292 nm ) (see Table 1 ).

or 𝑁 = 6 of the lsLM sections of the CC sample, matching EM sec-

ions were acquired, i.e., sections were cut within 100 μm proximity (see

ig. 1 ). For the latter EM sections, images were acquired using a Zeiss

EO EM 912 Omega TEM at 80 kV and digital micrographs were ob-

ained with a dual-speed 2K-on-axis CCD camera-based YAG scintillator

TRS-Tröndle, resolution: 0 . 0043 μm /pixel, resolution limit: 4 nm ). 

.4. Axon radius estimation pipeline 

Axon radius estimation was divided into three steps: semantic seg-

entation, instance segmentation and radius approximation (see Fig. 2 ).

o perform semantic segmentation, i.e., to classify each pixel as either

xon, myelin or background, we applied a CNN (see Section 2.5 ) in a

liding window manner (see Fig. 2 a). To identify axon instances from in-

ividual pixels, we applied connected-component labeling (see Fig. 2 b).
3 
or each axon instance, the circular equivalent radius was approximated

see Fig. 2 c). 

.5. Semantic segmentation 

Training data annotation For training of the CNN, we manually anno-

ated 64 lsLM subsections of similar size ( 70 × 70 μm 

2 to 120 × 120 μm 

2 )

riginating from different sections of the four tissue samples: 46 CC sub-

ections, 4 OC subsections, 4 CST subsections and 10 AS subsections. To

void fitting to the test data, whole lsLM sections were used exclusively

or training or testing (see Table 1 ). To cover a wide range of appearance

n axon shape and image contrast, some subsections were only partially

nnotated, i.e., pixels were assigned an ignore label and were not con-

idered during training. As large axons were expected to have particular

elevance for 𝑟 eff, but occur with low frequency, we assigned higher pri-

rity to the annotation of these axons. 

The manual annotation of individual axons followed the approach

escribed in Zaimi et al., 2018 : first, the myelin sheath was anno-

ated, then the enclosed axonal body was filled. Remaining pixels

ere assigned a background label. At a later stage, we generated ini-

ial segmentations of the myelin sheaths using an early prototype of

he CNN. Here, the procedure for the segmentation of myelin sheaths

hanged as follows: initial segmentations of myelin sheaths were re-

ned, myelin sheaths of missed fibers were annotated and myelin

heaths of falsely segmented fibers were removed. Manual annotations

ere carried out using GIMP ( The GIMP Development Team ) or ITK-

NAP ( Yushkevich et al., 2006 ). 

The manual annotation was performed by a total of six raters (M.

orozova, B. Fricke, J.M. Oeschger, S. Papazoglou, T. Tabarin and L.

ordhorst). Each manually annotated subsection was crosschecked by

 second rater. Initially, manual annotations were carried out in collabo-

ation with two experts (i.e., M. Morawski and M. Morozova) who were

urthermore consulted in case of doubt. 

Network Architecture We used a CNN of the U-Net

 Ronneberger et al., 2015) ; Yakubovskiy (2020) family (see Fig. 3 a),

.e., we followed its general architecture of consecutive encoding

nd decoding paths with skip connections between shallow and deep

ayers processing features of the same spatial resolution. In U-Nets,

he resolution is reduced after each encoder block while the number

f channels is increased; this process is reversed along the decoding

ath. For the encoding path, we employed transfer learning, i.e., we

sed EfficientNet-B3 ( Tan and Le, 2019) encoders pretrained on the

mageNet dataset ( Deng et al., 2009 ). In the decoding path, we used

wo sequences of 3 × 3 convolutions with batch normalization (BN) and

ectified linear activation units (Relu) (see Fig. 3 b). The aforementioned

equences were framed with concurrent spatial and channel squeeze

nd excitation (scSE) ( Roy et al., 2018 ) modules. While the encoding

ath decreased the spatial resolution by using one convolution with

tride two in each encoder block, the decoding path increased spatial

esolution using nearest neighbor interpolation as an initial step of

ach decoder block. Using skip connections between the encoding and
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Fig. 1. The human corpus callosum sample. The schematic of the sample (a) highlights the regions used for training (blue) and testing (red). For each region, one 

large-scale light microscopy (lsLM) section was acquired. For the 𝑁 = 6 test regions (red), matching lsLM and electron microscopy (EM) subsections were acquired: 

two sections from genu (G1, G2), two sections from midbody (M1, M2) and one section each from isthmus (I1) and splenium (S1). For section G1, the lsLM (b) and 

its matching EM section (c) are depicted as well as examples of subsections that were magnified to cover the same spatial extent ( 20 × 20 μm 

2 ) at common resolution. 

Fig. 2. The axon radius estimation pipeline. (a) Pixel-wise classifications as axon, myelin or background were obtained through application of a semantic segmentation 

network, i.e. a U-Net ( Ronneberger et al., 2015) variant, in a sliding window manner. (b) Axon instances were identified through connected-component labeling. (c) 

Radii of axon instances were estimated as radii of circles with equivalent area (short: circular equivalent). 

Fig. 3. The semantic segmentation network architecture. (a) Overview of the architecture: we used a variant of the U-Net ( Ronneberger et al., 2015 ) architecture, 

following the approach of an encoding (top row) and decoding path (bottom row) with skip connections (dashed arrows) between encoding and decoding path. The 

encoding path consists of the first six stages of a pretrained EfficientNet-B3 (EN-B3) ( Tan and Le, 2019 ) model. The decoding path used the fundamental decoder 

blocks illustrated in (b): each decoder was composed of upsampling by nearest neighbor interpolation, concatenation of the encoded features at same resolution, and 

two sequences of 3 × 3 convolutions (Conv 3×3 ) with batch normalization (BN) and rectified linear activation units (Relu) framed by squeeze and excitation (scSE) 

( Roy et al., 2018 ) modules. The skip connections (dashed arrows) connected the intermediate features of the encoding path (after Efficient-Net B3 stages one, three, 

and four) with corresponding decoder outputs at the same resolution. The final outputs were obtained by applying Conv 3×3 with a softmax activation to the output of 

the last decoder, yielding pixel-wise pseudo-probabilities for axon, myelin and background. Annotated numbers denote spatial resolution and the number of channels, 

e.g., 512 2 × 3 denotes a tensor with 512 × 512 pixels and 3 channels, which corresponds to the input and output size used during training. 
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ecoding path, we concatenated the outputs of encoder blocks, i.e., the

utput of the pretrained EfficientNet-B3 after stages one, three, and four

ith decoder blocks processing features of the same resolution (after

pplying interpolation). Outputs were obtained using 3 × 3 convolution

ith softmax activation, yielding pixel-wise pseudo-probabilities for

xon, myelin and background. In total, the network had ∼ 3 . 8 million

rainable parameters. 

Input preprocessing Inputs were standardized per color channel with

espect to the training dataset, i.e., we computed channel-wise mean

nd standard deviation across all pixels of the training dataset; then, for

ach input during training, we subtracted the channel-wise mean and

ivided by the channel-wise standard deviation. 

Input augmentation The following augmentation steps were employed

n-the-fly during training using ( Jung et al., 2021 ): multiplication of
4 
ue, saturation and value in the hue-saturation-value color space by a

andomly chosen factor; contrast adjustment; blurring with a Gaussian

ernel; horizontal and vertical flipping with probability 𝑝 = 0 . 5 ; affine

ransformation using rotation (by angles in [−45 ◦, 45 ◦] ), scaling (by fac-

ors in [0 . 8 , 1 . 2] ) and shearing (by angles in [−25 ◦, 25 ◦] ); staining aug-

entation ( Macenko et al., 2009; Byfield ). 

Training We trained the model for 200 epochs, using pseudo-epochs

f 150 randomly drawn training patches of 512 × 512 pixels. We used

ini-batch gradient descent with a mini-batch size of 4, Nesterov mo-

entum (0.95), an initial learning rate of 10 −2 and a learning rate de-

ay of 𝛾 = 0 . 2 every 50 epochs after initial 100 epochs to minimize a

ovàsz-softmax loss ( Berman et al., 2018 ). All weights of the CNN were

odified during training. The training phase took about 45 minutes on

n NVIDIA Quadro RTX 6000 GPU. We used a framework ( Falcon et al.,
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Fig. 4. Overview of test data. (a) Matching large-scale light mi- 

croscopy (lsLM) and electron microscopy (EM) sections of the 

𝑛 -th test region, i.e., sections were cut within 100 μm distance. 

(b.1-3) lsLM and EM subsections originating from (a). Illustrations 

from left to right column show: microscopy subsection, axon mask 

from manual annotation, axon mask predicted by the proposed 

pipeline. (b.1) Small field-of-view lsLM subsection with all axons 

manually annotated (see Section 2.6 .(a)). (b.2) Large field-of-view 

lsLM subsection with only large axons manually annotated (see 

Section 2.6 .(b)). (b.3) Small field-of-view EM subsection with all 

axons manually annotated (see Section 2.6 .(c)). 
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019 ) based on PyTorch ( Paszke et al., 2019 ) to carry out the training

rocedure. 

Hyperparameter optimization To determine the above used initial

earning rate, 𝛾 and the number of epochs, we carried out a grid search

or the initial learning rate and 𝛾 using optuna ( Akiba et al., 2019 ) in a

-fold-cross-validation (CV) approach. CV splits were conducted at the

evel of entire lsLM training subsections. We considered the averaged

ice score for axon and myelin as the target metric, which we evaluated

very 10 epochs on entire subsections of the validation set of the particu-

ar CV fold. Each model was trained at least 150 epochs. To avoid over-

tting, we stopped when the target metrics did not increase for three

onsecutive validation steps, i.e., 30 epochs. We then chose hyperpa-

ameters, i.e., learning rate, 𝛾 and the number of epochs, so that they

ptimized the mean of the above target metric across all CV folds. 

.6. Test dataset 

To generate reference data for the evaluation experiments detailed

n the following sections, we manually annotated multiple lsLM and one

M subsection for each test region 𝑛 ∈ {1 , … , 𝑁} (see Fig. 4 ): 

a) To assess the axon segmentation performance of the semantic seg-

mentation model (see Section 2.5 ), we manually annotated all axons

on five lsLM subsections 𝑆 
( 𝑛,𝑙) 
LM 

(with 𝑙 ∈ {1 , … , 𝐿 LM 

= 5} ) in small

field-of-views of 28 × 28 μm 

2 (see Fig. 4 b.1). Only axonal bodies were

manually annotated. Individual axons were manually annotated as

follows: the outline of the axonal body was defined, then the en-

closed region was filled. Manual annotations were crosschecked as

described in Section 2.5 . 

b) To capture the tail of the axon radii distribution, we manually

annotated large axons on three lsLM subsections 𝑆 
( 𝑛,𝑙) 
lsLM 

(with 𝑙 ∈
{1 , … , 𝐿 lsLM 

= 3} ) in large field-of-views with an equivalent square

area of 350 × 350 μm 

2 (see Fig. 4 b.2). Exhaustive manual annota-

tion of all axons was considered infeasible due to the large field-of-

view. Only axonal bodies were manually annotated. An early proto-
5 
type of the proposed method was used as a guidance for the rater

to detect and initially segment large axons. Then, the segmenta-

tion of detected axons was manually refined; missed axons were an-

notated; falsely detected axons were removed. Manual annotations

were crosschecked as described in Section 2.5 . 

c) To capture the bulk of the axon radii distribution, we manually an-

notated all axons on one matching EM subsection 𝑆 
( 𝑛 ) 
EM 

in small field-

of-views, ranging from equivalent square areas of 54 × 54 μm 

2 to

87 × 87 μm 

2 (on average: 75 × 75 μm 

2 ) (see Fig. 4 b.3). Outlines of ax-

onal bodies were approximated as polygons by M. Morozova. To

convert these polygons to axon segmentation masks, we assigned

pixels inside polygons an axon label and classified remaining pixels

as background. 

.7. Performance of the semantic segmentation network 

To assess the capability of the semantic segmentation model (see

ection 2.5 ) to segment axons, we considered the binary, pixel-wise clas-

ification task of discriminating between axon and background. As we

valuted the capability to segment axons, we did not consider myelin,

.e., we generated binary axon prediction masks and treated all non-axon

ixels as background. We evaluated the axon segmentation performance

oth at the level of individual pixels and at the level of axon instances. 

.7.1. Pixel-wise segmentation performance 

To quantify the axon segmentation performance at the level of indi-

idual pixels, we evaluated segmentation metrics ( Eqs. (3) to (6) ) on

airs of binary axon masks obtained through manual annotation and

rediction using the semantic segmentation model on small-field-of-

iew subsections 𝑆 
( 𝑛,𝑙) 
LM 

. From pixel-wise comparison of pairs of manu-

lly annotated and predicted axon masks, we determined the number of

alse negatives ( |FN |), the number of false positives ( |FP |), the number

f true positives ( |TP |) and the number of true negatives ( |TN |). Finally,
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e computed 

alanced accuracy = 

1 
2 
( |TP ||TP | + |FN | + 

|TN ||TN | + |FP | ) , (3)

ecall = 

|TP ||TP | + |FN | , (4) 

recision = 

|TP ||TP | + |FP | , (5) 

nd 

ice = 

2 ⋅ |TP |
2 ⋅ |TP | + |FP | + |FN | (6) 

or each of the 𝑁 ⋅ 𝐿 LM 

subsections of all test regions and summarized

ach metric by the mean across subsections. 

.7.2. Instance-wise segmentation performance 

We assessed the axon segmentation performance at the level of axon

nstances as a function of the axon radius. Two measures were consid-

red: an instance-wise evaluation of the dice coefficient and a compari-

on of the number of undetected axons (i.e., false negatives) and falsely

etected axons (i.e., false positives). For this analysis, we pooled all man-

ally annotated axons over all small- and large-field-of-view lsLM sub-

ections 𝑆 
( 𝑛,𝑙) 
LM 

and 𝑆 
( 𝑛,𝑙) 
lsLM 

across all test regions. 

The instance-wise dice coefficient was assessed for pairs of man-

ally annotated axons and their best-matching axon from the predic-

ion following a similar approach as in Abdollahzadeh et al., 2019 . The

nstance-wise dice coefficient was computed using Eq. (6) for pairs

f predicted and manually annotated binary axon masks in which we

onsidered only the respective two matching axons, whereas remaining

ixels were considered to be background. For each manually annotated

xon, the best-matching, predicted axon was determined in terms of the

ighest instance-wise dice coefficient. Manually annotated axons with

o best-matching, predicted axon, i.e., the maximum instance-wise dice

oefficient was zero, were considered to be false negatives. Then, we

inned manually annotated axons by their radii (spacing: 0 . 1 μm ) and

omputed the mean dice coefficient per bin. To disentangle the contri-

ution of false negatives from the contribution of under- or oversegmen-

ation of correctly detected axons towards the mean dice coefficients, we

epeated the analysis without taking false negatives into account for the

omputation of the mean dice coefficients. 

To compare over- and underdetection of axon instances as a function

f the axon radius, we computed |FN | and |FP | (here: at axon instance

evel) per axon radius bin. While |FN | was immediately available from

he computation of mean dice coefficients, we determined |FP | as the

umber of predicted axons that were not assigned as a best-matching

xon to any manually annotated axon. 

.8. Error of estimated 𝑟 arith and 𝑟 eff

In this section, we evaluated different error metrics of estimates of

 arith and 𝑟 eff, i.e., 𝑟̂ 
( 𝑛,𝑙) 
arith 

and 𝑟̂ 
( 𝑛,𝑙) 
eff

, for axon radii distributions predicted

n large-field of-view lsLM subsections 𝑆 
( 𝑛,𝑙) 
lsLM 

. Corresponding reference

alues, i.e., 𝜌
( 𝑛,𝑙) 
arith 

and 𝜌
( 𝑛,𝑙) 
eff

, were generated from different axon radii

istributions obtained through manual annotation of 𝑆 
( 𝑛,𝑙) 
lsLM 

and matching

M subsections 𝑆 
( 𝑛 ) 
EM 

(see Fig. 5 ). 

.8.1. Error metrics 

To assess the error of 𝑟̂ 
( 𝑛,𝑙) 
arith 

with respect to 𝜌
( 𝑛,𝑙) 
arith 

(and the error of

̂ 
( 𝑛,𝑙) 
eff

analogously), we considered three different error metrics. Using

he residuals 

( 𝑛,𝑙) = 𝑟̂ 
( 𝑛,𝑙) − 𝜌

( 𝑛,𝑙) 
(7)
arith arith 

6 
nd denoting the 𝑚 -th moment of 𝜖 (and others analogously) as 

𝜖𝑚 ⟩ = 

1 
𝑁 ⋅ 𝐿 lsLM 

𝑁 ∑
𝑛 =1 

𝐿 lsLM ∑
𝑙=1 

( 𝜖( 𝑛,𝑙) ) 𝑚 , 

e assessed accuracy in terms of the normalized-root-mean-square error

RMSE = 

√⟨𝜖2 ⟩⟨𝜌arith ⟩ , (8)

he bias in terms of the normalized-mean-bias-error 

MBE = 

⟨𝜖⟩⟨𝜌arith ⟩ (9) 

nd the normalized-residual-standard-deviation 

RSD = 

std ( 𝜖) ⟨𝜌arith ⟩ = 

√⟨( 𝜖 − ⟨𝜖⟩) 2 ⟩⟨𝜌arith ⟩ = 

√⟨𝜖2 ⟩ − ⟨𝜖⟩2 ⟨𝜌arith ⟩ . (10)

ote, that NRMSE (see Eq. (8) ) can be expressed in terms of Eqs. (9) and

0 using the following decomposition: 

RMSE = 

√
NMBE 2 + NRSD 

2 . (11)

.8.2. Error of 𝑟̂ eff
To assess the error of estimates of the tail -weighted 𝑟 eff, we compared

stimates ( ̂𝑟 
( 𝑛,𝑙) 
eff

) obtained from predictions on large-field-of-view lsLM

ubsections 𝑆 
( 𝑛,𝑙) 
lsLM 

against reference values ( 𝜌
( 𝑛,𝑙) 
eff

) computed from com-

osite reference axon radii distributions  
( 𝑛,𝑙) 
eff

. The tail of  
( 𝑛,𝑙) 
eff

was sam-

led from manual annotations on 𝑆 
( 𝑛,𝑙) 
lsLM 

. The bulk of  
( 𝑛,𝑙) 
eff

was sampled

rom manual annotations on matching EM subsections 𝑆 
( 𝑛 ) 
EM 

and rescaled

ccording to a scaling factor 𝑓 ( 𝑛,𝑙) to compensate for the smaller axon

nsemble size of 𝑆 
( 𝑛 ) 
EM 

as compared to 𝑆 
( 𝑛,𝑙) 
lsLM 

(see Fig. 5 d). This composi-

ion of  
( 𝑛,𝑙) 
eff

was motivated as follows: accurate representation of the tail

equired exhaustive manual annotation of the tail of the axon radii dis-

ribution of 𝑆 
( 𝑛,𝑙) 
lsLM 

; the bulk of the axon radii distribution of 𝑆 
( 𝑛,𝑙) 
lsLM 

could

ot be sampled through manual annotation with reasonable effort due

o the large ensemble size. Instead, we assumed that the bulk of the axon

adii distribution could be representatively sampled from smaller axon

nsembles annotated on 𝑆 
( 𝑛 ) 
EM 

. 

To generate the reference axon radii distribution  eff for one subsec-

ion, we determined its numbers of axons 𝑛 eff with radii 𝑟 ( 𝑘 ) per bin 𝑘

sing corresponding numbers of axons manually annotated on 𝑆 EM 

and

 lsLM 

, i.e., 𝑛 EM 

and 𝑛 lsLM 

. For the bulk of  eff, 𝑛 eff was obtained by rescal-

ng 𝑛 EM 

according to 𝑓 . For the tail of  eff, 𝑛 eff was equal to 𝑛 lsLM 

. Thus,

 eff = 

{ 

𝑓 ⋅ 𝑛 EM 

, for 𝑘 with 𝑟 ( 𝑘 ) < 1 . 6 μm 

𝑛 lsLM 

, for 𝑘 with 𝑟 ( 𝑘 ) ≥ 1 . 6 μm 

} 

. (12)

s there was no obvious choice of 𝑓 , we determined a lower ( 𝑓 ↓) and

pper ( 𝑓 ↑ ) bound for 𝑓 (see Fig. 6 ). 

𝑓 ↓ was determined as the ratio between the number of lsLM-

esolvable ( 𝑟 ≥ 0 . 3 μm ) axons predicted on 𝑆 lsLM 

( 𝑛 lsLM ,𝑟 ≥ 0 . 3μm ) and

he number of lsLM-resolvable axons manually annotated on 𝑆 EM 

 𝑛 EM ,𝑟 ≥ 0 . 3μm ), i.e., 

 ↓ = 

𝑛 lsLM ,𝑟 ≥ 0 . 3μm 

𝑛 EM ,𝑟 ≥ 0 . 3μm 
. (13)

his choice of 𝑓 ↓ was due to the observation that the semantic segmenta-

ion network was more likely to miss axons than to falsely detect axons

see Section 3.1 ). Therefore, 𝑓 ↓ was likely to underrepresent the bulk . In

ontrast, we determined 𝑓 ↑ as the ratio of subsection areas of 𝑆 lsLM 

and

 EM 

, denoted as 𝐴 lsLM 

and 𝐴 EM 

: 

 ↑ = 

𝐴 lsLM 

𝐴 EM 

. (14)

e assumed that 𝑓 ↑ would overrepresent the bulk because we expected

 higher axon density in 𝑆 EM 

than in 𝑆 lsLM 

due to the lack of large non-

ber structures such as blood vessels in 𝑆 . 
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Fig. 5. Axon radii distributions and ensemble mean axon radii. (a) Subsections from matching lsLM and EM sections with axon annotation mask and its predicted 

counterpart: (a.1) lsLM subsections 𝑆 
( 𝑛,𝑙) 
lsLM 

; (a.2) EM subsection 𝑆 
( 𝑛 ) 
EM 

. See Fig. 4 for context. (b) Estimates ( ̂𝑟 
( 𝑛,𝑙) 
arith 

and ̂𝑟 
( 𝑛,𝑙) 
eff

) were obtained from the axon radii distribution 

of axons predicted (yellow) on 𝑆 
( 𝑛,𝑙) 
lsLM 

. (c) Reference values ( 𝜌
( 𝑛,𝑙) 
arith 

) were directly obtained from the axon radii distribution of axons manually annotated on 𝑆 
( 𝑛 ) 
EM 

(purple). 

(d) Reference values ( 𝜌
( 𝑛,𝑙) 
eff

) were computed from composite axon radii distributions  
( 𝑛,𝑙) 
eff

, combining the bulk of the axon radii distribution (purple) of axons manually 

annotated on 𝑆 
( 𝑛 ) 
EM 

with the tail of the axon radii distribution (pink) of axons manually annotated on 𝑆 
( 𝑛,𝑙) 
lsLM 

. To enable combination of differently sized axon radii 

distributions, the axon radii distribution of axons manually annotated on 𝑆 
( 𝑛 ) 
EM 

was rescaled by a scaling factor 𝑓 ( 𝑛,𝑙) (see Section 2.8.2 for details). The tick on the 

x-axis denotes the threshold that partitioned the axon radii distribution into bulk ( 𝑟 < 1 . 6 μm ) and tail ( 𝑟 ≥ 1 . 6 μm ) axons. The insets emphasize the tail of the axon 

radii distribution. 

Fig. 6. Generation of the reference axon radii distribution  eff( 𝑓 ) 
for one subsection 𝑆 lsLM . Depicted are the numbers of axons 𝑛 eff( 𝑓 ) 
with radii 𝑟 ( 𝑘 ) per bin 𝑘 of the reference axon radii distribu- 

tion  eff( 𝑓 ) . For the bulk of  eff( 𝑓 ) ( 𝑟 < 1 . 6 μm ; left of dashed 

line), we used corresponding, rescaled numbers of axons manu- 

ally annotated on 𝑆 EM , i.e., 𝑛 eff( 𝑓 ) = 𝑓 ⋅ 𝑛 EM . For the tail of  eff( 𝑓 ) 
( 𝑟 ≥ 1 . 6 μm ; right of dashed line), we used the axons manually an- 

notated on 𝑆 lsLM , i.e., 𝑛 eff( 𝑓 ) = 𝑛 lsLM . Colors of bars for the bulk 

of  eff( 𝑓 ) illustrate different values of 𝑓 : (white) lower bound 𝑓 ↓; 

(black) upper bound 𝑓 ↑ ; (gray) an intermediate case. 
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An over- or underrepresentation of the bulk of the axon radii dis-

ribution leads to an error in 𝜌eff. Due to the tail -weighting of 𝑟 eff, we

ypothesized that using a reference axon radii distribution with overrep-

esented bulk (  eff↑ ) would lead to an underestimation of 𝑟 eff, whereas

sing a reference axon radii ensemble with underrepresented bulk (  eff↓)

ould lead to an overestimation of 𝑟 eff, i.e., 𝜌eff↑ < 𝑟 eff < 𝜌eff↓. Therefore,
7 
e assessed the error metrics of ̂𝑟 eff with respect to both reference values

eff↓ and 𝜌eff↑ and used the maximum absolute value per error metric as

n upper bound for the true error. Moreover, we assessed the dynamic

ange of errors by investigating the error metrics of 𝑟̂ eff with respect to

eference values obtained based on scaling factors in the range between

 ↓ and 𝑓 ↑ . To this end, we computed reference values 𝜌eff( 𝑓 interp ) for
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Fig. 7. Schematic of axon radii distributions used to assess the error of ̂𝑟 eff for one subsection 𝑆 lsLM . (a-b) Reference axon radii distribution (purple and pink)  eff( 𝑠 ) 
and predicted (yellow) axon radii distribution as described in Section 2.8.2, Fig. 5 b and Fig. 5 d. (c-e) Axon radii distributions generated to assess the error of ̂𝑟 eff due 

to predicted axon radii in distinct axon radii ranges. These axon radii distributions used the predicted axon radii distribution (b) in the large (c), medium-sized (d) 

and small (e) axon radii range and axon radii of  eff( 𝑠 ) (see (a)) in the remaining ranges. Axon radii distributions in (c-e) partially relied on axon radii of  eff( 𝑠 ) (see 

(a)), thereby inheriting a depencency on the sweep variable 𝑠 , which determined the scaling of the bulk of  eff( 𝑠 ) as described in Section 2.8.2 . Vertical bars (a-e) 

mark values of 𝑟 eff computed from the respective axon radii distributions. The ticks on x-axes denote the two thresholds that partitioned the axon radii distribution 

into small ( 𝑟 < 0 . 3 μm ), medium-sized ( 0 . 3 μm ≤ 𝑟 < 1 . 6 μm ) and large ( 𝑟 ≥ 1 . 6 μm ) axons. The insets emphasize the tail of the axon radii distribution. 
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nterpolated scaling factors 𝑓 interp ∈ [ 𝑓 ↓, 𝑓 ↑ ] . To assess the error metrics

s a function of 𝑓 
( 𝑛,𝑙) 
interp 

across all 𝑁 ⋅ 𝐿 lsLM 

subsections with varying 𝑓 
( 𝑛,𝑙) 
↓

nd 𝑓 
( 𝑛,𝑙) 
↑ , we parameterized 

 

( 𝑛,𝑙) 
interp 

( 𝑠 ) = 𝑓 
( 𝑛,𝑙) 
↓ + 𝑠 ⋅ ( 𝑓 ( 𝑛,𝑙) ↑ − 𝑓 

( 𝑛,𝑙) 
↓ ) (15)

n terms of a common sweep variable 𝑠 ∈ [0 , 1] . Then, we computed

RMSE ( 𝑠 ) , NMBE ( 𝑠 ) and NRSD ( 𝑠 ) of 𝑟̂ eff with respect to 𝜌eff( 𝑠 ) across

ll 𝑁 ⋅ 𝐿 lsLM 

subsections. 

.8.3. Contribution of axon radii ranges towards the error of 𝑟̂ eff

In Section 2.8.2 , we assessed the error of 𝑟̂ 
( 𝑛,𝑙) 
eff

based on axon radii

istributions with erroneous (i.e., predicted) axon radii across the entire

ange of axon radii. To distinctively assess the contribution of erroneous

xon radii of individual ranges towards the error of 𝑟̂ 
( 𝑛,𝑙) 
eff

, we computed

̂ 
( 𝑛,𝑙) 
eff, large 

( 𝑠 ) , 𝑟̂ ( 𝑛,𝑙) 
eff, medium 

( 𝑠 ) and 𝑟̂ 
( 𝑛,𝑙) 
eff, small 

( 𝑠 ) from composite axon radii dis-

ributions with predicted axon radii in the particular range, i.e., in the

ange of small, medium-sized and large axon radii; the remaining ranges

sed axon radii of  
( 𝑛,𝑙) 
eff

( 𝑠 ) (see Fig. 7 ). 

We assessed errors of ̂𝑟 
( 𝑛,𝑙) 
eff, large 

( 𝑠 ) , ̂𝑟 ( 𝑛,𝑙) 
eff, medium 

( 𝑠 ) , ̂𝑟 ( 𝑛,𝑙) 
eff, small 

( 𝑠 ) with respect

o 𝜌
( 𝑛,𝑙) 
eff

( 𝑠 ) across all 𝑁 ⋅ 𝐿 lsLM 

subsections of all test regions in terms of

RMSE ( 𝑠 ) NMBE ( 𝑠 ) , NRSD ( 𝑠 ) (see Eqs. (8) to (10) ). 

.8.4. Error of 𝑟̂ arith 

To assess the error of estimates of the bulk -determined 𝑟 arith , we com-

ared estimates ( ̂𝑟 
( 𝑛,𝑙) 
arith 

) obtained from predictions on large-field-of-view

sLM subsections 𝑆 
( 𝑛,𝑙) 
lsLM 

against reference values ( 𝜌
( 𝑛,𝑙) 
arith 

) obtained from

anual annotations on matching EM subsections 𝑆 
( 𝑛 ) 
EM 

(see Fig. 5 c). The

hoice of an EM-based reference was due to its accurate representation

f the bulk of the axon radii distribution, including small axons below

he resolution limit of lsLM. As only one EM subsection 𝑆 
( 𝑛 ) 
EM 

existed

er test region, we used the same reference 𝜌
( 𝑛,𝑙) 
arith 

for all 𝐿 lsLM 

subsec-

ions per region, i.e., 𝜌
( 𝑛, 1) 
arith 

= ... = 𝜌
( 𝑛,𝐿 lsLM ) 
arith 

. Note, that the generation of
( 𝑛,𝑙) 
arith 

was simplified in comparison to the approach used for 𝜌
( 𝑛,𝑙) 
eff

( 𝑠 ) in
ection 2.8.2 : instead of computing 𝜌

( 𝑛,𝑙) 
arith 

in analogy to 𝜌
( 𝑛,𝑙) 
eff

( 𝑠 ) from com-

osite axon radii distributions  
( 𝑛,𝑙) 
eff

( 𝑠 ) combining EM- and lsLM-based

xon radii distributions, we calculated 𝜌
( 𝑛,𝑙) 
arith 

exclusively from EM-based

xon radii distributions. The motivation for this simplification was as

ollows: first, EM accurately captures the bulk of the axon radii distribu-

ion that determines 𝑟 arith ; second, we avoided the dependency of 𝜌
( 𝑛,𝑙) 
arith 

nd derived error metrics for 𝑟̂ arith on 𝑠 . 
8 
We assessed errors of 𝑟̂ 
( 𝑛,𝑙) 
arith 

with respect to 𝜌
( 𝑛,𝑙) 
arith 

across all 𝑁 ⋅ 𝐿 lsLM 

ubsections of all test regions in terms of NRMSE, NMBE and NRSD (see

qs. (8) to (10) ). 

.9. Sensitivity of 𝑟̂ arith and 𝑟̂ eff to variation of the image intensity 

We assessed whether the influence of spatially varying intensity,

.g. introduced by staining heterogeneity, affected the capability of our

ethod to map anatomy-related, spatial variation of ̂𝑟 arith and ̂𝑟 eff across

hole lsLM sections. For qualitative analysis, we generated spatially

moothed maps of 𝑟̂ arith and 𝑟̂ eff by computing the average of randomly

ositioned subsections (equivalent square area: 350 × 350 μm 

2 ) and vi-

ually compared the patterns of the spatially smoothed maps to those of

he corresponding lsLM images. For quantitative analysis, maps of ̂𝑟 arith ,

̂ eff and the image intensity were generated similar to those above but

ampled on an equally spaced grid (grid pixel area: 350 × 350 μm 

2 ). To

btain a scalar value for the image intensity, we applied gray scale con-

ersion. Then, grid pixels of sections with similar axon radii distribution

G1, G2, M1, M2) were pooled and the correlation between image in-

ensity and mapped radii was computed. As visual inspection suggested

hat small axons were particularly difficult to resolve in strongly stained

reas, the above experiments were performed with and without consid-

ring small axons to test this hypothesis. 

.10. Sensitivity of 𝑟 eff to outstandingly large axons 

To evaluate how much 𝑟 eff is affected by outstandingly large axons,

e investigated how 𝑟 eff changed as a function of a varying threshold

when only axons with 𝑟 < 𝜏 were considered for the computation of

 eff. 𝜏 was chosen to cover the whole range of observed axon radii for a

iven axon radii distribution. In particular, we assessed the worst case

n which the largest individual axon was missed. To exclude estimation

rrors from this experiment, we considered only reference data, i.e., the

eference axon radii distributions generated in Section 2.8.2 . To rather

ver- than underestimate the sensitivity to outstandingly large axons,

e used reference axon radii distributions  
( 𝑛,𝑙) 
eff↓

with underrepresented

ulk . Furthermore, to carry out this analysis at a scale as close as possi-

le to the cross-sectional size of typical voxels of a human MRI system

 1 mm 

2 or larger), we computed 𝜌
( 𝑛 ) 
eff↓

from pooled axon radii distribu-

ions, combining axon radii distributions of all 𝐿 lsLM 

subsections per

est region, yielding  
( 𝑛 ) 
eff↓

= 

𝐿 lsLM ⋃
𝑙=1 

 
( 𝑛,𝑙) 
eff↓

for the 𝑛 -th test region. Thereby,

e obtained 𝜌
( 𝑛 ) 
eff↓

from the largest axon ensembles available for each test

egion based on combined areas of about 0 . 37 mm 

2 ( ≈ 𝐿 lsLM 

⋅ (350 μm) 2 ).
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Fig. 8. Instance-wise segmentation metrics as a function of the axon radius. (a) Mean instance-wise dice coefficients: each bar denotes the mean instance-wise dice 

coefficient computed from manually annotated axons and their predicted counterparts. Two different cases were considered: with (white bars) and without (gray 

bars) inclusion of undetected axons (false negatives), i.e., manually annotated axons with no matching, predicted axon. False negatives contributed to the mean dice 

coefficient with a dice coefficient of zero. (b) Number of false negatives (white bars) and falsely detected axons (false positves; gray bars) as a function of the axon 

radius. The bin width in (a-b) is 0 . 1 μm . 

Table 2 

Pixel-wise segmentation met- 

rics. Each value in the ta- 

ble denotes a mean value of 

the corresponding metric (see 

Eqs. (3) to (6) ) over all man- 

ually annotated small-field- 

of-view subsections 𝑆 
( 𝑛,𝑙) 
LM 

(see 

Section 2.6 .(a)). 

Metric Value 

Balanced accuracy 0.85 

Dice 0.77 

Precision 0.82 

Recall 0.74 
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Fig. 9. Error of estimated arithmetic mean radii. Depicted are comparisons of 

lsLM-based estimates ̂𝑟 arith (y-axis) against EM- based reference values 𝜌arith (x- 

axis) of the arithmetic mean radius 𝑟 arith . Each point corresponds to one of 𝑁 ⋅
𝐿 lsLM = 18 distinct lsLM subsections. The dashed line represents the line of unity. 

Accuracy (NRMSE), bias (NMBE) and residual standard deviation ( NRSD ) were 

computed over all subsections using Eqs. (8) to (10) . 
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.1. Segmentation performance 

Table 2 lists pixel-wise segmentation metrics: balanced accuracy,

ice, precision and recall as defined in see Eqs. (3) to (6) . Higher preci-

ion than recall indicates that the number of false negatives was larger

han the number of false positives. 

Fig. 8 shows segmentation metrics evaluated at the level of axon

nstances as a function of the axon radius. The mean dice coefficient

ncreased as a function of the axon radius in the range from 0 . 0 μm to

 . 4 μm ( Fig. 8 a). For larger axons, the mean dice coefficient varied only

ittle and was always higher than 0.88, regardless of whether false neg-

tives were considered or not to compute the mean dice coefficient.

n contrast, mean dice coefficients of smaller axons were determined by

he large fraction of false negatives, indicated by the difference between

ray and white bars. The number of false negatives per axon radius was

ostly higher than the number of false positives, in particular for axons

ith 𝑟 < 1 μm ( Fig. 8 b). 

.2. Error of 𝑟̂ arith and 𝑟̂ eff

Fig. 9 shows estimates of 𝑟 arith (i.e., 𝑟̂ arith ) against reference values

 𝜌arith ) and denotes accuracy, bias and random error in terms of NRMSE,

MBE and NRSD as defined in Eqs. (8) to (10) . 𝑟̂ arith deviated from the

ine of unity, yielding an NRMSE of 19.5 % (see Fig. 9 ). NMBE and

RSD contributed with similar magnitude ( ∼ 14%) to the NRMSE (see

q. (11) for a decomposition of NRMSE into NMBE and NRSD ). 
9 
Fig. 10 shows NRMSE ( 𝑠 ) , NMBE ( 𝑠 ) and NRSD ( 𝑠 ) of different estimates

f 𝑟 eff (i.e., 𝑟̂ eff, 𝑟̂ eff, large ( 𝑠 ) , 𝑟̂ eff, medium 

( 𝑠 ) , 𝑟̂ eff, small ( 𝑠 )) with respect to ref-

rence values 𝜌eff( 𝑠 ) . Thereby, Fig. 10 is based on repeated comparison

etween estimates and reference values as illustrated for 𝑟 arith in Fig. 9 ,

ut shows only the above error metrics as a function of 𝑠 . Here, 𝑠 de-

ermined the scaling of the bulk of axon radii distributions  eff( 𝑠 ) , inter-

olating between lower ( 𝑓 ↓) and upper bound ( 𝑓 ↑ ) scaling factors (see

q. (15) ). Generally, NMBE varied as a function of 𝑠 , whereas the NRSD

as less dependent on 𝑠 (see Fig. 10 , center and bottom row). NMBE and

RSD translated into NRMSE (see Fig. 10 , top row), yielding an over-

ll NRMSE between 7.2 % to 8.5 % (see Fig. 10 a). The overall NRSD

7.1 % to 7.3 %) was predominantly determined by an 𝑠 -independent

ontribution of large axons (6.9 %) and complemented by a smaller,

 -dependent contribution of medium-sized axons (1.4 % to 2.1 %) (see

ig. 10 a-c, bottom row). In contrast, the overall NMBE (-3.7 % to 4.8 %)

as predominantly determined by a strong 𝑠 -dependent contribution of

edium-sized axons (-1.3 % to 6.5 %) and a smaller, 𝑠 -independent con-

ribution of large axons (-2.9 %) (see Fig. 10 a-c, center row). Small axons
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Fig. 10. Error of estimated effective radii. Rows show three error metrics for different estimates of the MRI-visible, effective axon radius 𝑟 eff: (top row) accuracy as 

evaluated by NRMSE (see Eq. (8) ); (center row) bias as evaluated by NMBE (see Eq. (9) ); (bottom row) the residual standard deviation NRSD (see Eq. (10) ). Each 

column depicts the aforementioned errors with respect to reference values 𝜌eff( 𝑠 ) due to erroneous axons in distinct axon radii ranges: (a) entire axon radii range, 

estimating overall errors; (b) large axon radii range ( 𝑟 ≥ 1 . 6 μm ); (c) medium-sized axon radii range ( 0 . 3 μm ≤ 𝑟 < 1 . 6 μm ); (d) small axon radii range ( 𝑟 < 0 . 3 μm ). 

Errors in (a-d) are shown as a function of a sweep variable 𝑠 , which determined the scaling of the bulk of reference axon radii distributions  eff( 𝑠 ) . These reference 

axon radii distributions  eff( 𝑠 ) were used to compute reference values 𝜌eff( 𝑠 ) in (a-d) and estimates of 𝑟 eff ( ̂𝑟 eff, large ( 𝑠 ) , ̂𝑟 eff, medium ( 𝑠 ) and ̂𝑟 eff, small ( 𝑠 ) ) in (b-d). Here, 𝑠 = 0 
and 𝑠 = 1 correspond to using lower ( 𝑓 ↓) and upper ( 𝑓 ↑ ) bounds of the scaling factor (see Eq. (15) ). Error metrics were evaluated over 𝑁 ⋅ 𝐿 lsLM = 18 lsLM subsections. 

Note, that NRMSE combines NMBE and NRSD as described in Eq. (11) . 

Fig. 11. Sensitivity of estimates of the arithmetic mean radius 𝑟 arith and the MRI-visible effective axon radius 𝑟 eff to variation of the image intensity. Depicted are: 

spatially smoothed maps of estimates ̂𝑟 arith and ̂𝑟 eff (a), the lsLM image of section M1 (b) adjusted to illustrate the correlation with maps of ̂𝑟 arith (a), and scatter plots 

between ensemble mean axon radii ( ̂𝑟 arith and ̂𝑟 eff) and lsLM image intensities (c). The correlation plots (c) pool across four sections (G1, G2, M1, M2). The 𝑝 -values 

have been multiplied by the number of sections to correct for multiple comparisons (Pearson’s 𝜌 is the correlation coefficient). 
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ad a small 𝑠 -dependent NMBE (0.4 % to 0.9 %) and small errors overall,

.e., NRMSE was at most 1.1 % (see Fig. 10 d). 

.3. Sensitivity of 𝑟̂ arith and 𝑟̂ eff to variation of the image intensity 

The spatial variation of 𝑟̂ arith resembled the image intensity dis-

ribution of the corresponding lsLM section (see Fig. 11 a, top row

nd Fig. 11 b). In contrast, maps of 𝑟̂ eff had a high local heterogene-

ty, which was not observed in the image intensity distribution of the

orresponding lsLM section (see Fig. 11 a, bottom row and Fig. 11 b).

hese observations were supported by a strong correlation (Pearson’s
10 
= 0 . 80 , 𝑝 < 10 −5 ) between 𝑟̂ arith and the image intensity, which was

educed when small axons were discarded (Pearson’s 𝜌 = 0 . 50 , 𝑝 < 10 −5 )
see Fig. 11 c, top left and top right). In contrast, 𝑟̂ eff did not show a

ignificant correlation with the image intensity (see Fig. 11 c, bottom

ow). 

.4. Sensitivity of 𝑟 eff to outstandingly large axons 

𝜌eff increased nonlinearly as a function of 𝜏 but with decreasing slope

see Fig. 12 a). For large 𝜏, there is a step-wise dependence between 𝜌eff↓
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Fig. 12. Sensitivity of the MRI-visible, effective axon radius 𝑟 eff to outstandingly large axons. (a) Values of 𝜌eff↓ for the 𝑁 = 6 test regions of the corpus callosum 

sample when considering only axons with radius of 𝑟 < 𝜏 for the computation of 𝜌eff↓. The line colors indicate the order of axons sorted by their radius in descending 

order according to the colorbar in the top right. For orientation, powers of 10 are marked on top of the plots. (b) Extracted lsLM subsection showing the largest 

axon ( 𝑟 = 9 . 46 μm ) observed across all regions. The elongated shape of this axon is likely due to the axon being oriented almost parallel to the cutting plane of the 

two-dimensional section. When discarding this axon, 𝜌eff↓ decreased from 3 . 07 𝜇m to 2 . 63 𝜇m , i.e., a decrease of 14.3 %. For the remaining regions, the decrease of 

𝜌eff↓ ranged from 0.8 % to 2.9 %. The total number of axons ranged from 3 . 7 ⋅ 10 4 to 6 . 8 ⋅ 10 4 . 𝜌eff↓ used the lower bound ( 𝑓 ↓) of a scaling factor, which determined 

the scaling of the bulk of reference axon radii distributions  eff↓ of 𝜌eff↓ (see details in Sections 2.8.2 and 2.10 ). 
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nd 𝜏 due to the sparse occurrence of large axons. Compared to other

egions, the influence of the largest axon on 𝜌eff↓ was particularly strong

n region M2: 𝜌eff↓ decreased by 14.3 % when the largest axon was dis-

arded (see region M2 in Fig. 12 a). The largest axon was much larger

han other axons across all regions and its elongated shape suggested

hat this axon was oriented almost parallel to the cutting plane, i.e., its

xon radius was strongly overestimated by the circular equivalent ap-

roximation (see Fig. 12 b). The influence of the largest axon was smaller

or the remaining regions: 𝜌eff↓ decreased by 0.8 % to 2.9 % when dis-

arding the largest axon (see Fig. 12 a). For region S1, there is a plateau

etween 1 . 3 μm ≲ 𝜏 ≲ 1 . 6 μm , indicating that no axons were sampled in

his axon radii range. As the axon radii distributions  eff↓ of 𝜌eff↓ used

he bulk of the axon radii distribution (i.e., 𝑟 < 1 . 6 μm ) from matching ,

mall-field-of-view EM subsections 𝑆 EM 

(see Section 2.8.2 ), it seems that

xons with 𝑟 ≳ 1 . 3 μm were not representatively sampled in 𝑆 EM 

of re-

ion S1. 

iscussion 

We investigated the potential of CNN-based segmentation on high-

esolution, large-scale light microscopy (lsLM) sections to narrow the

cale gap between histological reference data and MRI voxels for the

alidation of diffusion MRI-based effective axon radius ( 𝑟 eff) estimation

n human brain tissue. The proposed pipeline accurately estimates 𝑟 eff in

 human corpus callosum on sections spanning several cross-sections of

ypical voxels of human MRI systems ( 1 mm 

2 or larger) and is thus a

romising candidate for the validation of MRI-based 𝑟 eff estimation in

he human brain. However, the arithmetic mean radius ( 𝑟 arith ), which is

ommonly reported in neuroanatomical studies, is less accurately esti-

ated. 
11 
stimation error of 𝑟 arith and 𝑟 eff

To assess the estimation error of 𝑟 eff representatively for cross-

ections of MRI voxels ( 1 mm 

2 or larger) of a human MRI system, suf-

cient sampling of the tail of the axon radii distribution is required.

herefore, we investigated large ensembles of axons representing at

east 10,000 axons per sample. To address the challenge of generating

eference data for 𝑟 eff on large ensembles of axons, we captured the tail

 𝑟 ≥ 1 . 6 μm ; also denoted as large axons) of the axon radii distribution

y exhaustive manual annotation and complemented the tail with the

ulk ( 𝑟 < 1 . 6 μm ) from closeby-cut, small-field-of-view EM sections. To

ompensate for the smaller ensemble size in EM, we rescaled the axon

adii distribution according to a scaling factor. As the true scaling factor

as unknown, we estimated lower and upper bound scaling factor and

ssessed the estimation error of 𝑟 eff for scaling factors in the so-defined

caling factor range to estimate an upper bound and the dynamic range

f different error metrics. 

Across the entire range of axon radii, we conclude higher suitability

f the proposed method to estimate 𝑟 eff than 𝑟 arith due to higher accuracy

maximum normalized-root-mean-square-error: 8.5 % versus 19.5 %)

nd lower bias (maximum absolute normalized-mean-bias-error: 4.8 %

ersus 13.4 %). Assessment of individual ranges revealed that erro-

eous, large axons predominantly determine the estimation accuracy of

 eff followed by medium-sized axons ( 0 . 3 μm ≤ 𝑟 < 1 . 6 μm ). A decomposi-

ion of the accuracy into bias and residual standard deviation revealed

hat the residual standard deviation was predominantly determined by

arge axons and had a small dynamic range. The bias, however, had a

arge dynamic range due to the scaling factor-dependent bias of medium-

ized axons. Since the true scaling factor is unknown, the true bias can-

ot be quantified for medium-sized axons. Small axons ( 𝑟 < 0 . 3 μm ) be-

ow the resolution limit of lsLM introduced only a minor overestima-
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ion, even when they were neglected altogether for estimating 𝑟 eff (see

ppendix A ). Thus, the potential of lsLM to sample the tail of the axon

adii distribution in large field-of-views outweighs its limited capability

o resolve small axons for mapping 𝑟 eff. 

While we assessed the presented pipeline with particular focus on

he ensemble mean radii of segmented axons, i.e., 𝑟 arith and 𝑟 eff, we

mployed pixel-wise optimization to train the semantic segmentation

odel. We evaluated the commonly used dice coefficient per axon in-

tance and found a reflection of the better suitability to estimate 𝑟 eff:

arger axons were better segmented. 

apping anatomy-related, spatial variation across whole sections 

Toluidine blue staining introduces low-frequency variation of image

ntensity across lsLM sections. In a spatial correlation analysis, we iden-

ified this variation as a confounding factor for mapping 𝑟 arith but not

or mapping 𝑟 eff. In the light of moderate errors, spatial variation of

 eff seems anatomy-related. As 𝑟 arith was particularly confounded when

mall axons were taken into account, small axons seem particularly prone

o staining effects. The inaccurate resolution of small axons may explain

he observed overestimation of 𝑟 arith . For 𝑟 eff, the correlation with the

mage intensity was hardly affected by inclusion or rejection of small

xons which underlines their minor contribution towards 𝑟 eff. 

ensitivity of 𝑟 eff to outstandingly large axons 

Due to the tail -weighting of 𝑟 eff, individual, outstandingly large ax-

ns may strongly contribute towards 𝑟 eff and thus strongly decrease es-

imation accuracy in case of erroneous segmentation. We assessed this

otential source of error by discarding the largest axon for the compu-

ation of 𝑟 eff in axon ensembles representing at least 35,000 axons. 

The strongest contribution (14.3% in region M2) of an individual

xon was due to an outlier. Across the remaining regions, the contribu-

ion was smaller (0.8% to 2.9%), but still notable, considering that these

xons represented only 0.001 % to 0.003 % of the axon ensembles. For

he outlier-region M2, the largest axon ( r = 9 . 46 μm ) was oriented al-

ost parallel to the cutting plane, resulting in an elongated shape. Thus,

ircular equivalent approximation may largely overestimate axon radii

nd bias the estimation of 𝑟 eff. To avoid such outliers, axon radii may be

stimated based on the minor axes of ellipsoids fitted to the axon areas.

The investigated lsLM subsections (area: ∼ 0 . 37 mm 

2 ) were smaller

han the cross-section of a typical MRI voxel ( 1 mm 

2 or larger). In the

atter, we expect reduced potential of individual axons to bias 𝑟 eff due

o the larger axon ensemble size. 

imitations and future directions 

Although the proposed method accurately estimated 𝑟 eff for differ-

nt axon radii distributions sampled across the corpus callosum, further

nvestigation is required to assess how well the model generalizes and

ow well the overall method translates to other brain areas. 

Recent, automated methods for large-scale axon segmentation

sed different acquisition techniques and segmentation algorithms

 Abdollahzadeh et al., 2021; Zaimi et al., 2018 ), which, however, were

rained on perfusion-fixed brain tissue of mice or rats. The method of

bdollahzadeh et al., 2021 is tailored towards three-dimensional data

nd is therefore not immediately comparable to the proposed method.

lthough the two-dimensional method of Zaimi et al., 2018 employs a

imilar approach of subsequent, U-Net-based ( Ronneberger et al., 2015 )

emantic and instance segmentation, our method differs, e.g., in details

f the U-Net architecture and by employing transfer learning. In com-

arison, the method of Zaimi et al., 2018 yielded slightly higher metrics

or segmentation of axons in human tissue transmission electron mi-

roscopy (TEM) data, e.g. a dice coefficient of 0.81 as compared to 0.77

n our lsLM-based approach, and higher metrics for other mammals in

oth scanning electron microscopy (SEM) and TEM data (e.g., mean dice
12 
oefficient > 0 . 9 ). However, due to the different microscopy and tissue

reparation techniques, immediate comparison between these results

s difficult. In a future study, a segmentation model could be trained

sing the framework of Zaimi et al., 2018 with the presented data to

enchmark the aforementioned method against the proposed method

or mapping 𝑟 eff. In the present study, the primary focus was to assess

he feasibility of generating reference data for 𝑟 eff using automated axon

adius segmentation on large-field-of-view lsLM sections. 

Estimates of individual axon radii from two-dimensional cross-

ections can be biased for axons that are non-orthogonally oriented to

he cutting plane ( Abdollahzadeh et al., 2019; Andersson et al., 2020;

ee et al., 2019 ). While approximating axon radii based on the mi-

or axes of fitted ellipsoids may underestimate axon radii, the circu-

ar equivalent approximations may overestimate individual axon radii.

his bias has been reported to be similar for individual circular equiva-

ent and minor axis approximations in terms of absolute deviation from

he along-axis median ( ∼10%) in the corpus callosum of sham-operated

ats ( Abdollahzadeh et al., 2019 ). However, further investigations are

equired to assess how this bias translates towards estimation accuracy

f 𝑟 eff. In our analyses, we identified a potential bias of 𝑟 eff based on

ircular equivalent radii caused even by individual axons that were ori-

nted almost parallel to the cutting plane (see Section 3.4 ). For the

wo-dimensional reference used in this work, estimates of 𝑟 eff based

n minor axis radii approximations yielded similar accuracy (maximum

ormalized-root-mean-square-error: 8.1 %) and bias (maximum abso-

ute normalized-mean-bias-error: 5.2 %) as estimates of 𝑟 eff based on

ircular equivalent radii (see Appendix B ). 

Two-dimensional cross-sections cannot capture along-axon variation

f the axon radius, given that strong along-axon variation of the axon

adius has been reported at the level of individual axons in the corpus

allosum of mice ( Lee et al., 2019 ), rats ( Abdollahzadeh et al., 2019 )

nd monkeys ( Andersson et al., 2020 ). However, at the ensemble level,

ood agreement between axon radii distributions estimated from two

nd three dimensions has been reported for an ensemble of 54 large ax-

ns (arithmetic mean radius: 1 . 35 μm ) within a section of the monkey

orpus callosum ( Andersson et al., 2020 ). In fact, the aforementioned

tudy concluded that it may be feasible to compensate the incapabil-

ty to capture along-axon variation by sufficient in-plane sampling. Fol-

owing this hypothesis, our proposed method may complement three-

imensional microscopy studies of small ensembles of axons with large-

nsemble sampling in two dimensions. 

To assess the estimation error of 𝑟 arith , we compared lsLM-based es-

imates against EM-based references from close-by cut sections. This

hoice of reference has two limitations: first, the EM-based axon ensem-

les were smaller, i.e., covering only 5 to 10 % of their lsLM-based coun-

erparts; second, spatial misalignment arised from section-to-section dis-

ance and unknown in-section location. However, the latter section-to-

ection distance may not render the choice of reference data unsuit-

ble, given that previous studies have reported good agreement between

xon radii distributions across comparable distances ( Andersson et al.,

020 ). Furthermore, we assumed that representative estimation of the

requency-weighted 𝑟 arith is enabled by accurate resolution of frequently

ccurring axons rather than by a large ensemble size or exact spatial

lignment. Consequently, we regarded EM as a more suitable reference

han lsLM because EM can resolve all frequently occurring axons, in-

luding small axons below the resolution limit of lsLM. Indeed, we found

mall axons to be particularly prone to variation of the image intensity

n lsLM which in turn led to systematic overestimation of 𝑟 arith . While

he residual standard deviation observed for 𝑟 arith may partially be due

o the choice of unrepresentative reference data, the systematic overes-

imation of 𝑟 arith seems to reflect a bias of the proposed pipeline. 

To assess the estimation error of 𝑟 eff, we computed reference val-

es from composite axon radii distributions, combining the bulk of axon

adii from EM-based, manual annotations with the tail from lsLM-based,

anual annotations. In one particular region, the assumption that EM

an accurately capture the bulk of axon radii in small field-of-views
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Fig. A.13. Assessment of the error of ̂𝑟 eff due to undetected small axons for one 

subsection 𝑆 lsLM . (a) The reference axon radii distribution  eff( 𝑠 ) , combining bulk 

from 𝑆 EM (purple) and tail from 𝑆 lsLM (pink). (b) Axon radii distribution of (a) 

with small axons neglected altogether. The sweep variable 𝑠 determined the scal- 

ing of the bulk of  eff( 𝑠 ) as described in Section 2.8.2 . Vertical bars (a-b) mark 

values of 𝑟 eff computed from the respective axon radii distributions. The ticks on 

x-axes denote the two thresholds that partition the axon radii distribution into 

small ( 𝑟 < 0 . 3 μm ), medium-sized ( 0 . 3 μm ≤ 𝑟 < 1 . 6 μm ) and large ( 𝑟 ≥ 1 . 6 μm ) ax- 

ons. The insets emphasize the tail of the axon radii distribution. 
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eemed to be violated for larger axons of the bulk of the axon radii dis-

ribution. For this region, the reference value of 𝑟 eff may have been less

ccurate than in other regions. 

We have limited analyses to the definition of the MRI-visible, ef-

ective radius 𝑟 eff measured with diffusion MRI in the wide-pulse limit

 Burcaw et al., 2015; Sepehrband et al., 2016; Veraart et al., 2020 ).

owever, our pipeline can also be used to estimate 𝑟 eff in the short-

ulse limit ( Burcaw et al., 2015; Sepehrband et al., 2016 ) with lower

ccuracy (maximum normalized-root-mean-square-error: 10.6 %) and

igher bias (maximum absolute normalized-mean-bias-error: 9.2 %)

see Appendix C ). The lower performance for short-pulse estimates of 𝑟 eff

s likely to the fact that 𝑟 eff in the short-pulse limit is less tail -weighted

han 𝑟 eff in the wide-pule limit. Consequently, the decreased segmen-

ation performance for axons of the bulk of the axon radii distribution

ecomes more relevant for 𝑟 eff in the short-pulse limit. 

The manual annotation of microscopy slides is prone to errors and

nter-observer variability, in particular in the presence of staining and

issue degradation due to the immersion-fixation used in this study. Em-

loying strategies that address noisy and uncertain manual annotations,

.g. by design of specific loss functions may improve axon segmentation

ccuracy ( Karimi et al., 2020 ) and thus radius estimation accuracy. 

onclusion 

The presented pipeline is a step towards mapping the MRI-visible,

ffective radius ( 𝑟 eff) by combining high-resolution, large-scale light

icroscopy (lsLM) with deep learning. As the two-dimensional lsLM

ections span the cross-sectional scale of typical MRI voxels ( 1 mm 

3 or

arger), the proposed method may complement three-dimensional mi-

roscopy studies of small ensembles of axons with large-ensemble sam-

ling in two dimensions. Since the pipeline is based on the fast, cheap

nd simple to perform lsLM measurement, it can easily be used beyond

he realm of MRI-based radius models, e.g., to generate a representative,

euroanatomical atlas of the ensemble of large axons across the human

orpus callosum. However, before this can be done the generalization

o different brains is yet to be demonstrated. 
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ppendix A. Upper bound of the error due to undetected, small 

xons in 𝒓̂ eff

The error due to small axons using 𝑟̂ 
( 𝑛,𝑙) 
eff, small 

( 𝑠 ) as assessed in

ection 2.8.3 used predicted, small axon radii and axon radii of the ref-

rence axon radii distributions  
( 𝑛,𝑙) 
eff

( 𝑠 ) for the remaining axons. Due to

he resolution limit of lsLM, we expected the proposed pipeline to miss

mall axons and consequently expected estimates ( ̂𝑟 
( 𝑛,𝑙) 
eff, small 

( 𝑠 ) ) to overes-

imate reference values ( 𝜌
( 𝑛,𝑙) 
eff

( 𝑠 ) ). We aimed to assess error metrics for

he worst-case scenario, i.e, an upper bound for the overestimation of
( 𝑛,𝑙) 
eff

( 𝑠 ) due to undetected, small axons. To achieve this, we repeated the

xperiment described for ̂𝑟 
( 𝑛,𝑙) 
eff, small 

( 𝑠 ) in Section 2.8.3 with neglected small

xon radii, yielding 𝑟̂ 
( 𝑛,𝑙) 
eff, small,max 

( 𝑠 ) (see Fig. A.13 ). 

Results Fig. A.14 shows accuracy (NRMSE ( 𝑠 ) ; see Eq. (8) ), bias

NMBE ( 𝑠 ) ; see Eq. (9) ) and the residual standard deviation ( NRSD ( 𝑠 ) ;
ee Eq. (10) ) of ̂𝑟 

( 𝑛,𝑙) 
eff, small,max 

( 𝑠 ) with respect to reference values 𝜌eff( 𝑠 ) . All

rrors varied almost linearly as a function of 𝑠 . The NRMSE was between

.6 % to 1.8 % (see Fig. A.14 a). The NMBE had a larger maximum abso-

ute value and a larger dynamic range (1.5 % to 1.6 %) than the NRSD

 ∼0.6%) (see Fig. A.14 b-c). When compared to the errors due to small

https://github.com/quantitative-mri-and-in-vivo-histology/ls_axon_segmentation
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Fig. A.14. Upper bound of the error due to undetected, small axons in estimated effective axon radii. Depicted are three different error metrics of estimates 

𝑟̂ eff, small,max ( 𝑠 ) of the MRI-visible, effective axon radius 𝑟 eff with respect to reference values 𝜌eff( 𝑠 ) : (a) the accuracy as evaluated by NRMSE (see Eq. (8) ); (b) the bias as 

evaluated by NMBE (see Eq. (9) ); (c) the residual standard deviation as evaluated by NRSD (see Eq. (10) ). The axon radii distribution of ̂𝑟 eff, small,max ( 𝑠 ) neglected small 

( 𝑟 < 0 . 3 μm ) axon radii altogether, thereby simulating a potential incapability of large-scale light microscopy (lsLM) to detect small axons. All errors (a-c) are shown 

as a function of a sweep variable 𝑠 , which determined the scaling of the bulk of reference axon radii distributions  eff( 𝑠 ) . These reference axon radii distributions 

 eff( 𝑠 ) were used to compute both reference values 𝜌eff( 𝑠 ) and estimates ̂𝑟 eff, small,max ( 𝑠 ) . Here, 𝑠 = 0 and 𝑠 = 1 correspond to using lower ( 𝑓 ↓) and upper ( 𝑓 ↑ ) bounds of 

the scaling factor (see Eq. (15) ). Error metrics were evaluated over 𝑁 ⋅ 𝐿 lsLM = 18 lsLM subsections. Note, that NRMSE combines NMBE and NRSD as described in 

Eq. (11) . 
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xons observed in Section 3.2 (using estimates 𝑟̂ eff, small ), all errors were

ncreased, i.e. the maximum NRMSE increased from 1.1 % to 1.8 %.

owever, all errors, remained much smaller than corresponding errors

f medium-sized (maximum NRMSE: 6.8 %) or large (maximum NRMSE:

.5 %) axons observed in Section 3.2 . 

ppendix B. Error of 𝒓̂ eff for minor axis approximations of axon 

adii 

Throughout the manuscript, we used the circular equivalent approx-

mation for individual axon radii (see Section 2.1 ). Here, we assessed

he error of 𝑟̂ eff with individual axon radii approximated from minor

xes of ellipsoids fitted to axonal areas (short: minor axis radii). 

Methods To fit ellipsoids to axonal areas, we used an implementation

 van der Walt et al., 2014 ) of the non-iterative least-squares approach

escribed in Halir and Flusser, 1998 . Axon radii were then computed by

alving the length of minor axes of fitted ellipsoids. The assessment of

he error of 𝑟̂ eff for minor axis radii was carried out analogously to the

rocedure described in Section 2.8.2 . In particular, we used the same

rocedure to generate reference axon radii distributions  
( 𝑛,𝑙) 
eff

( 𝑠 ) . How-

ver, to compute 𝑟̂ 
( 𝑛,𝑙) 
eff

and 𝜌
( 𝑛,𝑙) 
eff

( 𝑠 ) , we determined minor axis radii for

ssociated axons of  
( 𝑛,𝑙) 
eff

( 𝑠 ) and the axon radii distribution predicted on

 

( 𝑛,𝑙) 
lsLM 

. 

Results Fig. A.15 shows accuracy (NRMSE ( 𝑠 ) ; see Eq. (8) ), bias

NMBE ( 𝑠 ) ; see Eq. (9) ) and the residual standard deviation ( NRSD ( 𝑠 ) ; see

q. (10) ) of 𝑟̂ eff with respect to reference values 𝜌eff( 𝑠 ) based on minor

xis approximations of individual axon radii. The NRMSE was between

.8 % to 8.1 % (see Fig. A.15 a). The NMBE had a smaller maximum

bsolute value and a larger dynamic range (-3.4% to 5.2 %) than the

RSD (5.7 % to 6.2 %) (see Fig. A.15 b-c). When compared to the errors

or circular equivalent-based 𝑟̂ eff observed in Section 3.2 , the maximum

RMSE and the maximum absolute NMBE were comparable (NRMSE:

.1 % versus 8.5 %; NMBE: 5.2 % versus 4.8 %), whereas the maximum

RSD was slightly lower (6.0 % versus 7.3 %). However, the dynamic

anges of errors for minor axis-based ̂𝑟 eff were similar to those for circu-

ar equivalent-based 𝑟̂ eff. 

ppendix C. Error of 𝒓̂ eff in the short-pulse limit 

The MRI-visible, effective mean radius can be estimated from the

ntra-axonal signal and is determined by the pulse-length of the spe-

ific sequence. Throughout the manuscript, we used the definition of
14 
he effective radius in the wide-pulse limit as defined in Eq. (2) . In the

hort-pulse limit, 

 eff, SP = 

√ √ √ √ 

𝐾 ∑
𝑘 =1 

𝑤 eff, SP , ( 𝑘 ) ⋅ 𝑟 ( 𝑘 ) with 

𝑤 eff, SP , ( 𝑘 ) = 

𝑛 ( 𝑘 ) 

𝐵 

⋅
𝑟 3 ( 𝑘 ) 

1 
𝐵 

∑𝐾 

𝑗=1 𝑛 ( 𝑗 ) 𝑟 
2 
( 𝑗 ) 

(C.1) 

an be analogously defined ( Burcaw et al., 2015; Sepehrband et al.,

016 ). To assess the error of estimates of 𝑟 eff, SP , i.e., 𝑟̂ eff, SP , we repeated

he analysis in Section 2.8.2 for 𝑟̂ eff, SP with respect to reference values

eff, SP ( 𝑠 ) computed from reference axon radii distributions  eff, SP ( 𝑠 ) . 
Results Fig. A.16 shows accuracy (NRMSE ( 𝑠 ) ; see Eq. (8) ), bias

NMBE ( 𝑠 ) ; see Eq. (9) ) and the residual standard deviation ( NRSD ( 𝑠 ) ;
ee Eq. (10) ) of 𝑟̂ eff with respect to reference values 𝜌eff( 𝑠 ) . The NRMSE

as between 5.3 % to 10.6 % (see Fig. A.16 a). The NMBE had a larger

bsolute maximum value and a much larger dynamic range (-2.5 % to

.2 %) than the NRSD (5.6 % to 5.9 %) (see Fig. A.16 b-c). When com-

ared to the errors for wide-pulse ̂𝑟 eff observed in Section 3.2 , maximum

RMSE and maximum absolute NMBE were higher (NRMSE: 10.6 %

ersus 8.5 %; NMBE: 9.2 % versus 4.8 %), whereas the maximum NRSD

as lower (5.9 % versus 7.3 %). Furthermore, the dynamic ranges of

oth NRMSE and NMBE for short-pulse estimates ̂𝑟 eff, SP were higher than

hose for wide-pulse estimates 𝑟̂ eff. Thus, the 𝑠 -dependent error intro-

uced by scaling of the bulk of  eff( 𝑠 ) has larger impact for short-pulse

 eff, SP due to the weaker tail -weighting of 𝑟 eff, SP . 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2022.118906 
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Fig. A.15. Error of estimated effective axon radii based on minor axis axon radii approximations. Depicted are three different error metrics of estimates 𝑟̂ eff of the 

MRI-visible, effective axon radius 𝑟 eff with respect to reference values 𝜌eff( 𝑠 ) : (a) the accuracy as evaluated by NRMSE (see Eq. (8) ); (b) the bias as evaluated by 

NMBE (see Eq. (9) ); (c) the residual standard deviation as evaluated by NRSD (see Eq. (10) ). Both 𝑟̂ eff and 𝜌eff( 𝑠 ) were estimated using minor approximations of 

individual axon radii. All errors (a-c) are shown as a function of a sweep variable 𝑠 , which determined the scaling of the bulk of reference axon radii distributions 

 eff( 𝑠 ) . These reference axon radii distributions  eff( 𝑠 ) were used to compute reference values 𝜌eff( 𝑠 ) . Here, 𝑠 = 0 and 𝑠 = 1 correspond to using lower ( 𝑓 ↓) and upper 

( 𝑓 ↑ ) bounds of the scaling factor (see Eq. (15) ). Error metrics were evaluated over 𝑁 ⋅ 𝐿 lsLM = 18 large-scale light microscopy (lsLM) subsections. Note, that NRMSE 

combines NMBE and NRSD as described in Eq. (11) . 

Fig. A.16. Error of estimated effective axon radii in the short-pulse limit. Depicted are three different error metrics of estimates 𝑟̂ eff, SP of the MRI-visible, effective 

axon radius in the short-pulse limit 𝑟 eff, SP with respect to reference values 𝜌eff, SP ( 𝑠 ) : (a) the accuracy as evaluated by NRMSE (see Eq. (8) ); (b) the bias as evaluated 

by NMBE (see Eq. (9) ); (c) the residual standard deviation as evaluated by NRSD (see Eq. (10) ). All errors (a-c) are shown as a function of a sweep variable 𝑠 , which 

determined the scaling of the bulk of reference axon radii distributions  eff, SP ( 𝑠 ) . These reference axon radii distributions  eff, SP ( 𝑠 ) were used to compute reference 

values 𝜌eff, SP ( 𝑠 ) . Here, 𝑠 = 0 and 𝑠 = 1 correspond to using lower ( 𝑓 ↓) and upper ( 𝑓 ↑ ) bounds of the scaling factor (see Eq. (15) ). Error metrics were evaluated over 

𝑁 ⋅ 𝐿 lsLM = 18 large-scale light microscopy (lsLM) subsections. Note, that NRMSE combines NMBE and NRSD as described in Eq. (11) . 
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