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Abstract

Objective. Motor imagery is the mental simulation of movements. It is a common paradigm to
design brain-computer interfaces (BCls) that elicits the modulation of brain oscillatory activity
similar to real, passive and induced movements. In this study, we used peripheral stimulation to
provoke movements of one limb during the performance of motor imagery tasks. Unlike other
works, in which induced movements are used to support the BCI operation, our goal was to test
and improve the robustness of motor imagery based BCI systems to perturbations caused by
artificially generated movements. Approach. We performed a BCI session with ten participants who
carried out motor imagery of three limbs. In some of the trials, one of the arms was moved by
neuromuscular stimulation. We analysed 2-class motor imagery classifications with and without
movement perturbations. We investigated the performance decrease produced by these
disturbances and designed different computational strategies to attenuate the observed
classification accuracy drop. Main results. When the movement was induced in a limb not
coincident with the motor imagery classes, extracting oscillatory sources of the movement
imagination tasks resulted in BCI performance being similar to the control (undisturbed)
condition; when the movement was induced in a limb also involved in the motor imagery tasks, the
performance drop was significantly alleviated by spatially filtering out the neural noise caused by
the stimulation. We also show that the loss of BCI accuracy was accompanied by weaker power of
the sensorimotor rhythm. Importantly, this residual power could be used to predict whether a BCI
user will perform with sufficient accuracy under the movement disturbances. Significance. We
provide methods to ameliorate and even eliminate motor related afferent disturbances during the
performance of motor imagery tasks. This can help improving the reliability of current motor
imagery based BCI systems.

© 2021 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Non-invasive brain-computer interfaces (BCIs) allow
generating a control signal by inferring a user’s inten-
tion from the ongoing electroencephalography (EEG)
(see Vidal 1973, Kuebler et al 2001, Birbaumer 2006,
Neuper et al 2006, Sejnowski et al 2007, Miiller
et al 2008, Blankertz et al 2010b, Millan et al 2010,
McFarland and Wolpaw 2017, Scherer and Vidaurre
2018, Stevenson et al 2019, Mane et al 2020). In
BClIs based on the modulation of the sensorimotor
rhythms (SMR), the imagination of movements eli-
cits changes in the motor cortex that are reflected
in the EEG. By distinguishing which kind of ima-
gined movement the user is executing, it is possible
to generate an output signal that can be used to
interact with, for example, a computer. Other pos-
sible interventions that also cause SMR modulations
are passive and induced movements. During a pass-
ive movement there is no voluntary planning and
preparation processes, but activity from the afferent
somatosensory components (tactile receptors, muscle
spindles and joint receptors) is still present, lead-
ing to the modulation of brain activity manifes-
ted in event related desychronization/synchroniza-
tion (ERD/ERS) (Alegre et al 2002, Keinrath et al
2006). The stimulation of muscles, even under the
threshold of movement, also excites neural networks
in the brain (Chatterjee et al 2007, Cho et al 2011,
Vidaurre et al 2013, 2019, Ahn et al 2014, Yi et al
2017, Corbet et al 2018) and stimulated (induced)
movements also cause SMR modulations through
the activation of the afferent pathways (e.g. stimu-
lating one nerve or some muscles directly). Stimu-
lation can produce very specific afferent activity in
different structures of the brain’s sensorimotor net-
work (Wegrzyk et al 2017). Electrical stimulation is
based on a very broad variety of stimulation para-
meters (e.g. pulse width, voltage amplitude, current,
electrodes shape and size, frequency) and empirically
found standard stimulation parameters are normally
chosen to achieve effective motor or sensory stimula-
tion (Doucet et al 2012).

In the context of SMR based BCIs for
rehabilitation purposes (Birbaumer et al 2009,
Ramos-Murguialday et al 2011, 2013, Chaudhary
et al 2020, Mane et al 2020, Nierhaus et al 2021),
induced movements are commonly used to sup-
port the classification of motor imagery (MI). For
example, Ramos-Murguialday and Birbaumer (2015)
compared motor imagery, passive, induced and
active movement tasks, showing that all of them
share similar modulation of the oscillatory com-
ponents. Additionally they showed that the use of
proprioceptive feedback increases BCI performance
(Ramos-Murguialday et al 2012). Similar results were
also recently published in (Corbet et al 2018). Fur-
thermore, previous work showed that calibrating a
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MI-based BCI with afferent signals obtained with
neuro-muscular electrical stimulation (NMES), can
significantly increase performance in those tasks
where BCI control is difficult to achieve (Vidaurre
etal 2013,2019).

Over the past years, the role of BCls in the field of
neuroprostheses is widely discussed (see Faghri et al
1994, Mueller-Putz et al 2005, Peckham and Knutson
2005, Neuper et al 2006, Ramos-Murguialday et al
2012, Vidaurre et al 2016). In this setting, induced
(NMES) or passive movements are externally initi-
ated to achieve complex movements (Pedrocchi et al
2013, Vidaurre et al 2016). Therefore, there is a need
to study induced movements not only as facilitators
of BCI control (Chatterjee et al 2007, Vidaurre et al
2013, 2019, Ahn et al 2014, Yi et al 2017, Corbet
et al 2018), but also as possible disrupters. A recent
work by Hehenberger et al (2020) found that vibro-
tactile stimulation without movement does not neg-
atively influence the performance of the BCI system
for the recognition of movements. However, there
are situations where induced movement artifacts of
neuronal origin can hinder the efficiency of BCI sys-
tems. This can occur during attempted movements
in e.g. stroke patients. In this situation, peripheral
stimulation is used to facilitate motor performance.
However, neuronal activity caused by the stimulation
could be wrongly recognized as an attempted move-
ment. This in turn can lead to a false triggering of a
BCI device.

In this work, we looked at induced movements
from that perspective and investigated whether sig-
nificant performance drops exist in the classification
of two motor imagery tasks when one limb is stimu-
lated during the imagination of different movements.
And indeed, this was the case for the two studied scen-
arios: (a) the first one is the continuous stimulation
of a limb not involved in any of the MI tasks. Here,
and taking into account results reported in literat-
ure (see e.g. Vidaurre et al 2013, 2019), we hypothes-
ized that the stimulation might cause a more wide-
spread event-related desynchronization (ERD) than
MI, which might hamper the classification; (b) the
second setting is the continuous stimulation of a limb
involved in one of the two MI tasks. In this condition,
the always-active stimulation only coincides with the
MI task in half of the trials. However, during the other
half stimulation and MI activity belong to different
classes.

After analysing both settings, we further conjec-
tured that it is possible to ameliorate the observed
performance drop by removing spatial directions
contaminated with noise. Furthermore, our results
show that in the first scenario a simple method
to extract oscillatory sources called spatio-spectral
decomposition (Nikulin et al 2011, Haufe et al 2014)
is sufficient to counteract the effect of the afferent
feedback. In the second setting, we offer ways to
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alleviate this accuracy loss by removing spatial dir-
ections where noise related to stimulation could be
present.

We additionally study the cause of such perform-
ance decreases by inspecting the extent of ERD/ERS
(event-related synchronization) in comparison to the
control condition. We show that the ERD attenuation
is significantly diminished and are able to provide
the threshold for the residual SMR that must still be
present in EEG during the stimulation to ensure that
the BCI user will retain good performance.

Similar to the work presented by Iscan and
Nikulin (2018), which examined the effect of perturb-
ations on steady-state visual evoked potential based
BCIs, the present study can be considered as another
demonstration for the possibility to use BCI systems
in situations involving external perturbations affect-
ing the quality of task related neural signals.

2. Methods

2.1. Experimental setup
Informed and written consent was obtained from the
participants before starting the experiments.

Data were recorded in a one-day session lasting
between 6 and 7 h, from ten healthy BCI-users. First,
the NMES set-up took place. NMES was generated
by a Rehastim (Hasomed GmbH, Magdeburg, Ger-
many) system that produced electrical impulses at
20 Hz using four electrodes placed on the skin of the
users, two on each biceps using a bipolar set-up. The
impulse width was 500 us. The amplitude needed to
stimulate the arms (8—10 mA) was subject-dependent
and was selected as the minimum needed to elicit a
weak contraction of the muscle. The NMES control-
ler generated stimulation during the whole active trial
(3 s) and the evoked contraction caused the arm to
slowly move upwards. At the end of the trial, when
the stimulation stopped, the user was asked to return
the arm to the initial position (over his/her lap).

Brain activity was acquired from the scalp with
multi-channel EEG amplifiers using 56 Ag/AgCl elec-
trodes in an extended 10-20 international system. It
was sampled at 1000 Hz with a band-pass filter from
0.5 to 50 Hz. Data were down-sampled to 100 Hz
before further processing. After the preparation, users
were instructed to imagine the same type of move-
ments as those yielded by NMES, and the imagery
exercise was repeated several times before the record-
ing session took place to let the participants train the
movement imagination. The imagined movement of
the feet was ankle flexion. For the upper limbs, it was
arm flexion. The session consisted of three different
blocks:

e MI: Motor imagery of three limbs (left arm, right
arm and feet) was carried out. Every seven seconds
one of three different visual cues (arrows point-
ing left, right, or down) indicated the participant
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which type of MI task to perform (see first row of

figure 1). Three runs of 75 trials each (25 per class)

were recorded.

e NMES: in this condition, the left or the right arm
were stimulated but no MI tasks were performed
by the participant. Two runs of 50 trials per class
(i.e. the arms) were carried out. See second row of
figure 1.

e MI+NMES: the pair of classes with best predicted
performance from the MI recording was chosen for
the MI tasks carried out in this block. This pair
always included one of the arms and the feet class.
During some of the trials the stimulation of the
right or left arm occurred. A schema of MI+-NMES
is visible in the third row of figure 1. In each run of
this block there were trials of MI and trials of simul-
taneous MI and NMES. Three runs with 150 trials
each were recorded. The runs contained three types
of trials in random order to avoid block-effects:

— CONTROL (MI performed without simultan-
eous NMES): Best classified class-pair in the cal-
ibration data containing MI tasks of one arm and
the feet.

— DIFF: MI of one arm and the feet (the same
tasks as CONTROL condition) plus simultan-
eous NMES on the other arm. NMES was active
in all trials of this condition.

— SAME: MI of one arm and the feet (the same
tasks as CONTROL condition) plus simultan-
eous NMES on the same arm. Again, NMES was
active in all trials of this condition.

Note that in a facilitator paradigm, NMES coin-
cides with the performed tasks in 100% of the trials.
In our DIFF and SAME settings NMES is always active
as well. However during DIFF, NMES never coincides
with the MI tasks. On the other hand, during SAME,
NMES coincides with the task in only 50% of the tri-
als, because the other 50% of the trials are feet class.

2.2. Spatio-spectral decomposition

Spatio-spectral decomposition (SSD) finds spatial fil-
ters that maximize the signal to noise ratio (SNR)
of oscillatory signals. This method was first intro-
duced by (Nikulin et al 2011), where it was shown
that the SNR of the measured signals is proportional
to the SNR of the sources. Thus, maximizing the SNR
of the measured signals, also maximizes the SNR of
the sources of interest. Taking covariance matrices as
power estimators, the optimization problem reduces
to a generalized eigenvalue problem.

Py(f) Pu(f)

SNR = I~ 1
RN ET T
s
SNR(w) = Zsz:: (2)
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MI of left arm/right arm/feet run 1 run 2 run 3
o [ ) ) [ )
IU R S P R P L 75 trials per run (25 per class)
Additional data for RPCA and RSSD pipelines
NMES of one arm
run 1 run 2

)

50 trials per run

Testing data
Ml of left arm/right arm/feet + NMES disturbance

run 1 run 2 run 3
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s - g s - g A - A

150 trials per run (50 CONTROL/50 DIFF/50 SAME)

Figure 1. Diagram of the complete experimental paradigm. Upper row: motor imagery runs and trial timing. A cross appeared on
the screen from second 0 to 2. Then, the cue was presented as an arrow pointing left, right or down during three seconds.

A random 1.5-2 s period where the screen was blank followed. Three runs of 75 trials (25 per class) were performed. Middle row:
NMES of one arm. The stimulation was applied during 3 s. Bottom row: three runs of 150 trials were performed. Each contained

50 trials of CONTROL condition, 50 trials of DIFF condition and 50 trials of SAME condition. The trials were performed in
random order. The timing of the trials was similar to the one presented in the upper row.

where P(f) and P, (f) are the power of the source sig-
nal and the noise at a narrow frequency band respect-
ively, P, (f) is the power of the measured signal, and
3>, and X, are the covariance matrices of the meas-
ured signal and noise of the filtered EEG. Finally w is
the spatial filter that allows finding sources of max-
imal SNR.

2.3. Common spatial patterns

In order to find maximally discriminant spatial fil-
ters in terms of covariances, we apply the methods
described by (Blankertz et al 2008b, Lemm et al 2011,
Sannelli et al 2019). This analysis is called common
spatial patterns (CSPs). The 2 Hz band between 19
and 21 Hz was disregarded from the CSP analysis to
avoid the stimulation artefact present in the 20 Hz
band, see (Vidaurre et al 2013, Insausti-Delgado et al
2021). CSP filters maximize the variance of the sig-
nal under one task while minimizing it for the other.
Since, for band-pass filtered signals the variance is
equal to band-power, CSP analysis is applied to obtain
an effective discrimination of mental states that are
characterized by ERD/ERS effects (cf Ramoser et al
2000, Blankertz et al 2008b, Sannelli et al 2011,
2016). CSP yields a data-driven supervised decom-
position of the signal x(¢) parametrized by a matrix
W that projects the signal from the original sensor
space to a surrogate sensor space: Xcsp(t) = x(#) - W.

To calculate the matrix W we need the sample cov-
ariance matrices of the band-pass filtered EEG signals
of two different motor imagery tasks 34 and X_.
Then, the filter matrix W is defined by the general-
ized eigenvalue problem:

(Ef-3X_) W=, +32_)-W-D (3)
where D is a diagonal matrix of eigenvalues.

2.4. Invariant CSP with robust PCA noise matrix
for DIFF condition

Usually CSP filters are optimized for MI trials, but
in our case NMES is concurrently applied during
the task execution. Therefore, the CSP filtered sig-
nals are contaminated with ‘MI-like’ patterns induced
by the stimulation (Vidaurre et al 2013) in trials of
all classes. In order to obtain more robust filters, it
is possible to include a ‘noise matrix’ to the right
term of equation (3). This idea was first introduced
by Blankertz et al (20082a) (adapted from Mika et al
1999), where invariant CSP (iCSP) was developed.
The iCSP method turns a BCI system robust against
changes in power that occur due to phenomena unre-
lated to the performed task, (Blankertz et al 2008a).
The goal of iCSP is to calculate spatial filters W such
that the variance of one class is maximized by simul-
taneously minimizing the variance of the other class
and the covariance matrix E of a disturbing signal Y.
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Figure 2. Pipeline to obtain baseline results for CONTROL, DIFF and SAME conditions. After finding the frequency band and
time interval of interest for the individual pair of classes, CSP analysis is performed to select CSP derivations. Then, a LDA
classifier is trained. All parameters (band, time interval, CSP filters and classifier) were then used in the test set (CONTROL, DIFF

or SAME dataset), to obtain the final classification error.

For this purpose, the following formulation of CSP is
applied:

(Z,-3_)-W
=((1=-nE++3Z)+n-E)W-D (4

where 7 € [0, 1] is a hyperparameter to trade-off the
discrimination of the training classes against invari-
ance. This means that a small part of the non-task
related but disturbing information is added to the
averaged class covariance matrix in order to make the
spatial filter invariant against it. In this manuscript,
the ‘noise-matrix’ was estimated from band-pass EEG
signals recorded during NMES trials.

The EEG can then be filtered as before: xcsp(t) =
x(t) - W. To find E, we apply a method called robust
PCA (rPCA) to the noise matrix (Pascual et al 2011).
This algorithm allows using only principal direc-
tions of noise, at the same time attenuating the influ-
ence of outlying information in the calculation of
PCA. The number of robust principal components
that are retained is fixed to 8 and based on previous
experience.

2.5. Classification

The extracted features were then used to train a Lin-
ear Discriminant Analysis (LDA) classifier, which has
demonstrated to be effective in the discrimination of
MI data (Miiller et al 2003, Blankertz et al 2007, Lotte
et al 2007, Vidaurre et al 2007, Lemm et al 2011). For
our analysis, the 3 runs of the MI dataset described in
section 2.1 were used to estimate the required para-
meters (i.e. frequency band where ERD/ERS occurs
and time interval), the spatial filters and train the clas-
sifier. To set the additional hyperparameter corres-
ponding to invariant CSP, we employed the first 50
trials of the test set. These 50 trials have been always
discarded from performance estimation, regardless of
the method used.

2.6. Processing pipelines

The final results for accuracies of CONTROL, DIFF
and SAME conditions are the outcome of apply-
ing different datasets to specific processing pipelines
of methods that have been previously described. In
order to clarify how each of the methods is applied
within each pipeline and for each of the condi-
tions, we summarize these procedures in the present
section.

2.6.1. Pipeline to obtain baseline results for all
conditions

The processing pipeline used to obtain baseline
accuracies in all conditions is depicted in figure 2.
This pipeline is state-of-the-art of motor imagery
processing for two classes, as shown in (Sannelli ef al
2019). First, the band and time interval of interest
were found. The subject-specific band was computed
based on heuristics from the discriminability between
the spectra of binary class combinations (see Sannelli
et al 2019 for more details). The band between 19
and 21 Hz or higher harmonics of the stimulation fre-
quency were not included within the search range of
the procedure. In particular, the range was divided
within two broad bands corresponding to 6-19 Hz
and 21-30 Hz. The obtained subject-specific bands
varied between 5 and 23 Hz for the lower band limit
and 12.5 and 28.5 Hz for the upper band limit, with
corresponding mean values 11.85 and 16.35 Hz. Also
the time interval was found based on heuristics of
the discriminability of the ERD/ERS curves from
laplacian channels over the sensorimotor area, as in
Sannelli et al (2019). The minimum allowed width of
this interval was 1000 ms. Then, a CSP analysis was
performed to select six spatial filters. After that, the
variance and natural logarithm were applied to the
data and finally a LDA classifier was trained. The res-
ulting features obtained with these parameters (fre-
quency band and time interval) and CSP filters were
then used to train a classifier that was applied to the
test dataset of interest (CONTROL, DIFF or SAME).
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The error rate achieved with this pipeline on each
of the datasets (CONTROL, DIFF and SAME) is the
baseline result for each of the conditions. We termed
these procedures baseline pipeline.

2.6.2. Pipelines for DIFF condition

Apart from the baseline pipeline, DIFF condition was
analysed using two other different pipelines. The first
one is based on SSD (see figure 3 for a graphical sum-
mary of the procedures involved), where this method
was applied to the band-pass filtered MI training
data (without stimulation) to find only some MI
related oscillatory sources. The frequency band and
time interval used were the same as the ones of the
baseline pipeline. In order to select the appropriate
number of SSD sources, the raw training MI signals
were taken and filtered in the previously found SSD
space. Then, the power spectra of all SSD sources
were estimated. The SNR was computed between the
maximum power in the frequency band of interest
and the mean power in the noise band. After that,
only those SNR values of SSD sources between the
100th and 80th percentiles were retained. Later, a CSP
analysis was performed in the selected SSD sources

and a LDA classifier trained (see figure 3). Using this
SSD pipeline, DIFF data were classified and the cor-
responding results were compared to the baselines
obtained for CONTROL and DIFF conditions.

The second pipeline for DIFF data uses iCSP with
robust PCA. Again, the frequency band and time
interval of interest were the same as in the baseline
pipeline. Here the NMES dataset (considered as neur-
onal noise in this scenario) was used to improve
the robustness of CSP filters against NMES disturb-
ances. The dimensions of the noise matrix were
reduced using the robust PCA algorithm. This step
improves the accuracy of the procedure, as shown
in (Pascual ef al 2011). We termed these procedures
RPCA pipeline. A graphical summary of the methods
included in this pipeline is visible in figure 4.

2.6.3. Pipeline for SAME condition

Although SSD was developed to reduce dimensions
of data containing oscillatory information, it can also
be applied to filter out oscillatory information from
data by discarding oscillatory sources of noise in spe-
cific bands. In order to achieve this, SSD was com-
puted in the NMES (noise) data at the band where

6
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Figure 5. RSSD pipeline for SAME condition: SSD is applied to the NMES data, where the sources with highest SNR are removed.
Then, the training data is filtered in the remaining subspace. After that, SSD is applied and the components with the strongest
SNR retained as in DIFF (percentiles 70-100). Then, CSP analysis is performed to select CSP derivations on the band and interval
of interest. Next, a LDA classifier is trained. Subsequently, all parameters (band, time interval, SSD derivations from NMES and
MI, CSP derivations and LDA classifier) are used in the test set (SAME dataset), to obtain the final accuracy.

the stimulation occurred (19-21 Hz) by previously
applying Butterworth filters of order 4. The raw noise
signal was filtered in the SSD space and the SNR
of each SSD component estimated. In this case, we
only discarded the components of very high SNR
(noise) between the 100th and the 99th percentiles.
The next step was to project the MI data into this
‘NMES-clean’ subspace. Here we also computed an
additional SSD to remove dimensions as in the SSD
pipeline. Finally, CSP analysis was applied before
training a LDA classifier. The parameters found in
this pipeline (band, time interval, SSD derivations
from NMES, SSD derivations from MI, CSP deriv-
ations and LDA classifier) were used to extract fea-
tures and classify SAME data. This collection of pro-
cedures, which we called RSSD pipeline, are depicted
in figure 5.

2.7. Signal to noise ratio of motor imagery

In order to understand performance drops due to
movement stimulation, we evaluated the amount of
ERD/ERS observed for each subject (Gastaut and Bert
1954, Pfurtscheller and da Silva 1999). The degree
of ERD/ERS can be seen as an estimate of the SNR
of modulated oscillatory signals, as those originated
during movement imagination. The strength of the
modulation allows the classification of different MI
tasks, hence, it also relates to the ability of the classi-
fier to distinguish between different classes. Neverthe-
less, there is a fundamental difference when ERD/ERS
is computed between MI and rest or between two
MI classes. In the first case, the amount of ERD/ERS
might directly quantify the SNR of the signal, as
ERD/ERS is, by definition, normalized with the power
level in the resting period. However, for two MI
classes the SNR of the signal is related to power vari-
ations between two MI tasks at different scalp loca-
tions. Spatially filtered EEG signals of one class will
exhibit ERD and simultaneously (at the same time
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interval of the trial), the EEG signals from the other
class will show ERS (or at least a less pronounced
ERD). The difference between these ERD/ERS effects
can then be interpreted as SNR, where the larger the
difference, the easier it is to discriminate between MI
tasks. When the CSP filtered signal exhibits the same
level of ERD or ERS for both classes, class differences
are not observed and the classification problem might
become difficult. The quantification of ERD/ERS of
CONTROL, DIFF and SAME conditions was per-
formed as follows: the EEG data were temporally and
spatially filtered using the subject-specific frequency
band and the CSP derivations obtained in the train-
ing data (MI condition). Then, the Hilbert Trans-
form (Clochon et al 1996) was applied in order to
obtain the amplitude envelope of the subject-specific
oscillations. Processed EEG activity was then aver-
aged across epochs separately for each class. The ERD
was calculated for each CSP derivation according to:
ERD(%) = 100 x (POST — PRE) /PRE, where POST
is the average amplitude in the subject-specific post-
stimulus interval and PRE is the average activity in the
pre-stimulus interval (—500 to 0 ms). The averaged
difference between classes was computed across CSP
channels. The CSP channel with the highest r>-value
(point biserial correlation coefficient) was selected.
The r?-value is a correlation coefficient between a real
variable (here, the ERD/ERS) and a dichotomous one
containing class information.

Finally, the reported SNR values in terms
ERD/ERS were obtained applying the absolute oper-
ator to the aforementioned ERD/ERS averaged
differences.

2.8. Estimation of similarity between NMES and
MI patterns

Neuromuscular electrical stimulation generates affer-
ent patterns in the EEG that during the performance
of MI occur simultaneously to MI related signatures.
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As previously stated, during DIFF the stimulation
might spread ERD over the scalp, which in turn might
hamper the classification. On the other hand, dur-
ing SAME the stimulation is always active, but it only
coincides 50% of the time with the MI task. Here the
classifier might confuse the afferent pattern with a
pattern related to the MI task. In both settings, the
classification performance might degrade more when
the stimulation patterns and the MI patterns corres-
ponding to one of the two classes are very similar.

Thus, quantifying the similarity between MI and
stimulation brain patterns might help understanding
performance drops observed in this study. Patterns, as
obtained by CSP analysis, are simply vectors. A com-
mon procedure to estimate the similarity between two
vectors is to compute the angle of separation between
them using the formula of the inner product:

T
a -a
¢ = arccos (| Nuigs * A ) (5)

[|axnes|| - [[am |

where ay are the CSP patterns extracted from the
training data and anygs are patterns extracted with
CSP during the NMES of each of the arms. The final
estimated similarity is the average angle between all
six CSP patterns of the MI condition (training) and
one selected NMES pattern for DIFF and SAME stim-
ulation. In this way, one angle per subject and condi-
tion (DIFF or SAME) is obtained.

Then, the correlation of the resulting angles to the
DIFF and SAME baseline performances was carried
out. The Spearman correlation, robust to outliers, was
employed. A positive correlation between the angles
and the accuracy means that the higher the differ-
ence between patterns, the higher the performance
achieved.

2.9. Estimation of residual sensorimotor rhythm
during the stimulation

The oscillatory activity originated in the sensor-
imotor cortex, referred to as sensorimotor rhythms
(SMR), can be quantified by modelling the EEG
power peaks and their corresponding noise baselines.
This procedure was introduced in (Blankertz et al
2010a) where it was employed to predict MI accuracy
from an SMR power estimate in the resting-state EEG.
The method in (Blankertz et al 2010a) models the
power spectral density (PSD) at a specific frequency
range and also its corresponding noise baseline. In
particular, it fits one curve for the noise and another
one for the power peaks of the spectrum. The curve
fitting is based on the minimization of the L2-norm
of the difference vector between the spectral PSD and
the modelled parametric curves. The SMR estimate is
the maximal difference between the maximum peak
and the noise at the specific frequency bin. In this
paper, we used the EEG collected during stimulation
(NMES dataset) to estimate the level of SMR during
induced movements. Movement provokes a power
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decrease of the oscillatory activity (ERD), thus the
remaining estimated power was called in this study
‘residual SMR. We obtained one residual SMR value
for each of the participants of the study and correlated
it to the accuracy obtained by each user during the
SAME condition by means of the Spearman correla-
tion coefficient. The Spearman correlation is a non-
parametric method, robust to outliers and to devi-
ations of the normality assumptions.

3. Results

The classifiers trained on CSP features from dif-
ferent conditions might be affected by a bias shift.
This suboptimal bias might cause poor classifica-
tion performance of potentially discriminable fea-
tures (Vidaurre et al 2013, 2019). One way to avoid
this is to use a bias-independent classification meas-
ure such as the area over the ROC curve (AOC). Thus,
we opted for this procedure to obtain final classifica-
tion errors.

3.1. Signal to noise ratio of CONTROL, DIFF and
SAME features
In this manuscript, ERD/ERS is estimated to quantify
the signal to noise ratio of the features used to classify
BCI commands (Vidaurre et al 2019). The features
were extracted with the baseline pipeline, where as
described in section 2.6, band, time interval and CSP
filters were obtained with training MI data. These
parameters were subsequently applied to testing data
from CONTROL, DIFF and SAME conditions. An
example of ERD/ERS curves computed on test data
of different conditions is depicted in the bottom right
panel of figure 6. The plot shows that the ERD/ERS
difference between classes is greater for CONTROL
data than for DIFF and SAME. In fact, in the case of
SAME there is no observable difference. These results
are related to the power distribution over the scalp
displayed on the left panel of figure 6. For CONTROL
(top row), the signed-r? values show discriminative
areas over the left hemisphere. On the other hand,
DIFF and SAME conditions display r?-values close
to zero, meaning that discriminability between MI
tasks is drastically reduced. Also, for DIFF and SAME
the ERD is more widespread over the scalp than for
CONTROL. Comparing the first with the second and
third rows of this figure, the ERD contralateral to the
stimulation (which can be seen without the influence
of MI tasks in the lower row of the picture) is present
during both MI classes and it spreads over the whole
scalp. This effect appears stronger for SAME than for
DIFE

In the top right panel of figure 6, the ERD/ERS
values of each class and user are averaged across time
in the interval of interest. Then, the absolute differ-
ence between CSP channels for one task is computed
and the mean across them calculated, obtaining one
value per subject. A high ERD/ERS difference means
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Figure 6. Left: logarithmic band power distribution over the scalp of one subject, for CONTROL (top row), DIFF (second row)
and SAME (third row) conditions. Each title indicates the MI task. The fourth row corresponds to NMES data, where the first
column shows DIFF stimulation data, i.e. on the limb not related to the task (left hand). On the fourth row second column, SAME
stimulation data is visible (right hand). The third column displays signed r?-values between the data displayed in the first and
second column. Top right: scatter plot of ERD/ERS absolute values per subject for each condition (CONTROL, DIFF and SAME)
in the baseline pipeline. All values below the diagonal mean that ERD/ERS of CONTROL are higher than those of DIFF or SAME.
The higher the value, the more discriminative information is contained in the data. Bottom right: an example of ERD/ERS curves
over time for conditions CONTROL, DIFF and SAME with the baseline pipeline. In multi-class settings, the discriminability of
ERD/ERS features is achieved when a spatially filtered component of one class reflects ERD and simultaneously the same spatially
filtered component of the other class exhibits ERS (or less pronounced ERD). The difference between both conditions helps the
classification. When no difference is observed, the classification of CSP-based features turns into a very difficult problem. This is
visible for the signals displayed for SAME cl. 1 and cl. 2, where no class difference is noticeable regarding ERD/ERS effects. A bit
greater difference between classes is seen for DIFF, and the best situation in terms of discriminability is depicted for CONTROL.
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high SNR, thus the signals are easier to classify. All
points below the diagonal show that DIFF or SAME
data have lower SNR than the CONTROL condition.
The means and standard error values for ERD/ERS
related to CONTROL are 52.21% =+ 9.45%, those
related to DIFF are 30.55% =+ 9.45%, and finally,
those of SAME are 13.53% =+ 4.03%. We hypothesized
that baseline features of CONTROL condition would
exhibit better SNR than DIFF and SAME baseline
features. Thus, we employed a one-tailed Wilcoxon
test for paired samples and corrected the p-values
with the Holm-Bonferroni approach (Holm 1979).
The SNR of CONTROL was significantly higher than
the SNR of DIFF (p-value = 0.007) and also signific-
antly higher than the SNR of SAME (p-value = 0.002)
baseline features. Additionally, the difference between
the SNR of DIFF and SAME baseline features was near
significant (p-value = 0.065).

3.2. Results for DIFF condition

Classification errors of individual subjects are presen-
ted in the left panel of figure 7. The baseline error for
DIFF condition (x-axis) is plotted against SSD and
RPCA errors. The CONTROL baseline error is also
plotted in the y-axis. The average and standard error

of DIFF baseline was 22.41 4-4.08%, SSD obtained
19.00 £ 3.67% and RPCA was 17.77 & 3.77%. Finally,
the CONTROL baseline error was 14.25 £ 4.08%.

We tested two hypotheses: first, that the baseline
pipeline was suboptimal for DIFF condition, and thus
CONTROL performance would be significantly bet-
ter. Second, that SSD and RPCA pipelines would
be significantly better than the baseline pipeline
for DIFE. To test both hypotheses we performed
non-parametric one-tailed Wilcoxon tests. We cor-
rected the a-level for multicomparison using the
Holm-Bonferroni approach, (Holm 1979).

The comparison between the baselines of DIFF
and CONTROL was significant, with a p-value of
0.010. The difference between SSD and DIFF baseline
error was also significant (p-value = 0.018). The
same as between DIFF baseline and RPCA errors
(p-value = 0.010).

Regarding SNR values, we also studied whether
SSD and RPCA pipelines could increase ERD/ERS
differences to those of the CONTROL condition
(see figure 7, right panel). In this case the hypo-
thesis was that no significant differences might be
found, thus a two-tailed non-parametric Wilcoxon
test with Holm-Bonferroni correction was employed.

9
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Figure 7. Left: Scatter plot comparing the error rates (AOC) obtained classifying DIFF data with baseline pipeline (x-axis) versus
SSD and RPCA pipelines (y-axis). Classification results of CONTROL data are also displayed (y-axis). Right: Scatter plot
comparing SNR values of DIFF condition with baseline pipeline (x-axis) and DIFF with SSD and RPCA pipelines (y-axis).
The higher the value, the more discriminative information is contained in the data.

60

Subject

ECONTROL.  AOC <10% | AOC>10% 70
EISAME )
50| [CJRssD 1 60 /
E 50 /
40+ . = /
1 x
§. Q40 /,/
O 30 a
2 230 x X
X
20 2 X/
w20r x  x
£
10 - LI
x X
0 _.D il 0~
1 2 3 4 5 6 7 8 9 10 0 20 40 60

ERD/ERS SAME baseline [%]

Figure 8. Left: bar plot of AOC for CONTROL and SAME baselines. Also, RSSD error is depicted. On the left side of the picture,
all subjects for whom AOC in CONTROL was smaller than 10% are shown. Right: scatter plot comparing SNR values of SAME
baseline (x-axis) and RSSD pipeline (y-axis). The higher the value, the more discriminative information is contained in the data.

And in fact, no significant differences between the
SNR of CONTROL baseline and the SNR of SSD
(p-value = 0.5) and RPCA (p-value = 0.14) pipelines
were found. Finally, the mean SNR achieved with the
SSD pipeline was 50.75% =+ 7.08%. The mean SNR
for the RPCA pipeline was 41.72% =+ 7.47%.

3.3. Results for SAME condition

Our goal in this condition was to filter out the spatial
noise from the stimulation using SSD filters (RSSD
pipeline). In this setting, during half of the trials affer-
ent and efferent patterns were similar (Vidaurre et al
2013, 2019) because stimulation and MI task coin-
cided (as in a facilitator paradigm). However, dur-
ing the other half of the time, the classifier needed to
identify a MI task that was performed simultaneously
to the stimulation in another limb. This stimulation
caused afferent patterns that were very similar to the
other non-active MI class.

The detailed AOC results for the CONTROL and
SAME baselines and also for RSSD are depicted in
figure 8. There, one can observe that for very good
performers (under 10% of error) in CONTROL, the
RSSD pipeline can only slightly improve averaged res-
ults (for two participants it stays at the same level,
for one user it worsens and for two an improvement
is observed). However, for the rest of participants a
clear improvement is visible. Regarding averaged val-
ues, the SAME baseline error was 29.13% =+ 5.16%
and after applying the RSSD pipeline, AOC was
23.91% =+ 3.79%. As we hypothesized that the RSSD
pipeline would significantly improve the baseline res-
ults, we employed a one-tailed Wilcoxon signed rank
test (p-value = 0.024). Nevertheless, the difference
between RSSD and CONTROL baseline error was still
significant (p-value = 0.006).

From these results, it seems that RSSD can provide
a significant advantage specially if accuracy rates in
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Figure 9. Left: correlation line of similarity (CSP patterns of MI and NMES) and SAME baseline accuracy. Right: correlation line
of residual SMR (x-axis) versus baseline performance in SAME (y-axis). The line was plotted as described in section 2.9. The two
values on the x-axis correspond to SMR residual rhythm at 80% and 90% of accuracy.

CONTROL (that is, MI performance without dis-
turbances) are lower than 90%. Regarding the SNR
values, the features of the RSSD pipeline obtained an
average of 21.25% = 4.08%. Again, we conjectured
that RSSD would significantly improve the SNR of the
SAME baseline features, hence we performed a one-
tailed Wilcoxon sign rank test that allowed us to con-
firm our hypothesis (p-value = 0.014). All SNR res-
ults are depicted in the right panel of figure 8.

3.4. Similarity between MI and NMES and its
relation to performance decrease during
stimulation

As stated in sections 2.8 and 3.3, the similarity
between MI and NMES patterns might hinder the
classification due to the simultaneous occurrence of
afferent and efferent patterns corresponding to differ-
ent classes. Hence, this similarity might be a reason
for the observed performance drops during MI sim-
ultaneous to NMES induced movements.

To find this out, we tested whether a signific-
ant correlation existed between the accuracy obtained
with the baseline pipeline in conditions DIFF and
SAME and the pattern similarity of MI and NMES.
The result was significant only for SAME condition,
with a correlation value of 0.75 and a p-value of 0.009.
The corresponding correlation plot is visible on the
left panel of figure 9.

3.5. Correlation of SAME performance and
residual SMR

Finally, we studied whether the amount of residual
SMR during stimulation was positively correlated to
the baseline accuracy achieved for SAME. The Spear-
man correlation coefficient was employed to find out
whether this relation was significant. This procedure
is robust to outliers and based on the correlation of
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ranked data. We obtained a significantly positive cor-
relation of 0.71 with a p-value of 0.013.

The right panel of figure 9 depicts the scatter
plot of the residual SMR values during stimulation of
the arm (NMES condition) against the performance
obtained by the participants in the SAME condition.
The line corresponds to the correlation found with
the Spearman coefficient. This line is not equivalent
to the one obtained using the Pearson coefficient. It
was found using an alternative procedure that con-
sists on finding the 8 parameter in y — Gx for which
the absolute correlation with x is minimum (i.e. zero
or close to it). The S minimizing the correlation is
the slope of the depicted line in the right panel of
figure 9. The corresponding intercept was computed
as the median of the residuals. The two points marked
in the x-axis of the figure correspond to the SMR
residual values necessary to obtain 80% and 90% of
accuracy, respectively.

4, Discussion

The present study aims at improving the reliability
of BCI systems by turning them more robust against
motor disturbances. Reliability is a key factor in the
design of human-computer interaction systems and,
in relation to BClIs, it is included into a growing body
of literature that investigates the use of these systems
in the real world (Millan et al 2010, Allison et al 2012).
The challenge of bringing BCI out-of-the-lab includes
studying how non-controlled conditions affect BCI
performance, as we did in this manuscript. A similar
example includes Friedrich er al (2011), who found
that auditory distractions do not significantly affect
BCI performance of mental tasks (including MI).
Also, Brandl et al (2016) showed that MI classification
is affected by secondary tasks such as hearing news
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or closing the eyes. A further example is the work of
Iscan and Nikulin (2018), in which the effect of dis-
tractions on the performance of a SSVEP-based BCI
was investigated. In relation to increasing the reliabil-
ity of BCI systems, other notable examples are related
to user-centered approaches designed to improve the
feedback experience of BCI users (Friedrich et al 2013,
Kiibler et al 2014, Lorenz et al 2014, Liberati et al
2015).

To the best of our knowledge, our work goes one
step further by focusing on motor disturbances, ana-
lysing their influence in the performance of BCI sys-
tems and providing new methodology to improve the
reliability of BCIs for rehabilitation purposes. The
results relate to a BCI experiment in which brain
oscillatory activity was negatively affected by affer-
ent inputs produced by NMES. These perturbations
can occur, for example, during the use of neuropros-
theses. However, there are other situations where sim-
ilar artifacts could be expected. For example, DIFF
condition would be similar to that produced by com-
pensatory movements of the contralateral side during
movement attempt in e.g. stroke patients, (Cai et al
2019). On the other hand, SAME condition could
happen due to incorrect triggering of a movement
device in one limb during rehabilitation. More spe-
cifically, a possible real case application could be dur-
ing movement attempt decoding while using a rehab-
ilitation BCI concept. There, brain signals control a
body actuator like NMES or a robotic exoskeleton.
Involuntary muscle contractions on the non-paretic
side during paretic side movement attempts, or false
positives in the decoding activating the body actu-
ator, may negatively affect the decoding of move-
ment intention. In such an application (rehabilita-
tion BCI), the decoding or link (i.e. the contingency)
between brain oscillatory activity and the movement
of the paretic limb is key to induce functional neuro-
plasticity. Therefore, a system like the one developed
and described in the present work, although still not
tested with patients, has the potential to partially
improve the contingency of BCI systems in rehabil-
itation contexts.

The results of this manuscript show that both
DIFF and SAME conditions exhibit more widespread
ERD over the contralateral cortex to the stimulated
limb. Furthermore, as seen in figure 6 the ERD/ERS
difference between tasks is also diminished, with
almost no discriminative information contained in
the signed r’-values. Along with it, a significant per-
formance drop is also observed in comparison to
CONTROL baseline.

Our results show that the ERD/ERS spatial dis-
tribution changes with stimulation. Hence, we hypo-
thesized that rejecting or robustifying spatial inform-
ation related to noise would improve performance.
In fact, the idea of reducing noise by rejecting spatial
information is a usual procedure to remove artifacts
(e.g. the application of independent component
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analysis (ICA) to EEG data, Meinecke et al 2002,
Vorobyov and Cichocki 2002, Winkler et al 2011).
However, despite the afferent information in our
framework is due to the stimulation, it has a similar
oscillatory nature as the signals related to MI tasks.
Thus, the preferred procedure to reject afferent pat-
terns was SSD, which is a source separation algorithm
that exploits the oscillatory nature of the EEG.

As stated before, the stimulation causes ERD that
is not only contralateral to the stimulated limb, but
also spreads over other areas of the scalp. In the case
of DIFF this means that the ERD elicited by MI tasks
is ipsilateral and central to the ERD from the stim-
ulation. Our results show that selecting those direc-
tions where MI tasks occur is sufficient to filter out
afferent oscillatory noise. Therefore, this also indic-
ates that the NMES and MI pattern similarity is not
related to the performance drop observed in DIFE

For SAME, the problem of removing afferent
noise is more complex. During 50% of the trials, the
stimulation of the hand is simultaneous to the MI of
the feet. The hand stimulation is similar to the cor-
responding MI hand pattern. Hence, from the classi-
fier’s point of view, both classes of interest appear to
be active simultaneously, complicating the classifica-
tion problem in comparison to the usual setting.

In this case, retaining a few MI directions as in
the SSD pipeline would not remove stimulation noise
in SAME. This is because afferent and efferent pat-
terns coincide for the hand MI task. On the other
hand, excessively eliminating SSD directions in the
MI band, would also remove ERD containing class
discriminative information of the hand class. Our
idea was thus to directly reject noise by removing SSD
directions that appear at the frequency band of the
stimulation. In fact, the authors of (Brickwedde et al
2020) showed that peripheral somatosensory stimu-
lation at 20 Hz produces not only steady-state evoked
responses at 20 Hz, but it also affects neuronal activ-
ity at o/ frequency range (i.e. one of the bands where
ERD occurs in MI). Moreover, such changes were not
constant but varied dynamically during the experi-
ment. Therefore, we reasoned that neuronal struc-
tures involved in the processing of NMES in our study
would be affected not only through changes in 8 but
also in the u frequency range. Therefore, although
SSD was trained in the range of NMES frequency,
rejecting the corresponding SSD spatial filter in a
broad frequency range would also remove neuronal
changes at structures responding to NMES in other
frequency ranges. This idea was applied in the RSSD
pipeline, which improved the classification accuracy
in condition SAME. Our results showed that it was
particularly effective for those participants who are
more vulnerable to performance drops.

Finally, given that the baseline accuracy was
higher for CONTROL than for SAME, we studied
how much residual SMR power during stimulation
should be present to ensure acceptable performance.
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First, we found that the correlation between this resid-
ual SMR power and the baseline performance of
SAME was significant. Using this relationship, the
right panel of figure 9 shows that an approximate
residual SMR between 4 and 5 dB is necessary to
respectively achieve 80% or 90% of accuracy when
disturbances similar to the SAME condition are
expected.

5. Conclusions

In this paper we showed how stimulated move-
ments might cause performance drops in MI-based
paradigms. We also presented three methods to coun-
teract their harmful effect. Disturbances of DIFF con-
dition could be mitigated by applying two different
pipelines, one based on robustifying filters (RPCA)
and the other on selecting informative directions
(SSD). The SSD is a simple technique that increases
SNR and helps selecting SMR sources at specific fre-
quency bands. Interestingly, and unlike RPCA, this
method does not involve prior knowledge of the noise
characteristics, reducing the need of extra record-
ings. We could also achieve a significant improve-
ment for the SAME condition with an accuracy that
was still lower than for CONTROL. Importantly, we
studied the level of residual SMR during stimula-
tion and provided a range of easy-to-measure val-
ues that are significantly related to future perform-
ance under movement disturbances. These values
can be obtained during the stimulation without MI
and serve as predictors for the successful application
of a BCI paradigm under these complicated exper-
imental conditions. Future research will study non-
linear classification such as neural networks as well
as explanation techniques (Sturm et al 2016) for
assessing potential temporal variability of the disturb-
ance during stimulation and during a training pro-
cess in rehabilitation. Finally, the number of parti-
cipants of the study might be a limitation despite the
promising results obtained. Thus, future experiments
with a greater number of participants should also be
considered.
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