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Abstract

Vibration and dissipation in vibro-acoustic systems can be assessed using frequency re-
sponse analysis. Evaluating a frequency sweep on a full-order model can be very costly,
so model order reduction methods are employed to compute cheap-to-evaluate surro-
gates. This work compares structure-preserving model reduction methods based on ra-
tional interpolation and balanced truncation with a specific focus on their applicability to
vibro-acoustic systems. Such models typically exhibit a second-order structure and their
material properties as well as their excitation may be depending on the driving frequency.
We demonstrate the effectiveness of all considered methods in terms of their accuracy
and computational cost by applying them to numerical models of vibro-acoustic systems
depicting structural vibration, sound transmission, acoustic scattering, and poroelastic
problems. The results of the experiments are extensively discussed to derive guidelines
for the choice of model reduction methods based on the problem setting.

Keywords: vibro-acoustic system, second-order system, model order reduction,
structured interpolation, structure-preserving balanced truncation

1. Introduction

The numerical simulation of structural vibration, acoustic wave propagation, and
their combination, often termed vibro-acoustic problems, is an important tool in many
engineering applications. Especially, the prevention of unwanted noise or vibration is
important in practice and many methods to dissipate surplus vibration energy have been
established [1–4]. These problems are typically evaluated by frequency sweeps. In the
Laplace (frequency) domain, a vibro-acoustic system is described by linear systems of
equations of the form

Σ:

{(
s2M(s) + sC(s) + K(s)

)
x(s) = F(s)u(s),
y(s) = Gx(s),

(1)
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with frequency-dependent matrix-valued functions M,C,K : C → Cn×n, describing the
internal dynamics and representing mass, damping and stiffness, respectively, F : C →
Cn×m, for the external forcing via the input u(s), and the constant matrix G ∈ Rp×n,
describing the quantities of interest as linear combinations of the system states. Therein,
the controls u : C → Cm are used to steer the system state x : C → Cn to obtain the
desired behavior of the outputs y : C → Cp. In the vibro-acoustic context, the controls
resemble external excitation. Under the assumption that the system (1) is regular, i.e.,
there exists an s ∈ C for which the frequency-dependent functions can be evaluated and
the center term for the (linear) dynamics,

(
s2M(s) + sC(s) + K(s)

)
, is invertible, the

input-to-output behavior of (1) is given by its transfer function

H(s) = G
(
s2M(s) + sC(s) + K(s)

)−1
F(s). (2)

In practical applications, there is a demand for highly accurate models. Consequently,
the number of equations in (1) quickly becomes very large (n ' 106), which makes the
evaluation of (1) rather expensive in terms of computational resources such as time and
memory. Model order reduction is a remedy to construct cheap-to-evaluate surrogate
systems. In this paper, we consider structure-preserving model order reduction, i.e., the
computed reduced-order model retains the original physically-inspired system structure
of the full-order model or at least an interpretable equivalent. This has been shown to
yield more accurate approximations if the reduced system’s order is low or allows even
a physical re-interpreation of the reduced-order quantities. In the case of vibro-acoustic
systems (1), the reduced-order model should have the form

Σ̂:

{(
s2M̂(s) + ŝC(s) + K̂(s)

)
x̂(s) = F̂(s)u(s),

ŷ(s) = Ĝx̂(s),
(3)

with M̂, Ĉ, K̂ : C→ Cr×r, F̂ : C→ Cr×m and Ĝ ∈ Cp×r, and a much smaller number of
internal states and defining equations r � n. Its corresponding (reduced-order) transfer
function is given by

Ĥ(s) = Ĝ
(
s2M̂(s) + ŝC(s) + K̂(s)

)−1

F̂(s). (4)

To serve as surrogate, the reduced-order system (3) needs to approximate the original
system’s input-to-output behavior, i.e., for the same input, the outputs of (1) and (3)
should be close to each other:

‖y − ŷ‖ ≤ τ · ‖u‖ ,

with a tolerance τ , in some appropriate norms and for all admissible inputs u. For
frequency domain models, as they occur in vibro-acoustics, the approximation of the
input-to-output behavior amounts to the approximation of the system’s transfer function
in frequency regions of interest such that∥∥∥H− Ĥ

∥∥∥ ≤ τ,
with the transfer functions from (2) and (4).
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The majority of system-theoretic model reduction techniques for dynamical systems
can be classified as either based on system modes, interpolation or balancing of energy.
Classically, modal approaches are used to solve structural and acoustic problems effi-
ciently. These methods consider the solution of the system’s underlying eigenproblem to
find poles of interest, which are retained in the reduced-order system. Modal methods
are the classical, well-established approaches for the efficient reduction of vibro-acoustic
systems and, therefor, we will not consider them further in this work. See [5] for a re-
view on modal techniques for vibro-acoustic systems, [6] for the special case of systems
with frequency-dependent material properties, and [7] for a new structured dominant
pole-based approach for systems with modal damping.

Interpolation or moment-matching methods aim for low-order approximations that
match the original transfer function behavior at certain expansion points. A general
framework for structure-preserving interpolation of linear systems has been proposed
in [8]. This approach can be immediately used for structured systems of the form (1),
and has been applied to vibro-acoustic systems in [9]. For efficient numerical computa-
tions, ideas for Arnoldi-like algorithms have been extended to the second-order system
case [10, 11] for application to structural and vibro-acoustic systems [12–14]. Further
related methods for vibro-acoustic systems with poroelastic materials can be found in,
e.g., [15–17]. An important aspect in interpolatory model order reduction is the choice
of appropriate interpolation points. The iterative rational Krylov algorithm (IRKA) [18]
computes interpolation point locations automatically. The resulting first-order systems
are locally optimal in the sense of the H2-norm approximation error. Heuristic exten-
sions for second-order systems with constant coefficient matrices have been proposed in,
e.g., [19], and proven to provide good results in practice.

One of the most successful model reduction approaches for unstructured first-order
systems is the balanced truncation method [20]. This approach considers the energy
behavior of the system to identify parts of the state, which contribute only marginally to
the input-to-output behavior. Different extensions of heuristic nature have been proposed
for second-order systems [21–23], which yield good results in practical applications [7, 24].
More recently, new formulas have been proposed to limit the approximation behavior of
the second-order balanced truncation methods in frequency or time domain to ranges of
interest [25]. Extensive comparisons can be found in [7].

In this work, we present and compare different methods for reducing the numerical
complexity of vibro-acoustic systems. Three main types of systems, which are encoun-
tered in the vibro-acoustic setting, are grouped regarding their damping and coupling
behavior, and numerical benchmarks are given for each type. This allows a structured
assessment of the applicability and the approximation quality of the employed methods.
Here, we only consider interpolatory and balancing-related methods for second-order
systems and do not include modal methods into our comparisons. Reviews and compar-
isons for such methods are given in [5–7, 24]. We identify which reduction algorithms
are applicable to a wide range of different systems without the need of problem specific
modifications. The approximation quality is assessed by computing the MORscore [26],
which yields a single, comparable number for each method on each benchmark example.

The rest of the article is organized as follows: In Section 2, we give an overview about
numerical modeling of vibro-acoustic systems and group different application cases re-
garding the form of their transfer functions. The following Section 3 reviews the concepts
of model order reduction methods we will use for the comparison. In Section 4, numerical
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models for all proposed types of vibro-acoustic systems are introduced and the perfor-
mance of applicable reduction methods is compared. Section 5 concludes the article with
a discussion about the effectiveness of the considered methods.

2. Types of vibro-acoustic systems

In this section, we describe the different system types occurring in the modeling of
vibro-acoustic problems that we consider in this paper.

2.1. Structural dynamics

Structural vibration in spatial domains is often modeled using the finite element
method (FEM). A discretization with finite elements leads to a system with the following
transfer function

H(s) = G
(
s2M + sC + K

)−1
F, (5)

where the matrices M and K resemble the mass and stiffness of the model, respectively.
The matrix K is typically symmetric positive semidefinite and M is symmetric positive
definite. Details on how to obtain K and M can, for example, be found in [27, 28]. The
viscous damping, introduced by the damping matrix C, is often proportionally described,
e.g., by Rayleigh damping. In this case, the corresponding damping matrix is a linear
combination of the system’s mass and stiffness matrices and is given by

CR = αM + βK,

where the coefficients α and β control the frequency region in which the structure is
damped. Therein, α models the damping effect that the surrounding medium has on the
structure, while β accounts for the material damping.

The effect of proportional damping is not constant over the complete frequency range
and the coefficients have to be tuned individually for each problem. A damping effect
being constant for all frequencies can be described by structural damping, often intro-
duced by a complex stiffness matrix. The corresponding frequency-dependent damping
matrix is given by

CS(s) =
η

s
iK,

where η is the structural loss factor, for which standard values are available for vari-
ous materials. Discrete damping elements, for example dashpot dampers, can also be
introduced in C. This results in a matrix structure, which is not proportional to mass
or stiffness. Typically, the matrix C is symmetric and may be positive (semi-)definite,
depending on the choice of the damping model.

2.2. Acoustical modeling

Acoustic wave propagation is often modeled via the Helmholtz equation, which can
also be discretized by finite elements. For bounded problems, for example inside a cavity,
this leads to a transfer function of the form

H(s) = G

(
s2

c2
M + sC + K

)−1

F(s), (6)
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with c, the wave speed in the acoustic medium. The acoustic mass matrix M repre-
sents the compressibility of the medium and the acoustic stiffness matrix K its mobility.
Damping is introduced, for example, by admittance boundary conditions such that the
acoustic damping matrix C is not proportional to M or K. The three material matrices
are typically symmetric. The frequency-dependent acoustic source term F(s) introduces
velocity or pressure sources into the system. Its frequency dependency is either linear or
quadratic.

Unbounded problems depicting acoustic wave propagation in the open space can
be modeled using different methods, such as absorbing boundary conditions (ABC),
perfectly matched layers (PML), or infinite elements (IE) [29]. In these methods, the
model is truncated at an arbitrarily chosen boundary, which is then treated in a way that
Sommerfeld’s radiation condition is fulfilled. An example for an ABC is the Dirichlet-to-
Neumann (DtN) condition, which imposes the analytical solution of the exterior domain
on the arbitrary model boundary, leading to densely populated matrices [30]. IEs map
the solution of decaying waves traveling outwards of the modeled domain to a finite set
of nodes on which the numerical integration can be performed [31]. PMLs are absorbing
layers added to the boundaries of the modeled domain. These layers ensure that waves
can enter this region without being reflected at the boundary and are decaying inside
the layer so they do not travel back into the domain of interest [32]. Introducing these
conditions leads to a system with a damping matrix depending on the driving frequency
of the system and transfer function

H(s) = G

(
s2

c2
M + C (s) + K

)−1

F(s). (7)

The matrices resulting from a discretization with finite elements are complex symmetric
and may for special cases be rewritten such that the frequency dependency can be sep-
arated. In the case of PML, for example, it can be tuned for a specific frequency, such
that the frequency dependency vanishes [33].

2.3. Vibro-acoustic systems

Coupling a vibrating structure with the surrounding acoustic fluid results in a vibro-
acoustic system. The coupling is active in both ways: The vibrating structure radiates
energy into the adjacent medium and is, in turn, excited by waves traveling through
the acoustic fluid. Such systems are often used for modeling the sources of noise in ma-
chines or vehicles and to find ways to dissipate unwanted vibration or acoustic energy
by introducing suitable damping. Examples for these mechanisms include poroelastic
materials [34], constrained-layer damping [35], or mechanical joints [36]. The frequency-
dependent matrices in (7) can often be written in an affine form, i.e., as a sum of
scalar functions multiplied with constant matrices. In this work, we only consider such
cases. Vibro-acoustic dissipation mechanisms are often governed by frequency-dependent
complex-valued scalar functions φ̃i(s). Their influence on the model is given by corre-
sponding constant matrices Ci resulting in transfer functions of the form

H(s) = G

(
s2M + sC + K +

k∑
i=1

φ̃i(s)Ci

)−1

F(s),
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for some k ∈ N. The coupling between the solid and fluid phases introduces off-diagonal
terms in M and K, making them non-symmetric. The frequency dependency of the input
is only given if the system is excited by an acoustic source. Structural excitation can be
modeled by a constant input F.

2.4. Model problems

Although most vibro-acoustic systems are depicted as second-order systems, the dif-
ferent damping and coupling methods described above influence the structure of the
transfer function, which may hinder the application of a specific reduction method.
Therefor, we identify three types of model problems with varying properties, which will
be reduced using applicable model order reduction techniques in the following:

Case A A structural or interior vibro-acoustic system with proportional damping and
no acoustic source following

H(s) = G
(
s2M + s (d1M + d2K) + K

)−1
F,

where the damping factors d1 and d2 represent either Rayleigh or hysteretic damp-
ing. The resulting system matrices may be complex-valued if hysteretic damping
is applied and non-symmetric for an interior vibro-acoustic problem.

Case B An interior acoustic or vibro-acoustic system with acoustic source following

H(s) = G

(
s2

c2
M + sC + K

)−1

F(s).

An exterior radiation problem can also be modeled with this system type if, for
example, a PML is tuned to a single frequency.

Case C An interior vibro-acoustic system with acoustic source and frequency-dependent
material properties following

H(s) = G

(
s2M + sC + K +

k∑
i=1

φi(s)Ci

)−1

F(s), (8)

where the frequency dependency can be described in an affine representation. The
parameter dependency on the wave velocity c is included in the entries of M cor-
responding to the acoustic fluid. Again, exterior problems can be modeled, if the
method ensuring Sommerfeld’s radiation condition can be represented by either a
constant matrix or linear combination of matrices and corresponding frequency-
dependent functions.

3. Model order reduction for vibro-acoustic systems

In this section, model order reduction methods for vibro-acoustic problems are re-
viewed. We begin with the general concept of projection-based model reduction and
outline afterwards methods based on interpolation/moment matching and balancing.
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3.1. Model reduction by projection

Consider linear systems of the form (1), which are described by their transfer func-
tions (2). The goal of model reduction methods is now the construction of (3) such
that the input-to-output behavior of (1) is approximated. The resulting main question
is how to construct (3). In projection-based model reduction, two (constant) truncation
matrices V,W ∈ Cn×r are constructed as bases of underlying projection spaces span(V)
and span(W) such that the reduced-order quantities can be computed by

M̂(s) = WHM(s)V, Ĉ(s) = WHC(s)V, K̂(s) = WHK(s)V,

F̂(s) = WHF(s), Ĝ = GV;
(9)

see, e.g., [8, 37]. In practice, the matrix functions in (9) have particular realizations from
which the reduced-order models are built, e.g., the matrix function describing the mass
of the system can always be realized in a frequency-affine decomposition

M(s) =

nM∑
k=1

gk,M(s)Mk, (10)

with constant matrices Mk ∈ Cn×n, scalar frequency-dependent functions gk,M : C→ C
and usually nM � n. The reduced-order matrix function is then given by

M̂(s) = WHM(s)V =

nM∑
k=1

gk,M(s)WHMkV =

nM∑
k=1

gk,M(s)M̂k, (11)

with reduced-order matrices M̂k ∈ Cr×r. In a similar way, the reduced matrix functions
for the other terms in (9) are given. Since the scalar frequency-dependent functions
in (10) and (11) are the same, model order reduction by projection preserves the internal
system structure in reduced-order models. Therefor, the reduced-order matrices in (11)
can be used to replace their full-order counterparts to give a realization of the reduced-
order model.

As a particular example, consider the classical second-order system (5). The reduced-
order system is then given by the matrices

M̂ = WHMV, Ĉ = WHCV, K̂ = WHKV, F̂ = WHF, Ĝ = GV.

However, with these specific construction rules for reduced-order models, the main ques-
tion in projection-based model reduction is relocated to the actual construction of V and
W. The following sections give a short overview about the model reduction methods that
will be used in the numerical experiments of this paper.

3.2. Moment matching and interpolation

A classical approach for choosing V and W as of Section 3.1 is by moment match-
ing (interpolation) of the system’s transfer function. With the observation that classical
linear systems, e.g., second-order systems of the form (5), have rational transfer func-
tions, the idea of moment matching roots in the theory of Padé approximation [38, 39].
Thereby, rational Hermite interpolants of minimal degree in numerator and denominator
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are constructed. On the other hand, the moment matching method considers the repre-
sentation of the transfer function in terms of a power series, for which the first coefficients
are matched; see, e.g., [40, 41]. In a more general setting, all these ideas amount to the
construction of the reduced-order model such that its corresponding transfer function
solves a Hermite interpolation problem of the form

dij

dsij
H(σj) =

dij

dsij
Ĥ(σj), (12)

for j = 0, . . . , k and 0 ≤ ij ≤ `j , in the interpolation points σ1, . . . , σk ∈ C. The
most important result, in the computational sense, is that this interpolation (12) can
be performed using the projection framework from Section 3.1; see, e.g., [8, 42]; which
makes the moment matching approach well suited for use in many different applications.
In the following, a quick overview about particular moment matching methods related
to the system structure occurring in acoustic problems (Section 2) is given. For a more
general introduction to interpolation and moment matching see also [37].

3.2.1. Second-order Arnoldi method

Krylov subspaces are often employed as valid choices for the projection subspaces
span(V) and span(W). Their orthogonal bases V and W can, for example, be computed
via an Arnoldi method [11, 12, 43]. For simplicity, we consider in this theoretic overview
only systems with a single input and a single output (SISO), i.e., F = f ∈ Cn and
GT = gT ∈ Cn. For the application of the method to multi-input/multi-output (MIMO)
systems see, e.g., [44]. The generalized r-th second-order Krylov subspace is defined by
two matrices A,B ∈ Cn×n and a vector v0 ∈ Cn such that

Sr (A,B; v0) = span (v0,v1, . . . ,vr−1) ,

where the recursively related vectors vk are given by

v1 = Av0,

vi = Avi−1 + Bvi−2.
(13)

The vectors in (13) are also known as the Krylov sequence based on A,B and v0, and form
the sought truncation matrix V =

[
v0 v1 . . . vr−1

]
. In order to find a basis, which

projects the original system (5) onto a low-dimensional subspace such that the reduced
system matches the first r moments of the original system, the matrices and starting
vector defining the Krylov sequence are set according to A = −K−1C, B = −K−1M
and v0 = K−1f . The truncation matrix W can be computed in the same way considering
the dual problem.

If approximation around a specified frequency s0 other than zero is desired, the trans-
fer function can be shifted about this frequency s0 as in

H(s) = g
(

(s− s0)2M + (s− s0)C̃ + K̃
)−1

f ,

with C̃ = 2s0M + C and K̃ = s2
0M + s0C + K. The corresponding r-th second-order

Krylov subspace is then given by

Sr
(
−K̃

−1
C̃,−K̃

−1
M; K̃

−1
f
)
.
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The choice of the subspace dimension r and location of the shift has a large influence
on the approximation quality of the reduced model. To obtain a reduced-order model
with a high accuracy for a wide range of frequencies, it usually is beneficial not only to
increase the size of the Krylov subspace to match higher-order moments, but to combine
multiple subspaces with different shifts into a global basis.

3.2.2. Structure-preserving interpolation

A more general approach for moment matching of structured linear systems is de-
scribed in [8]. Any matrix-valued function of the form

H(s) = G(s)K(s)−1F(s), (14)

with G : C→ Cp×n, representing the outputs, K : C→ Cn×n, for the internal dynamics,
and F : C → Cn×m, describing the system inputs, can be interpolated in a structure-
preserving fashion by projection. Given the two basis matrices V,W ∈ Cn×r of underly-
ing right and left projection spaces, the reduced-order model is computed similarly to (9)
by

Ĝ(s) = G(s)V, K̂(s) = WHK(s)V, F̂(s) = WHF(s). (15)

The case of acoustic systems (1) is a special instance of (14), and particular realizations
of (15) are computed using the same idea of frequency-affine decompositions as in (10)
and (11). With the same arguments, projection methods based on (15) are guaranteed
to preserve the internal system structure. To give a concise overview, the following
proposition states the most important result from [8] to solve (12) for systems of the
form (14).

Proposition 1 (Structured interpolation [8, Theorem 1]). Let H be the transfer func-

tion of a linear system, described by (14), and Ĥ the reduced-order transfer function

constructed by projection (15). Let the matrix functions G, K−1, F and K̂−1 be analytic
in the interpolation point σ ∈ C, and let k, θ ∈ N0 be derivative orders.

(a) If span
(

dj

dsj (K−1F)(σ)
)
⊆ span(V), for j = 0, . . . , k, then it holds

dj

dsj
H(σ) =

dj

dsj
Ĥ(σ), for j = 0, . . . , k.

(b) If span
(

dj

dsj (K−HGH)(σ)
)
⊆ span(W), for j = 0, . . . , θ, then it holds

dj

dsj
H(σ) =

dj

dsj
Ĥ(σ), for j = 0, . . . , θ.

(c) If V and W are constructed as in Parts (a) and (b), then, additionally, it holds

dj

dsj
H(σ) =

dj

dsj
Ĥ(σ), for j = 0, . . . , k + θ + 1.
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Proposition 1 shows that only linear systems of equations need to be solved to con-
struct interpolating structure-preserving reduced-order models. However, the usual ques-
tion that remains for interpolation methods is the choice of interpolation points. Over
time, there have been many different attempts for heuristics strategies for how to choose
interpolation points. The following ones will be used in this paper.

A very classical choice are points on the frequency axis iR. Depending on the fre-
quency range of interest that is considered, the points are often chosen either linearly or
logarithmically equidistant. This idea serves usually an overall reasonable approximation
behavior but easily misses features of the system, which are not close enough to the inter-
polation points. In engineering sciences, this is then supplemented by educated guesses
of points in frequency regions, which may be of certain importance due to additional
knowledge about the modeling of the system.

As a more sophisticated choice of interpolation points, methods have been devel-
oped to minimize the approximation error in different system norms. The worst case
approximation error is described by the H∞-norm. Therefor, large-scale computation
methods [45, 46] and error estimators [47] can be used to determine successively new
interpolation points minimizing the H∞-error in a greedy algorithm [48]. On the other
hand, there is the iterative rational Krylov algorithm (IRKA) for unstructured first-order
systems, which solves the best approximation problem in the H2-norm [18]. There is no
extension for the general setting (14) in a structure-preserving fashion. However, the
transfer function IRKA (TF-IRKA) can be used to construct an optimal unstructured
(first-order) H2-approximation for arbitrary transfer functions [49]. It has been shown
to be very effective to use the final optimal interpolation points from TF-IRKA in the
structure-preserving interpolation setting (Proposition 1). This basically resembles some
of the ideas from [19] for an extension of the IRKA method to second-order systems.

A common drawback of interpolation methods is their global error behavior. While
these methods are exact in the interpolation points, the surrounding error behavior may
strongly differ depending on the actual transfer function. While it might help to also
match several derivatives in the interpolation points using Proposition 1, a quite often
used approach is the averaging or approximation of the constructed subspaces. The
general idea is to compute the solution to the linear systems in Proposition 1 for a large
amount of interpolation points, and then to approximate the resulting large projection
spaces by lower-order ones. This can be done using, e.g., the pivoted QR decomposition
or the singular value decomposition (SVD); see, e.g., [7] for more details.

It has been shown in [50] that this oversampling procedure can be used to recover
the controllability and observability subspaces of general systems like (14). The authors
of [50] propose an algorithm to compute such minimal realizations of (linear) dynamical
systems: Let Vpre,Wpre ∈ Rn×q be real basis matrices obtained from a presampling
for Proposition 1. Then the truncation matrices V,W ∈ Rn×r for (15) are given by
V = VpreV1 and W = WpreW1 using the SVDs[

WT
preK1Vpre . . . WT

preKkVpre

]
=
[
W1 W2

]
ŠǓ

T
, (16)WT

preK1Vpre

...

WT
preKkVpre

 = ŬS̆

[
VT

1

VT
2

]
, (17)
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where Kj ∈ Rn×n are the constant matrix terms from the frequency affine decomposition

of K(s) =
∑k

j=1 gj(s)Kj from (14).

3.3. AAA approximation of frequency-dependent functions

The contributions of general nonlinear frequency-dependent functions acting on parts
of the system denoted by a set of constant matrices Ci have to be considered for problems
of type (8) from Case C in Section 2.4. To efficiently apply the structure-preserving
interpolation framework from Section 3.2.2 to such models, the matrix functions in (14)
can be represented by a series expansion about an interpolation point s0:

K (s+ s0) =

∞∑
`=0

s`0K`, F (s+ s0) =

∞∑
`=0

s`0F `, G (s+ s0) =

∞∑
`=0

s`0G`. (18)

While the series expansion factors can be computed straightforwardly for polynomials,
general nonlinear functions require special treatment.

In the following approach inspired by [51], the required series expansion factors are
computed from AAA approximations of the frequency-dependent functions. AAA com-
putes a rational interpolant r(s) of a complex-valued function φ(s) given function eval-
uations only [52]. The approximant r(s) is originally given in barycentric form

r (s) =

q∑
j=1

wjfj
s−sj

q∑
j=1

wj

s−sj

,

where q ≥ 1 is the order of approximation, wj are weights, fj are data points such that
fj = ϕ(sj), and sj are support points. The barycentric form can be written in matrix
notation as

r (s) = a (D + sE)
−1

b

with

a =
[
w1f1 . . . wqfq

]
, b =

[
1 0 . . . 0

]T
,

D =



w1 w2 . . . wq−1 wq

−s1 s2

−s2
. . .

. . . sq−1

−sq−1 sq

 , E =



0 0 . . . 0 0
1 −1

1
. . .

. . . −1
1 −1

 .

Shifting about s0 yields

r(s) = a
(
Iq − (s− s0) D̃

)−1

b̃, (19)

with D̃ = − (D + s0E)
−1

E, b̃ = (D + s0E)
−1

b, and the q-dimensional identity matrix
Iq; see [53]. The involved matrix inverse is computationally inexpensive, as q is typically
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small. This procedure has to be performed for all k functions φi(s), yielding a set of

two vectors and a matrix {ai, b̃i, D̃i}ki=1 for each φi(s). Expanding (19) into a Neumann
series for all k functions φi(s) from (8) yields the sought after expansion factors for (18).
For a Case C transfer function (8) and ` = 2, the series expansion of K` in terms of (18)
is given by

K0 = s2
0M + s0C + K +

k∑
i=1

aib̃iCi, K1 = 2s0M + C +

k∑
i=1

aiD̃ib̃iCi,

K2 = M +

k∑
i=1

aiD̃
2

i b̃iCi.

The matrix functions F and G in (18) are handled analogously.
This approach can be used to fit transfer functions with non-polynomial frequency-

dependent terms into the standard second-order Arnoldi scheme from Section 3.2.1. Here,
only the expansion terms up to second order are considered and all higher-order terms
are truncated. Enough expansion points have to be considered in the reduced model in
order to depict the frequency dependency as quadratic functions with reasonable accuracy
between the shifts. A similar approach based on a Taylor series was successfully applied
to poroacoustic problems in [14].

3.4. Second-order balanced truncation methods

A different type of model reduction method is given with balanced truncation. It
was developed for first-order systems and utilizes the concepts of controllability and
observability to remove states, which have no big influence on the input-to-output system
behavior [20]. There have been several attempts on extending the balanced truncation
approach to second-order systems like (5); see [21–23]. All are based on considering the
linear first-order system

sEq(s) = Aq(s) + Bu(s),

y(s) = Dq(s),

with the first-order state q(s)T =
[
x(s)T sx(s)T

]
and the system matrices concatenated

from the original second-order terms (5) in the following way:

D =
[
G 0

]
, E =

[
In 0
0 M

]
, A =

[
0 In
−K −C

]
, B =

[
0
F

]
.

Under the assumption that the system (5) is asymptotically stable and using the solutions
of the dual Lyapunov equations

APET + EPAT + BBT = 0, (20)

ATQE + ETQA + DTD = 0, (21)

the truncation matrices for projection-based model reduction in Section 3.1, can be built
using partitioned (low-rank) Cholesky factorizations

P =

[
Rp

Rv

] [
Rp

Rv

]T
and Q =

[
Lp

Lv

] [
Lp

Lv

]T
12



Table 1: Second-order balanced truncation formulas. The ∗ denotes factors of the SVD not needed, and
thus not accumulated in practical computations [7, 25].

Type SVD(s) Truncation Reference

v UΣTT = LT
vMRv W = LvU1Σ

− 1
2

1 , V = RvT1Σ
− 1

2
1 [22]

fv ∗ΣTT = LT
pRp W = V, V = RpT1Σ

− 1
2

1 [21]

vpm UΣTT = LT
pRv W = M−TLpU1Σ

− 1
2

1 , V = RvT1Σ
− 1

2
1 [22]

pm UΣTT = LT
pRp W = M−TLpU1Σ

− 1
2

1 , V = RpT1Σ
− 1

2
1 [22]

pv UΣTT = LT
vMRp W = LvU1Σ

− 1
2

1 , V = RpT1Σ
− 1

2
1 [22]

vp
∗ΣTT = LT

pRv,

U ∗ ∗ = LT
vMRp

W = LvU1Σ
− 1

2
1 , V = RvT1Σ

− 1
2

1 [22]

p
∗ΣTT = LT

pRp,

U ∗ ∗ = LT
vMRv

W = LvU1Σ
− 1

2
1 , V = RpT1Σ

− 1
2

1 [22]

so
UpΣpTT

p = LT
pRp,

UvΣvTv = LT
vMRv

Wp = LpUp,1Σ
− 1

2
p,1 , Vp = RpTp,1Σ

− 1
2

p,1 ,

Wv = LvUv,1Σ
− 1

2
v,1 , Vv = RvTv,1Σ

− 1
2

v,1

[23]

and the formulas from Table 1. The last line of Table 1 describes a different approach,
which is a projection method on the corresponding first-order realization followed by
structure recovery of the second-order system. Therein, the reduced-order model is
computed by

M̂ = S
(
WT

vMVv

)
S−1, Ĉ = S

(
WT

vCVv

)
S−1, K̂ = S

(
WT

vKVp

)
,

F̂ = S
(
WT

vF
)
, Ĝ = GVp,

(22)

with S = WpVv and the truncation matrices Wp, Wv, Vp, Vv from the last row of
Table 1.

In most applications the coefficient matrices in (20) and (21) are large-scale and
sparse. In this case, there is a variety of established and efficient solution algorithms
based on the same interpolatory approach as in Section 3.2.2, which compute low-rank
approximations of P and Q; see, e.g., [54]. If the system output is the complete state,
or when only a one-sided projection is desired, it may be sufficient to compute only
one Gramian to obtain a dominant subspace from it. Similar to the approximate sub-
spaces for interpolation methods (Section 3.2), dominant subspaces have been shown to

13



be effective to approximate the controllability or observability behavior of the system.
Therefor, pivoted QR decompositions or SVDs of one or both of the Gramian factors
are computed and truncated to the desired reduced order. Then, the first r rows of the
resulting truncated orthogonal bases form the truncation matrices for model reduction
by projection.

4. Numerical experiments

In the following, we apply the model order reduction methods described in Section 3
to different vibro-acoustic systems categorized as Cases A, B and C in Section 2.4. The
setup of the numerical comparison is described in detail in the upcoming subsection.

The experiments reported here have been executed on single nodes of MPI Magde-
burg’s computing cluster Mechthild running on CentOS Linux version 7.9.2009. Each
node is equipped with two 8 core Intel® Xeon® Silver 4110 (Skylake) CPUs with a
maximum clock rate of 3.0 GHz. We had access to 192 GB main memory for each experi-
ment. All algorithms and experiments have been implemented in MATLAB 9.9.0.1467703
(R2020b). The MATLAB toolboxes M-M.E.S.S. version 2.0.1 [55, 56] and SOLBT ver-
sion 3.0 [57] have been used in some of the experiments. The models and data have been
created with Kratos Mutliphysics 8.1 [58, 59].

Code and data availability
The used data, the source code of the implementations used for the numerical experi-
ments and the computed results are available at

doi:10.5281/zenodo.6806016

under the BSD-2-Clause license, authored by Quirin Aumann and Steffen W. R. Werner.

4.1. Experimental setup

For a clear comparison of the different model reduction methods, we are using the
MORscore [7, 26]. In principle, it compresses the behavior of error-per-order graphs into
single scalar values, which can then be easily compared for different methods and error
measures. Given a relative error graph (r, ε(r)) ∈ N0 × (0, 1], which relates the reduced
order r to the relative approximation error ε(r), the MORscore is the area below the
normalized error graph (ϕr, ϕε(r)) where

ϕr : r 7→ r

rmax
and ϕε(r) : ε(r) 7→

log10

(
ε(r)

)
blog10

(
ε
)
c
.

Thereby, rmax denotes the maximum reduced order for the comparison and ε is a tolerance
describing the approximation accuracy that shall be reached.

For the following computations of the MORscore, we approximate the relative error
under the L∞-norm via

ε(r) =

max
ω∈[ωmin,ωmax]

∥∥∥H(ωi)− Ĥr(ωi)
∥∥∥

2

max
ω∈[ωmin,ωmax]

‖H(ωi)‖2
≈

∥∥∥H− Ĥr

∥∥∥
L∞

‖H‖L∞

,

14
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where Ĥr is the transfer function of a reduced-order model of size r. For simplicity, we
denote the errors in plots with the L∞-norm.

We use the following structure-preserving methods in our numerical comparison:

equi is the structure-preserving interpolation framework from [8] with linearly equidis-
tant interpolation points on the imaginary axis in a frequency range of interest
[ωmin, ωmax]i. If suitable, the interpolation points are supplemented by educated
guesses with high impact transfer function behavior.

avg is the approximate/averaged subspace approach, described in Section 3.2.2. The
linear systems necessary for interpolation as in Proposition 1 are solved and col-
lected into a matrix with q ≥ r columns, which is then approximated by a pivoted
QR decomposition of order r, from which we use the resulting orthogonal basis to
obtain the final reduced-order model.

L∞ denotes greedy interpolation based on minimizing the absolute L∞-norm error.
Here, new expansion points for the reduced-order model are iteratively chosen
at locations, where the difference between the transfer functions of the original
model and the reduced-order model are maximal. Due to the unstable numerical
behavior of currently available L∞ computation routines, we save the evaluations
of the transfer function on the imaginary axis in a presampling step and compute
the L∞-error of the reduced-order models with respect to this discrete set.

minrel follows the minimal realization algorithm from [50], which is sketched in Sec-
tion 3.2.2. Dominant subspaces of a potentially minimal realization are obtained by
first computing an intermediate reduction basis of size q ≥ r, from which reduced-
order models are computed using the SVDs given in (16) and (17).

SOBT are the second-order balanced truncation formulas according to Table 1.

Further potential model reduction methods for this comparison could be based on (TF-)
IRKA. However, in our numerical experiments, the used implementations of (TF-)IRKA
did not converge and took an exceptional amount of computation time for the different
requested reduced orders. Therefore, results of these model reduction methods are not
presented here.

The interpolation-related methods avg, L∞ and minrel require a presampling step in
which a reduction basis of order q ≥ r or the evaluation of the transfer function at chosen
expansion points are computed before the reduction methods are applied. We employ
three different approaches to compute this database for the following experiments:

std For the standard method, classical transfer function interpolation in q different ex-
pansion points is employed, which are considered in a frequency range of interest
[ωmin, ωmax]i. Thereby, q solutions of linear systems of order n are required for each
presampling basis Vpre and Wpre.

sp This method is based on the higher-order structure-preserving Hermite interpolation
scheme summarized in Section 3.2.2. The interpolation order ` at each expansion
point is set, such that all derivatives of the transfer function factors would vanish
for ` + 1. This means, that standard second-order systems described as Case A
and Case B have an interpolation order of ` = 2, Case C systems may have a
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higher `. Following the approach from Section 3.2.2, this results in an (`+ 1)-
term recurrence, and (`+ 1)m or (`+ 1) p columns for Vpre or Wpre, respectively,
are computed per expansion point requiring only one decomposition of an n × n
matrix each. Consequently, the order of models reduced with L∞ is always a factor
of max {(`+ 1)m, (`+ 1) p}, as all columns associated with the chosen shift are
selected for the reduction basis. For sp, the involved derivatives of the matrix-
valued functions are computed analytically.

soa Last, we employ an arbitrary Hermite interpolation order at each expansion point
using the second-order Arnoldi method presented in Section 3.2.1. Similarly to sp,
this implies that multiple columns of the reduction basis are computed in the same
step and that the reduced models for L∞ grow by a factor of the interpolation
order. The AAA-based method from Section 3.3 is used to obtain a second-order
representation of systems with a Case C transfer function, such that the second-
order Arnoldi method is applicable.

We also compare different projections to assess controllability and observability of
the various systems. Apart from the two-sided projection, we also consider one-sided
projections regarding the system input and output, respectively. The input projection
is obtained by setting W = V, the output projection by setting V = W. Where
applicable, we also compare complex- and real-valued projection bases. Real-valued
bases are obtained from the initial complex-valued bases by V =

[
Re (V) Im (V)

]
and

W =
[
Re (W) Im (W)

]
. The considered projections are:

tsimag Two-sided projection W 6= V with V,W ∈ Cn×r,

tsreal Two-sided projection W 6= V with V,W ∈ Rn×r,

osimaginput Single-sided projection W = V with V,W ∈ Cn×r,

osrealinput Single-sided projection W = V with V,W ∈ Rn×r,

osimagoutput Single-sided projection V = W with V,W ∈ Cn×r,

osrealoutput Single-sided projection V = W with V,W ∈ Rn×r.

Consequently, a real-valued projection incorporating equi yields reduced models with
an even dimension r only. In order to obtain a real-valued projection using avg, L∞
and minrel, their presampled bases Vpre and Wpre are modified such that they are
of dimension n × 2q before the methods compute the truncated projection matrices
V,W ∈ Rn×r. Note that for q = r, the interpolation bases computed from equi tsimag
are equal to the presampling bases obtained using the std strategy.

To allow a one-sided projection regarding the system input for SOBT, only the con-
trollability Gramian is computed and used as left and right projection matrices in or-
thogonalized and truncated form. A one-sided projection regarding the system output
is analogously possible by computing the observability Graminan. No complex-valued
bases are considered for SOBT since the method is only applied to real-valued systems,
for which it preserves the realness. However, the SOBT methods are in the following as-
signed to the complex bases methods since no additional realification process is employed.
All raw data used for the analyses reported in the following are available at [60].
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(b) Root mean square of displacement for both plates with
different damping mechanisms.

Figure 1: Sketch and transfer function of the vibrating plates.

4.2. Vibration of a plate with distributed mass-spring systems

The vibration response of simply supported strutted plates excited by a point load
is modeled in this example. The plates have dimensions of 0.8 × 0.8 m, a thickness of
t = 1 mm, and are made out of aluminum with the material parameters E = 69 GPa,
ρ = 2650 kg m−3 and ν = 0.22. Two damping models are considered: proportional
damping with α = 0.01 and β = 1·10−4, and hysteretic damping with η = 0.001. The
plates are equipped with arrays of tuned vibration absorbers (TVAs) reducing their
vibration response in the frequency region of the TVAs’ tuning frequency f = 48 Hz.
The TVAs are placed on the struts of the plates and are modeled as discrete spring-
damper elements with attached point masses. In total, an extra mass of 10 % of the
plate structure’s mass is added by the TVAs. A point load near a corner of the plate
with amplitude 0.1 N excites the system. The model is sketched in Figure 1a. A similar
system has been experimentally examined in [61]. The effect of the TVAs is limited to
the frequency region directly adjacent to the tuning frequency and is clearly visible in the
frequency response plot of the root mean square of the displacement on the plate surface
in Figure 1b. The two damping models have a large influence on the respective transfer
functions. The discretized systems each have an order of n = 201 900 and are evaluated
in a frequency range of 1 Hz to 250 Hz. While the poles of the proportionally damped
system are only visible in the lower frequency region, the hysteretically damped system’s
transfer function shows many peaks over the complete frequency range of interest. As
only structural loads excite the systems, Case A transfer functions are used to describe
the frequency response of both systems. All system matrices are symmetric, respectively
complex symmetric for the case of hysteretic damping, as no interaction effects between
structure and fluid are modeled. In order to evaluate the root mean square of the
displacement at all points on the plate surface, the displacement at these locations needs
to be recovered from the reduced space. This is done using an output matrix G with
dimensions p × n, where p is the number of nodes on the plate surface mapping the
result of each node to an individual output. Due to its size we only consider projections
regarding the system input, i.e., osimaginput and osrealinput.

The models are reduced using all methods described in the beginning of this sec-
tion, except SOBT not being applicable to the hysteretically damped model, due to
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Figure 2: MORscores of all employed reduction methods for the hysteretically damped plate, with
maximum accuracy ε = 1·10−6 and maximum order rmax = 250.

its complex-valued damping term. The presampling basis for minrel, avg and L∞ con-
siders ns = 250 frequency shifts distributed linearly in 2πi[1, 250]. Since the models
are described by standard second-order transfer functions, sp yields 3 columns for each
interpolation point. Using ns = 80 shifts linearly distributed in the same range and
augmented by shifts at 2πi[46, 47, 48, 50] yields the intermediate reduction basis with
q = 252. The additional shifts are introduced to capture the local behavior near the
tuning frequency of the TVAs. A local order of k = 10 is chosen for soa presampling.
The intermediate basis of order q = 250 is computed considering ns = 21 shifts linearly
distributed in 2πi[1, 250] and four additional shifts at 2πi[46, 47, 48, 50]. The expansion
point sampling for equi is modified similarly to the presampling methods to account for
the high impact of the TVAs on the transfer function near their tuning frequency. The
shifts at 2πi[46, 47, 48, 49, 50] are always considered, the location of the remaining shifts
are linearly distributed in the frequency range of interest. For orders r < 5 only the first
r extra shifts were taken into account.

First, we consider the results for the plate with hysteretic damping. Despite the high
number of weakly damped poles in the transfer function, all applicable methods are able
to compute reasonably accurate reduced-order models. The MORscores referenced to ε =
1·10−6 and rmax = 250 are given in Figure 2. The choice of a larger tolerance is motivated
by the fact that the relative approximation errors of the largest reduced-order models
considered in this example showed do not drop below 1·10−3 for any employed method.
Choosing a smaller ε would hinder the proper comparison of the model order reduction
methods. By further increasing the reduced order it might be possible to achieve lower
approximation errors. The projections with complex-valued basis matrices yield good
results for all reduction methods, only L∞ soa falls short. It has to be noted, that all
reduced-order models computed from an soa presampling need higher reduced orders r
to be as accurate as the other methods. This comes from the focus on derivatives of the
transfer function in a smaller number of expansion points compared to the other methods.
Employing real-valued projections yields comparable MORscores. When using L∞ in
combination with soa, the order of the reduced models is increased in steps of 10, which
is the size of the employed second-order Krylov subspaces. Therefore, larger reduced
models are constructed in comparison to the other methods, but less computational
effort is required for the presampling process. Figure 3 shows the (approximate) relative
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Figure 3: Relative L∞-error for reduced models of the plate model with hysteretic damping computed
by several reduction methods and osimaginput projection.

L∞-errors plotted over the reduced order. It can be seen that all methods including
L∞ soa are able to compute reduced models of the same accuracy given a large enough
reduced order.

The computation times for all MOR methods applied to the model of the hystereti-
cally damped plate are given in Table 2. Reported are the times required to compute
a reduced-order model of size r = 250, i.e., all times except for equi are shown without
the presampling. The presampling times are given in the caption of Table 2 and the
overall computation times result from the addition of the values in the table to these
presampling times. It can be seen, that L∞ requires substantially more time than avg
and minrel, which also rely on a presampling step, because an error system needs to
be assembled and evaluated in every iteration of the greedy algorithm employed in L∞.
The increment of r between each iteration, i.e., the local order at each expansion point,
is higher for sp and soa, which results in shorter computation times. The runtimes of
avg and minrel are comparable and do not differ much for the considered presampling
strategies. As equi for r = 250 and std presampling are equivalent, their computation
times are also very similar. Considering a real-valued basis, the computation time of equi
is cut approximately in half. Also the number of error systems to be evaluated during
L∞ is reduced by a factor of two, resulting in lower computation times. The runtimes of
minrel are similar regardless of choosing a complex-valued or real-valued basis.

Now, we consider the results for the proportionally damped plate model. The re-
duction methods yield models with on overall better accuracy compared to the model
with hysteretic damping, as there are less weakly damped poles in the transfer function.
Because of this, the accuracy for computing the MORscore is set to ε = 1·10−16; again,
we consider rmax = 250. The MORscores for all employed methods are given in Fig-
ure 4. Especially avg, L∞ and minrel using the standard presampling method have high
MORscores, while the models obtained from methods considering soa or sp presampling
have slightly lower MORscores. This is acceptable considering the lower computational
cost for computing these presampling bases, especially for soa. Only L∞ soa has a con-
siderably lower MORscore. It can be seen in the error-per-order plot Figure 5 that the
reduced model computed by L∞ soa reaches the error level of the other methods for
a reduced order r = 250. Its lower MORscore is mainly influenced by the fact that
the reduced order r is again incremented in steps of 10, i.e., the size of the employed
Krylov subspace. We can also observe that the presampling methods have a comparable
influence on avg, L∞ and minrel. Using the standard presampling, the best achievable
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Table 2: Computation times in seconds for all MOR methods applied to the hysteretically damped
plate resulting in reduced-order models of size r = 250. The respective presampling routines took
tc,std = 2961 s for std, tc,sp = 1280 s for sp, and tc,soa = 618 s for soa.

Method osimaginput osrealinput

equi 2886.0 1420.3

avg std 18.3 12.0
avg sp 17.9 15.0
avg soa 18.2 12.5

L∞ std 2362.2 936.1
L∞ sp 749.9 203.1
L∞ soa 225.0 57.7

minrel std 28.8 27.7
minrel sp 28.0 28.4
minrel soa 29.2 27.5

min
rel

soa

min
rel

sp

min
rel

std
SO

BT
avg

soa
avg

sp

avg
stdequ

i

L∞
soa

L∞
sp

L∞
std

0

0.1

0.2

0.3

0.4

method

M
O
R
sc
o
re

osimaginput osrealinput

Figure 4: MORscores of all employed reduction for the proportionally damped plate, with maximum
accuracy ε = 1·10−16 and maximum order rmax = 250.

accuracy can be reached with reduced models of order around r = 60, models computed
from sp presampling require r = 90, and using soa yields comparable accuracy for re-
duced models larger than r = 100. L∞ soa requires a larger reduced order r, because r
is a multiple of k = 10 here. However, avg and minrel in combination with soa are com-
parable to equi. Thus, the presampling subspace computed by soa is able to capture the
most important features of the original system’s transfer function. The reduced models
computed with the one-sided SOBT do not reach the accuracy of the other methods and
attain their best approximation error around r ≥ 160.

The reason for the stagnation of the approximation error of reduced models computed
by L∞ soa can be observed in the transfer function error plot Figure 6. The relatively high
error in the frequency region near the tuning frequency of the TVA at f = 48 Hz is present
up to models with r = 240. Only at r = 250, L∞ selects the shift and corresponding
subspace providing enough information to approximate the original transfer function also
in this frequency region. Thus, the error drops to the level of the models computed using
the other reduction methods.

The computation times for the MOR methods applied to the proportionally damped
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Figure 5: Relative L∞-errors of reduced models of the plate model with proportional damping computed
by several reduction methods with osimaginput projection.
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Figure 6: Pointwise relative transfer function errors for reduced-order models of the proportionally
damped plate computed by L∞ soa. The error peak near the tuning frequency of the TVAs at f = 48 Hz
is clearly visible for reduced-order models of size r < 250.

plate are given in Table 3. The general trend is similar to the results reported for the
plate with hysteretic damping, also the presampling steps took similarly long. Again,
L∞ requires more time than the other presampling based methods. The SOBT reduction
step took longer than avg and minrel and the computation of the employed Gramian was
more expensive than the presampling methods.

In order to compare the different formulas for SOBT given in Table 1, a slightly
modified model of the proportionally damped plate is considered in the following. Here,
the displacement is evaluated at the load location rather than averaged over the plate’s
surface. The resulting SISO system allows the computation of a left projection basis
W in reasonable time. The transfer function of the resulting systems, of the computed
reduced-order models using SOBT as well as the relative approximation errors are shown
in Figure 7. All formulas, except vpm and pm, which fail at computing reduced-order
models approximating the original transfer function, yield reasonably accurate reduced-
order models. In contrast to the very dominant peak in the relative transfer function
error reported, e.g., in Figure 6, SOBT is able to compute reduced-order models with a
better global error behavior. While some a priori information about the expected system
response has been used in the interpolation case to distribute the frequency shifts in
vicinity of the TVAs’ tuning frequency, the Gramians computed for SOBT include these
information automatically. The MORscores of SOBT tend to be slightly lower than for
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Table 3: Computation times in seconds for all MOR methods applied to the proportionally damped
plate resulting in reduced-order models of size r = 250. The respective presampling routines took
tc,std = 2808 s for std, tc,sp = 1248 s for sp, and tc,soa = 630 s for soa. The input Gramian was computed
in tc,BT = 123 568 s.

Method osimaginput osrealinput

equi 2712.3 1361.0

avg std 17.9 15.6
avg sp 16.9 17.6
avg soa 17.2 14.4

L∞ std 2204.9 1070.0
L∞ sp 712.8 244.6
L∞ soa 219.4 71.1

minrel std 28.0 23.7
minrel sp 27.8 22.8
minrel soa 28.8 21.1

SOBT 141.3

the interpolation methods due to the global approximation behavior of the Gramians.
As the MORscore is evaluated in a limited frequency range and interpolation methods
utilize this restriction of the frequency domain by considering frequency shifts only in the
range of interest, the MORscores of the SOBT methods are lower than the MORscores
of the interpolation methods.

The MORscores of the interpolation methods employed to compute reduced models
for the single output version of the example are shown in Figure 8. The results are similar
to the ones reported above and all methods produce accurate reduced models. Again,
L∞ soa has a lower MORscore, as r is incremented in steps of k = 10. All reduced-
order models capture the transfer function in the critical region around f = 48 Hz for
large enough reduced orders. In this example, the displacement at the loading point is
evaluated in the transfer function, i.e., input and output vectors are identical. Therefor,
a two-sided projection is not beneficial and tsimag, osimaginput and osimagoutput show
nearly the same MORscores. The same holds for the real-valued projections. We note
that avg and minrel with classical presampling yield nearly identical results for complex-
and real-valued truncation matrices.

The computation times for all MOR methods computing a reduced-order model of
size r = 250 of the plate with proportional damping and a single output are given in
Table 4. The results for the two-sided projections are similar to the one-sided projections
considered for the previous two examples. However, the time required by L∞ std is sig-
nificantly lower than equi in the two-sided cases. As expected, the two-sided projections
require more time, as two individual bases have to be computed. In the one-sided cases,
the computation times are not depending on whether input or output are considered to
compute the reduction basis. The computation times for the SOBT formulas are similar
and slightly higher than the times reported for minrel tsimag.
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Figure 7: Comparison of the SOBT formulas. Original and reduced transfer functions as well as relative
errors for the proportionally damped plate with a single output and reduced order r = 250. Note the
approximation error maximum around the tuning frequency of the TVA (f = 48 Hz).

4.3. Sound transmission through a plate

Radiation of vibrating plates and excitation of a structure by an oscillating acoustic
fluid are modeled in this example. The system consists of a cuboid acoustic cavity,
where one wall is considered a system of two parallel elastic brass plates with a 2 cm air
gap between them; all other walls are considered rigid. The plates measure 0.2 × 0.2 m
and have a thickness of t = 0.9144 mm. The material parameters E = 104 GPa, ρ =
8500 kg m−3 and ν = 0.37 are considered for brass. The receiving cavity is 0.2 m wide;
wave speed c = 343 m s−1 and density ρ = 1.21 kg m−3 are considered for the acoustic
fluid. The configuration is based on an experiment conducted in [62]. It is sketched
in Figure 9a along with the acoustic pressure in the cavity resulting from a uniform
pressure load p applied to the outer plate. The pressure is measured at the middle point
of the wall opposite to the elastic plate P1. Energy dissipation inside the structural part
of the system is modeled using proportional damping with β = 1·10−7. The system is
discretized using the FEM and n = 95 480 degrees of freedom are required to obtain
an accurate result in a frequency range up to 1000 Hz. No acoustic sources are present,
so the excitation vector is frequency independent. Considering the two way coupling
between structure and fluid leads to non-symmetric system matrices. Thus, a transfer
function of Case A with real-valued matrices is used to describe the system.

The standard presampling for minrel, avg and L∞ considers ns = 200 frequency shifts
distributed linearly in 2πi[1, 1000]. As the quadratic frequency associated with the mass
matrix is the highest order of s in the transfer function, each shift computed by the
sp presampling contributes three columns to the intermediate basis. Therefor, ns = 67
shifts, linearly distributed in the same range, are chosen such that the intermediate
reduction basis is of size q = 201. For soa, a local order k = 10 along with ns =
20 is chosen, yielding an intermediate reduction basis of order q = 200. Because the
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Figure 8: MORscores of all employed reduction for the proportionally damped plate with a single output,
using the maximum accuracy ε = 1·10−16 and maximum order rmax = 250.
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(b) Transfer function.

Figure 9: Sketch and transfer function of the sound transmission problem.

numerical model contains unstable eigenvalues, the required Gramians for SOBT cannot
be computed and, thus, the method is not applied. Such unstable modes are common in
interior acoustic problems, where no damping is assumed for the acoustic fluid [63, 64].

The MORscores given in Figure 10 show that especially the two-sided projections yield
very good results with the highest MORscores observed. As expected, L∞ soa falls short
due to the reduced order being again incremented in steps of k = 10. But also avg soa
and minrel soa perform not as good as the other methods, while still showing a MORscore
larger than 0.3, which is comparable to the other numerical examples. It can be seen
that using one-sided projections has a significant impact on the approximation quality.
The error comparison in Figure 11 shows that the approximation error of the one-sided
projections stagnates at around 1·10−5, while the two-sided projections yield models with
higher accuracy. If employing real-valued projection, a higher order r is required to obtain
reduced-order models of comparable accuracy to those obtained utilizing complex-valued
projection.

The computation times for all MOR methods applied to the transmission problem
are reported in Table 5. Despite the smaller system size as compared to the plate
examples, the computation times for equi and the presampling steps are significantly
higher, because the considered system matrices are non-symmetric. The computation
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Table 4: Computation times in seconds for all MOR methods applied to the proportionally damped
plate with a single output resulting in reduced-order models of size r = 250. The respective presampling
routines took tc,std = 5467 s for std, tc,sp = 1614 s for sp, and tc,soa = 1195 s for soa. The two Gramians
were computed in tc,BT = 159 895 s.

Method tsimag tsreal osimaginput osrealinput osimagoutput osrealoutput

equi 5751.7 2633.9 2681.3 1340.9 2721.8 1350.5

avg std 24.6 21.5 18.0 13.8 17.4 14.6
avg sp 23.4 28.4 16.6 17.3 16.4 17.6
avg soa 24.0 22.9 17.3 15.3 18.2 14.3

L∞ std 2923.3 829.6 2122.4 612.2 2120.9 613.2
L∞ sp 939.3 269.8 694.8 202.9 700.6 199.8
L∞ soa 293.6 88.4 217.9 64.8 213.6 64.6

minrel std 45.8 37.9 27.8 21.5 28.1 21.5
minrel sp 45.0 36.8 27.0 21.6 27.3 21.0
minrel soa 46.2 37.2 26.8 22.7 28.2 21.0

Method v fv pv vp p so

SOBT 94.1 84.3 94.7 99.2 100.1 102.5

times of the methods relying on a presampling show a similar behavior as in the previous
examples. Because the reduced-order model has a smaller size r = 100 compared to
the previous examples, computation times of the presampling based methods are shorter
here.

4.4. Radiation and scattering of a complex geometry

Now, we consider a complex geometry based on a rigid block with various openings,
cavities and sharp corners. The experiment introduced in [65] is called “radiatterer” as
both radiation and scattering effects are taken into account. The basic shape is a box with
dimensions 2.5×2.0×1.7 m, which is enclosed by an acoustic fluid of size 3.5×3.0×2.7 m.
The geometry is sketched in Figure 12a; for the exact shape, see [65]. A normal velocity
vn = 0.001 m s−1 acts on the complete surface of the geometry and excites the surrounding
acoustic fluid. The free radiation from the geometry is realized with a PML of thickness
d = 0.3 m. It is tuned to f = 500 Hz to eliminate the frequency dependency of the
PML matrices. Using a single PML causes spurious reflections for some frequencies. To
minimize this effect, we optimized the tuning frequency as proposed by [33]. This system
is described by a transfer function of Case B with complex symmetric matrices and a
frequency-dependent excitation vector. The numerical model has an order of n = 250 000
and is evaluated in a frequency range from 1 to 600 Hz. The transfer function plotted
in Figure 12b measures the sound pressure level at a point inside the large cutout at
(x, y, z) = (0.6, 0.5, 0.8)m. A reference solution is available in [66], where the same
problem has been analyzed using a boundary element method.

The std presampling considers ns = 200 frequency shifts distributed linearly in
2πi [1, 600]. Again, sp yields three columns for the intermediate reduction basis, i.e.,
ns = 67 linearly distributed shifts are chosen to obtain a basis of size q = 201. For soa,

25



min
rel

soa

min
rel

sp

min
rel

std
avg

soa
avg

sp

avg
stdequ

i

L∞
soa

L∞
sp

L∞
std

0
0.1
0.2
0.3
0.4
0.5
0.6

M
O
R
sc
o
re

tsimag tsreal osimaginput osrealinput osimagoutput osrealoutput

Figure 10: MORscores of all employed reduction and projection methods for the sound transmission
problem, with maximum accuracy ε = 1·10−16 and maximum order rmax = 100.
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Figure 11: Comparison of the relative L∞-errors of reduced models of the sound transmission problem
computed with equi using different projections.

a local order k = 5 is used such that ns = 40 expansion points yield a presampling basis
with order q = 200. A lower local order is chosen for this model as many weakly damped
modes are present in the transfer function and otherwise not enough information about
the full-order model would be available in the intermediate reduction basis. SOBT is not
applicable to this problem because of the frequency-dependent input vector.

The MORscores for each applied reduction method are given in Figure 13. It can be
seen that again two-sided interpolation with complex-valued bases outperforms the other
projection methods. The lower rate of approximation when using presampling based on
soa is also in line with the observations from the previous experiments. equi shows also a
considerably worse performance than the methods based on presampling. It can be seen
in the error-per-order plot Figure 14 that the error of the reduced-order model computed
with equi tsimag stagnates until approximately r = 140 before it drops to the same level
as the other methods. This suggests that important features of the system response have
not been captured by the smaller reduction bases. The oscillating behavior of the relative
error in the region of 150 < r < 190 is a sign that crucial parts of the transfer function
are missed by sampling with equidistantly distributed expansion points.

These observations are supported by Figure 15 plotting the relative errors of reduced-
order models computed by equi with orders r = 140 and r = 200. While the larger
reduced-order model shows a very small error over the complete frequency range, the
smaller does not for the frequency region above 450 Hz. It is, however, also apparent
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Table 5: Computation times in seconds for all MOR methods applied to the transmission problem
resulting in reduced-order models of size r = 100. The respective presampling routines took tc,std =
41 239 s for std, tc,sp = 7411 s for sp, and tc,soa = 2471 s for soa.

Method tsimag tsreal osimaginput osrealinput osimagoutput osrealoutput

equi 20 402.6 9846.8 10 081.3 4973.1 10 194.7 5594.6

avg std 5.7 6.4 3.7 3.4 3.6 3.2
avg sp 5.6 6.5 3.6 3.9 3.2 3.6
avg soa 6.6 6.2 3.3 3.4 4.1 3.4

L∞ std 151.3 38.5 107.0 29.5 102.2 28.3
L∞ sp 51.4 14.9 37.0 10.3 36.7 10.2
L∞ soa 15.6 4.5 11.1 3.2 11.0 3.3

minrel std 7.7 7.4 4.6 4.5 4.5 4.1
minrel sp 8.4 7.7 4.8 4.2 4.6 4.4
minrel soa 7.8 7.0 4.8 4.2 4.9 4.3

(a) Geometry sketch and probe location P5
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(b) Sound pressure level at P5.

Figure 12: Sketch and transfer function of the radiation problem.

that the approximation quality for all methods is better in the lower frequency range,
presumably because of a large number of modes in the region above 450 Hz. If this is
known a priori, the locations of the expansion points can be altered appropriately. If
this is not possible, the presampling involved in the methods avg, L∞ and minrel shows
its benefit. At the cost of computing a larger intermediate reduction basis, the most
relevant information from this basis are chosen, allowing smaller reduced models with
better accuracy. Choosing std or sp presampling yields accurate reduced-order models
with acceptable high MORscores.

If soa presampling is employed, the resulting reduced-order models are less accurate
than using the other presampling methods. For some projections, the reduced-order
models do not accurately approximate the original transfer function, cf. Figure 14. The
error graph for avg soa tsimag in Figure 15 shows characteristic spikes at the locations of
the expansion points in the presampling basis. This suggests that the employed second-
order Krylov subspace does not contain enough information to enable an as accurate
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Figure 13: MORscores of all employed reduction for the radiation problem, with the maximum accuracy
ε = 1·10−16 and maximum order rmax = 200.
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Figure 14: Relative L∞-errors of reduced models of the radiation problem computed by several reduction
methods.

approximation as the other presampling methods. A remedy would be to increase the size
of the Krylov space, which would in turn increase the size of the presampling basis. Note
that increasing the size of the Krylov space is up to a certain degree less computationally
expensive than establishing a completely new shift. Projection regarding the system
output using an soa presampling, however, does not yield a good approximation of the
original system at all.

The computation times for all MOR methods applied to the radiation problem are
reported in Table 6. While the overall behavior of the computation times is in line with
the previously reported results, it is interesting to notice, that the soa presampling took
longer to compute than the sp presampling although fewer matrix decompositions of
order n had to be performed. Again, avg and minrel are nearly invariant with respect to
the choice of complex or real-valued bases. Contrary, L∞ is faster if only real-valued bases
are computed, because less expansion points are considered in the greedy algorithm.

4.5. Acoustic cavity with poroelastic layer

An acoustic cavity with dimensions 0.75 × 0.6 × 0.4 m is examined in the following
example. One wall is covered by a 0.05 m thick poroelastic layer acting as a sound
absorber. The poroelastic material is described by the Biot theory [34]. The system is
excited by an acoustic point source located in the corner opposite to the porous material.
A sketch of the system is given in Figure 16a. The geometry and material parameters are
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(a) Sketch of the poroacoustic
system with acoustic point source
q. The porous material covers the
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(b) Mean sound pressure level in the acoustic domain.

Figure 16: Sketch and transfer function of the poroacoustic model.

taken from [16], and the discretized finite element model has the order n = 386 076. We
evaluate the model in the frequency range 100 Hz to 1000 Hz. The material’s frequency-
dependent dissipation mechanism and the coupling between solid and fluid phase inside
the material are modeled with in total six complex-valued functions. Due to the acoustic
source, the transfer function also has a frequency-dependent input vector. Thus, the
system can be described by a Case C transfer function with non-symmetric and complex-
valued system matrices. The transfer function measures the sound pressure level averaged
over the acoustic domain and is given in Figure 16b.

The model is reduced using all methods except SOBT, which is not applicable to this
system because of the transfer function structure. The standard presampling for minrel,
avgand L∞ considers ns = 200 frequency shifts distributed linearly in 2πi[100, 1000].
The analytic derivatives of the frequency-dependent functions vanish for orders larger
than 6 in the considered frequency range such that sp yields 7 columns for each shift.
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Table 6: Computation times in seconds for all MOR methods applied to the radiation and scattering
problem resulting in reduced-order models of size r = 200. The respective presampling routines took
tc,std = 26 554 s for std, tc,sp = 5950 s for sp, and tc,soa = 8088 s for soa.

Method tsimag tsreal osimaginput osrealinput osimagoutput osrealoutput

equi 26 053.2 14 832.5 13 304.6 6585.0 13 330.2 6611.2

avg std 23.4 20.5 15.8 12.8 15.2 12.5
avg sp 21.8 20.3 15.2 13.7 15.7 11.8
avg soa 21.8 18.6 15.3 13.3 16.3 12.7

L∞ std 2207.8 595.8 1627.4 432.7 1565.2 427.7
L∞ sp 718.9 203.2 528.6 146.0 521.2 139.7
L∞ soa 446.3 117.6 324.6 88.9 322.9 86.3

minrel std 41.3 46.9 25.5 30.5 26.1 28.4
minrel sp 42.0 48.1 24.6 30.5 25.9 30.6
minrel soa 41.6 46.3 25.9 28.6 26.6 28.5
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Figure 17: MORscores of all employed reduction methods for the poroacoustic system, with the maximum
accuracy ε = 1·10−16 and maximum order rmax = 100.

Using ns = 29 shifts linearly distributed in the same range yields the corresponding
intermediate reduction basis with q = 203. For soa presampling, a local order of 10 is
chosen for each of the ns = 20 shifts, which are also linearly distributed in 2πi[100, 1000].
This results in an intermediate reduction basis of order q = 200.

The MORscores of all employed methods are reported in Figure 17 and show a good
performance of nearly all reduction methods. Even L∞ sp, whose reduced-order models
are incremented in steps of r = 7, has a comparable MORscore. Additionally, it reaches
an error as low as the other well performing methods around r = 28, cf. Figure 18. As
already observed, the projections considering only the system output yield worse results
if used in combination with soa presampling. To use soa for this experiment, the approxi-
mations of the nonlinear frequency-dependent functions are truncated after the quadratic
term so that the second-order Krylov subspace can be used. This has an impact on the
approximation quality of the reduced-order models and results in a slower convergence
of the approximation errors compared to the other presampling strategies. However, a
comparably small error can also be achieved with soa, if r is chosen high enough. If the
reduced-order model should be very compact, it could be beneficial to include also higher
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Figure 18: Relative L∞-errors of reduced models of the poroacoustic system computed by several re-
duction methods. A two-sided projection with complex-valued bases is considered for all cases.

Table 7: Computation times in seconds for all MOR methods applied to the poroacoustic problem
resulting in reduced-order models of size r = 100. The respective presampling routines took tc,std =
146 324 s for std, tc,sp = 17 311 s for sp, and tc,soa = 26 381 s for soa.

Method tsimag tsreal osimaginput osrealinput osimagoutput osrealoutput

equi 76 668.7 36 527.2 36 356.8 18 706.9 36 614.7 18 324.3

avg std 40.3 35.8 29.1 23.8 30.2 24.2
avg sp 37.6 32.3 28.2 24.4 29.2 23.3
avg soa 40.9 35.3 32.2 23.0 30.7 24.0

L∞ std 1473.6 433.2 1248.4 372.2 1231.8 383.3
L∞ sp 244.1 88.4 201.8 77.9 207.2 72.2
L∞ soa 159.9 47.1 134.8 40.2 135.5 43.0

minrel std 109.0 111.0 66.1 62.0 66.3 61.0
minrel sp 111.8 120.1 65.1 65.5 65.3 68.4
minrel soa 109.2 112.5 65.3 67.5 66.6 63.7

order expansion factors of the frequency-dependent function as investigated in [51]. Fig-
ure 18 compares the approximated relative L∞-errors over the reduced order for the
different presampling methods. The good performance of sp is evident here. It is also
interesting to note, that an osimagoutput projection yields models, whose accuracy is
comparable to tsreal for all methods except soa.

The computation times for all MOR methods applied to the poroacoustic problem
are reported in Table 7. Again, the presampling using soa takes longer than presampling
with sp although fewer decompositions of the full order model are required. Computing
minrel takes significantly longer than employing avg in this example. This is linked to
the required assembly of the concatenated data matrices from seven constant matrices
instead of only three in the previous examples. As minrel builds its reduction matrices
from a recombination of these constant matrices (see (16) and (17)), this step requires
more time in this example.

5. Discussion and conclusions

Before we summarize and conclude the work presented in this paper, the results of
the numerical experiments are used to draw a set of general recommendations for the
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choice of model order reduction methods depending on given problem settings similar to
the examples considered here.

5.1. Discussion and recommendations

While in general model order reduction simply reduces the complexity of dynamical
systems, it can be used to achieve different goals in a modeling process. Depending on
the targeted application, it may be either important to obtain the most compact reduced-
order model or to compute an accurate approximation of the original system’s transfer
function with the lowest possible computational effort. In the first case the initial com-
putational costs, in some applications referred to as offline costs, are not important and a
considerable effort may be undertaken to obtain very compact reduced-order models. For
the second case a larger reduced-order model is acceptable, if the transfer function of the
original system can be approximated sufficiently accurate in the smallest amount of time
possible. In the previous sections, we provided indicators for both objectives of model
order reduction. The MORscore should be considered, if the size of the reduced-order
model is crucial. A higher MORscore means that a good approximation is achieved by
smaller reduced-order models. However, it does not consider the computational effort re-
quired to obtain the model. For cases where the computation time is crucial, we provided
the runtimes of the employed algorithms. Generally, the methods requiring a presam-
pling step are often better suited for applications where a very compact reduced-order
model is required. However, it might often be more beneficial in terms of computation
time to directly use a large presampling basis for the reduction step.

In general, we found that all interpolation-based methods could compute reduced-
order models of acceptable accuracy. Given a two-sided projection, all reduced-order
models had a comparable accuracy at their respective maximum sizes r. However, the
methods relying on a presampling step, namely avg, L∞ and minrel, tend to have higher
MORscores than equi. The exception to this are the methods based on the soa presam-
pling. Computing the presampling basis using this method often did not yield enough
information about the original system at the considered frequency shifts. The reduced-
order models computed using one-sided interpolations were not in all cases as accurate
as their two-sided counterparts, even for the maximum reduced order.

SOBT was only applicable to the numerical examples employing proportional damping
due to the requirements on the matrix structure of the method. In that case, however, the
computed reduced-order models provided a good global approximation behavior without
employing a-priori information about the considered problem. In all experiments, we
assumed that the presampling basis contained enough information to allow an accurate
reduced-order model. Clearly no accurate reduced-order models can be computed if the
presampling basis is chosen poorly. Choosing a presampling strategy, which computes
multiple columns for the presampling basis per expansion point, can greatly reduce the
computational cost required to obtain the basis. However, this leads to lower MORscores
and in some cases also a lower overall accuracy, but the computation times can be
drastically reduced.

If some a priori information of the transfer function of the original system are avail-
able, they should be taken into account for the creation of the presampling basis. We
showed this in the plate examples, where an accurate reduced-order model was only pos-
sible for sp and soa presampling if enough expansion points were placed in the vicinity of
the tuning frequency of the TVAs. Overall, “educated guesses” for the location of transfer
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function poles should be reflected in the distribution of expansion points in the frequency
range of interest. This has the potential of increasing the quality of the reduced-order
model (if employing equi) or the presampling basis while avoiding unnecessary computa-
tions. Contrary, SOBT does not require a priori information for the computation of the
Gramians and the method approximates the original model globally rather than only in
a specific frequency range.

It is obvious that employing a one-sided projection strategy has a large influence on
the computational cost, so it should be considered, if runtimes are an important factor.
It may be especially beneficial to use a one-sided projection for cases where either many
inputs m or outputs p are present. Considering the projection with the smaller size
can in many cases be sufficient while saving a large number of computations. This is
shown in the first two plate examples, where the output matrix contains many system
states. Using a one-sided projection considering the system input nevertheless resulted in
accurate reduced-order models. Another strategy is to not consider all inputs or outputs
but only a subset or a linear combination of these; see tangential interpolation for such
approaches [67]. If it is known that some inputs do not have a large influence on the
system, they can be omitted during basis computation. Similar recommendations can be
formulated for the system output. If there is a physical reasoning that either input or
output might be more dominant in the input-to-output behavior of the system, the more
dominant quantity should be considered. For example, if a system is mainly input driven,
a projection considering only the outputs typically leads to less accurate reduced-order
models. This can be observed, for example, in the sound transmission model. On the
other hand, a two-sided interpolation does not have benefits for a symmetric system and
identical input and output matrices. This has been observed in the plate example with
a single output. If computation times are important, presampling with the sp or soa
strategies should be considered. The required computation times are in all cases much
lower than using std presampling. However, this choice influences the approximation
quality. In general, if unsure about the positioning and amount of frequency shifts,
a larger presampling basis should be employed. Further strategies could include error
estimation techniques to make sure the presampling basis contains enough information
for a successful model order reduction process.

5.2. Conclusions

In this work, we described structure-preserving model order reduction methods based
on rational interpolation and balanced truncation applied to models of vibro-acoustic
systems. The benchmark examples were chosen such that their transfer functions exhibit
different properties, for example, complex-valued and/or frequency-dependent system
matrices or a frequency-dependent excitation. Each benchmark case represents a relevant
class of vibro-acoustic problems. We also presented a strategy to incorporate higher-order
frequency-dependent terms in a standard second-order reduction framework.

The interpolation-based methods have been applicable to all considered models and
have been able to compute reduced-order models of reasonable accuracy and small size.
Second-order balanced truncation has also succeeded in computing compact reduced
models. However, it is not applicable to systems with non-standard second-order trans-
fer functions, which strongly restricts its application to vibro-acoustic systems. The
methods based on oversampling the frequency response and extracting the most relevant
information have been shown to be the most successful. Strategies to leverage the initial
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cost of computing the presampling data have been proposed and showed in many cases
comparable results.
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