English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Image-based automated recognition of 31 Poaceae species: The most relevant perspectives

MPS-Authors
/persons/resource/persons186269

Rzanny,  Michael
Flora Incognita, Dr. Jana Wäldchen, Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons220173

Deggelmann,  Alice
Flora Incognita, Dr. Jana Wäldchen, Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62597

Wäldchen,  Jana
Flora Incognita, Dr. Jana Wäldchen, Department Biogeochemical Integration, Prof. Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC3807.pdf
(Publisher version), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Rzanny, M., Wittich, H. C., Mäder, P., Deggelmann, A., Boho, D., & Wäldchen, J. (2022). Image-based automated recognition of 31 Poaceae species: The most relevant perspectives. Frontiers in Plant Science, 12: 804140. doi:10.3389/fpls.2021.804140.


Cite as: https://hdl.handle.net/21.11116/0000-0009-E34D-1
Abstract
There is no abstract available