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Abstract

In this work, the relativistic recoil correction to the energies of heavy muonic
atoms has been considered, based on the formalism suggested by Borie and
Rinker.

Muonic atoms are atoms, which have a bound muon instead of an electron.
The lifetime of a muon is long enough so it can be considered stable on
the atomic scale. Additionally, an atom with a single bound muon can be
considered as a hydrogen-like system. As muons are about 200 times heavier
than electrons, they orbit the nucleus 200 times closer. This leads to a larger
contribution of all kinds of nuclear effects to the energy levels of the muon.

We calculated the recoil effect for the shell, sphere and Fermi nuclear
models and studied model and nuclear parameters dependence. Additionally,
we compared the results with previous studies. Going forward, the results
can be used for high-precision theoretical predictions of the spectra of heavy
muonic atoms, and in further comparison with experimental data, aiming at
the extraction of nuclear properties and parameters. In the future, a more
rigorous quantum electrodynamics formalism can be applied to enhance the
accuracy of the relativistic recoil effect.

Zusammenfassung

In dieser Arbeit wurde die relativistische Rückstoßkorrektur auf die Energien-
iveaus schwerer Myonatome betrachtet, basierend auf dem von Borie und
Rinker vorgeschlagenem Formalismus.

Myonische Atome sind Atome, die ein gebundenes Myon anstelle eines
Elektrons haben. Die Lebensdauer eines Myons ist lang genug, dass es
auf atomarer Skala als stabil angesehen werden. Außerdem kann ein Atom
mit einem einzelnen gebundenen Myon als wasserstoffähnliches System be-
trachtet werden. Da Myonen etwa 200-mal schwerer sind als Elektronen,
umkreisen sie den Kern 200-mal näher. Dies führt zu einem größeren Beitrag
aller Arten von nuklearen Effekten zu den Energieniveaus des Myons.

Wir haben den Rückstoßeffekt für das Schalen-, Kugel- und Fermi-Kernmodell
berechnet und die Abhängigkeit von Modell- und Kernparametern unter-
sucht. Darüber hinaus haben wir die Ergebnisse mit früheren Studien ver-
glichen. In Zukunft können die Ergebnisse für hochpräzise theoretische Vorher-
sagen der Spektren von schweren Myonatomen und im weiteren Vergleich
mit experimentellen Daten verwendet werden, die auf die Extraktion von
Kerneigenschaften und Parametern abzielen.
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1 Introduction

The inner structure of atomic nuclei is of great interest to fundamental
physics. One way to further improve the understanding of the fine struc-
ture is to research muonic atoms. These are atoms, which have accumulated
a muon, replacing an electron. The lifetime of a muon is long enough as to
be considered bound on a nuclear time-scale. By comparing experimental
results to our theoretical predictions, we can learn more about the atomic
structure.
As muons have approximately 200 times the mass of an electron the muons
Bohr radius is smaller by the same factor and the muon can be considered to
be in a hydrogen-like atom [1]. Therefore, different energy corrections can be
recorded more clearly as two-particle interactions do not have a significant
impact. Furthermore, as the nucleus is far bigger in relative units considered
by the muon, nuclear effects play a far more significant role. In fact, as seen
in Figure 1, a big part of the muonic wave function even is inside of the
nucleus for heavy nuclei.

100 200 300 400 500 600 7002 4 6

Figure 1: Charge distribution of the nucleus (red), the 1s1/2 wave-function
of the muon (blue), and electron (gray, enhanced by a factor of 50) for
Hydrogen-like Uranium. The figure is taken from [1].
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The aim of this work is to calculate one of the nuclear effects, namely the
recoil effect. Nuclear recoil corrections for muonic atoms can be calculated
by using the reduced mass µ, given by mM

m+M
, wherem is the mass of the muon

and M the mass of the nucleus. This can be calculated by expanding in αZ,
α ≈ 1

137
being the fine structure constant and Z being the nuclear charge. For

nuclei with higher Z an expansion in αZ is not viable anymore, as αZ comes
closer to 1, therefore another method has to be used. For that the approach
of [2, 3] to expand in m/M is used. This approach is completely rigorous, in
contrast to the classical Bethe-Salpeter solution [2]. The energy correction is
then calculated following the procedure described in [1, 4]. The calculation
using the B-splines method as by [5, 6] is done for different nuclear models
and can be executed for any isotope.
On the scale of muonic atoms, the relativistic nuclear recoil effect has a great
impact on the energy levels. In fact, as can be seen in Table 1 for the ground
and some exited states of 248Cm, the finite size recoil contribution is much
larger than the point-like model contribution. Thus, it is very interesting to
calculate this term.

state ∆E
(rec,fin)
nk,sphere ∆E

(rec)
nk,point

1s1/2 352 62
2s1/2 46 63
2p1/2 88 74
2p3/2 82 61
3s1/2 12 27
3p1/2 18 28
3p3/2 17 24
3d3/2 19 7
3d5/2 18 5

Table 1: The finite size energy correction and leading order point like ap-
proximation energy correction both listed for 248Cm. Energies given in eV

The nuclear radii needed for the calculations were taken from [7], the
nuclear masses from [8].

In our work we considered three different nuclear models, the shell, sphere
and Fermi model. The shell model gives relatively easy calculations and is
thus useful for low precision finite size nuclear calculations.

The sphere model is a more realistic yet more complicated model.
In the Fermi model the charge distribution follows a Fermi distribution.

This model more precisely represents the nuclear structure as it also models
a “skin”, where the distribution falls off rapidly yet continuously.
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2 Energy correction

In this work relativistic muonic units are used with h̄ = c = mµ = 1, mµ being
the muonic mass, c the speed of light and h̄ the reduced Planck constant.
We calculate the relativistic recoil energy correction for muonic atoms, given
by [1]:

∆E
(rec,rel)
nk = −(E

(fm)
nk )2

2MN

+
1

2MN

⟨h(r) + 2E
(fm)
nk P1(r)⟩. (1)

Here, MN is the nuclear mass, E
(fm)
nk the binding energy given by solving the

Dirac equation [1]. P1(r) and h(r) are defined in chapter 2.1. To convert this
from relativistic units to eV, one writes:

∆E
(rec,rel)
nk [eV ] = ∆E

(rec,rel)
nk

mµ

MN

mµc
2. (2)

2.1 Necessary formulas

For the calculation of the energy correction, we need the following equations
given as Eqs. (109) and (111) of [4]. V (r) denotes the nuclear potential.

P1(r) = −rV ′(r)− V (r), (3)

Q2(r) = r2V ′(r), (4)

Q4(r) = r4V ′(r)− 2r3V (r) + 6

∫ r

0

x2V (x)dx. (5)

For simplicity, this can be divided into three parts:

Q41(r) = r4V ′(r),

Q42(r) = −2r3V (r),

Q43(r) = 6

∫ r

0

x2V (x)dx,

with Q4 then being:

Q4(r) =
∑

Q4i(r).

Now h(r) is made up of these:

h(r) = −
(
P1(r)

2 +
4P1(r)Q2(r)

3r
+

Q2(r)Q4(r)

3r4

)
. (6)
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2.2 Point-like-nucleus

The recoil correction to the energy in the point-like-nucleus approximation
itself is not interesting to us, as it is the exact model that ignores all finite
size nuclear effects. This model is useful for calculations of regular atoms.
We still calculate formulas 3, 4, 5 and 6, as both the sphere- and shell-like
nuclear model give the same potential as the point-like nuclear model outside
of the nucleus.

For the point-like model the nuclear potential is simply given by:

V (r) = −αZ/r. (7)

This now gives:

P1(r) = αZ/r − αZ/r = 0, (8)

Q2(r) = αZ,

Q41(r) = αZr2,

Q42(r) = 2αZr2,

Q43(r) = −3αZr2,

Q4(r) =
∑

Q4i(r) = 0,

h(r) = 0. (9)

2.3 Q4 calculation

Both the shell nuclear model and the sphere nuclear model have the same
potential as the point-like nuclear model for r > rmnucl, rmnucl being the
nuclear root mean square radius. For most of the functions above, this gives
a trivial result. However , for Q43 it is more complicated as there is an
integral involved. Here, for r′ > rmnucl we have:

Q43(r
′) = 6

∫ r′

0

x2V (x)dx = 6

∫ rmnucl

0

x2V (x)dx+ 6

∫ r′

rmnucl

x2V (x)dx

= 6

∫ rmnucl

0

x2V (x)dx+ 3αZrm2
nucl +Q43,point(r

′).

(10)

Therefore we get:

Q4(r) =
∑

Q4i(r) =
∑

Q4i,point(r) + 6

∫ rmnucl

0

x2V (x)dx+ 3αZrm2
nucl

= Q43(rmnucl) + 3αZrm2
nucl.

(11)
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2.4 Shell nuclear model

For r < rmnucl we get:
V (r) = −αZ/rmnucl, (12)

P1(r) = αZ/rmnucl, (13)

Q2(r) = 0,

Q41(r) = 0,

Q42(r) = αZ2r3/rmnucl,

Q43(r) = −2αZr3/rmnucl,

Q4(r) =
∑

Q4i(r) = 0,

h(r) = −(αZ/rmnucl)
2 + 0 + 0 = −(αZ/rmnucl)

2. (14)

For r > rmnucl, the potential is equal to that of a point-like model, therefore:

P1(r) = 0,

Q2(r) = αZ.

Q4 is defined by Eq.(11) and therefore gives for the shell model of the nucleus:

Q4(r) = −2αZrm2
nucl + 3αZrm2

nucl = αZrm2
nucl, (15)

h(r) = −Q2(r)Q4(r)

3r4
= −(αZrmnucl)

2

3r4
. (16)

2.5 Sphere nuclear model

for r < rmnucl we get:

V (r) = −αZ(3/2− 1/2(r/rmnucl)
2)/rmnucl, (17)

P1(r) = −αZr2/rm3
nucl + αZ(3/2− 0.5(r/rmnucl)

2)/rmnucl, (18)

Q2(r) = αZ(r/rmnucl)
3,

Q41(r) = αZr5/rm3
nucl,

Q42(r) = 3r3αZ/rmnucl − αZr5/rm3
nucl,

Q43(r) = −3αZr3/rmnucl + (3/5)αZr5/rm3
nucl,
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Q4(r) = αZr5/rm3
nucl + 3r3αZ/rmnucl − αZr5/rm3

nucl − 3αZr3/rmnucl + (3/5)αZr5/rm3
nucl

= (3/5)αZr5/rm3
nucl,

h(r) = −P1(r)
2 − 4P1(r)Q2(r)

3r
− Q2(r)Q4(r)

3r4
. (19)

For r > rmnucl, the potential is equal to that of a point-like model, therefore:

P1(r) = 0,

Q2(r) = αZ.

Q4 is defined by Eq.(11) and therefore gives for the sphere model of the
nucleus:

Q4(r) = −3αZrm2
nucl+(3/5)αZrm2

nucl+3αZrm2
nucl = (3/5)αZrm2

nucl, (20)

h(r) = −Q2(r)Q4(r)/(3r
4) = −(αZrmnucl)

2

5r4
. (21)

2.6 Fermi nuclear model

For the Fermi nuclear model the nuclear charge distribution is given by a
Fermi distribution:

ρ(r) =
ρ0

1 + e(r−c)/a
, (22)

c, a and ρ0 being constants. As analytical calculations for the Fermi model
are very complicated, we use Eq.(3.2) from [9] and solve it by numerical
methods. The uncertainty of this procedure can be estimated by comparing
the semi-analytical values of the other models with the numerical ones, as
the numerical formalism could in principle be applied to all nuclear models.
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3 Results

Here we present the results of the calculation for a few selected isotopes in
the different models.

We calculate both the semi-analytical values and the numerical ones.
For the semi-analytical values the Eqs. (3, 4, 5, 6) have been calculated
analytically and the averaging in Eq. (1) is done numerically. The numerical
values are calculated by having Eqs. (1, 3, 4, 5, 6) calculated numerically.

The amount of splines used for the calculations in this work is 70, if not
otherwise indicated. 70 was chosen as more splines did not have a consider-
able impact on the results, yet would have taken more computing time.

As by using a higher number of splines the semi-analytical value did not
change significantly while the numerical value was slowly growing towards
the semi-analytical one, the semi-analytical value was used where possible.

The uncertainties indicated in brackets are estimated by calculating the
difference in the semi-analytical value and the numerical one. The semi-
analytical value was found to be bigger for every value. This uncertainty
seems like a good approximation, as both models use numerical methods.
However, increasing the number of splines from 70 to 90 changed the semi-
analytical values in only about the seventh digit, while increasing the nu-
merical ones in the fifth. Thus, these uncertainties might by assumed higher
then they actually are. Furthermore, it could be that the error isn’t solvable
by adding a reasonable amount of splines so this uncertainty is assumed rea-
sonable. The results for 89Zr and 248Cm are plotted in Figure 2, the 1s1/2
states of all considered atoms in Figure 3, the 2p1/2 states in Figure 4, and
the 3d3/2 states in Figure 5.
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Figure 2: The energy levels of the different states first for 89Zr, given by
Table 2, and second for 248Cm, given by Table 9. One can see a relative
increase of the p states. Energy given in eV.
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Figure 3: The 1s1/2 state energies for all considered isotopes with Z on the
x-axis. The energy seems to increase with the number of protons Z, yet get
smaller with the number of neutrons. Energy given in eV.
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Figure 4: The 2p1/2 state energies for all considered isotopes, with Z on the
x-axis. The energy seems to show exponential features with the number of
protons Z, especially considering that the scale starts at Z = 37 and E = 0.
Neutrons seem to have a smaller impact then for the 1s state. Energy given
in eV.
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Figure 5: The 3d3/2 state energies for all considered isotopes, with Z on the
x-axis. The energy seems to show even more exponential features then the
2p1/2 state energies, again with the scale starting at Z = 37 and E = 0.
Neutrons seem to have a smaller impact then for the 1s state. Energy given
in eV.
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3.1 Recoil correction in comparison to previous results

We calculated the recoil correction for 89
40Zr (Table 2), 147

62 Sm (Table 3) and
205
83 Bi (Table 4) and compared these values with the ones found in [1]. Their
calculations are done with the Fermi model and while their values are not
very precise, the uncertainty oftentimes being as large as the value itself, the
values are very useful in order to check whether any bigger mistakes have
been made. This does not seem to be the case, as all calculated values are
within a reasonable range of their counterpart.

state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi ∆E

(rec,rel)
nk,michel

1s1/2 135.5 (3) 134.1 (4) 135.2 150(150)
2s1/2 18.82(5) 18.70 (5) 18.77 20(20)
2p1/2 9.90 (6) 9.91 (7) 9.83 10(10)
2p3/2 8.92 (6) 8.93 (6) 8.85 10(10)
3s1/2 5.558 (16) 5.534 (17) 5.540 10(10)
3p1/2 2.316 (19) 2.32 (2) 2.295 0
3p3/2 2.036 (18) 2.037 (19) 2.017 0
3d3/2 1.433 (11) 1.433 (12) 1.421 0
3d5/2 1.415 (11) 1.415 (12) 1.403 0

Table 2: Recoil correction for a few first states of muonic 89Zr. Energy given
in eV.

state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi ∆E

(rec,rel)
nk,michel

1s1/2 288.4 (5) 280.4 (5) 287.8 290(70)
2s1/2 52.48 (10) 51.32 (10) 52.38 50(50)
2p1/2 48.72 (19) 49.12 (2) 48.52 50(50)
2p3/2 41.78 (19) 42.21 (19) 41.59 40(40)
3s1/2 16.72 (3) 16.43 (3) 16.69 20(20)
3p1/2 12.57 (5) 12.65 (6) 12.51 10(10)
3p3/2 10.64 (5) 10.74 (6) 10.58 10(10)
3d3/2 6.07 (4) 6.06 (4) 6.02 10(10)
3d5/2 5.82 (4) 5.82 (4) 5.78 10(10)

Table 3: Recoil correction for a few first states of muonic 147Sm. Energy
given in eV.
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state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi ∆E

(rec,rel)
nk,michel

1s1/2 389.1 (6) 371.8 (5) 388.5 390(40)
2s1/2 89.27 (14) 85.60 (13) 89.13 90(30)
2p1/2 116.5 (3) 118.1 (3) 116.2 120(30)
2p3/2 100.7 (3) 102.8 (3) 100.4 10(10)
3s1/2 30.45 (5) 29.42 (5) 30.40 30(30)
3p1/2 31.79 (9) 32.07 (9) 31.70 30(30)
3p3/2 27.54 (9) 28.03 (9) 27.45 30(30)
3d3/2 16.20 (8) 16.22 (9) 16.11 20(20)
3d5/2 14.84 (8) 14.84 (8) 14.76 20(20)

Table 4: Recoil correction for a few first states of muonic 205Bi. Energy
given in eV.

3.2 Recoil correction for a few selected atoms

Additionally, we calculated the nuclear recoil effect energy correction for a
few more atoms, 208

82 Pb (Table 5), 119
50 Sn (Table 6), 185

75 Re (Table 7), 187
75 Re

(Table 8) and 248
96 Cm (Table 9).

state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi

1s1/2 372.0 (5) 355.7 (5) 371.4
2s1/2 84.64 (13) 81.23 (12) 84.51
2p1/2 109.5 (3) 110.9 (3) 109.1
2p3/2 94.6 (3) 96.5 (3) 94.3
3s1/2 28.80 (5) 27.84 (4) 28.75
3p1/2 29.80 (9) 30.06 (9) 29.71
3p3/2 25.80 (8) 26.26 (9) 25.72
3d3/2 15.11 (8) 15.13 (8) 15.03
3d5/2 13.87 (7) 13.87 (8) 13.80

Table 5: Recoil correction for a few first states of muonic 208Pb. Energy
given in eV.
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state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi

1s1/2 207.8 (4) 204.0 (4) 207.3
2s1/2 32.78 (8) 32.36 (8) 32.71
2p1/2 22.82 (12) 22.92 (12) 22.70
2p3/2 19.93 (11) 20.02 (11) 19.81
3s1/2 10.03 (2) 9.93 (2) 10.01
3p1/2 5.63 (3) 5.65 (4) 5.60
3p3/2 4.81 (3) 4.83 (3) 4.78
3d3/2 2.98 (2) 2.98 (2) 2.96
3d5/2 2.92 (2) 2.92 (2) 2.90

Table 6: Recoil correction for a few first states of muonic 119Sn. Energy
given in eV.

state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi

1s1/2 346.4 (5) 333.1 (5) 345.8
2s1/2 73.26 (12) 70.77 (11) 73.14
2p1/2 86.5 (3) 87.5 (3) 86.2
2p3/2 74.3 (2) 75.6 (3) 74.1
3s1/2 24.39 (4) 23.72 (4) 24.35
3p1/2 23.13 (8) 23.34 (8) 23.05
3p3/2 19.85 (7) 20.16 (8) 19.77
3d3/2 11.28 (6) 11.28 (7) 11.21
3d5/2 10.53 (6) 10.53 (6) 10.46

Table 7: Recoil correction for a few first states of muonic 185Re. Energy
given in eV.
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state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi

1s1/2 341.7 (5) 328.6 (5) 341.2
2s1/2 72.35 (12) 69.89 (11) 72.22
2p1/2 85.5 (3) 86.5 (2) 85.2
2p3/2 73.5 (2) 74.8 (3) 73.3
3s1/2 24.10 (4) 23.43 (4) 24.05
3p1/2 22.88 (7) 23.08 (8) 22.80
3p3/2 19.64 (7) 19.94 (8) 19.56
3d3/2 11.16 (6) 11.17 (7) 11.09
3d5/2 10.42 (6) 10.42 (6) 10.36

Table 8: Recoil correction for a few first states of muonic 187Re. Energy
given in eV.

state ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,shell ∆E

(rec,rel)
nk,fermi

1s1/2 413.1 (6) 390.3 (5) 412.6
2s1/2 109.23 (16) 103.23 (13) 109.08
2p1/2 161.9 (4) 164.2 (4) 161.5
2p3/2 142.8 (3) 146.3 (3) 142.4
3s1/2 38.87 (6) 37.09(5) 38.82
3p1/2 45.82 (10) 46.13 (11) 45.71
3p3/2 40.69 (10) 41.50 (11) 40.58
3d3/2 26.79 (11) 26.92 (12) 26.67
3d5/2 23.79 (10) 23.84 (11) 23.68

Table 9: Recoil correction for a few first states of muonic 248Cm. Energy
given in eV.

3.3 Nuclear size sensitivity

We studied the dependence of the recoil correction of the nuclear size. This
was done for 248Cm, as well as 89Zr, in order to see the effect on a relatively
big and a relatively small atom on the scale of atoms considered in this
work. For this we varied the nuclear size by both ±1% and ±0.1%. We
used the sphere model for this calculation as it seems to fit the results of the
Fermi model very well (section 3.4) while being more exact, as less numerical
calculation is needed.

One can see in Tables 10 and 11 that the nuclear size, without changing
the mass or nuclear charge, indeed has a relevant impact. This mostly holds
true for the s states. For 248Cm, the 1s1/2 state changed around 11 times
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the uncertainty for a variation of only 1 percent in size. Thus, this value
could very well be used to estimate the nuclear size of heavy atoms. If one,
as discussed, assumes the uncertainty smaller than has been done here, this
could be used to predict nuclear size to even more precision.

state ∆E
(rec,rel)
nk,−1% ∆E

(rec,rel)
nk,−0.1% ∆E

(rec,rel)
nk ∆E

(rec,rel)
nk,+0.1% ∆E

(rec,rel)
nk,+1%

1s1/2 136.6 135.7 135.5 (3) 135.4 134.5
2s1/2 18.91 18.83 18.82(5) 18.81 18.74
2p1/2 9.87 9.89 9.90 (6) 9.90 9.92
2p3/2 8.89 8.91 8.92 (6) 8.92 8.94
3s1/2 5.578 5.560 5.558 (16) 5.556 5.537
3p1/2 2.307 2.315 2.316 (19) 2.316 2.324
3p3/2 2.026 2.035 2.036 (18) 2.036 2.045
3d3/2 1.432 1.433 1.433 (11) 1.433 1.434
3d5/2 1.414 1.415 1.415 (11) 1.415 1.416

Table 10: Recoil effect energy correction for 89Zr by varying nuclear size.
Energies given in eV.

state ∆E
(rec,rel)
nk,−1% ∆E

(rec,rel)
nk,−0.1% ∆E

(rec,rel)
nk ∆E

(rec,rel)
nk,+0.1% ∆E

(rec,rel)
nk,+1%

1s1/2 420.0 413.8 413.1 (6) 412.5 406.4
2s1/2 110.39 109.34 109.23 (16) 109.12 108.09
2p1/2 163.0 162.0 161.9(4) 161.8 160.8
2p3/2 143.4 142.8 142.8 (3) 142.7 142.2
3s1/2 39.22 38.91 38.87 (6) 38.84 38.54
3p1/2 46.06 45.84 45.82 (10) 45.79 45.58
3p3/2 40.80 40.70 40.69 (10) 40.68 40.58
3d3/2 26.70 26.78 26.79 (11) 26.80 26.88
3d5/2 23.70 23.78 23.79 (10) 23.80 23.87

Table 11: Recoil effect energy correction for 248Cm by varying nuclear size.
Energies given in eV.
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Figure 6: The energy levels for varying nuclear sizes for 89Zr. All values
normed to the regular size recoil effect energy correction being 1.
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Figure 7: The energy levels for varying nuclear sizes for 248Cm. All values
normed to the regular size recoil effect energy correction being 1.
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3.4 Numerical accuracy

Here we calculated the s states of 248Cm for different numbers of splines, for
both the Fermi and sphere model. This should give an idea of the numerical
error of the calculation. We also present the value of the numerical calculation
for the sphere model, to show how similar it behaves to the Fermi model.

As one can see in Tables 12, 13 and 14 below, the semi-analytical values
only changed in the eighth digit and changed less the higher the spline-
numbers were. They thus seemed to be quite heavily converging to a value
that was at most different in the tenth digit from the 90 splines value. It is
also interesting to see that while for each state the value either monotonically
increases or decreases with the number of splines, it depended on the state
whether it in or decreased.

The numerical calculation already changed in the forth digit. They
seemed to converge towards the semi-analytical values, while always being
smaller. This was the case for all isotopes considered in this work.

Interestingly, the Fermi model results differed only slightly from the nu-
merical sphere model results, while always being slightly bigger for the s
states. This makes sense as the models are very similar and with the Fermi
distribution being slightly denser in the center of the core. Therefore, as seen
in section 3.3, the s states are expected to be slightly increased, while some
other states might slightly decrease.

It leads to the conclusion that even if one looks for nuclear recoil effect
values for the Fermi model, the best values for this will be the semi-analytical
sphere model calculations. The real values for the Fermi model will be slightly
bigger yet most likely well within the given uncertainty, and all but certainly
these values match the reality better then the numerical Fermi calculations.

Number of splines ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,sphere,num ∆E

(rec,rel)
nk,fermi

30 413.1364757 411.81 411.91
50 413.1364387 412.35 412.40
70 413.1364376 412.57 412.61
90 413.1364373 412.70 412.72

Table 12: Recoil correction to the 248Cm 1s state for different numbers of
splines. Energies given in eV.
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Number of splines ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,sphere,num ∆E

(rec,rel)
nk,fermi

30 109.23089713 108.870 108.878
50 109.23089950 109.013 109.016
70 109.23089967 109.075 109.077
90 109.23089968 109.109 109.110

Table 13: Recoil correction to the 248Cm 2s state for different numbers of
splines. Energies given in eV.

Number of splines ∆E
(rec,rel)
nk,sphere ∆E

(rec,rel)
nk,sphere,num ∆E

(rec,rel)
nk,fermi

30 38.874882328 38.738 38.740
50 38.874883186 38.792 38.793
70 38.874883247 38.816 38.816
90 38.874883257 38.829 38.829

Table 14: Recoil correction to the 248Cm 3s state for different numbers of
splines. Energies given in eV.

3.5 Different uncertainties in comparison

There are different uncertainties playing a role in the calculation of the nu-
clear recoil effect energy correction.

As discussed above, when only considering the sphere and Fermi nuclear
model, the uncertainty by nuclear model can be disregarded on the considered
scale. This should also be a viable assumption for all realistic nuclear models,
as it is unlikely that they heavily deviate from either of those two models.

There is also the uncertainty of the used method. It is hard to make an
assumption on this uncertainty. While another model of calculation could be
used for comparison, yet there is none at our disposure right now. Thus, we
will ignore this uncertainty for the moment.

Two assumptions can be made for the uncertainty of the numerical calcu-
lations. First, as done throughout this work, one can calculate the difference
of the results of the semi-analytical and the numerical approach towards cal-
culating the sphere model nuclear recoil energy correction. The merit to this
is that, while the semi-analytical approach is all but certainly more accurate,
it also contains some numerical calculation. Therefore, one could assume the
uncertainty to be of similar size as the difference of the two calculations.

One might also assume that as the energy correction values of the semi-
analytical approach seem to converge with increasing number of splines, as
can be seen in subsection 3.4, this can be used to approximate the calcula-
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tional accuracy. In this case the uncertainty would be yet way smaller than
the uncertainty of the model and could be considered as zero.

Finally, there is the uncertainty by nuclear parameters. As the considered
models discard any angular dependence, here one can only consider nuclear
size and weight. Here, the uncertainty of the nuclear RMS radius, given by
[7], is far more significant than the uncertainty of the weight.

Tables 15 and 16 contain the nuclear recoil energy correction for all con-
sidered isotopes as well as states for the sphere nuclear model, with both the
uncertainty by calculating the difference between the semi-analytical and nu-
merical energy correction in the first brackets, and the uncertainty by nuclear
size, assumed by Eq.(23), with ∆totR being the uncertainty given in [7]:

∆E
(rec,rel)
nk,size (rmnucl) = E

(rec,rel)
nk (rmnucl −∆totR)− E

(rec,rel)
nk (rmnucl +∆totR)

(23)
One can see, that depending on the isotope’s size uncertainty, either the

uncertainty by numerical calculation dominates, or for the first few states
the uncertainty by nuclear size dominates.
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state 89Zr 119Sn 147Sm 185Rm

1s1/2 135.5 (3)(0.5) 207.8 (4)(2) 288.4 (5)(5) 346.4 (5)(32)
2s1/2 18.82(5)(0.4) 32.78 (8)(2) 52.48 (10)(6) 73.26 (12)(43)
2p1/2 9.90 (6)(0.1) 22.82 (12)(0.4) 48.72 (19)(0.07) 86.5 (3)(14)
2p3/2 8.92 (6)(0.1) 19.93 (11)(0.5) 41.78 (19)(1.2) 74.3 (2)(0.06)
3s1/2 5.558 (16)(1) 10.03 (2)(0.5) 16.72 (3)(1.5) 24.39 (4)(12)
3p1/2 2.316 (19)(0.4) 5.63 (3)(0.1) 12.57 (5)(0.2) 23.13 (8)(2)
3p3/2 2.036 (18)(0.4) 4.81 (3)(0.2) 10.64 (5)(0.5) 19.85 (7)(1.4)
3d3/2 1.433 (11)(0.04) 2.98 (2)(0.03) 6.07 (4)(0.2) 11.28 (6)(2)
3d5/2 1.415 (11)(0.03) 2.92 (2)(0.02) 5.82 (4)(0.13) 10.53 (6)(1.7)

Table 15: Nuclear recoil effect energy correction for 89Zr, 119Sn,147Sm, 185Rm
and 187Rm. Uncertainty by numerical calculation in the first brackets, un-
certainty by nuclear parameters in the second brackets. Uncertainties given
in units of last given digit. Energies given in eV.

state 187Rm 208Pb 205Bi 248Cm

1s1/2 372.0 (5)(3) 389.1 (6)(11) 413.1 (6)(45) 341.7 (5)(32)
2s1/2 84.64 (13)(4) 89.27 (14)(14) 109.23 (16)(76) 72.35 (12)(43)
2p1/2 109.5 (3)(0.2) 116.5 (3)(0.8) 161.9 (4)(7) 85.5 (3)(14)
2p3/2 94.6 (3)(0.06) 100.7 (3)(0.2) 142.8 (3)(4) 73.5 (2)(0.06)
3s1/2 28.80 (5)(0.9) 30.45 (5)(4) 38.87 (6)(22) 24.10 (4)(12)
3p1/2 29.80 (9)(0.4) 31.79 (9)(1.7) 45.82 (10)(16) 22.88 (7)(2)
3p3/2 25.80 (8)(0.018) 27.54 (9)(0.13) 40.69 (10)(7) 19.64 (7)(1.3)
3d3/2 15.11 (8)(0.2) 16.20 (8)(0.8) 26.79 (11)(6) 11.16 (6)(2)
3d5/2 13.87 (7)(0.2) 14.84 (8)(0.7) 23.79 (10)(5) 10.42 (6)(1.7)

Table 16: Nuclear recoil effect energy correction for 208Pb, 205Bi and 248Cm.
Uncertainty by numerical calculation in the first brackets, uncertainty by
nuclear parameters in the second brackets. Uncertainties given in units of
last given digit. Energies given in eV.
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3.6 Different models

Classically, nuclear recoil corrections are calculated by using the reduced
mass, µ = mM

m+M
and expanding to low orders of αZ. For high Z atoms

αZ ≈ 1, so this approach is not viable anymore. In [10] this is solved for
Z ≈ 10 − 40 by expanding up to (αZ)4. This approach should also give
approximate values for higher Z. That leads to:

∆EM,rel =

(
−29

48
+ ln

9

8

)
(αZ)2∆E

(0)
M,nr, (24)

with ∆E
(0)
M,nr being the non-relativistic nuclear recoil contributions of the

zeroth order in l/Z given by:

∆E
(0)
M,nr = −29

38
(αZ)2m2

M
. (25)

In [2, 3], instead of expanding in terms of αZ, it was expanded in terms
of m

M
, using the quasipotential approach. The calculation was carried out

numerically. The results for low Z atoms were compared to earlier results
of calculations expanding in αZ and found good agreement. This formalism
should in theory allow to calculate the nuclear recoil correction for high Z
atoms. The transition energies for high Z lithium-like atoms were calculated
as well. It was found that the recoil correction for the (1s)22p1/2 (1s)22s1/2
transition of lithium-like uranium is comparable to the experimental uncer-
tainty and thus should be important for the comparison of experiment and
theory.
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4 Model dependence and outlook

In this work, the nuclear recoil effect energy correction for muonic atoms
was calculated to higher accuracy than before. This is useful to crosscheck it
with experimental data, as in [11], in order to learn more about the nuclear
structure.

We investigated model dependence, numerical convergence and nuclear
parameter dependence, and found that, if only considering the sphere and
Fermi nuclear models, the uncertainty originating from nuclear parameters
is the dominant one for some isotopes, while the uncertainty originating
from the calculation dominates for others. The uncertainty of the method
is not considered in this part as it is not possible to make an assumption
on it, yet it should not be forgotten that it might play a relevant role in
the consideration. If one makes a different assumption for the calculational
uncertainty, the nuclear size uncertainty dominates all other uncertainties for
all states and isotopes.

The energy correction was calculated for different nuclear models, the
shell model, the sphere model and the Fermi model. It was found that the
sphere and Fermi model energy corrections are very similar and that using
the sphere model in the context of this work is better, as it is calculated by
the more precise method.

In future, one could formulate a semi-analytical way of calculating the
energy correction for the Fermi model, as this would lead to more accuracy
in the calculation.
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