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Abstract

We construct and analyze unfolded off-shell systems for chiral and vector supermultiplets

using multispinor formalism and external currents. We find that auxiliary variables of

multispinor formalism allow for the interesting reorganization of the unfolded off-shell

modules: dynamical and auxiliary scalars of the Wess-Zumino model can be united and

resulted system becomes pseudo-real, while chirality constraints, as well as electric current

conservation and pseudo-reality of the off-shell scalar from the vector supermultiplet can

be formulated entirely in terms of these auxiliary variables.
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1 Introduction

Unfolded dynamics approach [1–3] was designed to formulate higher-spin gravity theory within
the frame of Vasiliev equations [4, 5]. In a nutshell, the unfolded dynamics approach to a
field theory amounts to reformulating it as a set of first-order equations, which are mani-
festly coordinate-independent and gauge-invariant, by means of introducing (usually infinite
number of) descendant fields which parameterize all derivatives of primary fields. Coordinate-
independence and gauge invariance make unfolded approach attractive beyond the original
higher-spin gravity problem. In particular, unfolded approach proposes new interesting possi-
bilities for constructing manifestly supersymmetric formulations [6–9], which is topical e.g. for
maximally supersymmetric Yang–Mills theories.

From the point of view of unfolded approach, global symmetries (e.g. (super)-Poincaré
symmetry) emerge as residual gauge symmetries of non-dynamical vacuum fields (gravitational
field for Poincaré symmetry, plus gravitino fields for SUSY). Hence consistent inclusion of the
background fields to the unfolded system provides manifest realization of global symmetries.
Moreover, unfolded equations are formulated in terms of differential forms, that guarantees
manifest diffeomorphism invariance of the whole formalism, which is a crucial feature when
dealing with theory that contains dynamical gravity (e.g. higher-spin gravity). This allows,
in addition, straightforward lift of an unfolded supersymmetric theory from Minkowski space
to superspace. And the problem of constructing an off-shell completion for a given on-shell
unfolded system, as was shown in [10], amounts to coupling on-shell system to external currents,
which are then interpreted as off-shell descendant fields.

In this paper we construct and analyze unfolded formulations for off-shell Wes-Zumino
and vector supermultiplets, using multispinor formalism and proposals of [10]. Formulations
we obtain reveal some new curious features: (1) making use of additional auxiliary variables,
one can combine dynamical and auxiliary scalars of the Wess–Zumino model into a single
module, whereupon unfolded equations become simpler and pseudo-real, being the same for
chiral and anti-chiral supermultiplets, while chirality constraint takes the form of a simple
algebraic relation with respect to auxiliary variables; (2) analogously, unfolded fields of the
unfolded off-shell vector supermultiplet can be recombined so that the system of unfolded
equations becomes more concise and simpler. All this indicates that it is this particularly
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convenient set of auxiliary variables, combined with the unfolded dynamics approach, that can
help in the study of supersymmetric theories.

The paper is organized as follows. In Section 2 we briefly discuss unfolded dynamics ap-
proach and give concrete simple examples of unfolded systems used later. In Section 3 we
present unfolded off-shell Wess–Zumino model in spinorial formulation, alternative to tensorial
formulation of [7], and show that it allows one to reduce unfolded off-shell modules to a simpler
form. Section 4 is devoted to the unfolding of the off-shell vector supermultiplet. In Section 5
we summarize our results.

2 Unfolded approach

Unfolded formulation [1–3] of the field theory represents a set of equations of the form

dWA(x) +GA(W ) = 0, (2.1)

on unfolded fields WA(x), which are differential forms, with A standing for all indices they
carry. Here d is the de Rham differential on the space-time (super)manifold Md with local
coordinates x and GA(W ) is built from exterior products of W (wedge symbol will be always
implicit). The identity d2 ≡ 0 entails the following consistency condition for an unfolded system

GB δG
A

δWB
≡ 0, (2.2)

which is of the first importance in the unfolding procedure. Equations (2.1) are invariant under
a set of infinitesimal gauge transformations

δWA = dεA − εB
δGA

δWB
. (2.3)

Gauge parameter εA(x) is a rank-(r − 1) form related to a rank-r unfolded field WA. Thus
0-forms do not have their own gauge symmetries and are transformed only by higher-forms
gauge transformations through the second term in (2.3).

The sense of the unfolded system (2.1) can be understood as follows. Set of unfolded fields
WA(x) decomposes into subsets of primary fields and descendant fields. And unfolded equations
express the descendants in terms of the primaries and their derivatives. At the same time, they
may (implicitly) put some differential combinations of primaries to zero, which means that the
system is on-shell; otherwise it is off-shell. Concrete simple examples will be given below.

2.1 Supersymmetric vacuum

The non-dynamical maximally-symmetric space-time background in the unfolded approach
arises through a 1-form connection Ω = dxaΩA

a (x)TA, which takes values in Lie algebra of
space-time symmetries with generators TA and obeys zero-curvature condition (which is of the
form (2.1))

dΩ + ΩΩ = 0. (2.4)

Choice of some particular solution Ω0 breaks gauge symmetry δΩ = dε(x) − [Ω, ε] (square
brackets stands for the Lie-algebra commutator) to the residual global symmetry εglob that
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leaves Ω0 invariant and is determined by

dεglob − [Ω0, εglob] = 0. (2.5)

Because there are no 0-forms in (2.4), the background is non-dynamical: it describes no gauge-
invariant physical d.o.f.

In the paper we consider 4d N = 1 super-Poincaré group, so an appropriate 1-form is a
connection

Ω = eαβ̇Pαβ̇ + iωαβMαβ + iω̄α̇β̇M̄α̇β̇ + ψαQα + ψ̄α̇Q̄α̇, (2.6)

where Pαα̇, Mαβ , Qα are generators of translations, Lorentz transformations and supercharges,

while eαβ̇ , Ωαβ , ψα are 1-forms of vierbein, Lorentz connection and gravitino. For this Ω (2.4)
gives, accounting for commutation relations of generators,

deαβ̇ + ωα
γe

γβ̇ + ω̄β̇
γ̇e

αγ̇ − ψαψ̄β̇ = 0, (2.7)

dωαβ + ωα
γω

γβ = 0, dω̄α̇β̇ + ω̄α̇
γ̇ω̄

γ̇β̇ = 0, (2.8)

dψα + ωα
γψ

γ = 0, dψ̄α̇ + ω̄α̇
γ̇ψ̄

γ̇ = 0. (2.9)

Fixing some particular solution to these equations reduces initial supergravity gauge symmetry
(2.3) to a global supersymmetry (2.5) and determines supertransformation rules for all fields
coupled to this background.

2.2 Scalar field

The simplest dynamical system is a free scalar field. An appropriate set of unfolded fields to
describe it includes all multispinor fields of the type (n

2
, n
2
), i.e. Cα(n),α̇(n)(x), for all n (we make

use of condensed notations in the paper, denoting a set of n symmetrized indices A1...An as
A(n)). They can be collected into a single unfolded module by means of auxiliary commuting
spinors Y = (yα, ȳα̇), α, α̇ = 1, 2 . Spinor indices are raised and lowered by antisymmetric
metrics

ǫαβ = ǫα̇β̇ =

(

0 1
−1 0

)

, ǫαβ = ǫα̇β̇ =

(

0 1
−1 0

)

(2.10)

as
vα = ǫβαv

β, vα = ǫαβvβ, v̄α̇ = ǫβ̇α̇v̄
β̇, v̄α̇ = ǫα̇β̇ v̄β̇ , (2.11)

so because of commutativity

yαyβǫαβ = 0, ȳα̇ȳβ̇ǫα̇β̇ = 0. (2.12)

Single unfolded scalar module is defined as

C(Y |x) =
∞
∑

n=0

1

(n!)2
Cα(n),α̇(n)(y

α)n(ȳα̇)n. (2.13)

and unfolded equation for C is
DC + ie∂∂̄C = 0. (2.14)

Here
D = d + ωαβyα∂β + ω̄α̇β̇ ȳα̇∂̄β̇ (2.15)
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is a 1-form of a Lorentz-covariant derivative, Y -derivatives are introduced as

∂αy
β = δα

β , ∂̄α̇ȳ
β̇ = δα̇

β̇ (2.16)

and for briefness we denote

eyȳ = eαβ̇yαȳβ̇, e∂∂̄ = eαβ̇∂α∂̄β̇ , ey∂̄ = eαβ̇yα∂̄β̇ , eȳ∂ = eαβ̇ ȳβ̇∂α. (2.17)

Representing D as D = eαβ̇Dαβ̇ one gets from (2.14)

Cα(n),α̇(n)(x) = (iDαα̇)
nC(0|x), (2.18)

�C(0|x) = 0. (2.19)

Thus Cα(n),α̇(n) are descendant fields, forming a tower of symmetrized traceless derivatives of
the on-shell primary field C(0|x) which is subjected to the massless Klein–Gordon equation.

To construct an off-shell completion for the unfolded on-shell system one has to couple it to
external currents, as explained in [10]. These currents, sourcing r.h.s. of e.o.m. (Klein–Gordon
equation in this case), further can be interpreted as off-shell descendants so that former e.o.m.
turn to constraints expressing these descendants in terms of primaries.

As shown in [10], all off-shell unfolded scalar fields can be collected in a single module by
simple introduction of one more auxiliary variable p, so that an off-shell unfolded scalar module
is

C(Y |p|x) =
∞
∑

M,n=0

1

(2M)!(n!)2
C

(M)
α(n),α̇(n)p

2M(yα)n(ȳα̇)n. (2.20)

Here we used expansion in even powers of p, differently from [10], what for a separately taken
scalar field makes no difference, but is better suited for a supersymmetric extensions considered
below.

Unfolded equation for an off-shell scalar field is

DC + ie∂∂̄C + ieyȳ
∂2p

(ς + 1)(ς + 2)
C = 0, (2.21)

where

∂p =
∂

∂p
, (2.22)

ς =
(N + N̄)

2
, (2.23)

N = yα∂α, N̄ = ȳα̇∂̄α̇. (2.24)

Now instead of (2.18) one has

C
(M)
α(n),α̇(n)(x) = �

M (iDαα̇)
nC(0|x), (2.25)

and instead of (2.19)
�C(0)(x) = C(1)(x). (2.26)

So (2.21) indeed corresponds to a scalar field C(0) coupled to an external current C(1). Or, as
we will take it, it corresponds to an unfolded off-shell scalar C(0) with C(1) being one of its
descendants determined by (2.26).

5



2.3 Vector gauge field

Maxwell field in the unfolded language corresponds to a 1-form of vector potential A =
Am(x)dx

m and two conjugate 0-form modules

F (Y |x) =
∞
∑

n=0

1

n!(n + 2)!
Fα(n+2),α̇(n)(y

α)n+2(ȳα̇)n, F̄ (Y |x) =
∞
∑

n=0

1

n!(n + 2)!
F̄α(n),α̇(n+2)(y

α)n(ȳα̇)n+2.

(2.27)
Unfolded equations are [5]

dA =
i

4
E∂∂F +

i

4
¯E∂∂F̄ , |Y=0 (2.28)

DF + ie∂∂̄F = 0, (2.29)

DF̄ + ie∂∂̄F̄ = 0, (2.30)

from which one finds

Fαα =
i

2
Dα

β̇(σm)αβ̇Am, F̄α̇α̇ =
i

2
Dβ

α̇(σ
m)βα̇Am. (2.31)

Fα(n+2),α̇(n) = (iDαα̇)
nFαα, F̄α(n),α̇(n+2) = (iDαα̇)

nF̄α̇α̇. (2.32)

Dβ
α̇Fβα = 0, Dα

β̇F̄β̇α̇ = 0. (2.33)

Thus, F̄ and F encode selfdual F̄α̇α̇ and anti-selfdual Fαα parts of Maxwell tensor and all their
on-shell derivatives (2.32). Maxwell tensor is built from vector potential Am according to (2.31)
and obeys Maxwell equations (2.33). From general formula (2.3) one restores conventional gauge
symmetry of electrodynamics

δA = dǫ(x), δF = 0, δF̄ = 0. (2.34)

Off-shell vector field arises through coupling of (2.28)-(2.30) to an external conserved elec-
trical current. As shown in [10], unfolded electrical current module J(Y |p|x) is structured
as

J(Y |p|x) = J0 + J+ + J−, (2.35)

J0 =
∞
∑

M,n=0

1

(2M)!(n + 1)!2
J
(M)
α(n+1),α̇(n+1)p

2M (yα)n+1(ȳα̇)n+1, (2.36)

J+ =
∞
∑

M,n=0

1

(2M)!(n + 2)!n!
J
(M)
α(n+2),α̇(n)p

2M(yα)n+2(ȳα̇)n, (2.37)

J− =
∞
∑

M,n=0

1

(2M)!(n + 2)!n!
J
(M)
α(n),α̇(n+2)p

2M(yα)n(ȳα̇)n+2. (2.38)

and off-shell system for a free vector field is
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dA =
i

4
E∂∂F +

i

4
¯E∂∂F̄ , |Y=0 (2.39)

DF + ie∂∂̄F + ieyȳ
1

(ς + 1)(ς + 2)
J+ + ey∂̄

2

(ς + 1)(ς + 2)
J0 = 0, (2.40)

DF̄ + ie∂∂̄F̄ + ieyȳ
1

(ς + 1)(ς + 2)
J− + e∂ȳ

2

(ς + 1)(ς + 2)
J0 = 0, (2.41)

DJ + ie∂∂̄J + ieyȳ
ς(ς + 3)

(N + 1)(N + 2)(N̄ + 1)(N̄ + 2)
∂2pJ+

+ ey∂̄
1

(N + 1)(N + 2)
(J− + 2∂2pJ

0) + e∂ȳ
1

(N̄ + 1)(N̄ + 2)
(J+ + 2∂2pJ

0) = 0. (2.42)

2.4 Spinor field

In [10] only bosonic fields were considered. Here we present an unfolded description of an
off-shell spin-1/2 field which reveals an important peculiarity of fermions.

Weyl (1
2
, 0)-spinor is described by an unfolded module

χ(Y |x) =
∞
∑

n=0

1

n!(n+ 1)!
χα(n+1),α̇(n)(x)(y

α)n+1(ȳα̇)n (2.43)

supported by an unfolded equation

Dχ+ ie∂∂̄χ = 0. (2.44)

Analogously to the scalar case, higher-rank multispinors are expressed through a primary field
χα(x) subjected to Weyl equation

χα(n+1),α̇(n) = (iDαα̇)
nχα, (2.45)

Dαβ̇χ
α = 0. (2.46)

To put this system off-shell, one has to couple it to an external current, which in this case is
an unconstrained (i.e. also off-shell) (0, 1

2
)-spinor ξ̄α̇. An appropriate unfolded off-shell module

turns out to be

χ(Y |p|x) = χ+ + χ−, (2.47)

χ+ =

∞
∑

M,n=0

1

(2M)!n!(n + 1)!
χ
(M)
α(n+1),α̇(n)p

2M(yα)n+1(ȳα̇)n, (2.48)

χ− =

∞
∑

M,n=0

1

(2M)!n!(n + 1)!
χ
(M)
α(n),α̇(n+1)p

2M+1(yα)n(ȳα̇)n+1. (2.49)

and unfolded equations are

Dχ+ ie∂∂̄χ + ieyȳ
∂2p

(ς + 3
2
)2
χ + ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−χ+ e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+χ = 0, (2.50)
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where we introduced projectors on positive and negative helicities as

fm,n = fα(m),β̇(n)(y
α)m(ȳβ̇)n,

Π+fm,n =

{

fm,n, m ≥ n

0, m < n
Π−fm,n =

{

fm,n, m ≤ n

0, m > n
. (2.51)

As one sees from (2.50), unlike unfolded off-shell bosons, off-shell fermions require all powers of
p to be presented in the module. And helicities of unfolded fields are related to their p-parity,
as follows from (2.48)-(2.49): positive helicities belong to the p-even sector, while negative ones
– to the p-odd.

To get an unfolded description for an off-shell Weyl (0, 1
2
)-type spinor ζ̄α̇ one just needs to

flip the relation between helicity and p-parity:

ζ̄(Y |p|x) = ζ̄− + ζ̄+, (2.52)

ζ̄− =
∞
∑

M,n=0

1

(2M)!n!(n + 1)!
ζ̄
(M)
α(n),α̇(n+1)p

2M(yα)n(ȳα̇)n+1, (2.53)

ζ̄+ =
∞
∑

M,n=0

1

(2M)!n!(n + 1)!
ζ̄
(M)
α(n+1),α̇(n)p

2M+1(yα)n+1(ȳα̇)n. (2.54)

while an unfolded equation remains the same

Dζ̄ + ie∂∂̄ζ̄ + ieyȳ
∂2p

(ς + 3
2
)2
ζ̄ + ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−ζ̄ + e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+ζ̄ = 0. (2.55)

Finally, to describe an off-shell Dirac spinor one simply unites two modules χ and ζ̄ into an
unfolded off-shell Dirac module

Ξ(Y |p|x) = χ+ ζ̄ , (2.56)

and unfolded equation remains the same again

DΞ + ie∂∂̄Ξ + ieyȳ
∂2p

(ς + 3
2
)2
Ξ + ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−Ξ + e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+Ξ = 0, (2.57)

but now there is no relation between helicity and p-parity: both helicities have all terms in
p-expansion.

Thus, for off-shell spinors of all types one has one and the same unfolded equation, but the
structure of the unfolded module does depend on the type. Introducing projectors on p-even
and p-odd parts as

Πef(p) =
f(p) + f(−p)

2
, Πof(p) =

f(p)− f(−p)
2

, (2.58)

one can formulate this dependence as a constraints on mutual p− Y dependence

left Weyl: Πe = Π+, (2.59)

right Weyl: Πe = Π−, (2.60)

Dirac: no constraints. (2.61)
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3 Unfolded Wess-Zumino model revisited

Unfolded formulation of the on-shell Wess-Zumino model in terms of symmetric Lorentz-tensors
playing the role of unfolded fields was built in [6]. All tensors are traceless and spinor fields are
subjected to σ-transversality condition

DCa(k) + ebC
a(k)b −

√
2ψαχa(k)

α = 0, (3.1)

Dχa(k)
α + ebχ

a(k)b
α − i

√
2(σb)αβ̇ψ̄

β̇Ca(k)b = 0 (3.2)

Ca(k−2)b
b = 0, χa(k−2)b

α b = 0, (σ̄b)
α̇βχ

a(k)b
β = 0. (3.3)

Off-shell extension arises via relaxing tracelessness and σ-transversality conditions and requires
introduction of a series of symmetric tensor fields F a(k), which correspond to an auxiliary
component scalar of the chiral supermultiplet [7]. Resulting off-shell system is

DCa(k) + ebC
a(k)b −

√
2ψαχa(k)

α = 0, (3.4)

Dχa(k)
α + ebχ

a(k)b
α − i

√
2(σb)αβ̇ψ̄

β̇Ca(k)b −
√
2ψαF

a(k) = 0, (3.5)

DF a(k) + ebF
a(k)b − i

√
2ψ̄α̇(σ̄b)

α̇βχ
a(k)b
β = 0. (3.6)

If translate this to the multispinor language used in this paper, symmetric traceless tensor T a(k)

corresponds to a multispinor Tα(k),α̇(k), while σ-transverse χ
a(k)
α corresponds to χα(k+1),α̇(k). Then

p2M -terms of (2.20) and (2.48) correspond to the traces of the Lorentz-tensors, while p2M+1-

terms from (2.49) correspond to σ-longitudinal contributions of the form (σ̄b)
α̇βχ

a(k)b
β .

In order to build a multispinor equivalent of the system (3.4)-(3.6), one supplements off-shell
scalar (2.21) and off-shell spinor (2.50) with the unfolded auxiliary scalar

F (Y |p|x) =
∞
∑

M,n=0

1

(2M)!(n!)2
F

(M)
α(n),α̇(n)p

2M(yα)n(ȳα̇)n, (3.7)

DF + ie∂∂̄F + ieyȳ
∂2p

(ς + 1)(ς + 2)
F = 0 (3.8)

and deforms (2.21), (2.50), (3.8) with ψ-dependent terms mixing component C, χ and F in
a consistent way. We will not describe here the procedure of this (and other presented in
the paper) unfolding, which is quite technical, tedious and lengthy. Detailed examples of
constructing unfolded systems can be found e.g. in [10, 11]. In a nutshell, one has to write
down the most general suitable Ansatz for unfolded equations with arbitrary (p|Y )-dependent
coefficients and then fix them by imposing consistency condition (2.2).

For the off-shell chiral supermultiplet in question, consistent unfolded equations turn to be

DC + ie∂∂̄C + ieyȳ
∂2p

(ς + 1)(ς + 2)
C + ψ∂Π+χ+ iψy

∂p
(ς + 3

2
)
Π−χ = 0, (3.9)

Dχ+ ie∂∂̄χ+ ieyȳ
∂2p

(ς + 3
2
)2
χ+ ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−χ+ e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+χ−

− iψ̄∂C − ψ̄y
∂p

(ς + 1)
C + iψy

1

(ς + 1)
F − p

1

p∂p + 1
ψ∂F = 0. (3.10)

DF + ie∂∂̄F + ieyȳ
∂2p

(ς + 1)(ς + 2)
F + iψ̄∂∂pΠ

−χ− ψ̄y
∂2p

(ς + 3
2
)
Π+χ = 0. (3.11)
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This multispinor formulation allows for a new interesting possibility, elusive in the tensor form
(3.4)-(3.6). Namely, it is possible to naturally combine the dynamical and auxiliary scalar
modules C and F into a single one. To this end one defines a combined scalar module

Φ = C + i∂pF, (3.12)

which thus contains both even (former C) and odd (former F ) terms in p-expansion

Φ(Y |p|x) =
∞
∑

M,n=0

1

M !(n!)2
Φ

(M)
α(n),α̇(n)p

M(yα)n(ȳα̇)n, (3.13)

Note that this incorporation correctly reproduce scaling dimension of the auxiliary scalar,
associated with p-odd part of Φ: scaling dimension of p is

∆p = 1, (3.14)

as one can see e.g. from (2.20) and (2.25). Hence

∆F = ∆C + 1. (3.15)

In terms of Φ (3.9)-(3.11) turns to

DΦ + ie∂∂̄Φ + ieyȳ
∂2p

(ς + 1)(ς + 2)
Φ + (ψ∂Π+ + ψ̄∂Π− + iψy

∂p
(ς + 3

2
)
Π− + iψ̄y

∂p
(ς + 3

2
)
Π+)χ = 0,

(3.16)

Dχ+ ie∂∂̄χ+ ieyȳ
∂2p

(ς + 3
2
)2
χ+ ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−χ+ e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+χ−

− (iψ∂ + iψ̄∂ + ψ̄y
∂p

(ς + 1)
+ ψy

∂p
(ς + 1)

)Φ = 0. (3.17)

A curious feature of the system (3.16)-(3.17) is that naively it looks real, though describing a
chiral supermultiplet. The point is that it is consistent, i.e. satisfying (2.2), only if χ is a Weyl
module, not a Dirac (or Majorana) one. But as discussed above, unfolded equations for Dirac
and both types of Weyl spinors look completely the same. The difference is in the structure
of the unfolded modules, expressed in (2.59)-(2.61). Thus, (3.16)-(3.17) supplemented by the
chirality constraint

Πeχ = Π+χ, (3.18)

determines an unfolded off-shell chiral supermultiplet. And the same unfolded system (3.16)-
(3.17), but supplemented with the opposite anti-chirality constraint

Πeχ = Π−χ, (3.19)

determines an unfolded off-shell anti-chiral supermultiplet. This “degeneracy” of unfolded
equations for chiral and anti-chiral supermultiplets becomes manifest only after unifying two
scalars of the Wess–Zumino model into a single module Φ and is not seen in the “standard”
formulation (3.4)-(3.6) of [7] or its spinorial version (3.9)-(3.11), where two supermultiplets are
related by non-invariant complex conjugation. The main ingredient is p-variable, which allows
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one to unite two bosonic fields: in a non-supersymmetric situation bosonic modules depend
only on p2 which, as is seen e.g. from (2.20), (2.25), encodes descendants containing kinetic
operators acting on the primary field; on the other hand, fermions depend on all powers of p,
because their kinetic operators are of the first order and change the type of the spinors. In non-
manifestly-supersymmetric reduction of (3.16)-(3.17) which arises from putting all gravitino
1-forms ψ and ψ̄ to zero, p-odd and p-even terms in Φ become completely disentangled – Φ
divides into independent modules C and F , and the question of their relative p-parity becomes
inessential. But in the supersymmetric system non-zero ψ and ψ̄ non-trivially intertwine p-odd
and p-even parts of Φ.

4 Unfolded vector supermultiplet

In this Section we are about to build and analyze an unfolded system of an off-shell vector
supermultiplet. This is accomplished in several stages. First, we formulate an on-shell system;
then we find an unfolded description for a supersymmetric source for a vector system, which is
a linear multiplet; finally, we couple a linear multiplet to the vector system thus arriving at an
unfolded off-shell vector supermultiplet.

On-shell vector supermultiplet contains Maxwell field and gaugino being Majorana spinor.
So one has to take (2.28)-(2.30), (2.44), add possible terms with ψα, ψ̄α̇ mixing the spinor and
the vector, and then solve for the consistency condition (2.2). This brings to

dA =
i

4
E∂∂F +

i

4
¯E∂∂F̄ +

1

2
eαα̇ψα∂̄α̇λ̄+

1

2
eαα̇ψ̄α̇∂αλ.|Y=0 (4.1)

DF + ie∂∂̄F − ψ̄∂λ = 0. (4.2)

DF̄ + ie∂∂̄F̄ − ψ∂λ̄ = 0. (4.3)

Dλ+ ie∂∂̄λ+ iψ∂F = 0. (4.4)

Dλ̄+ ie∂∂̄λ̄+ iψ̄∂F̄ = 0. (4.5)

To go off-shell one has to switch on external currents for F and λ. In principle, one could
start with off-shell systems for F and λ presented in (2.39)-(2.42), (2.57) and then look for
consistent supersymmetric ψ-corrections. However, there is a more efficient way along the lines
of [10]: to make use of a supersymmetric generalization of electric current, which is provided
by a linear multiplet. This includes conserved vector, unconstrained Majorana spinor and
unconstrained pseudoscalar. So one can first find an unfolded system for a linear multiplet and
then couple it to (4.1)-(4.5).

To this end one takes unfolded systems for an electric current J , off-shell spinor (χ, χ̄) (it
is convenient to separate a Majorana spinor into two conjugate Weyl’s) and off-shell scalar C,
and add possible consistent terms with ψ and ψ̄ which mix component fields. This results in
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DJ + ie∂∂̄J + ieyȳ
ς(ς + 3)∂2p

(N + 1)(N + 2)(N̄ + 1)(N̄ + 2)
J+

+ ey∂̄
1

(N + 1)(N + 2)
(J− + 2∂2pJ

0) + e∂ȳ
1

(N̄ + 1)(N̄ + 2)
(J+ + 2∂2pJ

0)+

+ (ψ∂Π+ + 2ψ∂∂pΠ
− − 2iψy

∂2p
(ς + 3

2
)
Π+ − iψy

(ς + 5
2
)∂p

(ς + 1
2
)(ς + 3

2
)
Π−)χ+

+ (ψ̄∂Π− + 2ψ̄∂∂pΠ
+ − 2iψ̄y

∂2p
(ς + 3

2
)
Π− − iψ̄y

(ς + 5
2
)∂p

(ς + 1
2
)(ς + 3

2
)
Π+)χ̄ = 0. (4.6)

Dχ+ ie∂∂̄χ+ ieyȳ
∂2p

(ς + 3
2
)2
χ+ ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−χ+ e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+χ−

− i

2
ψ̄∂J0 +

1

2
ψ̄y

1

(ς + 1)
J+ +

1

2
ψ̄y

ς

(ς + 1)(ς + 2)
J0 − i

2
ψ̄∂p

1

p∂p + 1
J− − 1

2
ψ̄∂C +

1

2
ψ̄y

∂p
(ς + 1)

C = 0.

(4.7)

Dχ̄+ ie∂∂̄χ̄+ ieyȳ
∂2p

(ς + 3
2
)2
χ̄+ e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Π+χ̄+ ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Π−χ̄−

− i

2
ψ∂J0 +

1

2
ψy

1

(ς + 1)
J− +

1

2
ψy

ς

(ς + 1)(ς + 2)
J0 − i

2
ψ∂p

1

p∂p + 1
J+ +

1

2
ψ∂C − 1

2
ψy

∂p
(ς + 1)

C = 0.

(4.8)

DC + ie∂∂̄C + ieyȳ
∂2p

(ς + 1)(ς + 2)
C + iψ∂Π+χ− iψ̄∂Π−χ̄− ψy

∂p
(ς + 3

2
)
Π−χ+ ψ̄y

∂p
(ς + 3

2
)
Π+χ̄ = 0,

(4.9)

which is an unfolded form of the linear multiplet. The pseudoscalar nature of C manifests in
opposite signs between terms with ψ and ψ̄, which mix it with the spinor.

Now coupling (4.6)-(4.9) to (4.1)-(4.5) yields

dA =
i

4
E∂∂F +

i

4
¯E∂∂F̄ +

1

2
eαα̇ψα∂̄α̇λ̄+

1

2
eαα̇ψ̄α̇∂αλ.|Y=0 (4.10)

DF + ie∂∂̄F + ieyȳ
1

(ς + 1)(ς + 2)
J+ + ey∂̄

2

(ς + 1)(ς + 2)
J0 − ψ̄∂λ− ψy

2i

(ς + 3
2
)
Π+χ = 0.

(4.11)

DF̄ + ie∂∂̄F̄ + ieyȳ
1

(ς + 1)(ς + 2)
J− + e∂ȳ

2

(ς + 1)(ς + 2)
J0 − ψ∂λ̄− ψ̄y

2i

(ς + 3
2
)
Π−χ̄ = 0.

(4.12)

Dλ+ ie∂∂̄λ− ey∂̄
2

(ς + 1
2
)(ς + 3

2
)
Π−χ̄− eyȳ

2i∂p
(ς + 3

2
)2
Π+χ̄+ iψ∂F + iψy

1

(ς + 1)
C − ψy

ς

(ς + 1)(ς + 2)
J0 = 0.

(4.13)

Dλ̄+ ie∂∂̄λ̄− e∂ȳ
2

(ς + 1
2
)(ς + 3

2
)
Π+χ− eyȳ

2i∂p
(ς + 3

2
)2
Π−χ+ iψ̄∂F̄ − iψ̄y

1

(ς + 1)
C − ψ̄y

ς

(ς + 1)(ς + 2)
J0 = 0.

(4.14)

Together equations (4.6)-(4.9), (4.10)-(4.14) form an unfolded off-shell system for the vector
supermultiplet. Let us stress a characteristic feature of the used approach to build off-shell

12



supersymmetric models: in a conventional Lagrangian formulation the off-shell vector super-
multiplet includes the Maxwell field, the gaugino and the auxiliary pseudoscalar which vanishes
on-shell. In the unfolded approach there is an infinite number of descendant fields, in particu-
lar those which vanish on-shell (these are exactly the unfolded module of the linear multiplet).
What is their relation to the conventional off-shell vector supermultiplet with only one auxiliary
pseudoscalar? The answer is that among plenty unfolded fields presented in (4.6)-(4.14), the
only primaries when considering Minkowski space with ψ = ψ̄ = 0 are A, λα(p = 0), λ̄α̇(p = 0)
and C(p = 0) – which precisely corresponds to the field content of the Lagrangian off-shell vec-
tor supermultiplet. But in our construction this pseudoscalar appears as a part of the external
current for the vector supermultiplet, necessary for relaxing on-shell constraints.

Analogously to what is done in Section 3 for Wess–Zumino model, it is possible to recombine
component fields of the off-shell vector supermultiplet by modification their p-dependence, such
that unfolded system gets simplified. All spinor modules λ, λ̄, χ, χ̄ can be combined into off-
shell Majorana module Λ, J+ and J− are naturally included to F and F̄as their p2-dependent
parts, while J0 and C get united into a single subspace Φ as p-even and p-odd parts respectively

Φ = p2J0 + pC, (4.15)

Φ(Y |p|x) =
∞
∑

M=1,n=0

1

M !(n!)2
Φ

(M)
α(n),α̇(n)p

M(yαȳα̇)n, (4.16)

with a constraint
ςΠeΦ ≥ 1 (4.17)

which encodes conservation of electric current (J0 has zero divergence hence no scalar descen-
dants). Another point one has to ensure is pseudoreality of C. This can be elegantly built into
a modified conjugation operation h.c., which originally just exchanges dotted and undotted
spinors in the unfolded equations. The modified conjugation now also flips the sign of p in Φ,
thus multiplying C by −1

h.c. : (α, β̇) → (α̇, β), Φ(p) → Φ(−p). (4.18)

As a result, the unfolded off-shell system for the vector supermultiplet now reads

dA =
i

4
E∂∂F +

i

4
¯E∂∂F̄ +

1

2
eαα̇ψα∂̄α̇Λ +

1

2
eαα̇ψ̄α̇∂αΛ.|p,Y=0 (4.19)

DF + ie∂∂̄F + ieyȳ
∂2p

(ς + 1)(ς + 2)
F + ey∂̄

2∂2pΠ
e

(ς + 1)(ς + 2)
Φ− ψ̄∂ΠeΛ+ + iψy

∂p
(ς + 3

2
)
ΠoΛ+ = 0.

(4.20)

DF̄ + ie∂∂̄F̄ + ieyȳ
∂2p

(ς + 1)(ς + 2)
F̄ + e∂ȳ

2∂2pΠ
e

(ς + 1)(ς + 2)
Φ− ψ∂ΠeΛ− + iψ̄y

∂p
(ς + 3

2
)
ΠoΛ− = 0.

(4.21)

DΛ+ ie∂∂̄Λ+ ieyȳ
∂2p

(ς + 3
2
)2
Λ + ey∂̄

∂p
(ς + 1

2
)(ς + 3

2
)
Λ− + e∂ȳ

∂p
(ς + 1

2
)(ς + 3

2
)
Λ++

+

(

iψ∂F + iψ∂(∂pΠ
e +Πo)Φ− ψy

∂p
(ς + 1)

F̄ − ψy
∂p

(ς + 1)
(

ς

(ς + 2)
∂pΠ

e − Πo)Φ + h.c.

)

= 0.

(4.22)
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DΦ + ie∂∂̄Φ + ieyȳ
∂2p

(ς + 1)(ς + 2)
(1− 2Πe

(ς + 1)(ς + 2)
)Φ + ey∂̄

1

ς(ς + 1)
F̄ + e∂ȳ

1

ς(ς + 1)
F+

+

(

i

2
ψy

∂p
(ς + 3

2
)
(
(ς + 5

2
)

(ς + 1
2
)
+ ∂p)Π

eΛ− − 1

2
ψ∂p

1

p∂p + 1
(1− ∂p)Π

oΛ+ + h.c.

)

= 0. (4.23)

5 Conclusion

In the paper we constructed and analyzed unfolded off-shell system for chiral and vector super-
multiplets by formulating on-shell systems and coupling them to external currents. We found
some new interesting features related to supersymmetry, which allows one to hope that pro-
posed method of building off-shell completion for on-shell systems may help one to proceed in
problem of constructing manifestly supersymmetric formulation for more complicated models
like e.g. maximally supersymmetric Yang–Mills theories.

Analyzing unfolded off-shell Wess–Zumino model in terms of multispinors, we discovered a
way to reorganize unfolded fields in a more compact way, with only one scalar and one spinor
unfolded modules, which seems elusive in the original tensorial formulation of [6, 7]. The clue
is the use of an additional variable p, which was originally introduce as a formal parameter
cataloging off-shell descendants of the primary fields, resulting from action of kinetic operators
[10]. Comparing to tensorial formulation of [7], this p accounts for traces of the off-shell traceful
unfolded fields. However, in supersymmetric model it allows to unite dynamical and auxiliary
scalars of Wess–Zumino model into a single unfolded module. Moreover, it turns out that in
this new form unfolded off-shell equations become pseudo-real, looking completely identical for
chiral and anti-chiral supermultiplets. And an additional constraint which chooses between
chiral and anti-chiral systems takes a form of a simple relation constraining p-dependence of
the unfolded spinor module. At this moment p becomes not just a book-keeping parameter
but an actual “alive” variable. It cannot be interpreted as just a counterpart of tensor traces
in [7] anymore (in fact, it becomes hard to find any simple straightforward interpretation for
it in tensorial terms). It must be emphasized that this variable is not specially designed and
introduced in order to merge two scalar modules into one (otherwise, this would be a triviality):
it necessarilly appears for all unfolded off-shell relativistic fields written in terms of multispinors
[10].

Further, we constructed an unfolded description of the vector supermultiplet along the
lines of [10]. To this end we first found an unfolded on-shell system, then built an unfolded
formulation for the linear multiplet which is external source for the vector supermultiplet, and
finally coupled them together. Once again, by modifying p-dependence we managed to put the
system in a more concise form, analogously to what happened for the Wess–Zumino model.
And if in that case there were additional (anti-)chirality constraints on the unfolded modules,
formulated in terms of p-dependence, for the vector supermultiplet sucha additional constraints
are electric current conservation and pseudosclar parity condition, which are also formulated in
terms of p.

To summarize, by examples of Wess–Zumino model and vector supermultiplet we demon-
strated the potential fruitfulness of the unfolded dynamics approach to the problem of construct-
ing manifestly supersymmetric formulations: generically, the problem turns to the concrete
task of construction of supersymmetric external currents; specifically, the use of (p|Y )-variables
opens new ways to organize the degrees of freedom with some curious features.
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