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Abstract 

An important goal of Wendelstein 7-X (W7-X), the most advanced operating fusion experiment of the stellarator line, is to 

demonstrate the ability of stellarators to perform steady-state discharges. In this respect, the monitoring and control of the heat 

loads on the plasma facing components, especially of the strike-lines in the ten island divertors, will be critical during next 

operation phase OP2. In this paper, it is shown that deep convolutional neural networks are able to learn the relationship between 

the heat-flux images, obtained by the analysis of thermographic data, and the applied control coil currents in standard magnetic 

configuration experiments. This study is carried out in view of understanding and modelling the relationship between the heat-

flux distribution in the divertor strike-lines and the actuators influencing them. 
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1. Introduction 

Wendelstein 7-X (W7-X) is an advanced stellarator with 

modular superconducting coils which enable steady state 

plasma operation in order to explore the reactor relevance of 

the W7-X concept. W7-X is equipped with several diagnostic 

systems that allow monitoring of the machine during 

experiments. Among these diagnostic systems, there are video 

[1] and infrared cameras [2], which monitor power loads on 

Plasma Facing Components (PFCs). One of the fundamental 

issues for magnetic fusion devices is to secure controlled 

power exhaust within acceptable limits for the PFCs. A 

dominant fraction of the energy leaving the confined plasma 

region is guided by a so-called island divertor [3] towards ten 

divertor units, five upper and five lower divertors. Each 

divertor unit consists of a horizontal and a vertical target and 

it is designed to sustain a maximum heat flux of up to 10 

MW/m2 [4]. The structure of the power deposition pattern in 

W7-X depends on magnetic configuration, plasma parameters 

and chosen scenario.  

During operation phase OP1.2, ten infrared (IR) 

thermographic systems with wide-angle optics were installed 

to monitor the surface temperature on the fine-grain graphite 

plates of the ten inertially cooled Test Divertor Units (TDUs) 

[2]. This allows to investigate heat fluxes [5] as well as local 

effects of leading edges [6], error fields [7] and particle drifts 

[8]. The identification and control of the regions of highest 

thermal load (strike lines) on the targets is one of the most 

important and challenging tasks. A complex interplay of 

magnetic topology in the island boundary, local shaping of the 

PFCs, ratio between parallel- and cross-field transport results 

in the strike lines observed. Actuators such as ECCD (Electron 

Cyclotron Current Drive) and control coils were tested in the 

first divertor campaign for an active control of power 

distributions on the divertor. In standard magnetic 

configuration, the distribution of energy deposited among the 

divertors is to some degree asymmetric due to n = 1 and n = 2 

error fields [9]. Nevertheless, this asymmetry can be 

minimized with a little effort, thanks to existing correction 

coils at W7-X [7]. The set of correction coils is composed by 

five trim coils and ten control coils, as shown in Figure 1a.  

Figure 1b shows a cross-section of the boundary magnetic 

islands at toroidal angle φ = 0° for standard magnetic 

configuration in one of the five modules of the stellarator. The 

position and size of these magnetic islands depend on several 



 

 

factors, e.g. the magnetic configuration, plasma beta, heating 

power, the toroidal current and the control coil currents. The 

position and size of the magnetic islands influence the position 

of the strike-line onto the divertor plates. Each divertor 

module is equipped with two control coils, as previously 

introduced, that create additional magnetic fields allowing to 

vary the position and the shape of the strike line, especially for 

the purpose of controlling the strike-line shape and position in 

the divertor targets. 

In [10] the effect of control coils operating with DC or AC 

currents was analyzed. The authors confirmed that control 

coils are a useful mean for strike line control and highlighted 

that, due to error fields and divertor misalignments, the 

reaction of strike lines formed on different divertors may be 

different, i.e. control coils would need to be operated 

independently, what is technically possible. Control coils have 

two basic functions: 

- to change the island size, leading to the shift of strike lines 

towards or away from the pumping gap.  

- to rotate the boundary island chains and, as a result, to 

sweep the strike lines poloidally on the divertor plates.  

The first effect can be obtained in stellarator symmetric mode, 

where currents in upper and lower control coils have the same 

polarity. The second effect can be achieved in stellarator 

antisymmetric mode, where currents in upper and lower 

control coils have opposite polarity. 

In [11] the variation of the strike-line position and the 

distribution of the heat-flux footprints are analyzed and 

correlated with the toroidal current variation. The toroidal 

current depends on the experimental parameters, e.g. magnetic 

configurations, heating power and plasma density. Moreover, 

the toroidal current is observed to be modified by ECCD. This 

suggests a possible candidate for the strike-line control with 

ECCD in the future. 

The work in this paper should be seen in the broader context 

of a camera-based diagnostic system being able to recover 

information from obtained images. For W7-X it is required to 

detect and classify thermal events such as strike-lines, hot 

spots, etc., to assess the related risk and to take the proper 

actions. Presently, the termination of the experiment is the 

only foreseen action in the existing concept of the monitoring 

system. Regarding strike-line control, the actions will include 

sweeping them away from the critical position, i.e. a leading 

edge or the edge of the divertor target plates, via suitably 

varying the currents of the control coils. Thus, to face the 

strike-line control problem, we need to learn which control 

coil currents configuration is needed in order to obtain a 

desired heat-flux distribution and a corresponding strike-line 

pattern. In this paper, this relationship between heat-flux 

distribution on the divertor surface and control coil currents is 

investigated. The main objective is to assess if it is possible, 

in a fixed experimental condition, to infer the value of the 

applied control coil currents directly from the heat-flux 

distribution. Data from experiments in standard magnetic 

configuration performed during OP1.2b campaign for strike 

line control studies were used for this study. 

The proposed methods come from the world of machine 

learning and, in particular, of deep learning [12][13], which 

a) 

 

b) 

 

Figure 1 a) Coil system at W7-X; b) Poincaré plot showing the magnetic field lines and the boundary magnetic islands at 

toroidal angle φ = 0° crossing the divertor targets in one module of the stellarator for standard magnetic configuration. 

Divertor targets in red, baffles in blue. 



 

 

since 2010 is revolutionizing artificial intelligence. The keys 

of this revolution are the accessibility to large data sets and the 

use of massive GPU-based servers that allow to accelerate the 

learning process in case of very large models. Deep learning 

architectures make use of Deep Neural Networks (DNNs) 

which are composed of multiple processing layers able to 

learn complex representations of data with multiple levels of 

abstraction. These kinds of architectures are used in many 

applications like computer vision, speech recognition, 

bioinformatics and robotics with results comparable, and in 

some cases superior, to human experts. Among the different 

architectures, Convolutional Neural Networks (CNNs) are 

particularly successful for applications such as image 

classification, object detection and image registration.  

Dealing with this problem by means of deep convolutional 

neural networks gives the possibility to avoid a feature 

extraction procedure for strike-line description. In fact, the 

first convolutional layers directly produce a set of features 

encoded by the same neural network which are then processed 

by the final fully connected layers. These features are implicit, 

since no physical meaning can be attributed to them, and 

encode the spatial and thermal properties of the strike-line. 

The CNN ability, to extract complex features expressing the 

image in much more detail, could be exploited in the future to 

select a much more compressed substitute of heat flux images 

to command the strike line control. A different set of strike-

line descriptors for the limiter configuration was proposed in 

[14]. This set of features, generated by image processing from 

Fourier Descriptors, was extracted from IR images of the 

limiter. 

 Literature reports some applications of neural networks at 

W7-X whose aim is to develop and ultimately implement a 

feedback controller in the device operation system to ensure 

the safety of the first wall, in particular the divertor. In [15] 

NNs are trained to reconstruct the sum of the modular planar 

coil currents IA and IB of an ι-scan. The input to the NN is the 

heat flux image obtained through THEODOR. In [16] proxies 

for two edge magnetic field properties have been 

reconstructed given simulated heat load images on the W7-X 

divertor target plates. Six different artificial neural network 

architectures from shallow to complex Deep learning NN have 

been tested. The authors indentify deep convolutional neural 

networks as favorable algorithms for the stated problem. In 

[17] it is shown that the NNs show significantly improved 

performance on experimental data when the training set 

contains both experimental and simulated data. This is 

important since a very limited set of experimental training data 

is presently available at W7-X. 

The paper is organized as follows: Section 2 gives an 

overview of the imaging system under development at W7-X. 

Section 3 introduces the CNNs architecture. Section 4 gives 

information about the case study and the database used. 

Section 5 shows the obtained results. Finally, in Section 6, the 

conclusions and the future work outlook are given. 

2. Imaging System 

Thermography is an essential tool for measuring the 

divertor surface temperature at W7-X. During the operation 

phase OP1.2b in 2018, ten high-resolution infrared systems 

were installed to monitor the heat fluxes over the whole 

divertor surface consisting of 5 upper and 5 lower divertors, 

each one equipped with a horizontal and vertical target. An 

endoscope was used to monitor the lower divertor in module 

5. Nine immersion tubes, each one consisting of two visible 

cameras and one infrared micro-bolometric camera, were used 

to monitor the remaining nine divertors [2]. 

The Planck–law–based calibration of the infrared cameras 

has been carried out in the laboratory before the campaign, by 

providing a set of look-up tables which describes the 

relationship between the received digital levels and the surface 

temperatures. A software platform for the real time 

temperature observation incorporates the camera control and 

temperature conversion algorithms [18]. 

For each IR system, a scene model has been implemented 

to simulate the camera view towards the in-vessel 

components; this model contains a pixel-wise information 

about the observed PFC and its emissivity properties, the 

distance of the target material from the camera eye and the 

angle of the line of sight with respect to the surface normal, 

and the 3D coordinates of the observed target. This 

information is generated after a spatial calibration process, in 

which a pinhole camera model, reproducing the camera  

 

 
Figure 2 Example of infrared image of the divertor 



 

 

perspective and the lens distortion effect, is derived [19]. 

Figure 2 shows an example of infrared image of the divertor. 

The regions with high temperature define the two strike-lines, 

one on horizontal target (on the top) and one on vertical target 

(on the bottom). 

The heat flux distribution on the divertor elements has been 

calculated [5] by means of the so-called THEODOR (THermal 

Energy Onto DivertOR) code [20], which solves the 2D 

diffusion equation using a numerical discretization of 

forward-time central-space method. 

3. Convolutional Neural Networks 

In recent years, machine learning has become popular in 

research. Among various machine-learning algorithms, “deep 

learning” has established itself in solving problems of 

computer vision given the remarkable advancement in 

hardware technologies which allows to mimic the human 

ability in interpreting the visual information coming from 

images and videos. Among the architectures in deep learning 

in the field of computer vision, convolutional neural networks 

(CNNs) are the most used [12][13]. 

The first stage of a CNN is normally composed of several 

convolutional units CUk followed by pooling layers Pk. Each 

convolutional unit is composed by a convolutional layer Ck 

usually followed by a batch normalization layer Nk, and by a 

ReLU (Rectified Linear Unit) layer Ak. Convolutional layers 

perform convolutional filtering of the input coming from the 

previous layers, normalization layer normalizes the output of 

the convolutional layer and the nonlinear ReLU layer keeps 

all input values above zero and sets all negative values to zero. 

Pooling layers produce a low-dimensional set of features by 

subsampling operations, such as maximum (max pooling 

layer) or average (average pooling layer). This set of features 

is then processed by few fully connected layers (identical to a 

MultiLayer Perceptron, MLP) which produces the output of 

the network. Also, the fully connected layers are normally 

connected through nonlinear activation layers, with ReLU or 

hyperbolic tangent function, improving the nonlinear 

regression capability of the network. A dropout layer D is 

usually inserted before the multi-layer perceptron in order to 

reduce overfitting on the training set and improve 

generalization. An example of CNN architecture is shown in 

Figure 3. More details on this architecture, called CCNET in 

the following, are reported in section 5 and in the Appendix.  

4. Case Study 

Data for this study comes from six experiments in standard 

configuration performed during OP1.2b campaign, in August 

2018, for strike line control studies. The experimental settings 

of the discharges are: standard magnetic configuration (see 

e.g. Figure 1b), ECRH (Electron Cyclotron Resonance 

Heating) heating power PECRH = 3MW, plasma density ne = 

3.5∙1019m-2. The experiments include the reference discharge 

in Figure 4 (named experiment XP0 in the following) where 

control coils are off, and five discharges characterized by the 

same experimental settings of the reference discharge, but 

with varying control coil currents in different ways: 

- In experiment XP1, all control coil currents in the lower 

and upper divertors are switched on after 6s, in symmetric 

mode, ramping up to 900A with a slope of about 150A/s. 

 
Figure 3 Example of CNN architecture (CCNET), where: I is the image input layer; CUk is the kth convolutional unit, 

composed by the cascade of a convolutional layer (Ck), a batch-normalization layer (Nk) and a nonlinear activation 

layer with ReLU functions (Ak); Pk is the kth pooling layer; D is a dropout layer; MLP is a multi-layer perceptron, 

composed by the cascade of two fully-connected layers (FC1 and FC2) interconnected through a nonlinear activation 

layer (A4); RO is the regression output layer.  

 
Figure 4 Overview plots for reference discharge 



 

 

- In experiment XP2, all control coil currents in the lower 

and upper divertors are switched on after 6s, in symmetric 

mode, ramping down to -1.35kA with a slope of about –

150A/s. 

- In experiment XP3 control coil currents in all the lower 

(upper) divertors are switched on after 6s, in 

antisymmetric mode, ramping down to –900A (up to 

900A) with a slope of about –150A/s (150A/s). 

- In experiment XP4 control coil currents in all the lower 

(upper) divertors are switched on after 6s, in 

antisymmetric mode, ramping up to 1.35kA (down to –

1.35kA) with a slope of about 150A/s (–150A/s). 

- In experiment XP5 control coil currents in all the lower 

and upper divertors are switched on after 10s, oscillating 

with frequency of 5Hz and gradually increasing the 

oscillation amplitude to 600A within 5s. The currents in 

the lower divertors have opposite polarity with respect to 

the currents in the upper divertors. 

The behaviour of the toroidal current during all the 

investigated discharges was similar, starting from zero at the 

beginning of the discharge and approaching monotonically a 

limit value dependent on the experimental parameters [11]. 

The transient effect on strike-line position and shape 

correlated with the toroidal current evolution should be taken 

into account and combined with the effect of control coil 

currents.  

For each experiment, IR videos of the surface temperatures in 

the ten TDUs are available. These videos have been produced 

by means of ten IR thermographic systems, each one looking 

at one out of ten divertors. The information about the surface 

temperature, together with the spatial and material properties 

of the observed surface, allows to calculate the heat-flux 

through the divertor target using the THEODOR code [20]. 

Further details regarding the heat flux calculation can be found 

in [5]. The obtained heat-flux values are projected on a 2D 

map of the corresponding W7-X divertor half module, by 

aligning the heat-flux profiles, defined as described in [5], 

next to each other in a picture. The single frame becomes a 

heat-flux image of size 1296×324 pixels, where the upper part 

represents the vertical target and the lower one the horizontal 

target (Figure 5). One image every 10ms is available. 

4.1 Data preprocessing and selection 

Time intervals in which the experimental parameters were 

stable have been used for the analysis. For example, the 

beginning of the discharge or phases with large variation of 

input power were not taken into account. 

A data reduction process has been performed in order to 

discard frames characterized by similar currents 

configuration. In this way, the computational load during the 

training phase was reduced while maintaining a uniform 

density along the full operational space. In the following, a 

sample is considered as a set of simultaneous frames (coming 

from different cameras) and currents (toroidal and/or control 

coils) at a given time instant. 

 

 
Figure 5 Example of a heat-flux image showing two strike-lines (one on vertical target, one on horizontal target). 

Table 1 Number of samples after/before the data selection process. 

Currents configuration 

Experiment 

Total XP0 XP1 XP2 XP3 XP4 XP5 

null ICC, low ITOR 20/540 8/408 10/455 17/444 10/419 16/469 81/2735 

null ICC, high ITOR 131/211 / / / / 239/399 370/610 

ICC DC ramp, symmetric mode / 264/643 409/895 / / / 673/1538 

ICC DC ramp, antisymmetric mode / / / 262/607 411/931 / 673/1538 

ICC AC, antisymmetric mode / / / / / 482/482 482/482 

Total 151/751 272/1051 419/1350 279/1051 421/1350 737/1350 2279/6903 
 

vertical target 

horizontal target 



 

 

In this data reduction stage, the database has been reduced 

by taking into account five different combinations of control 

coil currents and toroidal current (see Table 1). The resulting 

reduced dataset is shown in Figure 6, where the corresponding 

control coil currents and toroidal current are plotted for each 

of the six experiments under study. Given the fact that the 

monotonic increasing evolution of the toroidal current was the 

same in all the experiments under consideration and that, 

during experiments, the onset time of the control coils was 

different (control coils were always off in XP0, were switched 

on after 6s in XP1, XP2, XP3 and XP4, and switched on after 

10s in XP5), it was necessary to distinguish between samples 

with low toroidal current (t < 6s) and samples with high 

toroidal current (t > 6s). In fact, as it can be noticed in Figure 

6a,samples with low toroidal current were always 

characterized by null control coil currents. On the contrary, 

samples with high toroidal currents were sometimes 

characterized by null control coil currents (in XP0 and XP5), 

some other times by not-null control coil currents (in XP1, 

XP2, XP3, XP4). From Figure 6a it is also possible to notice 

that, given that in XP5 the control coils were switched on only 

after 10s, a high value of the control coil currents in XP5 was 

linked to a higher value of the toroidal current, when 

compared to the other experiments. 

Among the 6903 samples of the cleaned dataset, 81 samples 

with null control coil currents and low toroidal current, 370 

samples with null control coil currents and high toroidal 

current, 673 samples with ramp in symmetric mode (from XP1 

and XP2), 673 samples with ramp in antisymmetric mode 

(from XP3 and XP4) and all the 482 samples in AC (from 

XP5) have been selected, resulting in 2279 samples. The 

remaining 4624 samples, discarded during the data reduction 

process, are shown in Figure 7. As it can be noticed, since the 

points lie in the same regions of the reduced dataset, the 

reduced dataset results to be representative of the starting full 

dataset. Both in Figure 6a and Figure 7a, the slightly different 

slopes noticeable for XP2 and XP3 was due to a slightly 

different evolution in the toroidal current. This difference was 

not intentional, but only a consequence of the different 

configuration of the control coil currents. 

The data reduction has been performed, in the cases with 

control coils switched off, by sorting the values of toroidal 

current from the lowest to the highest value, quantizing them 

and selecting just one sample for each quantization level. In 

a) 

 

b) 

 
Figure 6 Operational space of the reduced dataset: a) lower divertor control coil current vs toroidal current; b) upper 

divertor control coil current vs lower divertor control coil current. 

a) 

 

b) 

 
Figure 7  Operational space of the discarded dataset: a) lower divertor control coil current vs toroidal current; b) upper 

divertor control coil current vs lower divertor control coil current. 



 

 

the ramp up/down cases, the same procedure was applied to 

the values of the control coil current. 

5. Results 

Several tests have been performed in order to investigate 

the role of different parameters as network inputs, the 

prediction capability of the model in experiments never seen 

during training, and the impact of the network architecture. 

Table 2 reports for the performed tests, the network 

architecture used, the network inputs and outputs and the 

datasets composition. 

The network inputs are chosen among the heat flux images 

of the lower and/or upper divertor for a given time instant, and 

for a corresponding value of the toroidal current. The network 

outputs are chosen among the control coil currents (ICC) in the 

DC and/or AC experiments, behind the lower and/or upper 

divertor. Regarding the datasets composition, in the first two 

tests (Tests 1–2), data from the AC experiments have been 

included in the Training (Tr), Validation (V) and Test (Ts) 

sets, whereas in the others the networks have been trained with 

examples coming from null ICC and ICC ramp phases and tested 

on AC phases. 

 Two main CNN architectures have been presented in this 

paper for the different tests: CCNET (acronym of Control Coil 

NETwork), used in the tests without the toroidal current as 

input to the network, and the modified CCNET (CCNETmod) 

used in the tests with the toroidal current as network input. The 

size of the input and output layers in each test depends on the 

size and number of inputs and outputs. 

The details about the CCNET architecture (see Figure 3) 

are reported in Appendix A. In each training phase of CCNET, 

the network was trained for 1500 epochs with the stochastic 

gradient descent method with momentum [21], and then the 

network with the best results on the validation set was saved 

and used for the performance evaluation. The loss function 

used during the training was the Mean Squared Error (MSE). 

The architecture of CCNETmod is shown in Figure 8, and 

obtained by adding the information given by the toroidal 

current to the trained CCNET. The toroidal current has been 

 
 

Figure 8 CCNET modified architecture (CCNETmod) after addition of toroidal current as new network input. The new 

input (ITOR) is concatenated with the feature vector output of CU3, and fed to the MLP through the dropout layer D.  

Table 2 Network architecture, inputs and outputs, datasets composition for each test.  

Test 

# 

Network 

Architecture 

Inputs Outputs Datasets Composition 

Lower divertor 

image (AEF10) 

Upper divertor 

image (AEF11) 
ITOR 

Lower 

ICC 

Upper 

ICC 

Null ICC 

or ICC DC 
ICC AC 

1 CCNET0 *   * * Tr/V/Ts Tr/V/Ts 

2 
mod

0CCNET  *  * * * Tr/V/Ts Tr/V/Ts 

3 CCNET0 *   * * Tr/V Ts 

4 CCNET0 
 *  * * Tr/V Ts 

5 CCNET0 * *  * * Tr/V Ts 

6 
mod

0CCNET  *  * * * Tr/V Ts 

7 
mod

0CCNET   * * * * Tr/V Ts 

8 
mod

0CCNET  * * * * * Tr/V Ts 

9 CCNET0 
 *   * Tr/V Ts 

10 CCNET0 *   *  Tr/V Ts 

11 
mod

0CCNET   * *  * Tr/V Ts 

12 
mod

0CCNET  *  * *  Tr/V Ts 

13 CCNET1 
 *   * Tr/V Ts 

14 CCNET1 *   *  Tr/V Ts 

15 
mod

1CCNET   * *  * Tr/V Ts 

16 
mod

1CCNET  *  * *  Tr/V Ts 
 



 

 

added as input to the dropout layer, concatenated with the 

feature vector produced by the convolutional blocks. Thus, the 

layers of the trained CCNET prior to the MLP were frozen, 

while the layers of the MLP were kept on training and adapted 

for other 500 epochs. Also in this case, the network with the 

best results on the validation set was selected, saved and used 

for the performance evaluation. As for CCNET, two variants 

( mod

0CCNET  and mod

1CCNET ) depending on the type of 

pooling layers used and on the type of activation function used 

in the MLP have been used. 

The performances obtained in the different tests, in terms 

of root mean squared error (RMSE) on the values of the 

control coil currents, are reported in Table 3 (lower) and Table 

4 (upper). Also simpler models like linear models and MLP 

have been tested, but they were found to perform significantly 

worse than the proposed CNN architecture. For this reason, 

these results are not reported in the paper. The errors are 

shown in percentage with respect to the maximum absolute 

current value in the dataset (1.36kA), for each dataset 

(training, validation and test set, and for the samples discarded 

during the data reduction process) and for all the time instants 

of each experiment (XP0÷XP5), including the discarded data. 

5.1 Tests 1–2 

In Test 1 the input of the CCNET0 was the heat-flux image 

related to the lower divertor of module 1, generated from the 

image of the lower divertor, while the outputs were the values 

of the control coil currents in both lower and upper divertors. 

Table 3 CNN performance for each dataset and for each experiment in terms of normalized RMSE (%) on lower divertor 

control coil current 

Test Dataset Experiment 

# Training Validation Test Discarded XP0 XP1 XP2 XP3 XP4 XP5 

1 1.95 4.71 5.31 2.57 1.64 2.41 3.14 2.43 2.58 3.81 

2 1.98 4.57 5.02 2.28 0.97 2.46 2.98 2.30 2.46 3.61 

3 1.12 1.90 8.92 1.48 0.24 1.59 1.72 1.36 1.69 5.67 

4 1.55 2.39 16.77 2.07 1.46 1.81 2.32 1.85 2.10 10.67 

5 1.64 2.25 13.22 1.98 0.58 1.83 2.67 1.84 1.90 8.40 

6 1.01 1.83 9.47 1.55 0.25 1.93 1.59 1.33 1.64 6.02 

7 1.61 2.37 13.95 2.03 1.37 1.85 2.24 1.77 1.84 8.99 

8 1.39 2.22 11.70 1.92 0.72 1.58 2.41 1.56 2.07 7.48 

10 1.38 2.13 13.55 2.40 1.66 3.00 2.22 1.91 2.08 8.66 

12 1.32 2.06 13.07 2.14 1.86 2.45 2.01 1.77 1.99 8.32 

14 1.59 2.32 19.06 2.30 1.11 2.23 2.22 2.21 2.38 12.11 

16 1.66 2.32 19.53 2.40 1.76 2.34 2.19 2.17 2.50 12.41 
 

 

Table 4 CNN performance for each dataset and for each experiment in terms of normalized RMSE (%) on upper divertor 
control coil current 

Test Dataset Experiment 

# Training Validation Test Discarded XP0 XP1 XP2 XP3 XP4 XP5 

1 1.69 4.80 5.34 2.48 1.54 2.33 3.12 2.49 2.49 3.89 

2 2.02 4.72 5.11 2.45 1.04 2.96 2.88 3.01 2.22 3.66 

3 1.01 1.87 22.86 1.52 0.41 1.79 1.76 1.35 1.58 14.37 

4 1.63 2.57 29.38 2.16 1.58 2.13 2.44 2.00 2.03 18.52 

5 1.34 2.32 28.00 2.09 0.78 2.01 2.56 2.03 1.88 17.63 

6 1.07 1.91 24.03 1.75 0.31 2.42 1.79 1.39 1.66 15.11 

7 1.72 2.52 29.50 2.20 1.53 1.84 2.47 2.17 1.91 18.64 

8 1.35 2.31 23.52 2.10 0.68 1.91 2.65 1.98 1.93 14.83 

9 1.66 2.53 19.74 1.96 0.81 1.85 2.41 2.14 2.04 12.46 

11 1.44 2.38 17.62 2.05 1.28 2.20 2.35 1.96 1.97 11.12 

13 1.10 3.02 12.95 2.89 2.60 2.04 2.98 2.80 2.74 8.36 

15 1.10 2.82 10.84 2.73 2.58 2.08 2.92 2.51 2.34 7.07 
 



 

 

All experiments have been used to feed the network during the 

training (1365 samples), validation (477 samples) and test 

(437 samples). As it can be noticed from the results in Table 3 

and Table 4, despite a little overfitting on the training set, the 

CNN performance on the test set is quite good, with a good 

balance between the two outputs of the network. The 

performances on the discarded set, close to those on the 

training set, demonstrate that the data reduction policy was 

successful.  

 Figure 9 shows the output of the network superimposed on 

the actual time series of the upper and lower divertor control 

coil currents. Figure 10 shows a zoom for the AC experiment. 

In Test 2 the information given by the toroidal current has 

been added. As it can be noticed, the further input slightly 

improved the results. 

 

5.2 Tests 3–8 

 In the previous tests, all experiments (null, DC and AC) 

are used to form the training, validation and test sets. This 

results in similar performances on all three data sets. The tests 

discussed below (Tests 3–16) aim to verify if the model learnt 

by the network from DC experiments only can predict control 

 
Figure 9 Output of CCNET0 in Test 1 superimposed on the actual time series of the control coil currents. The six time 

series related to the different experiments are stacked together and separated by dashed black vertical lines. 

 

 
Figure 10 Test 1: zoom of Figure 9 for the AC experiment 



 

 

coil currents during AC experiments. A total of 1235 samples 

have been used to feed the network during the training, 512 

samples to validate the network and 532 samples to test the 

network.  

 

As it can be seen from the example in Figure 11, where the 

two heat-flux images from the two divertors in module 1 are 

stacked together horizontally (lower on the left), the strike-line 

patterns in the two divertors may differ considerably. This 

difference is mainly caused by the uncompensated error fields 

[7][9] and small misalignment of the divertor targets. In 

particular, the strike-line patterns in the divertor targets are 

different in terms of thickness and size. In order to evaluate 

the influence of the different heat-flux images, Tests 3–5 have 

been performed. 

In Test 3, only the heat-flux image of the lower divertor has 

been used as network input, in Test 4 only the heat-flux image 

of the upper divertor has been used as network input, and in 

Test 5 both heat-flux images of the upper and lower divertor 

have been used as network inputs and stacked together 

horizontally, obtaining a single input image of size 2592x324 

(as in Figure 11). In order to support the addition of this new 

image input in Test 5, the number of neurons in the first fully 

connected layer has been doubled to 128, so that 64 features 

are generated by the first fully connected layer for the lower 

divertor image and 64 features are generated for the upper one. 

In all cases, the outputs were the control coil currents of the 

lower and upper divertors (see Table 2). 

 As it can be noticed from Table 3 and Table 4, for Tests 3–

5, there is a large difference between the network performance 

on the upper control coil prediction and the one on the lower 

control coil prediction. In fact, the RMSE on the upper control 

coil current is more than twice that on the lower control coil 

current. This result is evident in Figure 12, where the output 

of the network trained in Test 3 (for which the best 

performance on both currents is obtained) is superimposed on 

the actual time series of the control coil currents, and in Figure 

13, where a zoom for the AC experiment is shown. As it can 

be noticed, the network is able to follow pretty well the 

evolution of the lower control coil current, whereas the 

evolution of the second output shows a decreasing trend with 

respect to the upper control coil current. 

 

 

Figure 11 Example of concatenated heat-flux images from lower (left) and upper (right) divertor.  

 
Figure 12 Output of CCNET0 in Test 3 superimposed on the actual time series of the control coil currents. The six time 

series related to the different experiments are stacked together and separated by dashed black vertical lines. 



 

 

The effect of adding the toroidal current (Tests 6–8) as an 

input is not substantial. Furthermore, adding the information 

from the upper divertor heat-flux image to the inputs of the 

CNN (Tests 4–5) did not improve the performance of the 

network. Indeed, the accuracy on the upper control coil current 

prediction is worse as compared to the previous case with the 

input consisting of the lower heat flux image only (Test 3). 

5.3 Tests 9–12 

Since addition of the upper image as input did not improve 

the performance, two separate networks have been trained: 

one (Test 9) infers the upper divertor control coil current from 

the upper divertor heat-flux image; the other (Test 10) infers 

the lower divertor control coil current from the lower divertor 

heat-flux image. The architecture of the two networks was that 

of CCNET0 with a 1-dimensional output. Also, the addition of 

the toroidal current as a network input has been investigated 

in Tests 11–12. 

As it can be noticed from Table 4, better performance on 

the test set for the upper divertor control coil have been 

obtained in Test 11 when the network is fed with the upper 

divertor image and the toroidal current is added in input to the 

MLP block. Nevertheless, the upper control coil prediction is 

still a more difficult task with respect to the lower current 

prediction. 

5.4 Tests 13–16 

Some final tests have been performed in order to enhance 

the performance, by changing the network architecture. In the 

new architecture, called CCNET1, a max pooling layer (P2) 

has been used in order to emphasize more higher frequency 

components from the input image. Additionally, a hyperbolic 

tangent function in the activation layer A4 of the MLP has been 

used to increase the symmetry in the last layers. In this case, 

the best performance on the test set for the upper divertor 

control coil have been obtained in Test 15 when the network 

is fed with the upper divertor image and the toroidal current is 

added in input to the MLP block. Figure 14 and Figure 15 

show the output of the network superimposed on the actual 

time series of the upper control coil current for Test 15. 

Regarding the lower divertor control coil (Test 14 and Test 

16), the network tends to overfit on the training and validation 

set more than CCNET0.  

Summarizing, the change in the architecture (from 

CCNET0 to CCNET1) helped to highly improve the 

performance on the upper control coil current prediction, 

while worsening the performance on the lower control coil 

current prediction. 

6. Conclusions 

In this paper, the possibility of inferring the value of applied 

control coil currents directly from heat-flux images, in a fixed 

experimental condition, has been investigated by means of 

convolutional neural networks. Several tests have been 

performed in order to investigate the role of different input 

parameters and architectures on the network performance and 

the accuracy of predictions. Results showed that CNNs are 

able to supply a model between heat-flux images and control 

coil currents for the given experimental condition. Modelling 

this relationship is an exercise of inverse modelling [22][23].  

Inverse models are held to allow determining the commands 

(control coil currents) necessary to achieve a desired state 

(heat-flux distribution). 

In particular, when data from all experiments with 

monotonic and AC currents in the control coils were used to 

train the network, the prediction presented a good 

 
Figure 13 Test 3 - zoom of Figure 12 for the AC experiment 



 

 

performance in the test data. In fact, the prediction root mean 

square error (RMSE) is about 70A, (about 5% of the 

maximum value of the current during the experiments).  

Regarding the possibility to apply the network in 

experiments with AC currents never seen during the training, 

the results showed that also in this case the network is able to 

learn a static relationship between heat-flux images and 

control coil currents, and can be applied to predict the 

oscillating behavior of the control coils currents even when 

trained with data from experiments with monotonic currents. 

The analysis of the images of upper and lower divertors, in the 

experiments with opposite AC control coil currents, shows 

differences in strike-line size and positions. The possible 

causes could be tied to the error fields and particle drift effects, 

so that the control coil currents evolution doesn’t produce the 

same effect on the heat-flux distribution of the two divertors, 

resulting in different strike-line patterns. Summarizing, a 

network trained with the heat-flux image of the lower divertor 

as input and the currents from both control coils as targets 

(Test 3), obtained the best performance in predicting the lower 

control coil current, with a prediction error of about 120A 

(~9% of accuracy) in terms of RMSE. Conversely, best results 

in predicting the upper control coil current have been obtained 

in Test 15, with a prediction error of about 150A (~11% of 

accuracy). In this test, the heat-flux image of the upper 

divertor and the toroidal current were used as inputs to the 

CNN, and the current from the upper divertor control coil was 

used as target. The two networks have different pooling layers 

and MLP activation function. The proposed architectures 

allow to differently extract and process the peculiar features 

from the lower and upper divertor heat-flux images.  

Regarding the future prospects, the study will be extended 

to different magnetic configurations and experimental 

conditions. A general model will be developed able to infer 

control coil currents from strike-line properties. For this 

reason, the architecture of CCNET will be adapted and, in 

case, expanded in order to take into account a larger set of 

inputs parameters including magnetic configurations and 

experimental conditions. In particular, the influence of higher 

values of the toroidal current will be assessed.  

Moreover, the possibility to build a forward model, 

including relevant plasma parameters, will be investigated. 

This forward model should be able to simulate the heat-flux 

distribution on the divertor target and the strike-line 

properties, when fed with the control coil currents, the toroidal 

current and all the relevant plasma parameters. 

Furthermore, an autoencoder will be used to automatize the 

feature extraction procedure in a unsupervised way, 

exclusively depending on the heat-flux image and not on 

magnetic configuration, experimental conditions and control 

coil currents. It will be possible, in such a way, to reconstruct 

the heat flux images directly from a compressed set of 

features, describing the strike-line pattern, by means of a 

deconvolutional neural network. These features can be linked 

with the applied control coil currents and relevant plasma 

parameters and experimental conditions by means of simpler 

models, such as MLP networks, in both ways (forward and 

inverse model). 

 

 
Figure 14 Output of mod

1CCNET  in Test 15 superimposed on the actual time series of the upper control coil current. The 

six time series related to the different experiments are stacked together and separated by dashed black vertical lines. 
 

 
Figure 15 Test 15 - Zoom of Figure 14 for the AC experiment 



 

 

Acknowledgements 

This work has been carried out within the framework of the 

EUROfusion Consortium and has received funding from the 

Euratom research and training programme 2014–2018 and 

2019–2020 under Grant Agreement No. 633053. The views 

and opinions expressed herein do not necessarily reflect those 

of the European Commission. 

Appendix A. Architecture of CCNET 

The architecture of CCNET is shown in Figure 3, and has 

two variants (CCNET0 and CCNET1) depending on the type 

of pooling layers and MLP activation function. This difference 

is related to the possibility of filtering the input images in 

different ways, i.e., using low pass filtering as in average 

pooling layers or high-pass filtering as in max pooling layers. 

Regarding the MLP activation function, two activation 

functions have been tested. One is the ReLU function, 

commonly used in deep learning for its convergence 

performance, better than sigmoid (not vanishing gradient and 

small computational load). The second is the hyperbolic 

tangent function, commonly used in classic MLP networks.  

In CCNET, a first convolutional unit (CU1), made up of 

three layers, followed by an average pooling layer (P1), with 

pool size 9x9 and stride 9x9, transforms the input image into 

an 8-channels image. A second convolutional unit (CU2), 

made up of three layers, followed by a second pooling layer 

(P2), with pool size 9x9 and stride 9x9, transforms the 8-

channels image into a 12-channels image. This second pooling 

layer is an average pooling layer in CCNET0, while a max 

pooling layer in CCNET1. A third convolutional unit (CU3), 

made up of three layers, filters out the 12-channels image by 

means of 16 filters, obtaining a 16-channels image. Finally, a 

multi-layer perceptron (MLP), made up of two fully connected 

layers (FC1 and FC2) interconnected through a nonlinear 

activation layer (A4) processes the features, output of the third 

convolutional unit, to predict the output in the regression 

output layer (RO). This last nonlinear activation layer has 

ReLU activation functions in CCNET0, while hyperbolic 

tangent functions in CCNET1. A dropout layer with dropout 

probability of 20% has been included between the third 

convolutional unit and the multi-layer perceptron in order to 

reduce overfitting on the training set and improve 

generalization. 
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