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auxiliary scalars in the Wess-Zumino model, as well as an auxiliary pseudoscalar and a zero-helicity 
subsector in the vector supermultiplet, so that the resulting unfolded equations get simplified, while 
various constraints like chirality, electric current conservation and P-oddness of the pseudoscalar can be 
formulated entirely in terms of these auxiliary variables.
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1. Introduction

Unfolded dynamics approach [1–3] was designed to formulate the higher-spin gravity theory within the frame of Vasiliev equations 
[4,5]. In a nutshell, the unfolded dynamics approach to a field theory amounts to reformulating it as a set of first-order non-Lagrangian 
equations, which are manifestly coordinate-independent and gauge-invariant, by means of introducing (usually infinite number of) de-
scendant fields which parametrize all derivatives of the primary fields. Coordinate-independence and gauge invariance make the unfolded 
approach attractive beyond the original higher-spin gravity problem. In particular, the unfolded approach proposes new interesting pos-
sibilities for constructing manifestly supersymmetric formulations [6–9], which is topical e.g. for maximally supersymmetric Yang–Mills 
theories.
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From the point of view of the unfolded approach, global symmetries (e.g. (super)-Poincaré symmetry) emerge as residual gauge symme-
tries of non-dynamical vacuum fields (gravitational field for Poincaré symmetry, plus gravitino fields for SUSY). Hence consistent inclusion 
of the background fields to the unfolded system provides manifest realization of global symmetries. Moreover, unfolded equations are 
formulated in terms of differential forms, that guarantees manifest diffeomorphism invariance of the whole formalism, which is a crucial 
feature when dealing with a theory that contains dynamical gravity (e.g. higher-spin gravity). This allows, in addition, a straightforward lift 
of an unfolded supersymmetric theory from Minkowski space to superspace [6,7]. And the problem of constructing an off-shell completion 
for a given on-shell unfolded system, as was shown in [10], amounts to coupling the on-shell system to external currents, which are then 
interpreted as off-shell descendant fields.

In this paper we construct and analyze unfolded formulations for 4d off-shell Wess–Zumino and vector supermultiplets, using a mul-
tispinor formalism and proposals of [10]. Infinite sequences of unfolded descendants are collected into master-fields as expansions in 
auxiliary spinors Y = (yα, ȳα̇) and scalar p. An advantage of the 4d multispinor formalism is that it automatically imposes tracelessness 
in derivatives (following directly from the commutativity of Y -spinors) on the space of unfolded descendants, that effectively puts the 
system in question on the mass shell. On the other hand, this does not allow one to simply relax the tracelessness, which is possible in 
tensorial unfolded formulation and represents a standard way to generate unfolded off-shell extensions in that case [3,7,11–13]. A way 
out, proposed in [10], consists in introducing, on top of Y , an additional variable p, which accounts for the off-shell descendants.

Here we find that this variable allows for a curious reorganization of the supersymmetric unfolded modules: some dynamical and 
auxiliary component fields (in particular, scalars in the Wess–Zumino supermultiplet, and a pseudoscalar and zero-helicity subsector of 
the vector field in the vector supermultiplet) can be combined into united unfolded modules as even and odd parts in p-expansions, which 
leads to a significant simplification of the unfolded equations. Moreover, it turns out that then the various constraints get reformulated 
as relations solely in terms of auxiliary Y − p variables: chirality constraint and a non-canonical dimension of the auxiliary scalar for the 
Wess–Zumino model, conservation of the electric current and P -oddness of the auxiliary pseudoscalar for the vector supermultiplet. Given 
that such a reorganization does not seem to have any immediate simple interpretation in the conventional Lagrangian terms, the proposed 
approach can provide new tools for dealing with the off-shell supersymmetry problems.

The paper is organized as follows. In Section 2 we briefly discuss the unfolded dynamics approach and give concrete simple examples 
of unfolded systems used later. In Section 3 we present the unfolded off-shell Wess–Zumino model in spinorial formulation, alternative to 
the tensorial formulation of [7], and show that it allows one to reduce unfolded off-shell modules to a simpler form. Section 4 is devoted 
to the unfolding of the off-shell vector supermultiplet. In Section 5 we summarize our results.

2. Unfolded approach

Unfolded formulation [1–3] of the field theory represents a set of equations of the form

dW A(x) + G A(W ) = 0, (2.1)

on unfolded fields W A(x), which are differential forms, with A standing for all indices they carry. Here d is the de Rham differential 
on the space-time (super)manifold Md with local coordinates x and G A(W ) is built from exterior products of W (wedge symbol will be 
always implicit). The identity d2 ≡ 0 entails the following consistency condition for an unfolded system

G B δG A

δW B
≡ 0, (2.2)

which is of the first importance in the unfolding procedure. Equations (2.1) are invariant under a set of infinitesimal gauge transformations

δW A = dεA − εB δG A

δW B
. (2.3)

Gauge parameter εA(x) is a rank-(r − 1) form related to a rank-r unfolded field W A . 0-forms do not have their own gauge symmetries 
and are transformed only by higher-forms gauge transformations through the second term in (2.3).

The sense of the unfolded system (2.1) can be understood as follows. A set of unfolded fields W A(x) decomposes into subsets of 
primary fields and descendant fields. The unfolded equations express the descendants in terms of the primaries and their derivatives. At 
the same time, they may (implicitly) put some differential combinations of primaries to zero, which means that the system is on-shell; 
otherwise it is off-shell. Concrete simple examples will be given below.

2.1. Supersymmetric vacuum

The non-dynamical maximally-symmetric space-time background in the unfolded approach arises through a 1-form connection � =
dxa�A

a (x)T A , which takes values in Lie algebra of space-time symmetries with generators T A and obeys zero-curvature condition (which 
is of the form (2.1))

d� + �� = 0. (2.4)

A choice of some particular solution �0 breaks the gauge symmetry

δ� = dε(x) − [�,ε] (2.5)

(square brackets stands for the Lie-algebra commutator) to the residual global symmetry εglob that leaves �0 invariant and is determined 
by

dεglob − [�0, εglob] = 0. (2.6)
2
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Because there are no 0-forms in (2.4), the background is non-dynamical: it describes no gauge-invariant physical d.o.f.
In the paper we consider 4d N = 1 super-Poincaré group, so an appropriate 1-form is a connection

� = eαβ̇ Pαβ̇ + iωαβ Mαβ + iω̄α̇β̇ M̄α̇β̇ + ψα Q α + ψ̄ α̇ Q̄ α̇ , (2.7)

where Pαα̇ , Mαβ , Q α are generators of translations, Lorentz transformations and supercharges, while eαβ̇ , �αβ , ψα are 1-forms of vierbein, 
Lorentz connection and gravitino (α and α̇ are sl(2, C)-spinor indices). For this � (2.4) gives, accounting for commutation relations of 
generators,

deαβ̇ + ωα
γ eγ β̇ + ω̄β̇

γ̇ eαγ̇ − ψαψ̄β̇ = 0, (2.8)

dωαβ + ωα
γ ωγ β = 0, dω̄α̇β̇ + ω̄α̇

γ̇ ω̄γ̇ β̇ = 0, (2.9)

dψα + ωα
γ ψγ = 0, dψ̄ α̇ + ω̄α̇

γ̇ ψ̄ γ̇ = 0. (2.10)

Fixing some particular solution to these equations reduces initial supergravity gauge symmetry (2.3) to a global supersymmetry (2.6) and 
determines supertransformation rules for all fields coupled to this background.

2.2. Scalar field

The simplest dynamical system is a free scalar field. An appropriate set of unfolded fields to describe it includes all multispinor fields 
of the type ( n

2 , n2 ), i.e. Cα(n),α̇(n)(x) for all n (we make use of the condensed notations in the paper, denoting a set of n symmetrized 
indices A1...An as A(n)) [2]. All these fields can be collected into a single unfolded module by means of the auxiliary commuting spinors 
Y = (yα, ȳα̇), α, α̇ = 1,2. Spinor indices are raised and lowered by antisymmetric metrics

εαβ = εα̇β̇ =
(

0 1
−1 0

)
, εαβ = εα̇β̇ =

(
0 1

−1 0

)
(2.11)

as

vα = εαβ vβ, vα = εβα vβ, v̄ α̇ = εα̇β̇ v̄ β̇ , v̄ α̇ = εβ̇α̇ v̄ β̇ , (2.12)

so because of commutativity

yα yβεαβ = 0, ȳα̇ ȳβ̇ εα̇β̇ = 0. (2.13)

A single unfolded scalar module is then defined as

C(Y |x) =
∞∑

n=0

1

(n!)2
Cα(n),α̇(n)(yα)n( ȳα̇)n, (2.14)

and an unfolded equation for C is [5]

DC + ie∂∂̄C = 0. (2.15)

Here

D = d + ωαβ yα∂β + ω̄α̇β̇ ȳα̇ ∂̄β̇ (2.16)

is a 1-form of a Lorentz-covariant derivative, where Y -derivatives are introduced as

∂α yβ = δα
β, ∂̄α̇ ȳβ̇ = δα̇

β̇ , (2.17)

and for brevity we denote

ey ȳ = eαβ̇ yα ȳβ̇ , e∂∂̄ = eαβ̇∂α∂̄β̇ , ey∂̄ = eαβ̇ yα∂̄β̇ , e ȳ∂ = eαβ̇ ȳβ̇ ∂α. (2.18)

Representing D as

D = eαβ̇ Dαβ̇ (2.19)

one gets from (2.15)

Cα(n),α̇(n)(x) = (iDαα̇)nC(0|x), (2.20)

�C(0|x) = 0. (2.21)

Thus Cα(n),α̇(n) are descendant fields, forming a tower of symmetrized traceless derivatives of the on-shell primary field C(0|x) which is 
subjected to the massless Klein–Gordon equation.

To construct an off-shell completion for the unfolded on-shell system one has to couple it to external currents, as explained in [10]. 
These currents, sourcing r.h.s. of e.o.m. (Klein–Gordon equation in this case), further can be interpreted as off-shell descendants so that 
former e.o.m. turn to constraints expressing these descendants in terms of primaries.
3
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As shown in [10], all off-shell unfolded scalar fields can be collected in a single module by a simple introduction of one more auxiliary 
scalar variable p, so that an off-shell unfolded scalar module is

C(Y |p|x) =
∞∑

M,n=0

1

(2M)!(n!)2
C (M)

α(n),α̇(n)
p2M(yα)n( ȳα̇)n. (2.22)

Here we used expansion in even powers of p, differently from [10], what for a separately taken scalar field makes no difference, but is 
better suited for the supersymmetric extensions, as we will see below.

An unfolded equation for an off-shell scalar field is

DC + ie∂∂̄C + iey ȳ
∂2

p

(ς + 1)(ς + 2)
C = 0, (2.23)

where

∂p = ∂

∂ p
, (2.24)

ς = (N + N̄)

2
, (2.25)

N = yα∂α, N̄ = ȳα̇ ∂̄α̇ . (2.26)

Now instead of (2.20) one has

C (M)
α(n),α̇(n)

(x) =�M(iDαα̇)nC(0|x), (2.27)

and instead of (2.21)

�C (0)(x) = C (1)(x). (2.28)

So (2.23) indeed corresponds to a scalar field C (0) coupled to an external current C (1) . Or, as we take it, it corresponds to an unfolded 
off-shell scalar C (0) with C (1) being one of its descendants determined by (2.28). And as one can see from the comparison of (2.23) and 
(2.27), an expansion of C in powers of p2 is equivalent to an expansion in powers of boxes of the primary scalar.

2.3. Vector gauge field

Maxwell field in the unfolded language corresponds to a 1-form of the vector potential A = Am(x)dxm and two conjugate 0-form 
modules

F (Y |x) =
∞∑

n=0

1

n!(n + 2)! Fα(n+2),α̇(n)(yα)n+2( ȳα̇)n, F̄ (Y |x) =
∞∑

n=0

1

n!(n + 2)! F̄α(n),α̇(n+2)(yα)n( ȳα̇)n+2. (2.29)

Unfolded equations are [5]

dA = i

4
E∂∂ F + i

4
¯E∂∂ F̄ , |Y =0 (2.30)

D F + ie∂∂̄ F = 0, (2.31)

D F̄ + ie∂∂̄ F̄ = 0, (2.32)

from which one finds

Fαα = i

2
Dα

β̇(σm)αβ̇ Am, F̄ α̇α̇ = i

2
Dβ

α̇(σm)βα̇ Am. (2.33)

Fα(n+2),α̇(n) = (iDαα̇)n Fαα, F̄α(n),α̇(n+2) = (iDαα̇)n F̄ α̇α̇ . (2.34)

Dβ
α̇ Fβα = 0, Dα

β̇ F̄ β̇α̇ = 0. (2.35)

Thus, F̄ and F encode selfdual F̄ α̇α̇ and anti-selfdual Fαα parts of the Maxwell tensor and all their on-shell derivatives (2.34). The Maxwell 
tensor is built from the vector potential Am according to (2.33) and obeys Maxwell equations (2.35). From the general formula (2.3) one 
restores a conventional gauge symmetry of electrodynamics

δA = dε(x), δF = 0, δ F̄ = 0. (2.36)

An off-shell vector field arises through coupling of (2.30)-(2.32) to an external conserved electric current. As shown in [10], an unfolded 
electric current module J (Y |p|x) is structured as follows
4
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J (Y |p|x) = J 0 + J+ + J−, (2.37)

J 0 =
∞∑

M,n=0

1

(2M)!(n + 1)!2 J (M)
α(n+1),α̇(n+1)

p2M(yα)n+1( ȳα̇)n+1, (2.38)

J+ =
∞∑

M,n=0

1

(2M)!(n + 2)!n! J (M)
α(n+2),α̇(n)

p2M(yα)n+2( ȳα̇)n, (2.39)

J− =
∞∑

M,n=0

1

(2M)!(n + 2)!n! J (M)
α(n),α̇(n+2)

p2M(yα)n( ȳα̇)n+2, (2.40)

and an off-shell system for a free vector gauge field is

dA = i

4
E∂∂ F + i

4
¯E∂∂ F̄ , |Y =0 (2.41)

D F + ie∂∂̄ F + iey ȳ
1

(ς + 1)(ς + 2)
J+ + ey∂̄

2

(ς + 1)(ς + 2)
J 0 = 0, (2.42)

D F̄ + ie∂∂̄ F̄ + iey ȳ
1

(ς + 1)(ς + 2)
J− + e∂ ȳ

2

(ς + 1)(ς + 2)
J 0 = 0, (2.43)

D J + ie∂∂̄ J + iey ȳ
ς(ς + 3)

(N + 1)(N + 2)(N̄ + 1)(N̄ + 2)
∂2

p J+

+ ey∂̄
1

(N + 1)(N + 2)
( J− + 2∂2

p J 0) + e∂ ȳ
1

(N̄ + 1)(N̄ + 2)
( J+ + 2∂2

p J 0) = 0. (2.44)

Equation (2.44) determines all unfolded fields in J in terms of the primary electric current J (0)
α,α̇(x) and imposes a conservation condition

Dαα̇ J (0)α,α̇(x) = 0 (2.45)

(this can be deduced by using (2.19) and acting on (2.44) with ∂α∂̄α̇ δ

δeαα̇ , followed by putting Y = 0, p = 0). Then (2.42)-(2.43) describe 
gluing of the current module J to the on-shell vector module, thus providing and off-shell completion for the latter.

2.4. Spinor field

In [10] only bosonic fields were considered. Here we present an unfolded description of an off-shell spin-1/2 field which reveals an 
important peculiarity of fermions.

Weyl ( 1
2 , 0)-spinor is described by an unfolded module

χ(Y |x) =
∞∑

n=0

1

n!(n + 1)!χα(n+1),α̇(n)(x)(yα)n+1( ȳα̇)n (2.46)

supported by an unfolded equation [5]

Dχ + ie∂∂̄χ = 0. (2.47)

Analogously to the scalar case, higher-rank multispinors are expressed through a primary field χα(x) subjected to the Weyl equation

χα(n+1),α̇(n) = (iDαα̇)nχα, (2.48)

Dαβ̇χα = 0. (2.49)

To put this system off-shell, one has to couple it to an external current, which in this case is an unconstrained (i.e. also off-shell) (0, 12 )-
spinor field. An appropriate unfolded off-shell module turns out to be

χ(Y |p|x) = χ+ + χ−, (2.50)

χ+ =
∞∑

M,n=0

1

(2M)!n!(n + 1)!χ
(M)
α(n+1),α̇(n)

p2M(yα)n+1( ȳα̇)n, (2.51)

χ− =
∞∑

M,n=0

1

(2M)!n!(n + 1)!χ
(M)
α(n),α̇(n+1)

p2M+1(yα)n( ȳα̇)n+1, (2.52)

and unfolded equations are

Dχ + ie∂∂̄χ + iey ȳ
∂2

p

(ς + 3 )2
χ + ey∂̄

∂p

(ς + 1 )(ς + 3 )
�−χ + e∂ ȳ

∂p

(ς + 1 )(ς + 3 )
�+χ = 0, (2.53)
2 2 2 2 2

5
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where we introduced projectors on positive and negative helicity (identified with the difference between the number of undotted and 
dotted spinors) as

fm,n = fα(m),β̇(n)(yα)m( ȳβ̇ )n,

�+ fm,n =
{

fm,n, m ≥ n

0, m < n
�− fm,n =

{
fm,n, m ≤ n

0, m > n
. (2.54)

As one sees from (2.53), unlike unfolded off-shell bosons, off-shell fermions require all powers of p to be presented in the module. And 
helicities of unfolded fields are related to their p-parity, as follows from (2.51)-(2.52): positive helicities belong to the p-even sector, while 
negative ones – to the p-odd.

To get an unfolded description for an off-shell Weyl (0, 12 )-type spinor ζ̄α̇ one just needs to flip the relation between helicity and 
p-parity:

ζ̄ (Y |p|x) = ζ̄− + ζ̄+, (2.55)

ζ̄− =
∞∑

M,n=0

1

(2M)!n!(n + 1)! ζ̄
(M)
α(n),α̇(n+1)

p2M(yα)n( ȳα̇)n+1, (2.56)

ζ̄+ =
∞∑

M,n=0

1

(2M)!n!(n + 1)! ζ̄
(M)
α(n+1),α̇(n)

p2M+1(yα)n+1( ȳα̇)n, (2.57)

while the unfolded equation remains the same

D ζ̄ + ie∂∂̄ζ̄ + iey ȳ
∂2

p

(ς + 3
2 )2

ζ̄ + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�−ζ̄ + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�+ζ̄ = 0. (2.58)

Finally, to describe an off-shell Dirac spinor one simply unites two modules χ and ζ̄ into an unfolded off-shell Dirac module

Ξ(Y |p|x) = χ + ζ̄ , (2.59)

and the unfolded equation remains the same once again

DΞ + ie∂∂̄Ξ + iey ȳ
∂2

p

(ς + 3
2 )2

Ξ + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�−Ξ + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�+Ξ = 0. (2.60)

But now there is no relation between helicity and p-parity: both helicities have all terms in p-expansion.
Thus, for off-shell spinors of all types one has one and the same unfolded equation, but the structure of the unfolded module does 

depend on the type. Introducing projectors on p-even and p-odd parts as

�e f (p) = f (p) + f (−p)

2
, �o f (p) = f (p) − f (−p)

2
, (2.61)

one can formulate this dependence as a constraint on the mutual p − Y dependence

left Weyl: �e = �+, (2.62)

right Weyl: �e = �−, (2.63)

Dirac: no constraints. (2.64)

3. Unfolded Wess-Zumino model revisited

Unfolded formulation of the on-shell Wess-Zumino model in terms of symmetric Lorentz-tensors playing the role of unfolded fields 
was built in [6].

DCa(k) + ebCa(k)b − √
2ψαχ

a(k)
α = 0, (3.1)

Dχ
a(k)
α + ebχ

a(k)b
α − i

√
2(σb)αβ̇ ψ̄ β̇ Ca(k)b = 0 (3.2)

Ca(k−2)b
b = 0, χ

a(k−2)b
α b = 0, (σ̄b)

α̇βχ
a(k)b
β = 0. (3.3)

All tensors are traceless and spinor fields are subjected to σ -transversality condition. Off-shell extension arises via relaxing tracelessness 
and σ -transversality conditions and requires introducing a series of symmetric tensor fields F a(k) , which correspond to an auxiliary 
component scalar of the chiral supermultiplet [7]. Resulting off-shell system is

DCa(k) + ebCa(k)b − √
2ψαχ

a(k)
α = 0, (3.4)

Dχ
a(k)
α + ebχ

a(k)b
α − i

√
2(σb)αβ̇ ψ̄ β̇ Ca(k)b − √

2ψα F a(k) = 0, (3.5)

D F a(k) + eb F a(k)b − i
√

2ψ̄α̇(σ̄b)
α̇βχ

a(k)b
β = 0. (3.6)
6
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Translating this to the multispinor language of this paper, symmetric traceless tensor T a(k) corresponds to a multispinor Tα(k),α̇(k) , while 
σ -transverse χa(k)

α corresponds to χα(k+1),α̇(k) . Then p2M -terms of (2.22) and (2.51) correspond to the traces of the Lorentz-tensors, while 
p2M+1-terms from (2.52) correspond to σ -longitudinal contributions of the form (σ̄b)

α̇βχ
a(k)b
β .

In order to build a multispinor equivalent of the system (3.4)-(3.6), one supplements off-shell scalar (2.23) and off-shell spinor (2.53)
with the unfolded auxiliary scalar

F (Y |p|x) =
∞∑

M,n=0

1

(2M)!(n!)2
F (M)
α(n),α̇(n)

p2M(yα)n( ȳα̇)n, (3.7)

D F + ie∂∂̄ F + iey ȳ
∂2

p

(ς + 1)(ς + 2)
F = 0 (3.8)

and deforms (2.23), (2.53), (3.8) with ψ-dependent terms mixing component C , χ and F in a consistent way. We will not describe here 
the procedure of this (and other presented in the paper) unfolding, which is quite technical, tedious and lengthy. Detailed examples of 
constructing unfolded systems can be found e.g. in [10,14]. In a nutshell, one has to write down the most general suitable Ansatz for 
unfolded equations with arbitrary (p|Y )-dependent coefficients and then fix them by imposing consistency condition (2.2).

For the off-shell chiral supermultiplet in question, consistent unfolded equations turn to be

DC + ie∂∂̄C + iey ȳ
∂2

p

(ς + 1)(ς + 2)
C + ψ∂�+χ + iψ y

∂p

(ς + 3
2 )

�−χ = 0, (3.9)

Dχ + ie∂∂̄χ + iey ȳ
∂2

p

(ς + 3
2 )2

χ + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�−χ + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�+χ−

− iψ̄∂C − ψ̄ y
∂p

(ς + 1)
C + iψ y

1

(ς + 1)
F − p

1

p∂p + 1
ψ∂ F = 0. (3.10)

D F + ie∂∂̄ F + iey ȳ
∂2

p

(ς + 1)(ς + 2)
F + iψ̄∂∂p�−χ − ψ̄ y

∂2
p

(ς + 3
2 )

�+χ = 0. (3.11)

This multispinor formulation allows for a new interesting possibility, elusive in the tensor form (3.4)-(3.6). Namely, it is possible to 
naturally combine the dynamical and auxiliary scalar modules C and F into a single one. To this end one defines a combined scalar 
module

� = C + i∂p F , (3.12)

which thus contains both even (former C ) and odd (former F ) terms in p-expansion

�(Y |p|x) =
∞∑

M,n=0

1

M!(n!)2
�

(M)
α(n),α̇(n)

pM(yα)n( ȳα̇)n. (3.13)

Note that this incorporation correctly reproduces a scaling dimension of the auxiliary scalar, associated with p-odd part of �: the scaling 
dimension of p is

�p = 1, (3.14)

as one can see e.g. from (2.22) and (2.27), hence

�F = �C + 1. (3.15)

In terms of �, (3.9)-(3.11) turns to

D� + ie∂∂̄� + iey ȳ
∂2

p

(ς + 1)(ς + 2)
� + (ψ∂�+ + ψ̄∂�− + iψ y

∂p

(ς + 3
2 )

�− + iψ̄ y
∂p

(ς + 3
2 )

�+)χ = 0, (3.16)

Dχ + ie∂∂̄χ + iey ȳ
∂2

p

(ς + 3
2 )2

χ + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�−χ + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�+χ−

− (iψ∂ + iψ̄∂ + ψ̄ y
∂p

(ς + 1)
+ ψ y

∂p

(ς + 1)
)� = 0. (3.17)

A curious feature of the system (3.16)-(3.17) is that naively it looks real, though describing a chiral supermultiplet. The point is that it is 
consistent, i.e. satisfying (2.2), only if χ is a Weyl module, not a Dirac (or Majorana) one. But as discussed above, unfolded equations for 
Dirac and both types of Weyl spinors look completely the same. The difference is in the structure of the unfolded modules, expressed in 
(2.62)-(2.64). Thus, (3.16)-(3.17) supplemented by the chirality constraint

�eχ = �+χ, (3.18)
7
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determines an unfolded off-shell chiral supermultiplet. And the same unfolded system (3.16)-(3.17), but supplemented with the opposite 
anti-chirality constraint

�eχ = �−χ, (3.19)

determines an unfolded off-shell anti-chiral supermultiplet.
This “degeneracy” of the unfolded equations (3.16)-(3.17) for chiral and anti-chiral supermultiplets (i.e. that they look completely the 

same) becomes manifest only after unifying two scalars of the Wess–Zumino model into a single module � and is not seen in the 
“standard” unfolded formulation (3.4)-(3.6) of [7] or its spinorial version (3.9)-(3.11), where two supermultiplets are related by non-
invariant (i.e. changing the form of equations) complex conjugation. The main ingredient is p-variable, which allows one to unite two 
bosonic fields: in a non-supersymmetric situation bosonic modules depend only on p2 which, as is seen e.g. from (2.22), (2.27), encodes 
descendants containing kinetic operators acting on the primary field; on the other hand, fermions depend on all powers of p, because their 
kinetic operators are of the first order and change the type of the spinors. In non-manifestly-supersymmetric reduction of (3.16)-(3.17)
which arises from putting all gravitino 1-forms ψ and ψ̄ to zero, p-odd and p-even terms in � become completely disentangled – �
divides into independent modules C and F , and the question of their relative p-parity becomes inessential. But in the supersymmetric 
system non-zero ψ and ψ̄ non-trivially intertwine p-odd and p-even parts of �.

Let us also stress that the unification of two scalars and the resulting degeneracy of the unfolded equations is not easy to explain in 
terms of the standard Lagrangian formulation. The reason behind this is that, as mentioned at the end of Subsection 2.2, p2 in some sense 
is conjugate to the wave operator, so that odd p-powers of the bosonic field � do not allow a simple interpretation.

4. Unfolded vector supermultiplet

In this Section we are about to build and analyze an unfolded system of an off-shell vector supermultiplet. This is accomplished in 
several stages. First, we formulate an on-shell system; then we find an unfolded description for a supersymmetric source for a vector 
system, which is a linear multiplet; finally, we couple a linear multiplet to the vector system thus arriving at an unfolded off-shell vector 
supermultiplet.

On-shell vector supermultiplet contains Maxwell field and gaugino being Majorana spinor. So one has to take (2.30)-(2.32), (2.47), add 
possible terms with ψα , ψ̄α̇ mixing the spinor and the vector, and then solve for the consistency condition (2.2). This brings to

dA = i

4
E∂∂ F + i

4
¯E∂∂ F̄ + 1

2
eαα̇ψα∂̄α̇λ̄ + 1

2
eαα̇ψ̄α̇∂αλ.|Y =0 (4.1)

D F + ie∂∂̄ F − ψ̄∂λ = 0. (4.2)

D F̄ + ie∂∂̄ F̄ − ψ∂λ̄ = 0. (4.3)

Dλ + ie∂∂̄λ + iψ∂ F = 0. (4.4)

Dλ̄ + ie∂∂̄λ̄ + iψ̄∂ F̄ = 0. (4.5)

To go off-shell one has to switch on external currents for F and λ. In principle, one could start with off-shell systems for F and λ
presented in (2.41)-(2.44), (2.60) and then look for consistent supersymmetric ψ-corrections. However, there is a more efficient way along 
the lines of [10]: to make use of a supersymmetric generalization of an electric current, which is provided by a linear multiplet. This 
includes conserved vector, unconstrained Majorana spinor and unconstrained pseudoscalar. So one can first find an unfolded system for a 
linear multiplet and then couple it to (4.1)-(4.5).

To this end one takes unfolded systems for an electric current J , off-shell spinor (χ, χ̄ ) (it is convenient to separate a Majorana spinor 
into two conjugate Weyl’s) and off-shell scalar C , and add possible consistent terms with ψ and ψ̄ which mix component fields. This 
results in

D J + ie∂∂̄ J + iey ȳ
ς(ς + 3)∂2

p

(N + 1)(N + 2)(N̄ + 1)(N̄ + 2)
J+

+ ey∂̄
1

(N + 1)(N + 2)
( J− + 2∂2

p J 0) + e∂ ȳ
1

(N̄ + 1)(N̄ + 2)
( J+ + 2∂2

p J 0)+

+ (ψ∂�+ + 2ψ∂∂p�− − 2iψ y
∂2

p

(ς + 3
2 )

�+ − iψ y
(ς + 5

2 )∂p

(ς + 1
2 )(ς + 3

2 )
�−)χ+

+ (ψ̄∂�− + 2ψ̄∂∂p�+ − 2iψ̄ y
∂2

p

(ς + 3
2 )

�− − iψ̄ y
(ς + 5

2 )∂p

(ς + 1
2 )(ς + 3

2 )
�+)χ̄ = 0. (4.6)

Dχ + ie∂∂̄χ + iey ȳ
∂2

p

(ς + 3
2 )2

χ + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�−χ + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�+χ−

− i

2
ψ̄∂ J 0 + 1

2
ψ̄ y

1

(ς + 1)
J+ + 1

2
ψ̄ y

ς

(ς + 1)(ς + 2)
J 0 − i

2
ψ̄∂ p

1

p∂p + 1
J− − 1

2
ψ̄∂C + 1

2
ψ̄ y

∂p

(ς + 1)
C = 0. (4.7)

Dχ̄ + ie∂∂̄χ̄ + iey ȳ
∂2

p

(ς + 3 )2
χ̄ + e∂ ȳ

∂p

(ς + 1 )(ς + 3 )
�+χ̄ + ey∂̄

∂p

(ς + 1 )(ς + 3 )
�−χ̄−
2 2 2 2 2

8
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− i

2
ψ∂ J 0 + 1

2
ψ y

1

(ς + 1)
J− + 1

2
ψ y

ς

(ς + 1)(ς + 2)
J 0 − i

2
ψ∂ p

1

p∂p + 1
J+ + 1

2
ψ∂C − 1

2
ψ y

∂p

(ς + 1)
C = 0. (4.8)

DC + ie∂∂̄C + iey ȳ
∂2

p

(ς + 1)(ς + 2)
C + iψ∂�+χ − iψ̄∂�−χ̄ − ψ y

∂p

(ς + 3
2 )

�−χ + ψ̄ y
∂p

(ς + 3
2 )

�+χ̄ = 0, (4.9)

which is an unfolded form of the linear multiplet. The pseudoscalar nature of C manifests in opposite signs between terms with ψ and 
ψ̄ , which mix it with the spinor.

Now coupling of (4.6)-(4.9) to (4.1)-(4.5) yields

dA = i

4
E∂∂ F + i

4
¯E∂∂ F̄ + 1

2
eαα̇ψα∂̄α̇λ̄ + 1

2
eαα̇ψ̄α̇∂αλ.|Y =0 (4.10)

D F + ie∂∂̄ F + iey ȳ
1

(ς + 1)(ς + 2)
J+ + ey∂̄

2

(ς + 1)(ς + 2)
J 0 − ψ̄∂λ − ψ y

2i

(ς + 3
2 )

�+χ = 0. (4.11)

D F̄ + ie∂∂̄ F̄ + iey ȳ
1

(ς + 1)(ς + 2)
J− + e∂ ȳ

2

(ς + 1)(ς + 2)
J 0 − ψ∂λ̄ − ψ̄ y

2i

(ς + 3
2 )

�−χ̄ = 0. (4.12)

Dλ + ie∂∂̄λ − ey∂̄
2

(ς + 1
2 )(ς + 3

2 )
�−χ̄ − ey ȳ

2i∂p

(ς + 3
2 )2

�+χ̄+ (4.13)

+ iψ∂ F + iψ y
1

(ς + 1)
C − ψ y

ς

(ς + 1)(ς + 2)
J 0 = 0. (4.14)

Dλ̄ + ie∂∂̄λ̄ − e∂ ȳ
2

(ς + 1
2 )(ς + 3

2 )
�+χ − ey ȳ

2i∂p

(ς + 3
2 )2

�−χ+ (4.15)

+ iψ̄∂ F̄ − iψ̄ y
1

(ς + 1)
C − ψ̄ y

ς

(ς + 1)(ς + 2)
J 0 = 0. (4.16)

Together equations (4.6)-(4.9), (4.10)-(4.16) form an unfolded off-shell system for the vector supermultiplet. Let us stress a characteristic 
feature of the used approach to build off-shell supersymmetric models: in a conventional Lagrangian formulation the off-shell vector 
supermultiplet includes the Maxwell field, the gaugino and the auxiliary pseudoscalar which vanishes on-shell, while in the unfolded 
approach there is an infinite number of descendant fields, in particular those which vanish on-shell (these are exactly the unfolded module 
of the linear multiplet). What is their relation to the conventional off-shell vector supermultiplet with only one auxiliary pseudoscalar? 
The answer is that among plenty unfolded fields presented in (4.6)-(4.16), the only primaries when considering Minkowski space with 
ψ = ψ̄ = 0 are A, λα(p = 0), λ̄α̇(p = 0) and C(p = 0) – which precisely corresponds to the field content of the Lagrangian off-shell vector 
supermultiplet. But in our construction this pseudoscalar appears as a part of the external current for the vector supermultiplet, necessary 
for relaxing on-shell constraints.

Analogously to what is done in Section 3 for the Wess–Zumino model, it is possible to recombine component fields of the off-shell 
vector supermultiplet by modification their p-dependence, such that the unfolded system gets simplified. All spinor modules λ, λ̄, χ , χ̄
can be combined into a single off-shell Majorana module �, while J+ and J− are naturally included to F and F̄ as their p2-dependent 
parts and J 0 and C get united into a single module � as p-even and p-odd parts respectively

� = p2 J 0 + pC, (4.17)

�(Y |p|x) =
∞∑

M=1,n=0

1

M!(n!)2
�

(M)
α(n),α̇(n)

pM(yα ȳα̇)n, (4.18)

with a constraint on the eigenvalues λς of ς on the subspace �e�

λς |�e� ≥ 1, (4.19)

which encodes conservation of the electric current ( J 0 has zero divergence and hence no scalar descendants). Another point one has to 
ensure is pseudo-reality of C . This can be elegantly built into a modified conjugation operation h.c., which originally just exchanges dotted 
and undotted spinors in the unfolded equations. The modified conjugation now also flips the sign of p in �, thus multiplying C by −1

h.c. : (α, β̇) → (α̇, β), �(p) → �(−p). (4.20)

As a result, the unfolded off-shell system for the vector supermultiplet now reads

dA = i

4
E∂∂ F + i

4
¯E∂∂ F̄ + 1

2
eαα̇ψα∂̄α̇� + 1

2
eαα̇ψ̄α̇∂α�.|p,Y =0 (4.21)

D F + ie∂∂̄ F + iey ȳ
∂2

p

(ς + 1)(ς + 2)
F + ey∂̄

2∂2
p�e

(ς + 1)(ς + 2)
� − ψ̄∂�e�+ + iψ y

∂p

(ς + 3
2 )

�o�+ = 0. (4.22)

D F̄ + ie∂∂̄ F̄ + iey ȳ
∂2

p

(ς + 1)(ς + 2)
F̄ + e∂ ȳ

2∂2
p�e

(ς + 1)(ς + 2)
� − ψ∂�e�− + iψ̄ y

∂p

(ς + 3 )
�o�− = 0. (4.23)
2
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D� + ie∂∂̄� + iey ȳ
∂2

p

(ς + 3
2 )2

� + ey∂̄
∂p

(ς + 1
2 )(ς + 3

2 )
�− + e∂ ȳ

∂p

(ς + 1
2 )(ς + 3

2 )
�++

+
(

iψ∂ F + iψ∂(∂p�e + �o)� − ψ y
∂p

(ς + 1)
F̄ − ψ y

∂p

(ς + 1)
(

ς

(ς + 2)
∂p�e − �o)� + h.c.

)
= 0. (4.24)

D� + ie∂∂̄� + iey ȳ
∂2

p

(ς + 1)(ς + 2)
(1 − 2�e

(ς + 1)(ς + 2)
)� + ey∂̄

1

ς(ς + 1)
F̄ + e∂ ȳ

1

ς(ς + 1)
F+

+
(

i

2
ψ y

∂p

(ς + 3
2 )

(
(ς + 5

2 )

(ς + 1
2 )

+ ∂p)�e�− − 1

2
ψ∂ p

1

p∂p + 1
(1 − ∂p)�o�+ + h.c.

)
= 0. (4.25)

Although being somewhat bulky, it obviously looks much simpler than its “non-compressed” form (4.6)-(4.16).

5. Conclusion

In the paper we have constructed and analyzed unfolded off-shell systems for the chiral and vector supermultiplets, by formulating 
corresponding on-shell systems and coupling them to the external currents. We worked in the multispinor formalism and found that our 
formulation reveals certain new interesting features.

Analyzing the unfolded off-shell Wess–Zumino model, we have discovered a way to reorganize unfolded fields in a more compact 
way, with only one scalar and one spinor unfolded modules, which seems elusive in the original tensorial formulation of [6,7]. The clue 
is the use of an additional variable p, which was originally introduced as a formal parameter cataloging off-shell descendants of the 
primary fields, resulting from the action of kinetic operators [10]. Comparing to the tensorial formulation of [7], this p accounts for the 
traces of the off-shell traceful unfolded fields. However, in supersymmetric model it allows one to unite dynamical and auxiliary scalars 
of Wess–Zumino model into a single unfolded module. Moreover, it turns out that in this new form unfolded off-shell equations become 
pseudo-real, looking completely identical for chiral and anti-chiral supermultiplets. And an additional constraint which chooses between 
chiral and anti-chiral systems takes a form of a simple relation constraining p-dependence of the unfolded spinor module. At this moment 
p becomes not just a book-keeping parameter but an actual “alive” variable. It cannot be interpreted as just a counterpart of tensor traces 
in [7] anymore (in fact, it becomes hard to find any simple straightforward interpretation for it in tensorial terms). It must be emphasized 
that this variable is not specially designed and introduced in order to merge two scalar modules into one (otherwise, this would be a 
triviality): it necessarily appears for all unfolded off-shell relativistic fields written in terms of multispinors [10].

Further, we have constructed an unfolded description of the vector supermultiplet along the lines of [10]. To this end we first found 
an unfolded on-shell system, then built an unfolded formulation for the linear multiplet which is an external source for the vector super-
multiplet, and finally coupled them together. Once again, by modifying p-dependence we managed to put the system in a more concise 
form, analogously to what happened for the Wess–Zumino model. And if in that case there were additional (anti-)chirality constraints on 
the unfolded modules, formulated in terms of p-dependence, for the vector supermultiplet such additional constraints are electric current 
conservation and pseudoscalar parity condition, which are also formulated in terms of p − Y .

Our results show that the unfolded formalism is a fruitful instrument for analyzing supersymmetric theories, which can reveal new 
features even for the well-studied SUSY models, like those considered in the paper. It would be interesting to apply the proposed approach 
to more complicated theories, including higher-spin supermultiplets, extended-SUSY and interacting models. An important property of 
the unfolded formalism is that it allows one to freely pass between different base space-time manifolds (this is possible when the 
unfolded consistency condition holds regardless of the dimension of the base manifold, which is usually the case), which gives rise to 
various dualities [15]. In particular, one can directly uplift unfolded SUSY-models, formulated in component terms in Minkowski space, to 
superspace formulation [6,7]. It would be interesting to see how the superspace unfolded generalizations of the space-time formulations, 
constructed in the paper, fit the standard superspace formulations (in particular, what are relation between the spectra of auxiliary fields).
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