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Abstract
Objective A suite of adaptations facilitating endurance running (ER) evolved within 
the hominin lineage. This may have improved our ability to reach scavenging sites 
before competitors, or to hunt prey over long distances. Running economy (RE) is 
a key determinant of endurance running performance, and depends largely on the 
magnitude of force required to support body mass. However, numerous environmen-
tal factors influence body mass, thereby significantly affecting RE. This study tested 
the hypothesis that alternative metabolic strategies may have emerged to enable ER 
in individuals with larger body mass and poor RE.
Methods A cohort of male (n = 25) and female (n = 19) ultra-endurance runners 
completed submaximal and exhaustive treadmill protocols to determine RE, and 
V̇O2Max.
Results Body mass was positively associated with sub-maximal oxygen consump-
tion at both LT1 (male r=0.66, p<0.001; female LT1 r=0.23, p=0.177) and LT2 
(male r=0.59, p=0.001; female r=0.23, p=0.183) and also with V̇O2Max (male 
r=0.60, p=0.001; female r=0.41, p=0.046). Additionally, sub-maximal oxygen 
consumption varied positively with V̇O2Max in both male (LT1 r=0.54, p=0.003; 
LT2 r=0.77, p<0.001) and female athletes (LT1 r=0.88, p<0.001; LT2 r=0.92, 
p<0.001).
Conclusions The results suggest that, while individuals with low mass and good 
RE can glide economically as they run, larger individuals can compensate for the 
negative effects their mass has on RE by increasing their capacity to consume oxy-
gen. The elevated energy expenditure of this low-economy high-energy turnover 
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approach to ER may bring costs associated with energy diversion away from other 
physiological processes, however.

Keywords Evolution · Endurance running · Running economy · Energetics

Introduction

Humans as Endurance Runners

Humans are unique amongst primates in being able to run distances of multiple 
kilometres using aerobic metabolism (Carrier, 1984). This ability emerged during 
evolution of the hominin lineage. Although anatomically modern humans are poor 
sprinters compared to most quadrupeds, amateur human runners are typically able 
to sustain speeds of 5 m/s, which compares favourably with specialised quadrupedal 
cursors. For example, a 65 kg dog would be expected to have a trot-gallop transition 
speed of 3.8 m/s, and could then only gallop at around 7.8 m/s for up to 15-minutes 
under ideal conditions (Heglund & Taylor, 1988; Lieberman et al., 2006). A similar 
comparison can be made with horses, despite their selective breeding for running 
ability. Horses can maintain a gallop speed of 8.9 m/s for 10 km (much faster than 
humans), but are limited to a canter at around 5.8 m/s for distances around 20 km/
day (beatable by well-trained humans) (Lieberman & Bramble, 2007; Minetti, 
2003). This capability allows human runners to comfortably cover daily distances in 
excess of 10 km, which is comparable with the scavenging and hunting of hunting 
dogs and hyenas (Lieberman et al., 2006).

Scavenging and hunting may have provided the primary selective pressure lead-
ing to the evolution of endurance running, which likely emerged in the hominin 
lineage after our divergence from our last common ancestor with the chimpanzee 
(Lieberman et al., 2006). The ability to run long distances to hunt prey over long 
distances using methods such as persistence hunting (the pursuit of prey to the point 
of prey exhaustion / hyperthermia), may have improved the chances of acquiring 
meat (Bunn, 2001; Lieberman et al., 2006; Longman et al., 2015).

A suite of evolved features facilitate endurance running (Bramble & Lieberman, 
2004; Lieberman, 2010, 2012a, b, 2015). These adaptations may be considered rela-
tive to four main demands posed by endurance running; energetics, strength, stabili-
sation and thermoregulation (Bramble & Lieberman, 2004). Considering energetics, 
humans exhibit a range of anatomical traits enhancing running economy (RE).

First, we are unique amongst primates due to the large number of long spring-like 
tendons allowing the energetically economic generation of force. Running employs 
a mass-spring mechanism, which handles the exchange between gravitational poten-
tial energy and kinetic energy differently to the walking gait. Energy is stored during 
the initial breaking when the foot lands, and released during the subsequent propul-
sive phase. The multitude of spring-like tendons (for example the Achilles tendon) 
that developed during the hominin lineage allows for the efficient storage and release 
of energy during running. While these tendons have little effect during walking, they 
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may reduce the energetic cost of running by around 50%. Tendons found in the lon-
gitudinal arch of the foot confer further energetic gains, returning almost a fifth of 
the energy generated during each stride (Ker, 1987).

Second, humans may gain further energetic efficiency whilst running by varying 
stride length. In contrast to quadrupeds, humans tend to increase running speed by 
increasing stride length, rather than by increasing stride rate [discussed in (Bramble 
& Lieberman, 2004)]. Thirdly, the lower limb elongation characterising the hominin 
lineage allows for not only a longer stride length, but also increased ground contact 
time, which reduces the metabolic cost of running (Roberts et al., 1998). Increasing 
ground contact time decreases the required rate of ground force application, reduc-
ing the energetic cost. As a result, the energy expenditure of running animals is an 
inverse function of ground contact time [discussed in (Wright & Weyand, 2001)]. 
The low resultant stride frequency of humans may also offset the drawback of long 
legs – an increased limb mass moment of inertia. This cost is also reduced by the 
compact feet of humans, which are smaller than those of Chimpanzees relative to 
body mass (Zihlman & Brunker, 1979).

The importance of energy in the process of evolution has long been recognised. 
Building upon the work of early proponents of the central role played by energy 
homeostasis (Boltzmann, 1886; Lodge, 1906), Lotka wrote that “…the fundamental 
object of contention in the life-struggle, in the evolution of the organic world, is 
available energy” (Lotka, 1922). The effects of the powerful influence of energy on 
our evolutionary journey are visible throughout our biology and function. For exam-
ple, the adoption and persistence of bipedalism – considered a defining characteris-
tic of human evolution (Dart, 1925; Napier, 1967; Rodman & McHenry, 1980) and 
instrumental in the development of endurance running ability – is understood to be 
driven by gains in locomotor efficiency serving to reduce the energetic cost of calo-
rie acquisition (Cerling et al., 2010; Haile-Selassie, 2001; Pontzer et al., 2009; Senut 
& Pickford, 2004; Sockol et al., 2007). As the cooler and drier climate of the late 
Miocene is thought to have made food patches more sparse (Cerling et al., 1997), 
more economical locomotion allowed early hominins to travel greater distances in 
search of food (Rodman & McHenry, 1980).

Influence of Environmental Factors on Running Economy

RE is a key determinant of endurance running performance (di Prampero, 2003; 
Ingham et  al., 2008; Joyner, 1991; Lucia et  al., 2002; McLaughlin et  al., 2010). 
While a range of physiological factors influence running economy [including 
mechanical efficiency (Cavanagh et al., 1977; Williams & Cavanagh, 1985), mus-
cles’ ability to store and release elastic energy by increasing lower-body stiffness 
(Dalleau et al., 1998) and intramuscular metabolic adaptations including increased 
mitochondria and oxidative enzymes (Holloszy et  al., 1977)], RE depends largely 
on the magnitude of force generation required to support body mass. This force gen-
eration accounts for up to 74% of the total energetic cost of running (Ackerman & 
Seipel, 2016; Epstein et al., 1987; Farley & McMahon, 1992; Kram & Taylor, 1990; 
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Maldonado-Martin & Padilla, 2002; Taylor et  al., 1980; Teunissen et  al., 2007). 
Body mass is therefore an important driver of RE (Anderson, 1996; Pate et  al., 
1992).

Body mass is affected by a range of environmental factors. Considering climate, 
Bergmann’s rule describes patterns of variation both within and across species rela-
tive to the temperature of their environment, with endotherms expected to be larger 
in colder environments (Bergmann, 1847). Recent research combining comprehen-
sive palaeontological data with climate models demonstrates that temperature is the 
only environmental variable to correspond with variation in body size across the 
last one million years of hominin evolution (Will et al., 2021). While earlier Plio-
Pleistocene increases in body size may have been driven by early hominin migra-
tions into more variable environments and through changes in the hominin dietary 
niche (Will et al., 2017; Will & Stock, 2015), the recent analyses suggest that that 
thermal stress was the primary driver of variation in hominin body size within the 
genus Homo (Will et  al., 2021). Modern humans also show patterns of pheno-
typic variation consistent with Bergmann’s rule Crognier 1981; Foster & Collard, 
2013; Hiernaux, 1968; Hiernaux & Fromont, 1976; Holliday, 1997a, b; Holliday & 
Trinkaus, 1991; Ruff, 1994; Stinson, 1990; Tilkens et  al., 2007; Trinkaus, 1981). 
Early work by Roberts identified a negative relationship between mean annual tem-
perature and body mass in humans (Roberts, 1953). The trends at higher latitudes 
have been reported to be diminishing in strength (Katzmarzyk & Leonard, 1998), 
and the pattern is only observable with a sufficiently large temperature (or latitude) 
range (Foster & Collard, 2013). Recent analyses of the relationship between body 
composition and environment found that lean mass, a metabolically expensive tis-
sue, increases with food supply and decreases with a marker of food insecurity and 
infectious disease. In contrast, adiposity increases with temperature volatility, an 
indicator of the risk of infectious disease (Wells et al., 2019). These findings suggest 
that the relationship between climate and morphology extend beyond body mass, 
as predicted by Bergmann’s Rule. The extent to which ecogeographic variation in 
human body-size is driven by natural selection or plasticity remains unknown, but it 
is likely that developmental plasticity is a key component of phenotypic variation in 
body size and proportions among homeotherms (Rogers, 2003; Serrat et al., 2008; 
Te Velde et al., 2003).

Body Mass and Metabolic Approaches to Endurance Running

It is clear from the sports science literature that excellent RE is necessary for 
success as an elite endurance runner (di Prampero, 2003; Ingham et  al., 2008; 
Joyner, 1991; Lucia et  al., 2002; McLaughlin et  al., 2010; Shaw et  al., 2015). 
However, the aim of ancestral endurance running was not to be the fastest, but 
rather, to be able to run well enough to hunt or scavenge successfully in order 
to survive. As previously discussed, numerous environmental factors influence 
adult body mass, potentially through both selection and plastic responses during 
development, which in turn significantly affects RE. As the ability to run long 
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distances would have been advantageous irrespective of body mass, it is possible 
that alternative metabolic strategies emerged, facilitating endurance running in 
individuals with larger body masses.

Here, we seek to test the hypothesis that, while individuals with low mass can 
perform endurance running economically, heavier runners may be able to com-
pensate for their low economy by increasing their maximal capacity to consume 
oxygen (V ̇O2Max) and meet their elevated energetic costs of running. More spe-
cifically, in a cohort of successful ultra-endurance runners, we predict an inverse 
correlation between RE and V ̇O2Max.

Previous work has considered the relationship of RE and V ̇O2Max. Positive rela-
tionships have been reported from several studies with relatively small (Fletcher 
et al., 2009; Morgan & Daniels, 1994; Pate et al., 1992), and more recently in a 
larger cohort of 168 trained distance runners (males r = 0.26, female r = 0.25) 
(Shaw et al., 2015).

Methods

Study Design

Following local institutional ethical approval (Faculty Research and Ethics Panel, 
Anglia Ruskin University), n = 46 ultra-endurance runners (27 males, 19 females) 
agreed to participate and gave their written informed consent. All runners had 
previously competed in one of four multi-stage ultra-marathon events in 2016/17 
(Rovaniemi150 (Finland), Jungle Ultra (Peru), Al Andalus Ultimate Trail (Spain) 
and Everest Trail Race (Nepal)) to be eligible for this study. This investigation stems 
from a wider research theme using contemporary sports as a tool to examine evo-
lutionary theory Longman et  al., 2015, 2018, 2019, 2020, 2021; Longman et  al., 
2017a, b). More specifically, the current study is part of the ADaPt Project, which is 
developing the use of ultra-endurance challenges as experimental scenarios to study 
trade-offs relating to life history theory (Longman et al., 2017a, b).

All participants attended the Cambridge Centre for Sport and Exercise Sci-
ences on one occasion for the assessment of isokinetic knee extensors and flexors 
peak torques across a range of angular speeds during concentric and eccentric 
loading for both legs. Furthermore, all participants (n = 44, 2 male participants 
had to be excluded: 1 due to medical reasons, 1 due to equipment failure) per-
formed an incremental treadmill test for the evaluation of running economy, sub-
maximal blood lactate responses and the assessment of maximal oxygen uptake 
( V̇O2max). Body mass (kg) was measured using electronic scales (Seca, Hamburg, 
Germany) and body height (cm) was determined using a stadiometer (Seca, Ham-
burg, Germany) prior to all testing.
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Submaximal Treadmill Protocol

Each participant completed a submaximal incremental speed-based protocol for 
the determination of lactate threshold 1 (LT1), lactate turn-point 2 (LT2), and 
running economy (RE) (Gordon et al., 2017). The starting speed was selected on 
an individual basis to coincide with a speed that the participant would normally 
warm-up at, and thereafter was increased by 1 km∙h−1 every 3 min. Throughout 
the test, the gradient was kept constant at 1%. After each 3-minute increment, 
there was a 1-minute break where upon the participant was asked to stand astride 
of the treadmill to facilitate the collection of a capillary fingertip blood sample 
(20 µL) for the immediate determination of blood lactate concentrations. Once 
the sample was collected, the participants were asked to ease themselves back 
onto the treadmill and complete the remaining time of the 1-minute recovery at 
walking pace (4 km∙h−1). Throughout the test, individual blood lactate responses 
(mmol∙L−1) were plotted against exercise intensity (km∙h−1) for the determina-
tion of lactate LT1 and LT2. Identification of LT1 was based on the first initial 
rise above baseline, whilst LT2 was the sudden and sustained increase in blood 
lactate, determined through visual inspection of the blood lactate curve (Bour-
don, 2000; Gordon et  al., 2017). Two physiologists present in the laboratory 
independently validated both LT1 and LT2. The test was terminated once the 
participant had reached LT2. Gas exchange responses were recorded throughout 
all trials on a breath-by-breath basis with a pre-calibrated metabolic cart (Met-
aLyzer 3B-R2, Cortex Ltd, Germany) and HR responses were tracked using a 
telemetric system (T31 heart rate strap, Polar, Kempele, Finland). Oxygen con-
sumption at LT1 and LT2 was used to provide the measure of RE used in subse-
quent analyses.

V̇O2max Protocol

Upon completion of the submaximal treadmill protocol and following a 7-min-
ute recovery, each participant was asked to complete an incremental gradient-
based treadmill test to volitional exhaustion. The running speed was based on 
the speed at which LT2 occurred in the previous protocol and kept constant 
throughout. Every minute, the gradient was increased by 1% (starting at 1%) 
until volitional exhaustion was reached, or when the participant was unable to 
maintain a predetermined position at the front of the treadmill. Verbal encour-
agement was provided towards the end of the test to facilitate a maximal effort 
of the participant. Immediately after completion of the V̇O2max test, a capil-
lary blood sample (20 µL) was collected for the determination of post-exercise 
blood lactate and glucose concentrations. Throughout the trial, expired air was 
recorded on a breath-by-breath basis and HR responses were documented using 
a telemetric system.

For both treadmill protocols, participants wore a harness connected to an 
emergency stop system of the treadmill for safety purposes.
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Blood Lactate and Glucose Analysis

Capillary blood samples (20 µL) for the determination of blood lactate and glu-
cose were collected from the fingertip. For each blood sample, the fingertip was 
pierced with a single-use lancet device system (ACCU-CHEK Safe-T-Pro Plus). 
The blood was drawn into an end-to-end haemolysed micro-capillary and placed 
into a pre-filled (with haemolysing solution) sample test tube (2 mL). To prepare 
the sample for immediate measurement with a lactate and glucose analyser (Bio-
sen C-Line, EKF-diagnostic, Germany), the test tube was gently agitated until 
a uniform solution was produced. The analyser was set to self-calibrate every 
60 min according to the manufacturer’s instructions.

Pulmonary Gas Exchange Responses

Expired air was recorded for the assessment of pulmonary gas exchange 
responses. Participants wore a facemask secured with headgear (7600 Face Mask 
with Headgear, Hans Rudolph, USA) where the size of the mask was selected 
so that a seal could be achieved. A low-resistance volume transducer and cap-
illary sample line for gases were secured to the facemask with both connected 
to an online metabolic cart (MetaLyzer 3B-R2, Cortex Ltd, Germany) which 
allowed for breath-by-breath analysis. Through the sample line,  O2 and  CO2 were 
drawn off at a rate of 60 mL∙min−1 to determine expired gas concentrations. To 
align gas concentrations and respiratory responses, custom metabolic cart soft-
ware (MetaSoft Studio V4.60, Cortex Ltd, Germany) was used to display breath-
by-breath gas exchange variables (volume of oxygen ( V̇O2), volume of carbon 
dioxide ( V̇CO2), minute ventilation ( V̇E), respiratory exchange ratio (RER)). 
According to the manufacturer’s specifications, the metabolic cart was calibrated 
for volume, flow, and gas concentrations prior to each trial. Anglia Ruskin Uni-
versity have previously achieved a 3.7% internal coefficient of variation for this 
technique.

Statistics

SPSS v27 was used for all analyses, with a significance benchmark of 0.05. Inde-
pendent samples t-tests were used to compare male and female descriptive sta-
tistics. Correlations between body mass, RE and V ̇O2Max were evaluated using 
Pearson’s Product Moment Correlations. Scatter plots were made to visualize the 
relationship between variables. Finally, a multiple linear regression model was 
used.
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Results

Descriptive Statistics

As expected, the cohort exhibited sexual dimorphism. Males were 17.7 (95% CI 
12.0, 22.5)kg heavier, 14.6 (95% CI 11.2, 19.0)cm taller, 1.0 (95% CI 0.3, 1.7) 
km/h faster at LT1, 1.2 (95% CI 0.3, 2.2) km/h faster at LT2 and had a V ̇O2Max 
4.4 (95% CI 0.8, 8.0)ml/kg/min larger. Males were also 5.4 (95% CI 0.4, 10.4) 
years older. There were no significant sex differences in oxygen consumption at 
either LT1, LT2, or between oxygen consumption at LT1 or LT2 as a percentage 
of V ̇O2Max. A description of the male and female cohorts is given in Table 1.

Body Mass, RE and V̇O2Max

Regression analysis was performed to analyse the relationship between body mass 
and oxygen consumption at LT1 and LT2.

At LT1, a significant positive correlation was observed in male (n = 25, r = 0.66, 
p < 0.001, 1-tailed; standardized 95% CI, 0.012 to 0.034) and a positive trend was 
seen in female athletes (n = 18, r = 0.23, p = 0.177, 1-tailed; standardized 95% CI, 
-0.013 to 0.034). At LT2, a positive correlation was observed in male (n = 25, r = 
0.59, p = 0.001, 1-tailed; standardized 95% CI, 0.012 to 0.047) and female athletes 
(n = 18, r = 0.23, p = 0.183, 1-tailed; standardized 95% CI, -0.015 to 0.039). See 
Fig. 1.

Regression analysis revealed a significant positive correlation between body mass 
and V̇O2Max in both male athletes (n = 25, r = 0.60, p = 0.001, 1-tailed; standardized 
95% CI, 0.016 to 0.062) and female athletes (n = 18, r = 0.41, p = 0.046, 1-tailed; 
standardized 95% CI, -0.004 to 0.047). See Fig. 2.

V̇O2 Max and RE

Regression analysis revealed significant positive correlations between V̇O2Max and 
RE in both male and female athletes. At LT1 there was a significant positive cor-
relation with both male (n = 25, r = 0.54, p = 0.003, 95% CI 0.332 to 1.722) and 
female athletes (n = 18, r = 0.88, p < 0.001, 95% CI 0.681 to 1.230). Similarly, at 
LT2 there was a significant positive correlation with both male (n = 25, r = 0.77, p 
< 0.001, 95% CI 0.635 to 1.342) and female athletes (n = 18, r = 0.92, p < 0.001, 
95% CI 0.677 to 1.067). See Fig. 3.

A partial correlation was run to determine the relationship between V̇O2Max and run-
ning economy whilst controlling for body mass. This is necessary as both variables are 
expressed relative to body mass, creating a common denominator which can lead to 
spurious correlations (Atkinson et al., 2003). Both sexes displayed a significant positive 
correlation between V̇O2Max (ml/kg/min) and RE (ml/kg/min). At LT1 the correlation 
was significant in males (r(22) = 0.420, p = 0.041) but not females (r(15) = 0.138, p 
= 0.598) while at LT2 the correlation was significant in both males (r(22) = 0.765, p 
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< 0.001) and females (r(15) = 0.904, p < 0.001). Zero-order correlations showed that 
these correlations persisted, indicating that body mass had little influence in controlling 
for the relationship between V̇O2Max and RE.

Fig. 1  Scatter plot of body mass and oxygen consumption at LT2 for male and female participants (95% 
confidence interval)
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Discussion

Body mass was found to vary negatively with RE in both male and female ath-
letes (as observed by positive correlations between mass and oxygen consump-
tion at both LT1 and LT2 in male and female athletes). This was consistent with 
the existing literature (Anderson, 1996; Pate et  al., 1992). Other variables that 
might be expected to contribute to variation in RE include mechanical efficiency 
(Cavanagh et  al., 1977; Williams & Cavanagh, 1985), the muscles’ ability to 
store and release elastic energy by increasing lower-body stiffness (Dalleau et al., 
1998) as well as intramuscular metabolic adaptations, which include increased 
mitochondria and oxidative enzymes (Holloszy et al., 1977). Further, this study 

Fig. 2  Scatter plot of body mass and  VO2 Max for female and male participants (95% confidence intervals)
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identified an inverse relationship between V ̇O2Max and RE. This was observed 
as a positive correlation between V ̇O2Max and oxygen consumption at both LT1 
and LT2 in male and female athletes. This inverse relationship has previously 
been reported in elite cyclists (Lucia et al., 2002; Santalla et al., 2009) as well as 
trained endurance runners (Fletcher et al., 2009; Morgan & Daniels, 1994; Pate 
et al., 1992; Shaw et al., 2015), leading to the suggestion that competitive runners 
may compensate for a lower V ̇O2Max with superior RE. To our knowledge, this is 
the first study demonstrating a negative association between V ̇O2Max and RE in 
ultra-endurance athletes.

Prehistoric hominin foragers engaged in persistence hunting differ from mod-
ern-day endurance athletes in that they did not strive to be the fastest. Instead, 
the challenge was to be able to run well enough to enhance survival by scaveng-
ing and/or hunting to access nutrition. They did so using bodies of variable mass 
and proportions, shaped by environmental stress such as temperature, with larger 
body sizes typically found in colder, more open environments with greater fre-
quencies of large game (Will et al., 2021). Individuals with good RE and lower 
body mass, common in warmer environments, could likely glide economically as 
they ran. In contrast, our results suggest that larger individuals typical of homi-
nins living in colder environments may be able to compensate for the negative 
effects that their mass has on RE by increasing their capacity to consume oxygen. 
This may allow them to power their way to calories. The findings reported in this 
study, which recruited a cohort of athletes who have successfully completed an 
ultramarathon (150-300 km in distance), are thereby suggestive of the existence 
of alternative metabolic approaches to performing endurance running. These dif-
ferent strategies allow humans, irrespective of their adult body size, to occupy the 
same behavioural niche of endurance running as a means of acquiring calories.

The elevated energy expenditure associated with the low-economy high-energy 
turnover approach may bring costs, however. Recent work has identified pre-
liminary evidence suggestive of an apparent limit to daily energy expenditure, 
with daily energy expenditure being homeostatically maintained within a nar-
row evolved physiological range (Pontzer, 2015a, b; Pontzer et  al., 2016). The 
constrained total energy expenditure model contends that the addition of further 
physical activity, with associated additional energy costs, to individuals who are 
already moderately active does not result in increased total energy expenditure. 
This is achieved through a redistribution of energy away from other biological 
functions.

The allocation of limited energy and resources between physiological func-
tions is described by life history theory (Leonard, 2012; Leonard & Ulijaszek, 
2002; Stearns, 1989; Ulijaszek, 1995; Wells et  al., 2017; Zera & Harshman, 
2001). When an individual encounters an energetic deficit, such as during periods 
of limited food availability or when energy demands unexpectedly increase, life 
history theory contends that trade-offs arise in the energetic allocation between 

Fig. 3  Scatter plot of RE at LT1 & LT2 and V̇O2Max for female and male participants (95% confidence 
intervals)
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competing processes (Bronson, 1991; Stearns, 1992). In such conditions, energy 
is expected to be allocated towards processes offering the greatest immediate 
survival value. For example, the prioritisation of immune function over repro-
duction (Longman, Prall, et  al., 2017) and growth (Urlacher et  al., 2018) has 
been reported. A large runner adopting the low-economy high-energy turnover 
approach to endurance running experiences a greater metabolic burden, which 
may in turn push physiological functions to the limits of adaptive plasticity 
(Longman et al., 2020).

This increased metabolic turnover may also be detrimental in the long term. 
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and 
induce pathology via oxidative stress by damaging proteins, lipids and DNA 
(Cross et al., 1987; Schieber & Chandel, 2014). The generation of harmful ROS, 
and the associated physiological response to protect against oxidative stress, is a 
key determinant of longevity (Finkel & Holbrook, 2000). A recent analysis of the 
life expectancy of elite athletes found that, independent of weight, high jumpers 
and marathon runners outlived sprinters and discus throwers (Lee-Heidenreich 
et al., 2017). Although further work is clearly needed, our results suggest that the 
higher rates of oxygen turnover associated with a larger lean body mass may par-
tially explain the observed decreased longevity.

It is appreciated that numerous factors affecting both RE and V ̇O2Max, includ-
ing training status, body composition and morphology, age and running technique 
(see (Morgan et al., 1989; Saunders et al., 2004) for a detailed discussion) were 
not controlled for in this study. Finally, we acknowledge that the sample size of 
this study was small, and the findings will require confirmation with a larger 
sample.

To conclude, we observed a strong negative relationship between V ̇O2Max and 
RE in a cohort of ultra-endurance athletes. This relationship suggests that our 
hominin ancestors may have been able to occupy the behavioural niche of endur-
ance running irrespective of their body mass by adopting different metabolic 
approaches. Specifically, larger individuals may have been able to compensate for 
low running economy by burning more energy. However, this approach may incur 
costs as energy may be drawn away from other biological functions, potentially 
including homeostatic maintenance.
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