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Abstract: For efficient operation, modern control approaches for biochemical process engineering
require information on the states of the process such as temperature, humidity or chemical composi-
tion. Those measurement are gathered from a set of sensors which differ with respect to sampling
rates and measurement quality. Furthermore, for biochemical processes in particular, analysis of
physical samples is necessary, e.g., to infer cellular composition resulting in delayed information. As
an alternative for the use of this delayed measurement for control, so-called soft-sensor approaches
can be used to fuse delayed multirate measurements with the help of a mathematical process model
and provide information on the current state of the process. In this manuscript we present a complete
methodology based on cascaded unscented Kalman filters for state estimation from delayed and
multi-rate measurements. The approach is demonstrated for two examples, an exothermic chemical
reactor and a recently developed model for biopolymer production. The results indicate that the the
current state of the systems can be accurately reconstructed and therefore represent a promising tool
for further application in advanced model-based control not only of the considered processes but
also of related processes.

Keywords: unscented Kalman filtering; Bayesian estimation; multisensor data fusion; model identifi-
cation

1. Introduction

In recent years, application of automatic control to bio-chemical manufacturing pro-
cesses has become increasingly important to keep the required product quality in close
bounds, guarantee process safety and also decrease the corresponding environmental
impact. Examples are found in a wide range of industries including pharmaceutical and
food manufacturing.

For efficient operation, these control approaches require information on the current
values of important process states and parameters. Often, those are either corrupted
by noise or not directly measurable. Furthermore, measurements of different process
quantities are gained from various sensor types which may differ in sampling rate, accuracy
and lag. In fact, many online sensors can provide instantaneous but lumped (e.g., mean
particle size instead of the full particle size distribution for fluidized bed granulation)
or indirect/inferential measurements gained from auxiliary variables (e.g., for drying
processes, indirect measurement of product moisture content from moisture content of
drying gas at the outlet) [1,2]. In contrast, offline measurements are generally more accurate
but accompanied by significant measurement lags, e.g., resulting from sample drawing,
preparation and analysis for biochemical processes.
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From the control point of view the previously described points lead to a dilemma:
On the one hand, fast but rather unreliable data represent no suitable basis for an reliable
automatic controller. Though, on the other hand it is also not an option to “wait” for
reliable measurement data as corresponding controllers would not be able to act quickly on
changes in the process. As an alternative to advanced (and probably too expensive) sensors
that allow the generation of accurate and quasi-instantaneous online data, model-based
approaches, so-called soft sensors, can be applied to merge different measurements and
provide reliable estimates of the current process.

In the literature, this problem has drawn some attention and thus different approaches
have been studied. In [3], the most significant estimation algorithms have been presented
and compared. Here, Bayesian estimators represent a specific category [4-8] that is an
alternative to optimization based techniques such as moving horizon estimators [9-11]. An
important class of approximative Bayesian estimators are Kalman filters (KF) and particle
filters [6,12,13]. In [14] and the references therein, different KF based approaches to the
previously stated problem are discussed. Additionally, practical examples of different
approaches for (bio-)chemical processes are found in literature, e.g., Kager et al. [15] devel-
oped an estimator for penicillin production using online and delayed offline data using
particle filtering. The approach showed convincing performance in estimating states and
parameters for real measurement data. Furthermore, multi-rate estimators were developed
in [16-18] estimators were developed and evaluated for pilot-scale polymerization reactors.

In this contribution, we present a new model-based methodology, which is able to
merge measurements of various sampling rates, lag horizons and accuracies. The ap-
proach is based on cascaded unscented Kalman filters (UKF). Application to two example
processes, a nonlinear exothermic reactor and microbial biopolymer production, is demon-
strated. The results are discussed and indicate that the presented concept is able to provide
reliable online-estimates and is easily adaptable to a wide range of processes.

2. Methods
2.1. Unscented Kalman Filtering

Assume that the process model is given as

x(t) = f(x(t),u(t),w(t))
h (1) )

with x € R™, y € R"™ and u € R™ representing the systems state, output and input
vector. Furthermore, the systems initial state is denoted as xg € R". In general, the states
dynamics f as well as the measurement equation & are nonlinear functions of the states
and the inputs. In many practical cases, not all dynamic states can be measured directly,
i.e., ny > ny, and furthermore, measurements may be corrupted by noise processes w(t).
Moreover, the process dynamics itself may only be known up to a certain degree or be
affected by stochastic processes summarized in the signal v(t) € R".

For state estimation, i.e., the reconstruction of states x from available measurements y,
the framework of Kalman filtering can be applied to explicitly account for the underlying
noises and uncertainties. In particular for nonlinear dynamics and measurement function,
the so-called unscented Kalman filter (UKF) can be applied. The basic formulation as
presented in [12,19], is described in a discrete time framework, with systems dynamics and
measurement function given by:
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xp = f(xk—1, Ug—1) + G W1 2)
Yk = h(xg, u) + ok 3)
E{w;} = E{v}} =0 4

E{wkwkT} = ri E{vkvg} = Rk (5)
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For the sake of simplicity, it is assumed that the process and the measurement noise,
wy and vy, result from random stochastic processes. Without loss of generality, we assume
that both can be drawn from zero-mean Gaussian distribution with covariances Q; and R.
Furthermore, we assume that both affect the states and measurements in an additive sense.

In principle, the traditional structure from the classical Kalman filter [20] for linear
dynamics is kept. However, contrarily to the prominent extended Kalman filter (EKF),
a sampled-based linearization using Sigma-Points is applied in the UKF. The prediction
steps are given as:

1.  Calculate the Sigma-Points

xl(ch)l,i:}?)((Jr)l—\/W( P,ﬁ) , i=N+1,...,2N (6)
i

2. Propagate each SP using the model equations

xl(c;) = f(x](:_r)lrl) , 1i=0,...,2N ?)
3. Using weights

wn — — "

7 N+«
1 .
Wi—m, i=1,...,2N (8)

determine P,E_), J?Ig_), Pyy, Py and ]2(_) by averaging over weighted SP

2N

f7) =Y wrl, ©)
i=0

() _ 3 (<)

Uk :Zwihk(xk,i ), (10)
i=0
2N B _ _ T

P = Y wi(x,) —27)) () =0 7)) (11)
i=0
& () () S NENEN

Py = Y wi () = 907) () = 907) +Re, (12)
i=0

(5) ) s () ST

By :Ewi<xk,i — % )(xk,i — % ) +Geo1Qk-1Gi_g - (13)
i=0

Suitable tuning of x is discussed in [12] and the references therein. In the second step,
the predicted states and covariance is updated with the current measurement:

Ky = Py - Py} (14)
o) =37 ke (we-91) (15)
Pt = p) _ K- P KT (16)

It is worth mentioning, that different extensions and variants have been introduced in
the last decades, e.g., the square-root version [12]. Further discussion is provided in [21].
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2.2. UKEF for Delayed and Multi-Rate Measurements

As described in the introduction, in practice, measurement data is acquired from
different sensors that differ not only in accuracy but potentially also measurement delays
and sampling rates. The classical formulation presented above must be adapted to such
cases in order to allow accurate estimation of states.

In the case of delayed measurements,

y(t) = h(x(t = 1), u(t = 7)), (17)

the UKF algorithm is adapted, such that only states up to (f — T) can be reconstructed at the
current sample time t. For the interval (t — 7, f] states (and also covariances representing
uncertainties) could be predicted using the unscented transformation, i.e., the prediction
step of the UKF.

Further adaption is necessary if measurements differ in their respective sampling
rates. In the case of two different sensors, a “fast” and a “slow” sensor, the first can be
assumed to have sampling rate At without loss of generality while the sampling rate of
the second is given as an integer multiple N At. This means, that the slow measurement is
only available for each N At and the measurement equation therefore is given as:

T
Yk, fastr Ykslow| - ifk=NAt, NeN (18)

Yk =
Yk fast s else

Obviously, for further sensors, this representation can become rather confusing. Alter-
natively, in particular in the Kalman Filtering context, it is convenient to keep the standard
measurement equation, i.e.,

T
Y = []/k,fast/ ]/k,slow} 19)

and use a specific weighting of the measurements in the update step by setting high values
for the measurement noise of currently not available measurements in the update step.

Rifast 0 R, ifk=NAt... ; o
Ry stow + Ristow = llcl,slow , else ’ Rk,slow > Rk,slow (20)

This alternative solution is easier to implement for more than two sensors because the
native KF structure can be kept.

An example is given in the following. Assume that a fast sensor has a sampling rate of
At and the slow sensor a sampling rate of 2At. This means that yj 4., can only be measured
in each second time step and yj, ¢ in each time step. Thus, the reconstruction of states is
alternately based on the measurement of yy r,s; and the measurements from both sensors,
Yk slow and Yy, fast, from step to step. In result the measurement equation is given as:

Yk = Yk, fast » ifk=1,3,5,...
T .
Yk = [yk,fast/ yk,slow} , ifk=24,6,... (21)

Alternatively, the standard measurement equation, i.e.,
T
Yk = [yk,fustr ]/k,slow} (22)

is kept with a specific weighting:

else k,slow

R 0 RL . ifk=1,3,5,...
k.fast ] ’ Rk,slow = { Rkl,;low ’ Rlﬁ,slow > RH . (23)

Rk,slow k,slow ’
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3. Results and Discussion

This section evaluates the presented methods’ performance to infer the systems state
from (potentially) delayed measurements with different sampling rates. Therefore, two ex-
amples are analyzed: In the first case, the UKF is applied to a exothermic reactor described
by a system of two nonlinear ODEs [22]. In addition to reconstruction of immeasurable
states, the UKF’s potential for online parameter estimation is assessed. The second exam-
ple is concerned with state estimation for microbial-based production of biopolymers in
lab-scale setup. The underlying model was recently developed in our group with own
experimental data [23].

3.1. Exothermal Chemical Reactor
3.1.1. Model Formulation
The dimensionless model suggested by Schaffner and Zeitz [22] describes the nonlin-

ear dynamics of an exothermic chemical reaction in terms of conversion x; and tempera-
ture x,

% = —a1X1 + 1014b1 T(xl/XZ) ’
d
TJ? = —ayxy +10%p, r(x1, x2) + gu,
E
r(x1,x2) = (1—x1)exp <—1+x2> . (24:)

The control input u represents the heating/cooling of the reactor. Depending on u,
the reactor dynamics may exhibit persistent oscillations. Additionally, this model has
served frequently as a benchmark in engineering education for the design of nonlinear
observers and controllers, where one usually assumes that the temperature is measurable
while the conversion is not. However, reconstruction of the conversion from temperature
measurements is possible with convenient approaches, e.g., UKF.

In the following, we will assume that measurements of x; and x; are available at
different sampling rates: While the temperature can be measured rather easily, e.g., with
a standard industrial thermometer, direct measurement of conversion would be based
on physical samples. Sample analysis may take a certain time span T = kj,;At. The
corresponding measurement rate is thus not only possible at a lower rate but also delayed.
In terms of a measurement equation this reads as:

i = |:x(kxkdel)11:| + [kal} , E{vi} = Ry (25)
k.2 Ok,2

with y, = y(t = kAt). Following the convention introduced in the previous section, the
noise variance of conversion measurements depend on the sampling time:

Ry(k) = {

All model parameters can be found in Table 1. For the simulations an additional
unknown stochastic part in the process dynamics was assumed. The deterministic part was
solved with the MATLAB function odel5s and for the stochastic part the Euler-Maruyama
method [24] was implemented. For the shown scenarios, artificial measurements are used.

(26)

Rél, fork=nky, neN
R,{Iz , else '
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Table 1. Parameter values for nonlinear reactor model.

Parameter Value Parameter Value
m 0.2674 a, 1.815
b 1.05 by 0.492
g 1.5476 E 34.2583
u —0.002 At 0.666
X1 (0) 0.3 x2(0) 0.1

3.1.2. Scenario I: State Estimation

In Figures 1 and 2 the performance of the UKF for reconstruction of the states is
presented for different time points. UKF parameters and initial conditions are summarized
in Table 2.

Table 2. Parameters and initial conditions for exothermic reactor scenario I.

Parameter Value Parameter Value
£1(0) 0.15 £2(0) 0.15
kdel 10 K 1
05 0 1015 0
I -5 11
Ry 10 [0 5] Ry { 0 5-105}
) ,[025 0 s[5 0
Fo 10 {o 0.25 Qk N

In the figures, the so-called delay window is denoted with green lines: the right green
line denotes the current sampling instant + while the left corresponds to (t — 7). Within
the delay window only the online measurement of the temperature x; is available but no
information is provided for the slow conversion. Thus, state estimates between the two
green lines, i.e., (t — T, t], are only based on temperature measurements. In contrast, state
estimates outside of the delay window, i.e., t < (f — T) (left of the green line), are based on
measurement of temperature and conversion. In Figure 1 estimation results are shown for
two different time points.

| ‘—State « Measurement - - - Estimate | ‘—State o Measurement - - --Estimate

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t t

‘—State o Measurement - - --Estimate

oql ‘—State « Measurement - - - Estimate

0.1F

0 10 20 30 40 50 60 0 10 20 30 40 50 60

t t
Figure 1. State estimation for exothermic reactor before (left) and after (right) slow conversion sensor
measurement (black diamond) is available: Estimates of x1 (¢) and x(¢) improve in the delay window
(between the green horizontal lines) if measurement of x1 (¢) becomes available.
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A general effect is observed: If a conversion measurement becomes available (black
diamond), the estimation accuracy does not only improve significantly for x; itself but
also for x; as estimation quality of the latter in the delay window crucially depends on
the quality of estimates at the left border of the delay window. The slow conversion sensor
based update thereby improves estimation accuracy for temperature within the delay
window. In Figure 2 the overall estimation results are depicted.

| ‘—State « Measurement - - - Estimate‘ |

ol ‘—State o Measurement --- Estimate‘ |

0 10 20 30 40 50 60 0 10 20 30 40 50 60
t t
Figure 2. State estimation for exothermic reactor for + = 60: Accurate reconstruction in face of
stochastic process dynamics.

It can be seen that both states are estimated quite accurately in face of the stochastic
dynamics and measurements. However, reconstruction of x; generally becomes worse
the longer the time since the last slow sensor measurement and also in the delay window,
where estimation is based on measurements of x, alone.

3.1.3. Scenario II: Simultaneous State and Parameter Estimation

In addition to states that cannot be directly measured at each time instance, in practice
it frequently occurs that model parameters are either not fully known or even change
during process operation, e.g., as a result of aging or fouling processes. In this case,
the state estimation problem can be adapted to enable simultaneous estimation of states
and parameters.

For the nonlinear reactor the state vector is augmented by the unknown parameters a4
and bp and the UKF approach is implemented for the augmented state vector

T
Xaug = [X, ai, bz] . (27)
Initial conditions and further parameters are summarized in Table 3.

Table 3. Parameters and initial conditions for exothermic reactor scenario II.

Parameter Value Parameter Value
£1(0) 0.3 £,(0) 0.1
41(0) 0.5-a; b,(0) 1.5-by
kdel 10 K 0
5.107 0 5.107° 0
1 11
Ry { 0 1.10-4} Ry 0 1-107*
25 0 0 0 0.02 0 0 0
) 4l0 25 0 0 5| 0 001 0 0
P 0750 0 25 o Qk 10 0 0 0025 0
0 0 0 25 0 0 0 0025

In the simulations it was assumed that the initial estimates for the kinetic parameters
are given as:

a1(t=0)=05a;, b(t=0)=15b,. (28)

The results are depicted in Figure 3.
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—State « Sensor --- Estimate | —State e« Sensor ----Estimate

0 20 40 60

t
0.3 :
0.25¢
S'_‘ 0.2 b % 0.6
3 ~
0151 ! - S e U
A 0.5- -
N ‘—Parameter --- Estlmate‘
0.1 : : : ) ' !
0 20 40 60 80 0 20 40 60 80
t t

Figure 3. Simultaneous state and parameter estimation for nonlinear exothermic reactor: Results
indicate that states and parameters can be reconstructed accurately. Yet, in particular for b, and early
time points estimates improve significantly if slow sensor measurement is available.

While estimation of x; is not sufficient because of inaccurate parameter estimates, slow
sensor measurements improve estimation for a certain time span. However, the minima
of the oscillations are not well captured for t < 40. Afterwards, parameter estimates
seem to be reasonably close to the process value such that the reconstruction improves.
In particular for b, significant adaption is seen when slow sensor measurements become
available. It was also generally observed that estimation of b, within the delay window
is rather inaccurate while for a; correct trends were seen. The major reason is potentially
related to the practical observability: Within the delay window the approach aims on
reconstruction of the augmented states from noisy measurement information of x, alone.
In contrast, when a slow sensor measurement becomes available, the additional accurate
information on x; obviously improves the methods potential for estimation of all four
variables of interest.

3.2. Microbial PHA Production

Bioplastic is a very promising alternative in comparison to conventional plastic raw
material, e.g., polypropylene and polyethylene. Polyhydroxyalkanoates (PHAs) repre-
sent a very prominent bio-based and bio-degradable group of bioplastic that can be pro-
duced in a wide variety of microorganisms. Beside the well-known representative poly-3-
hydroxybutyrate (PHB), the co-polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) is more competitive in comparison to PHB because of its higher elongation-to-
break values, lower melting points and higher biocompatibility [25]. Because of the high
production costs for bioplastics such as PHBV, they have a low market share in the plas-
tics industry.

To make bioplastics even more competitive, model approaches can be used to analyze,
optimize and finally control the production in order to reduce the costs. In the following
section, our recently developed PHBV production model based on online CO, exhaust gas
measurements to capture biomass growth is described [23].

3.2.1. Model Formulation

The nonlinear model was presented in [23] and describes the dynamics of a fed-batch
process using fructose (c,,) and propionic acid (c,) as carbon sources. Furthermore, the
dynamics of the nitrogen source c;, residual biomass c;es, HB-content cj;, and HV-content
cpp are accounted for. The resulting model therefore comprises a system of six nonlinear
ordinary differential equations as reported in the Appendix A. The parameter values and
detailed description can be found in the original publication [23].
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In contrast to the previous example, the process’ dynamics are assumed to be de-
scribed completely by the deterministic dynamics. In the following, it is assumed that
measurements are based on physical samples. Furthermore, it is assumed that substrates
concentrations can be determined within ¢4, ; = 30 min and the measurements are accom-
panied by medium measurement noise. In contrast, analysis of biomass content takes
tie12 = 1 h with assessment of HV and HB content takes ¢4, 3 = 2 h with low noise. The
approach described previously was adapted accordingly to deal with the situation. In

contrast to the original publication, only artificial data is used in this simulation study.
3.2.2. State Estimation

In Figure 4 the simulation results are shown.

25 . . .
—State ¢ Sensor --- Estimate‘
20 0.4
— — -
~. ~ p
0 15 203
210 202
& a
© 5
5r 0.1
0 . . ! 0 |
0 10 20 30 0 20
tin h tin h
150 ‘ ‘ ‘ ° ~ State - Sensor - Estimat
. |—State e Sensor --- Estimate ate ensor stimate e
— \ < . e i
w1 5 w5 -
) m s
Z05¢ B2 %
O . . ¢
O L = ) ° [ °, 0 i L L L
0 10 20 0 10 20 30
tinh tin h
° ‘—Stéte . Sensc;r Estiméte 35 : ‘ ‘
W ——State ¢ Sensor ----Estimate
a0 : S
= 2 e 5
== : : 1T : : :
0 10 20 30 0 10 20 30
tinh tinh

Figure 4. State estimation for microbial PHA production: Accurate reconstruction.

It can be seen that the filter is able to smooth out the substrate measurements after
a short period of adaption. However, propionate estimates deteriorate between 15 h and
25 h. However, after the ammonium-shot estimation accuracy improves rapidly. This may
also give hint for future experiments that additional substrate shots could improve the
general reconstruction quality. Furthermore, measurements of HB and HV are accurately
reconstructed. Estimation of the non-polymeric biomass shows less smooth behavior

in comparison, so the reconstruction of residual biomass is more sensitive to measure-
ment noise.

3.2.3. Simultaneous State and Parameter Estimation

In Figure 5 simulation results are shown for simultaneous estimation of the states
and the parameter ¢, ;,;,- It can be seen that the approach is able to reconstruct the states
accurately and also the unknown constant parameter. However, during design it was
observed that the performance of the parameter estimation is rather sensitive to the UKF’s
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tuning parameters, i.e., x and Q, which may require more advanced approaches in future
when additional parameters have to estimated simultaneously.

25 i i I i T T
.. o —State Sensor---‘Estimate‘ ‘—State . Sensor---‘Estimate‘
20 = 0.4 1
— —
el w
= 15 . = 0.3
=210 g0.2
5 g
5r 0.1
0 : : : 0
0 10 20 30
tin h tin h
1.5 : ‘ : ° —State « Sensor - Estimat
' —State o Sensor --- Estimate ate ensor stunate 3
- = e T |
ER @t AT
» Q
205 52 .
S B2
o« * . of *\ %0 * eee ) »-= 8
0 L o i 'y O L L L
0 10 20 30 0 10 20 30
tinh tin h
3 ‘ ‘ — 35 ‘ ‘ ;
‘—State * Sensor --- Estimate . ——State o Sensor ----Estimate
o e 3r
2ot o et 2
0 025
s | . S 2t
S 7 2
157
0 : . ‘ ‘ 1 ‘ ‘ ‘
0 10 20 30 0 10 20 30
‘ t in h ‘ tinh
——Parameter - - - Estimate
25}
= AN
L N
0
1.5 N i
0 10 20 30

tinh
Figure 5. Simultaneous state and parameter estimation for microbial PHA production.
4. Conclusions and Outlook

In this article a UKF-based model-based state estimation concept was presented which
is able to incorporate delayed and multirate measurement from different sensor. Perfor-
mance has been evaluated for two different examples: The first example was an exothermic
chemical reactor described by nonlinear dynamic equations. It was shown that states as
well as unknown parameters can be reconstructed with sufficient accuracy within and
outside the corresponding delay window. To the authors opinion the increased computa-
tional effort resulting from the more involved implementation is more than compensated
by the improved estimation accuracy. In a second example, the method was applied for
state estimation of a microbial biopolymer production process. Here, three different sensor
delays and sampling rates were assumed and required the adaption of previously pre-
sented method. Compounds with a slow sampling rate could be reconstructed accurately.
Furthermore, the approach was adapted to allow for simultaneous reconstruction of an

unknown model parameter. The results showed sufficient performance despite being
rather sensitive to the UKF’s tuning.



Processes 2021, 9, 1990

11 of 16

The overall results indicate that the presented method is a promising approach for
online state and parameter estimation in (bio-)chemical processes. The UKF implementa-
tion is able to accurately reconstruct both from noisy and multirate measurements which
are found often in practice due to manifold measurement devices and complex analysis
techniques based on physical samples. It thereby represents a valuable tool for advanced
automatic control concepts which rely on accurate information on the corresponding
process despite limited and delayed measurement information. The authors would also
like to emphasize, that the presented concept for multirate data fusion does not involve
complex computations such as solution of inverse problems by nonlinear optimization,
as found in alternative approaches. Therefore, real-world and real-time realization does
not require excessive computational power but could also be accomplished using rather
simple platforms.

In the future, focus will be on application of the approach for control of (bio-) chemical
processes. Examples include biopolymer production from agricultural and food industrial
waste streams [26-28] as well as bakers yeast drying [29-31]. For more complex cases
with multiple unknown parameters, higher nonlinearities or non-Gaussian process noise,
performance of the UKF approach may deteriorate. Here, particle filters [6,32] can represent
a promising alternative. Furthermore, the outlined approach could be used to extend
existing estimators for distributed parameter systems as found in the description of particle
formation [33-35] and biotechnological processes [36-38], to reconstruct the systems states
and parameters in presence of measurement delays or multi-rate measurements.
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Abbreviations

The following abbreviations are used in this manuscript:

HB Hydroxybutyrate

HV Hydroxyvalerate

KF Kalman Filter

MR Multi-rate

ODE  Ordinary Differential Equation

PHA Polyhydroxyalkaonate

PHB poly(3-hydroxybutyrate)

PHBV  poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
UKF Unscented Kalman Filter

UT Unscented Transformation

Appendix A. Reactor Model for Biopolymer Production

The dynamics for the carbon sources are given as

dc
c{tm = —k1-bco, (t) - Cres - Cfpy - Cn - inhy

— kg Cres - C Fru inhy - inhj

—k7- bCO2(t) “Cfru -~ Cres
-D- Cfru (A1)
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and
dc .
d—tp = —ko - bco,(t) - Cres - Cp - cn - inhy
- (k5 + ké) “Cres " Cp * inh, - inhj (A2)
— kg - bCOZ(t) *Cp " Cres
+ D (cpin —Cp) -
Inhibition effects are described by
inh; = max (0, 1- C;fnh) ,
inhy, = max (0, 1-—- Cn"!‘cgn,sw) ,
inhg = max (0,1 - 5P ). (A3)

The equations of fructose and propionic acid consumption (A1) and (A2) consists
of four terms to describe the dynamic behaviour. In the first term the substrate uptake
for biomass production is given. The consumption of the respective carbon source to
produce the monomer units 3-hydroxybutyrate (HB) and 3-hydroxyvalerate (HV) of the
polymer chain is described with second term. The third term of each equation describe the
conversion from carbon source to CO;. Finally, the dilution caused by the fed-batch mode
is shown in fourth term.

The dilution factor in the fed-batch mode is described as follows

Fin
D= v (A4)
The feed flow rate is written as F;,, and reactor volume as V.
Volume balance is necessary in fed-batch mode:

av

= = Fn (A5)

To describe the metabolic activity bco, (t), we used the relative CO, proportion:

CO2out (t)
bco,(t) = ——. A6
COz( ) COZ,in ( )
With COy,py in the exhaust gas and CO, ;,, in the fresh inlet air the metabolic activity
can be calculated. The inhibitory steric variable for the description of inhz in Equation (A3)
is given as the ratio between total polymer concentration and total biomass concentration

Pt _ (Chb + Chv) ) (A7)
(Chb + Cpp + Cres)

Beside a carbon source as substrate, the organism need ammonium for non-PHA
growth. The ammonium dynamics is described as follows

dc .
7: = —Cres " Cn * bCOZ(t) : (kl “Cfru +ko - CP) -inhy
— k3 Cres - Cn - (Chb + Chv)

—D-cy,.

(A8)

The first term in Equation (A8) describes the residual growth of the bacteria, while the
second term includes the conversion of biopolymer (HB and HV) to residual biomass.
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The following equation account for the dynamics of residual (non-PHA, catalytically
active) biomass

dcres

—gp “CresCn- [inhl : (kl “Chrutka - Cp) “bco, + k3 - (cnp + Chv)}

— D - Cres .

(A9)

By the consumption of the carbon sources fructose and propionic acid residual biomass
can be produced (parameter k; and kp). Further, residual biomass can be produced by the
conversion of HB and HV from the polymer chains in presence of ammonium.

The product dynamics of the monomers HB and HV in the polymer chains is de-
scribed as

dchb . :
T =Cyes - inhy - inhj - (k4 “Cfpy T+ ks - CP) (A10)
— k3 - Cres - Cpp - Cpp — D - cpp, -
dchv . : 1
dt =ke - Cres - Cp - inhy - inhg (A11)

— k3 cres-cncpp—D -y -

HB can be produced by fructose and propionic acid with the parameters k4 and
ks. HV can only be accumulated if propionic acid is metabolized with parameter k.
Both monomers of the chain (HB and HV) can be converted to residual biomass with the
parameter k3 in presence of ammonium.

For sake of simplicity, it is assumed that the dynamics of CO, and reactor volume
are known with high precision from direct online measurements in real time. Therefore,
both are assumed to be known time-variant parameters which reduces the complexity
of the model implementation. However, the applied soft sensor concept could easily be
extended to include reconstruction of both states from available measurements as depicted
in Figure A1l. Further information on the model itself is found in [23] and model parameters
are summarized in Table A1.

2 ‘ T ‘ 1200

1150

1100

V in mL

1050

exhaust CO, in %

1000

0 ' ' ' 950 ' ' '
0 10 20 30 0 10 20 30
tinh tin h

Figure A1. Assumed measurements of CO; and V for PHB model.
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Table A1. Kinetic parameters, states and variables.

Parameter Unit Description Value
k1 [L2/ g2 h]  consumption of fructose

and ammonium for growth 434 x 107
ko [L?/g2h]  consumption of propionic acid

and ammonium for growth 0.0048
ks L2/ g2 h] HA consumption 0.0713
ky [L/gh] consumption of fructose

for HB accumulation 0.0563
ks [L/gh] consumption of propionic acid

for HB accumulation 0.6803
ke [L/gh] consumption of propionic acid

for HV accumulation 2.0208
k7 [L2/ g2 h]  fructose consumption

for maintenance 3.4184 x 104
kg [L2/g?h] propionic acid consumption

for maintenance 0.0125
Cp,inh [g/L] inhibitory propionic acid concentration 1.5
Cn,sw [g/L] Michalis-Menten rate for ammonium 0.2
Cp,in [g/L] propionic acid concentration in the feed 20
¢fru(0) [g/L] initial fructose concentration

data set 1 21.75
cp(0) [g/L] initial propionic acid concentration

data set 2 0.48
cn(0) [g/L] initial ammonium concentration

data set 2 1.40
Cres(0) [g/L] initial residual biomass concentration

data set 2 1.16
cnp(0) [g/L] initial HB concentration

data set 2 0.03
Chu(0) [g/L] initial HV concentration

data set 2 0.01
by [g/L] HA (HB + HV) concentration time-dependent
COy,put [%] exhaust CO, artificial

measurement
COyin [%] inlet CO, artificial
measurement

bco, [-] CO;, dependent metabolic activity time-dependent
D [-] dilution rate time-dependent
F [%] feed rate for propionic acid pH-controlled
Pt imax [g/L] maximum concentration of PHA 0.89
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