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ABSTRACT
Second-order Møller–Plesset perturbation theory (MP2) constitutes the simplest form of many-body wavefunction theory and often pro-
vides a good compromise between efficiency and accuracy. There are, however, well-known limitations to this approach. In particular,
MP2 is known to fail or diverge for some prototypical condensed matter systems like the homogeneous electron gas (HEG) and to over-
estimate dispersion-driven interactions in strongly polarizable systems. In this paper, we explore how the issues of MP2 for metallic,
polarizable, and strongly correlated periodic systems can be ameliorated through regularization. To this end, two regularized second-order
methods (including a new, size-extensive Brillouin–Wigner approach) are applied to the HEG, the one-dimensional Hubbard model, and
the graphene–water interaction. We find that regularization consistently leads to improvements over the MP2 baseline and that different
regularizers are appropriate for the various systems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0078119

I. INTRODUCTION

Second-order Møller–Plesset perturbation theory (MP2) holds
a unique place in the hierarchy of wavefunction-based electronic
structure methods.1–4 Historically, it was the first correlated method
in quantum chemistry that was size-extensive, invariant to unitary
orbital rotations, and computationally affordable. Until the develop-
ment of modern density functional theory (DFT), it was, therefore,
the workhorse method of molecular quantum chemistry.5

Even today, MP2 still plays an important role, e.g., in its
spin-component-scaled variants or as a part of double-hybrid DFT
methods.6–8 Despite this popularity, the limitations of MP2-like
methods are also well-known. In particular, they fail spectacu-
larly for strongly correlated or metallic systems.9–11 Furthermore, a
strong overestimation of dispersion interactions is observed for large
polarizable systems due to the absence of higher-order screening
effects.12,13

With the significant recent interest in implementing and apply-
ing wavefunction methods to solids, MP2 is again at the center of
attention as it represents the natural first step in such endeavors.14–19

However, the known problems for large and metallic systems clearly
limit the usefulness of MP2 in this context. Indeed, canonical MP2

by construction must fail for metals, since the vanishing bandgaps
lead to diverging contributions to the correlation energy. Interest-
ingly, coupled-cluster (CC) methods do not share this problem,
despite being closely related to MP2.10,20 This improved behav-
ior can be interpreted as a renormalization of the bandgap due to
the inclusion of screening effects. This makes CC methods highly
attractive for condensed matter applications.17,21 Unfortunately,
this advantage comes at a significantly increased computational
cost.

In light of these issues, there has been significant interest in
obtaining more robust MP2-like methods. In particular, different
forms of regularization have been proposed as a way of empirically
imitating higher-order screening effects at the MP2 level.22–25 This
concept has proven very fruitful for molecular applications, but to
the best of our knowledge, it has so far not been applied to extended
systems.

In this paper, we investigate the performance of regularized
MP2-like methods for some prototypical periodic systems in which
each constitute known issues for canonical MP2. In particular, we
consider the homogeneous electron gas (HEG) (a metal prototype),
the one-dimensional Hubbard model (a strongly correlated sys-
tem), and the interaction of graphene with a water molecule (a
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challenging dispersion-driven interaction). We also propose a new,
non-empirical regularization method based on the second-order
Brillouin–Wigner (BW) perturbation theory.

II. THEORY
In the following, we use indices i, j, k, l for occupied and a, b, c, d

for unoccupied spin-orbitals χ, respectively. Antisymmetrized two-
electron repulsion integrals in this basis are denoted as ⟨ij∥ab⟩. Using
this notation, the MP2 correlation energy can be written as

EMP2
c = ∑

i,j,a,b
−

1
4
∣⟨ij∥ab⟩∣2

Δab
ij

, (1)

where the denominator Δab
ij = εa + εb − εi − εj is computed from the

corresponding orbital energies ε.
Clearly, this energy must diverge if any Δab

ij becomes zero,
i.e., for metallic systems. In principle, a small constant δ could be
added to the denominator to avoid this.23 Such a level-shift prevents
the division by zero, thus regularizing the MP2 correlation energy
expression. This raises the question of how large the regularizer δ
should be, however. Unfortunately, it has been found that there is
no simple answer to this question: no single value of δ can both
restore Coulson–Fisher points for single bond breaking and retain
good thermochemical performance for weakly correlated systems.23

In other words, the δ-regularization approach is not flexible enough
to fix the divergence of MP2 while retaining its merits.

To address this, Lee and Head-Gordon explored several more
sophisticated regularization schemes, in which each contribution
to the MP2 energy is individually regularized according to the
denominator Δab

ij .24 This allows attenuating the offending terms
without affecting the well-behaved ones. The most successful of
these schemes is κ-regularization, which uses the expression

Eκ−MP2
c = ∑

i,j,a,b
−

1
4
∣⟨ij∥ab⟩∣2

Δab
ij
(1 − e−κΔab

ij )
2
. (2)

For orbital-optimized MP2, this form of regularization (using
κ = 1.4 E−1

H ) was found to yield accurate molecular thermochemistry
while also restoring the Coulson–Fisher points in single-bond disso-
ciation curves (the absence of the latter being a well-known failure
of canonical MP2).24

In this work, we also explore a different regularization
approach. This is based on Brillouin–Wigner (BW) perturbation
theory, where the second-order correlation energy reads26

EBW2
c = ∑

i,j,a,b
−

1
4
∣⟨ij∥ab⟩∣2

Δab
ij − EBW2

c
. (3)

This equation must be solved iteratively, as EBW2
c appears on both

the left- and right-hand sides.
BW2 has some formal advantages over MP2. It yields the exact

correlation energy for two-level systems and avoids the divergence of
the energy for vanishing Δab

ij .26,27 There was therefore considerable
interest in the Brillouin–Wigner series in the early days of quantum
chemistry, which persists in the context of multi-reference pertur-
bation theory.28,29 However, BW2 also has a considerable downside,

namely, that it is not size-extensive.30 This is obviously problematic
for applications to extended systems. Nonetheless, the idea of using
a correlation energy-dependent regularization is attractive, since the
diverging correlation energies (e.g., beyond Coulson–Fisher points
in bond-breaking) are a clear signal that regularization is needed.

We, therefore, propose a simple modification of BW2, which
restores size-extensivity (termed xBW2 in the following):

ExBW2
c = ∑

i,j,a,b
−

1
4
∣⟨ij∥ab⟩∣2

Δab
ij −

ExBW2
c
Ne

, (4)

with the number of electrons Ne. In other words, the correlation
energy in the denominator is replaced by the correlation energy per
electron. In this way, a constant regularizer is obtained in the limit
of infinite systems so that the size-extensivity of MP2 is recovered.
This is shown numerically for He chains in Fig. 1. Note that, while
we introduce xBW2 here as a form of regularized MP2, BW is a per-
turbation theory in its own right. For more details on the relation of
MP2, BW2, and xBW2 from the perspective of formal perturbation
theory, see Appendix B.

Furthermore, Ec
Ne
≪ Δab

ij for weakly correlated systems, so that
MP2 is approximately recovered in this limit. This is important,
as we do not want to destroy the good performance of MP2 in
such cases, e.g., for main group reaction energies. To illustrate
this numerically, the correlation between MP2 and xBW2 reac-
tion energies is shown in Fig. 2 for 17 isomerization and 98
bimolecular reactions involving 66 small main-group molecules
from the W4-11-GEOM database31 (full data in the supplemen-
tary material).32 This shows that xBW2 and MP2 are nearly
identical in this case with 8 and 9 meV mean absolute devi-
ation for the isomerization and bimolecular reaction energies,
respectively.

To the best of our knowledge, this method has not been pro-
posed before in the literature. It is closely related to several other
approaches, however. On one hand, the trick of using the correlation
energy per electron instead of the total correlation energy can also
be used to derive the averaged coupled-pair functional (ACPF) from
the configuration interaction approach.33,34 In this sense, xBW2 can

FIG. 1. Correlation energies per atom for evenly spaced (d = 3 Å) helium chains
of increasing length, using the cc-pVDZ basis. A slope larger than zero indicates a
non-size-extensive method.
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FIG. 2. Comparison of MP2 and xBW2 for reaction energies of closed-shell main
group molecules calculated with the cc-pVTZ basis.

be seen as a second-order approximation to ACPF. On the other
hand, a similar second-order expression was also derived by Zhang,
Rinke, and Scheffler from the Bethe–Goldstone equation (BGE2).35

In this method, pair correlation energies are used for regulariza-
tion instead of the correlation energy per atom. Consequently, each
electron-pair ij has a different regularizer. In this sense, BGE2 is
related to the coupled electron-pair approximation (CEPA)36 and
xBW2 can be considered an “averaged” BGE2. This averaging has
the advantage that (unlike BGE2 and κ-MP2) xBW2 is invariant
to unitary orbital transformations, although the BGE2 regulariza-
tion is arguably more flexible. More generally, the iterative nature
of the xBW2 equation resembles coupled-cluster theory, where the
coupling between individual amplitudes is replaced by an average
coupling term that is the same for all amplitudes.

As this discussion shows, a series of regularized MP2 methods
have been proposed in the literature, using constant and dynamic
regularization terms. In the following, we will focus on two dynamic
schemes, namely, κ-MP2 (as a prototypical semi-empirical regu-
larization based on Δab

ij ) and xBW2 (representing a non-empirical,
energy-dependent regularization scheme).

III. RESULTS
A. Homogeneous electron gas

As a first model system, we consider the homogeneous elec-
tron gas (HEG), which plays a central role in understanding the
properties of simple metals and is of essential importance to the
foundations of density functional theory. The divergence of second-
order perturbation theory for the infinite HEG has long been proven
analytically.9,37,38 More recently, finite periodic electron gases have
emerged as important numerical benchmark systems for many-body
theories.10,20,39,40 Importantly, this showed that MP2 also diverges
for these systems, even though they display significant energy
gaps. Since the divergence of canonical MP2 for the HEG is thus
well established, it is of particular interest to understand how the
regularized methods behave in comparison.10

In Fig. 3, the per electron correlation energies of κ-MP2 and
xBW2 are plotted against the corresponding MP2 values. Here, each

FIG. 3. Correlation energies per electron of different electronic structure methods
plotted against the MP2 correlation energy per electron. Deviation from linearity in
this plot indicates convergence or slower divergence than MP2. Data for mCCD
and RPA+SOSEX are taken from Ref. 20.

point corresponds to an electron gas with Ne = 14–1598 electrons
in a cubic supercell, at a density corresponding to the Wigner–Seitz
radius of 1 a.u. The calculations are performed with a finite plane-
wave basis, as detailed in Ref. 20. For comparison, we also include
data for the “mosaic” coupled-cluster doubles method (mCCD) and
random phase approximation (RPA) with screened second-order
exchange (RPA+SOSEX) from that reference.

RPA+SOSEX represents a canonical example of a conver-
gent theory in this context. While the per electron correlation
energy continues to increase with the size of the supercell for MP2,
RPA+SOSEX quickly approaches a nearly constant value. For our
purposes, the mCCD method is also an interesting benchmark.
Here, the amplitude equations of CCD are reduced to the pure
driver term (also present in MP2) and the “mosaic” diagrams,
which can be interpreted as a renormalization of the single-particle
Hamiltonian.10 From this perspective, mCCD, thus, resembles an
ab initio analog to the regularized MP2 methods studied herein. It
can be seen that mCCD also deviates strongly from MP2 for larger
supercells, indicating an apparent convergence (or at least slower
divergence).

κ-MP2 displays a significantly improved behavior relative to
MP2, somewhat resembling the mCCD behavior though with dif-
ferent rates of convergence. This is quite remarkable given that the
regularization parameter κ = 1.4 E−1

H was empirically optimized to
small molecule thermochemistry data, which is completely unrelated
to the HEG. This could indicate that a somewhat stronger regulariza-
tion might be adequate for metallic systems but that the functional
form of κ-MP2 is, in principle, well suited for this type of system.

In contrast, xBW2 only displays a marginal improvement over
MP2. It is, therefore, not trivially the case that regularization allows
applying MP2-like methods to metallic systems. Indeed, it is worth
reemphasizing that MP2 diverges for finite-sized HEG supercells,
even though these do not display a vanishing bandgap. Therefore,
the simplistic notion that fixing MP2 in the Δab

ij → 0 limit is sufficient
to describe metals is not correct. Instead, higher-order screening
effects are essential for describing uniform electron densities with
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or without gaps. These effects are apparently captured by the κ-MP2
regularizer to some extent but not by xBW2.

B. One-dimensional Hubbard model
Next, we investigate the performance of regularized MP2-like

methods for the strongly correlated Hubbard model. The Hub-
bard model and related Hamiltonians were independently proposed
in physics by Hubbard,41 Kanamori,42 and Gutzwiller43 and in
chemistry by Pariser, Parr, and Pople.44–46 These model Hamilto-
nians cover the behavior of a wide range of correlated systems,
such as high Tc superconductivity,47 magnetism,42,43 and the Mott
metal–insulator transition.48,49

The Hubbard Hamiltonian reduces the electron interactions
in extended systems to a short-range repulsion U ≥ 0 on a lattice
of single orbital sites. The nearest-neighbor sites are connected by
hopping matrix elements t. Therefore, the physics of the model is
governed by the correlation strength U/t. In the case of U ≫ t, the
energy penalty U for a double occupancy of sites outweighs the
kinetic energy gain t and the system becomes strongly correlated. In
this limit, the performance of various many-body methods has been
tested. These include exact diagonalization schemes, such as the
Lanczos algorithm,47 as well as approximate many-body methods,
such as the random phase approximation (RPA),11 truncated CC
methods,11,50,51 dynamical mean-field theory (DMFT),49 and Quan-
tum Monte Carlo (QMC) methods.47,51 To evaluate the performance
of correlated many-body methods, the one-dimensional half-filled
model is especially instructive, as it can be solved exactly, revealing
that it is insulating in the strongly correlated limit.48 In the follow-
ing, we, therefore, examine the one-dimensional spinless periodic
six-site Hubbard model at half-filling.

Figure 4 depicts the ground-state energy curve of xBW2 as
a function of U/t. Here, we compare xBW2 to MP2, Variational
Coupled Cluster with Double (VCCD) excitations, and the exact
full Configuration Interaction (FCI) method. VCCD is included
here as it represents the best possible energy that can rigorously
be obtained with an MP2-like wavefunction.52 Indeed, VCCD only
slightly underestimates the correlation energy in the strongly cor-
related limit, while MP2 diverges. As with the HEG, this is despite

FIG. 4. Ground-state energy of the one-dimensional periodic six-site Hubbard
model at half-filling, computed with xBW2 and different reference electronic
structure methods. Energies are given in units of the hopping parameter t.

the fact that the energy gap retains its finite value for all correlation
strengths. Interestingly, xBW2 displays a massive improvement over
MP2, essentially curing the strongly divergent behavior of the latter.
The xBW2 curve, in fact, displays excellent quantitative agreement
with the reference methods, somewhat fortuitously falling between
the VCCD and FCI curves.

An analogous plot is shown for κ-MP2 in Fig. 5. As the Hub-
bard model Hamiltonian uses an arbitrary energy scale given by the
hopping parameter t, there is no meaningful way to translate the
empirically optimized value of κ to this system. We, therefore, con-
sider a range of regularization strengths. For κ→∞, the original
diverging MP2 curve is recovered, while for κ→ 0, the restricted
Hartree–Fock (RHF) curve is obtained, as the correlation energy
contribution vanishes. Taking these limits of κ into account, several
intermediate values were considered, so that the regularized calcu-
lations reproduced the FCI energy at the correlation strengths U/t
= 8, 13, 18, respectively. Interestingly, none of these methods out-
performs xBW2, despite the fact that they were explicitly fitted to the
FCI results. Indeed, all κ-MP2 curves display significant curvature,
so that they are either over- or underregularized in some range and
ultimately diverge. Notably, RPA completely fails for this system,
yielding complex correlation energies beyond correlation strength
U/t = 2.11

C. Graphene-water interaction
Finally, we test the regularized methods for the interaction

of graphene with a single water molecule. This system has been
intensively studied as a highly challenging benchmark for many-
body methods.53–59 As a case in point, MP2 significantly overesti-
mates this interaction, as is commonly observed for non-covalent
interactions involving large, polarizable systems.12 Consequently,
only computationally demanding many-body treatments such as
the coupled cluster method with singles, doubles, and perturba-
tive triples [CCSD(T)] or QMC offer predictive accuracy on this
system.

Table I presents the corresponding interaction energies, calcu-
lated at various levels of theory for a 4 × 4 graphene supercell (see

FIG. 5. Ground-state energy of the one-dimensional periodic six-site Hub-
bard model at half-filling, computed with κ-MP2 methods and different refer-
ence electronic structure methods. Energies are given in units of the hopping
parameter t.
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TABLE I. Interaction energies for a single water molecule with a graphene sheet,
computed with (regularized) second-order, RPA, and coupled-cluster methods.

Method Eint (meV) ΔECCSD(T)
int (meV)

MP2 −98 −18
xBW2 −94 −14
κ-MP2 −87 −7
RPA@HF −47 +33
RPA@PBE −58 +22
CCSD −56 +24
CCSD(T) −80 0

Appendix A for computational details). Note that these calculations
are analogous to the ones in Ref. 53. However, since we here focus
on benchmarking different electronic structure methods, finite-size
effects beyond the 4 × 4 supercells are not taken into account. The
methods are thus directly compared for a finite supercell, as in the
case of the HEG.

CCSD(T) provides an accurate benchmark for this system. As
expected, canonical MP2 significantly overbinds (by 18 meV, corre-
sponding to 22.5%), due to the absence of screening effects. Perhaps
surprisingly, coupled cluster with singles and doubles only (CCSD),
in turn, underestimates the interaction energy by 25 meV. We also
include results for the direct Random Phase Approximation (dRPA)
using Hartree–Fock (HF) and Perdew–Burke–Ernzerhof (PBE)
reference determinants. These turn out to be quite similar to CCSD
in this case, though dRPA@PBE represents a slight correction in
the right direction. This underscores the challenging nature of this
system, which even infinite order methods like RPA and CCSD
struggle with. It should be noted, however, that the RPA results can
be significantly improved by including the contribution from GW
single excitations.53

As in the previous cases, regularization consistently leads to an
improvement over the MP2 results. In the case of xBW2, this only
amounts to a minor adjustment, however, as the interaction energy
is merely lowered by 4 meV. In contrast, the improvement for κ-
MP2 is more substantial yielding interaction energy within 7 meV
of the CCSD(T) value.

These results indicate that higher-order screening effects can
(to some extent) be captured by the κ-MP2 regularizer and less effec-
tively by xBW2. This mirrors the findings for the HEG case discussed
above. Indeed, a relation between the HEG and dispersion interac-
tions in large polarizable systems has also been discussed in Ref. 12,
in the context of the RPA method.

IV. CONCLUSIONS
In this work, we have explored the potential of regularized

second-order perturbation theories for predicting the correlation
energies of extended systems, using κ-MP2 and the newly proposed
xBW2 as representative examples. While neither of these meth-
ods is a silver bullet that cures all deficiencies of canonical MP2,
regularization consistently leads to an improvement. In particular,
κ-MP2 appears well suited to describe screening effects in metal-
lic and polarizable systems. Meanwhile, the xBW2 method provides

a remarkably effective remedy for the breakdown of MP2 in the
strongly correlated limit of the one-dimensional Hubbard model.

Notably, we have not attempted the empirical adjustment
of the regularization to the scrutinized systems (except in the
inevitable case of κ-MP2 for the Hubbard model). Instead, the
literature reported κ parameter (adjusted to molecular thermo-
chemistry) was used, while xBW2 is a non-empirical method
(though it could be converted into an empirical one by scaling
the regularization term). However, as recently shown by Head-
Gordon and co-workers, a stronger regularization improves the
description of dispersion interactions and transition metal ther-
mochemistry with κ-MP2.60 Fitting the regularization parameter
to a representative set of condensed matter systems would thus
certainly lead to even better performance. Indeed, even a system-
specific choice of the regularization parameter would be possi-
ble, in analogy to the DFT + U method. However, this would
require an objective and transferable protocol for determining this
value.

Finally, it should be noted that a Hartree–Fock reference deter-
minant has been used throughout. This is the canonical reference
for MP2, but not necessarily the optimal choice.61 In practice,
Kohn–Sham or self-consistently optimized orbitals are often found
to be more accurate for molecular systems.23,24,62,63 We may expect
the same for extended systems, as can be seen for the dRPA results
in Table I. This will be explored in future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for individual MP2 and xBW2
reaction energy data for Fig. 2.
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APPENDIX A: COMPUTATIONAL DETAILS
1. Helium chains

xBW2 and BW2 were implemented in NumPy using pySCF to
generate molecular integrals.64 The cc-pVDZ basis was used for the
helium chain calculations.65

2. Homogeneous electron gas
HEG calculations are performed with a modified version of the

UEGCCD code.10
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3. Hubbard model
Calculations on the Hubbard models were performed with cus-

tom NumPy implementations of (regularized) MP2 and VCCD. FCI
calculations were performed with pySCF.64

4. Water–graphene interaction
Water physisorption is considered in the two-leg geometry as

discussed in Ref. 53. The interaction energy Eint at the equilibrium
distance d is obtained as

Eint(d) = E(d) − E(dfar),

where E(d) is the total energy of the system with the water at a dis-
tance d = 3.37 Å from the graphene monolayer, and E(dfar) is the
energy of the non-interacting system, with the water molecule at a
distance dfar = 7.395 Å from the graphene layer. A 4 × 4 graphene
sheet is employed, containing 32 carbon atoms. The simulation cell
contains a vacuum gap of 14.79 Å, to ensure that the monolayer
does not interact with its periodic image. We stress that since we
are primarily interested in benchmarking different regularized MP2
methods, finite-size effects beyond the 4 × 4 graphene supercell are
neglected. HF orbitals are expanded in a plane-wave basis within
the PAW framework using cutoff energy of 500 eV, as implemented
in the Vienna Ab initio Simulation Package (VASP).66–69 For the
correlated calculations, we use frozen natural orbitals (FNOs) com-
puted at the MP2 level.70,71 The number of virtual orbitals is
truncated by selecting the Nv FNOs with the largest occupation
number.

Recently, Irmler et al.72 proposed a simple approximation to
correct for the basis set incompleteness error (BSIE) of CCSD. This
effectively corresponds to a rescaled pair-specific MP2 term. Herein,
we correct for the BSIE of correlated methods using the CBS limit of
MP2, such that

Ec = E508
c + E6000

MP2 − E508
MP2,

where the superscript denotes the total number of virtual orbitals
Nv, and Ec is the correlation energy calculated within the different
methods. All many-body calculations are performed with the CC4S
code.73 RPA calculations employing MP2 FNOs were performed
with VASP using Nv = 6000 orbitals. Additional RPA calculations
with PBE orbitals were performed using the full plane-wave basis
with a 500 eV energy cutoff, and the results were extrapolated to the
infinite basis set limit using the internal VASP extrapolation.74

APPENDIX B: DERIVING XBW2 FROM PERTURBATION
THEORY

As indicated in the main manuscript, xBW2 was derived as a
size-extensive modification of BW2, i.e., by identifying the root of
its non-extensive behavior and renormalizing the offending term.
To provide a more general perspective, we here consider how xBW2
can be derived on an equal footing with MP2 and BW2 from for-
mal perturbation theory.75,76 To this end, we begin by splitting
the Hamiltonian Ĥ into a zeroth-order approximation Ĥ0 and a
perturbation V̂ ,

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 is chosen as the sum of Fock operators. For a single-
determinant reference wavefunction ϕ0, we, thus, obtain

Ĥ0ϕ0 = E0ϕ0

and

E0 =
Nocc

∑
i

f i
i

with f i
i = ⟨χi∣Ĥ0∣χi⟩.

In the following, we use intermediate normalization, so that

⟨ϕ0∣Ψ⟩ = 1

for the exact many-body wavefunction Ψ, which implies that

Ψ = ϕ0 +∑
k

ckϕk.

Here, the determinants ϕk form the orthogonal complement to ϕ0
and ck are the corresponding expansion coefficients. Note that the
determinants ϕk are typically grouped according to their excitation
rank with respect to ϕ0, i.e., into singles, doubles, triples, etc. We
will assume that all ϕk are also eigenfunctions of Ĥ0 (i.e., that Ĥ0ϕk
= Ek,0ϕk).

By projecting ϕ0 onto the Schrödinger equation, we obtain

⟨ϕ0∣Ĥ∣Ψ⟩ = E,

⟨ϕ0∣Ĥ0 + V̂ ∣Ψ⟩ = E,

⟨ϕ0∣V̂ ∣Ψ⟩ = E − E0,

with the exact ground-state energy E.
Having established these basic properties of Ĥ0 and V̂ , we can

proceed to construct a perturbative expansion of Ψ and E. To this
end, we define a projection operator as

Q̂ = 1 − ∣ϕ0⟩⟨ϕ0∣

and rewrite the Schrödinger equation as

(ELS − Ĥ0)Ψ = (ELS − E + V̂)Ψ,

where ELS is an arbitrary level-shift parameter (more on this below).
We can now define the perturbative corrections to the energy

and wavefunction as

Ψ = ϕ0 +Ψ(1) +Ψ(2) + ⋅ ⋅ ⋅ ,

E = E0 + E(1) + E(2) + ⋅ ⋅ ⋅ ,

which are given by the following equations:

Ψ(n) = {Q̂(ELS − Ĥ0)
−1Q̂(V̂ − E + ELS)}

n
∣ϕ0⟩,

E(n) = ⟨ϕ0∣V̂ ∣Ψ(n−1)
⟩.
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From this, the well-known first-order energy expression can be
obtained,

E(1) = ⟨ϕ0∣V̂ ∣ϕ0⟩ = ⟨ϕ0∣Ĥ∣ϕ0⟩ − ⟨ϕ0∣Ĥ0∣ϕ0⟩ = EHF − E0.

Regardless of how ELS is selected, the first-order energy correction is
thus always the difference between the total energy of ϕ0 (EHF) and
the sum of occupied orbital eigenvalues (E0).

Introducing the resolvent operator R̂0 as

R̂0 = Q̂(ELS − Ĥ0)
−1Q̂ = ∑

k

∣ϕk⟩⟨ϕk∣

ELS − Ek,0
,

we can express the second-order energy corrections as

E(2) = ⟨ϕ0∣V̂R̂0V̂ ∣ϕ0⟩ − ⟨ϕ0∣V̂R̂0E∣ϕ0⟩ + ⟨ϕ0∣V̂R̂0ELS∣ϕ0⟩.

Here, the latter two terms vanish (because R̂0ϕ0 = 0), yielding

E(2) = ∑
k

⟨ϕ0∣V̂ ∣ϕk⟩⟨ϕk∣V̂ ∣ϕ0⟩

ELS − E0,k
.

We can now return to the nature of the arbitrary level-shift
parameter ELS. Different choices for this parameter can be used
to obtain different perturbation theories, with different formal and
convergence properties. Most prominently, we can set ELS = E0 to
obtain Møller–Plesset perturbation theory. With this choice (and
assuming that ϕ0 is the canonical Hartree–Fock determinant), we
obtain the well-known MP2 correlation energy expression given in
Eq. (1).

The other obvious choice is to use ELS = E, which yields the
BW series. Here, additional approximations are required, however,
since the exact ground-state energy E is unknown. Common choices
are E ≈ E0 + E(1)

+ E(2) and E ≈ E0 + E(2), the latter of which leads to
the BW2 expression in Eq. (3). From this analysis, it becomes clear
the xBW2 correlation energy expression corresponds to the choice
ELS = E0 +

E(2)

Ne
.

While this derivation is somewhat post hoc, it opens interest-
ing perspectives, allowing the derivation of equations for general
reference determinants and higher-order corrections. This will be
explored in future work.
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