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a b s t r a c t

While the brain regions involved in action observation are relatively well documented in

humans and primates, how these regions communicate to help understand and predict

actions remains poorly understood. Traditional views emphasized a feed-forward archi-

tecture in which visual features are organized into increasingly complex representations

that feed onto motor programs in parietal and then premotor cortices where the matching

of observed actions upon the observer's own motor programs contributes to action un-

derstanding. Predictive coding models place less emphasis on feed-forward connections

and propose that feed-back connections from premotor regions back to parietal and visual

neurons represent predictions about upcoming actions that can supersede visual inputs

when actions become predictable, with visual input then merely representing prediction

errors. Here we leverage the notion that feed-back connections target specific cortical

layers to help adjudicate across these views. Specifically, we test whether observing se-

quences of hand actions in their natural order, which permits participants to predict up-

coming actions, triggers more feed-back input to parietal regions than seeing the same

actions in a scrambled sequence that hinders making predictions. Using submillimeter

fMRI acquisition at 7T, we find that watching predictable sequences triggers more action-
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related activity (as measured using intersubject functional correlation) in the parietal

cortical area PFt at depths receiving feed-back connections (layers III and V/VI) than

watching the exact same actions in scrambled and hence unpredictable sequence. In

addition, functional connectivity analysis performed using intersubject functional con-

nectivity confirms that these increased action-related signals in PFt could originate from

ventral premotor region BA44. This data showcases the utility of intersubject functional

correlation in combination with 7T MRI to explore the architecture of social cognition

under more naturalistic conditions, and provides evidence for models that emphasize the

importance of feed-back connections in action prediction.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In humans observing goal-directed hand actions increases ac-

tivity in lateral occipital/posterior temporal, parietal and pre-

motor clusters that often peak in the lateral occipital cortex

(LatOCC), parietal region PFt (similar to monkey PFG) and pre-

motor region BA44 (similar to monkey F5a), and that these re-

gions are also activated during the execution of similar actions

(Caspers et al., 2010; Gazzola & Keysers, 2009; Rizzolatti &

Sinigaglia, 2016). This network is thought to help participants

toperceiveandpredict theactionsofothers (Keysersetal., 2018),

with neurons in parietal and premotor nodes often having re-

sponses that differ based on the sequence of actions that can be

predicted to follow (Bonini et al., 2010; Umilt�a et al., 2001).

To map the brain regions encoding information about the

sequence of motor acts that form complex action sequences,

we video-recorded familiar sequences of acts that jointly form

meaningful action sequences (Fig. 1A and Movie 1), and

compared brain activity measured using fMRI at 3T between

conditions in which participants viewed the motor acts either

in their original (and thus predictable) sequence (Intact con-

dition) or in a randomized (and thus unpredictable) order

(Scrambled condition) (Thomas et al., 2018). We reasoned that

nodes of the action observation network can either only

contain information about individual motor acts or also

additional information about the sequence in which acts

organize into complex actionswithmore distal goals. If a node

only represents individual motor acts, it should respond

similarly whether these acts are in their natural order (Intact)

or not (Scrambled). If it contains information at the sequence

level, we would expect its activity to be sensitive to the order

in which motor acts are presented, and thus respond differ-

entially. We then used intersubject correlation (ISC, Nastase

et al., 2019) to map and quantify stimulus locked informa-

tion in the brain. Lerner et al. (2011) had pioneered this

approach by having participants listen to narrated stories

either in their intact order, or by presenting the samewords in

random order. They found that while auditory cortices show

similar levels of synchronization across listeners whether the

story was heard intact or scrambled, frontal brain regions

synchronized across listeners only in the intact condition.

Adapting this approach to actions, we found that left PFt, and

to a lesser extent BA44, showed higher ISC for intact than
scrambled hand action sequences, establishing that these

regions contain sequence level information (Thomas et al.,

2018). Temporal and occipital visual regions showed high

ISC for Intact and Scrambled sequences, and thus encoded

information about the observed acts, but did not show higher

ISC in the intact compared to scrambled condition. Accord-

ingly, temporal/occipital lobes seem to process observed ac-

tions, but at the relatively short temporal scales of single

motor acts (~2s), while PFt and BA44 process these acts in

ways that integrate that information into longer e and argu-

ably more meaningful e sequences.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.cortex.2021.12.008.

How this network integrates individual motor acts into

meaningful sequences is in the focus of a number of theo-

retical papers (Friston et al., 2011; Keysers & Gazzola, 2014;

Keysers & Perrett, 2004; Kilner & Frith, 2008), but empirical

data to support these notions remains scarce. Early work

emphasized feed-forward information flow in a hierarchical

structure from the temporal lobe to parietal and premotor

regions where action understanding and action prediction

then occur by triggering premotor action plans in mirror

neurons (Gallese et al., 1996). Indeed, MEG data supported this

notion by measuring increasing latencies across these nodes

(Nishitani&Hari, 2000). More recently, it has been argued that

the action observation system could instead use Bayesian

inference in a predictive coding system (Friston et al., 2011;

Keysers & Gazzola, 2014; Keysers & Perrett, 2004; Kilner &

Frith, 2008). Specifically, we proposed that the premotor cor-

tex, through the parietal node, uses its sequence level infor-

mation to send predictions to the occipito/temporal nodes in

feed-back connections. If the predictions match the

incoming visual information (i.e., small or no prediction error)

the sensory input from visual areas is attenuated e measur-

able as reduced ERP responses over the occipital lobe (Thomas

et al., 2018). If they do not match, the difference (large pre-

diction error) is sent forward to parietal and premotor regions

where they can activate alternative motor schemata (i.e., ac-

tion sequences). If observed acts continuously violate expec-

tations, participants reported informally after scanning that

they stopped to generate predictions of what action would

come next and premotor cortices may then stop to send such

predictions backwards towards parietal cortices (Thomas

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cortex.2021.12.008
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et al., 2018). A core e and testable e tenet of this predictive

coding hypothesis is that the sight of actions organized in

predictable sequences should induce an increased flow of feed-

back information with enhanced temporal consistency

instantiating predictions from BA44 to PFt, while scrambled

sequences should induce increased feed-forward information

flow instantiating prediction errors (Fig. 1B). We specify

‘increased’ here to emphasize that some feed-back pre-

dictions can occur even within individual motor acts, as sug-

gested by the recent finding that while watching actions with

a predictable onset, even within a single motor act, mirror

neurons in macaque F5 have activity that precedes that in the

parietal lobe (Ferroni et al., 2021). The traditional, hierarchical

feed-forward view of action observation would not predict

such an increase of feed-back information as subsequent

motor acts in the sequence become predictable. In terms of

time scales of information, using our stimuli (Table 1) inwhich

individual motor acts last 2 sec on average and the entire

sequence lasts 67 sec on average, the feed-forward input from

visual regions would contain prediction errors at each tran-

sition across acts, in the scrambled condition in particular,

that would have relatively fast frequencies (every ~2 sec),

while the feed-back input from premotor regions would

contain a mix of frequencies that span from signals that

predict the upcoming act (every ~2 sec) and sequence level

information at lower frequencies (with periods T up to

~1 min). Such a mix of frequencies for Intact movies has been

observed in electrocorticography experiments comparing an

intact version of the commercial film ‘Dog Day Afternoon’

with one in which segments of ~1 sec where randomly rear-

ranged (Honey et al., 2012).

For PFt, based on predictive coding, we thus have the

following expectations (Fig. 1B): PFt should initially receive

visual input from latOCC about the first acts of a sequence, an

input that then rapidly wanes as PFt successfully suppresses

expected visual input. This input is dominated by the high

frequency signals (T z 2 sec) of the individual motor acts. PFt

should also receive predictions from BA44 in a broader fre-

quency range from short term predictions about the unfolding

of the current act (Tz 2 sec) to long termpredictions about the

entire sequence (T z 1 min), that should remain high

throughout the sequence, and dominate the signal during

Intact sequences. In contrast, for Scrambled sequences, pre-

dictions cannot suppress the randomized acts and PFt should

thus receive sustained feed-forward prediction errors from

LatOCC at each camera change. Predictions from BA44 are

likely to subside as participants realize that the sequence is

not predictable, leading BA44 feedback to wane, so that the

BOLD signal overall should be dominated by the feed-forward

signal. The prediction that the influence of BA44 should be

lower for scrambled stimuli is also based on the observation

that frontal regions showmuch lower ISC valueswhenmovies

or narratives are scrambled at timescales similar to those used

here (Honey et al., 2012; Lerner et al., 2011), and on the

observation that signals in the parieto-premotor network

remain consistent across viewers throughout the movies for

the intact sequences, but only show consistent activity early

in the movie for scrambled sequences (Thomas et al., 2018).

Because the BOLD signal appears dominated by synaptic input

over spiking output (Boynton, 2011; Logothetis, 2003), with
synaptic processes consuming 4 times more ATP than spiking

(Harris et al., 2012), we neglect what signals PFt is likely to

output to other regions in these considerations. Considering

what we know about the laminar distribution of feed-forward

and feed-back inputs from a variety of sensory brain regions

organized in hierarchical fashion (Fig. 1C, adapted from Shipp,

2007), feed-forward input from visual regions should termi-

nate inmiddle layers of PFt (layer IV) and feed-back input from

BA44 should terminate mainly in deep layers of PFt (layers V/

VI). However, monkey tracer studies have shown that the

connections from F5a (the likely monkey homologue of BA44)

to parietal regions similar to human PFt terminate not only in

deep layers V/VI but saliently also to layer III (Gerbella et al.,

2011). Such deviation from the prototypical feedback con-

nectivity pattern described by Felleman and Van Essen in the

visual system (Felleman & Van Essen, 1991) is indeed not

unusual for fronto-parietal connectivity across association

areas (Gerbella et al., 2010, 2011; Rozzi et al., 2006). We can

thus reformulate these predictions about the direction of in-

formation flow as predictions about the depth at which

stimulus-locked information should dominate the BOLD

signal in the Intact and Scrambled conditions (Fig. 1D). With

regard to feed-back information the contrast

IntacteScrambled should show increased ISC in layers III, V

and VI of PFt and contain information at the sequence level,

that fluctuates over tens of seconds, and our relatively slow 7T

acquisition (TR ¼ 4.1s, Nyquist limit T ¼ 8.2s) should thus be

adequate to capture its fluctuations over time, which is the

basis for intersubject correlation analyses (Nastase et al.,

2019). Such an increase is not predicted by traditional

models of action observation that do not emphasize the role of

feed-back connections, and can thus help adjudicate between

these views. In contrast, the feed-forward information flow

carrying prediction errors to Layer IV should peak at every

camera change (T z 2s) in the Scrambled condition, but fluc-

tuate too fast for our TR¼ 4.1s acquisition, and thus be hidden

to ISC analysis that quantify the synchronization of fluctua-

tions across participants (Nastase et al., 2019).

Pioneering studies in the early visual cortex have shown

that acquiring fMRI at submillimeter resolution at high-field

strength (�7T) can indeed test predictive coding hypotheses

(Aitken et al., 2020; Finn et al., 2020; Kok et al., 2016; Lawrence,

Formisano, et al., 2019; Lawrence et al., 2018; Lawrence,

Norris, & de Lange, 2019) but have been restricted to early vi-

sual cortices and we do not know whether the same might be

observed in parietal and premotor regions (Finn et al., 2020).

Here we thus acquired brain activity at 7T with an isotropic

resolution of .8 mm in 9 participants, planning a partial-

volume acquisition to include PFt, BA44 and LatOcc cortex of

the left hemisphere (Supplementary Fig. 1), while they

observed intact and scrambled actions to test the validity of

predictive coding models of action observation. We use

intersubject correlation (ISC) to localize sequence-level infor-

mation, and intersubject functional connectivity (ISFC) to

quantify information sharing across nodes in this study for

twomain reasons.We use these ISCmethods for two reasons.

First, because to generate sequence level brain activity, we

need longer sequences of actions (e.g., preparing breakfast) in

the order of ~1 min. Such stimuli are too long for traditional

block-design fMRI experiments, but are ideal for ISC analyses

https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008
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Fig. 1 e Stimuli and hypotheses. (A) We presented participants with movies of everyday hand actions lasting ~1 min in

length, filmed simultaneously with two cameras 45� apart, that were cut into ~30 individual motor acts lasting ~2 sec (Table

1). In the intact condition, the motor acts were presented in their original order, but switching from one camera-view to the

other at the transition between acts. In the scrambled condition, the acts were presented in randomized order. The change

between camera-views were introduced in both conditions, because randomizing would otherwise have introduced visual

transients in the Scrambled but not in the Intact movie. (B) Based on predictive coding, we hypothesize that for Intact

sequences (top row), the parietal region PFt should receive comparatively little prediction errors from high level visual

regions in the lateral occipital cortex (LatOcc). This is because in predictable sequences, only the first act cannot be

predicted, and should thus trigger a strong prediction error, while subsequent acts become increasingly predictable, leading

to waning prediction-error input to PFt. In contrast, PFt should receive strong and sustained predictive feedback from

ventral premotor regions, and especially from BA44 (Friston et al., 2011; Keysers & Gazzola, 2014; Keysers & Perrett, 2004;

Kilner & Frith, 2008). Input from visual regions should be dominated by higher frequencies representing the individual

motor acts presented every ~2 sec, while feedback from premotor regions would additionally include lower frequencies

encoding sequence level information with periods up to the full ~1min of themovie (Honey et al., 2012; Thomas et al., 2018).

For Scrambled sequences, PFt should receive sustained prediction errors from visual cortices while feed-back predictions
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https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008


Table 1 e List of sequences used as stimuli with total
duration in seconds and number of motor acts.

Action Seconds Acts

1 Inflating and tying a balloon 51 27

2 Making a paper boat 94 32

3 Preparing bread with butter and

jam

79 40

4 Sewing a button 66 42

5 Writing a gift card 83 39

6 Rolling a cigarette 72 30

7 Arranging flowers in a vase 82 39

8 Framing a picture 112 39

9 Sending a letter 42 34

10 Replacing battery in a torch 51 27

11 Applying nail polish 49 23

12 Squeezing oranges 62 40

13 Sharpening a pencil 83 44

14 Replacing a pillow cover 44 35

15 Removing nail polish 64 32

16 Preparing a sandwich 77 27

17 Toasting bread 65 30

18 Folding a shirt 38 20

c o r t e x 1 4 8 ( 2 0 2 2 ) 1 2 1e1 3 8 125
(Nastase et al., 2019). Second, quantifying functional connec-

tivity between brain regions within subjects is complicated by

the fact that a sizable proportion of the BOLD signals are

formed by noise that is often shared across brain regions [e.g.,

respiration and motion (Liu, 2016)]. That two brain regions
from the premotor area should increasingly wane as participan

general organizational principles of the cortex summarized in S

connectivity between ventral premotor and inferior parietal cor

2011) we can generate hypotheses about the layers in which th

information from BA44 should arrive in PFt (gradients, middle p

this input originates are located (cells in the right and left pane

signals back to LatOcc and forward to BA44 might terminate (gr

originate in PFt (cells in middle panel). Given that BOLD appear

output (Logothetis, 2003), inputs (as illustrated by the gradients)

is our own illustration of the schema in Shipp (2007) after modify

III based on Gerbella et al., 2011, and by aligning all layer thick

across the brain regions. (D) Predictions about the depth profile

PFt for Intact and Scrambled conditions based on (B) and (C). Inta

triggering high ISC in layers III, V, VI (blue gradients in left colum

from BA44 (weaker blue gradients in the middle column). Accor

conditions to be particularly clear in the deep layers (V/VI) and/

gradient in the right column). This feedback information includ

seconds of the entire movie (approximately between .1 and .015

limit of our fMRI sampling (TR ¼ 4.2 sec or ~.24 Hz). In contrast, t

at each camera change (i.e., every 2 sec on average), which shou

condition, is too fast for its fluctuations to be accurately captures

measuring the fluctuations over time of the signal rather than

layer IV to be difficult to measure using the methods we emplo

(Intact vs Scrambled) functional connectivity between PFt and B

hypothesis described in (B) and (C): we expect PFt to show incre

feedback pattern of connectivity, while we expect it to show in

accordance with a feedforward pattern of connectivity. The spe

feedbackwould originate from BA44 cells in layers II/III or layers

or layers V/VI, all of which would be anatomically plausible (Ge
synchronize their BOLD signal can thus be due to true ex-

change of stimulus relevant information across those regions

or to the presence of common noise. ISFC provides a way to

circumvent the connectivity-measure-inflating effect of such

common noise across brain regions (Nastase et al., 2019;

Simony et al., 2016) by leveraging the fact that BOLD signals in

each voxel of the brain can be seen as a combination of (i)

stimulus locked signals that represent stimulus-relevant in-

formation and (ii) signals unrelated to the stimulus (e.g.,

daydreaming and noise) that will not be stimulus locked. By

correlating the signal in region PFt of one participant with the

average time course of all other participants in region BA44 or

LatOcc, ISFC can then isolate stimulus-locked information

shared across these regions, because noise or stimulus unre-

lated thoughts would be unlikely to occur systematically at

the same time in different participants, and therefore would

average out and not correlate in time across participants. Here

we will thus leverage ISC to test the presence of more ISC in

layers III or V/VI of PFt for intact over scrambled sequences

and ISFC to test that stimulus related information in PFt is

more shared with BA44 during intact versus scrambled se-

quences.We choose PFt as ourmain region of interest because

it is at the crossroad between feed-forward input representing

prediction errors and feed-back information from BA44, and

because it has a layering that is somewhat similar to the better

explored visual system, while BA44 and its dysgranular orga-

nization (Amunts et al., 1999; Amunts & Zilles, 2012) would

make the same approach more tentative.
ts realize that the sequence is unpredictable. (C) Adapting

hipp (2007) by incorporating specific knowledge about the

tices obtained from monkey tracer studies (Gerbella et al.,

e feed-forward information from LatOcc and the feed-back

anel), and where the cells in latOcc and BA44 from which

l, respectively). In addition, we can hypothesize where PFt

adients right and left panels), and where they might

s to be dominated by synaptic input rather than spiking

would be expected to dominate the BOLD signals. Panel (C)

ing the gradients in PFt from BA44 by adding input to layer

nesses to those in PFt for readability although they vary

of stimulus locked information (as measured using ISC) in

ct conditions should be dominated by feed-back from BA44

n), while Scrambled conditions should show less feedback

dingly, we expect the contrast between the ISC in the two

or layer III with more ISC for the intact sequences (yellow

es sequence level information unfolding over the tens of

Hz) and is thus slow enough to be well within the Nyquist

he feed-forward information representing prediction errors

ld terminate in layer IV, and be stronger in the Scrambled

at our slower acquisition speed. Because ISFC depends on

average BOLD activation, we hypothesize this difference in

y (Nastase et al., 2019). (E) Predictions about the different

A44 and LatOcc e measured using ISFC e based on the

ased connectivity with BA44 for Intact > Scrambled with a

creased connectivity with LatOcc for Scrambled > Intact in

cific stratification of the feedback depends on whether the

V/VI, and whether it would terminate more around layer III

rbella et al., 2011; Shipp, 2007).
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2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study. The study was

approved by the Lab Ethic Review Board of University of

Amsterdam (2016-BC-6837). The study procedures were

detailed in the ethics application and in the grant application

(see details of the funding agencies in the section ‘Funding’),

however, the study procedures or analyses were not pre-

registered prior to conducting the research.

2.1. Participants

Data were acquired from 14 subjects (10 males, 4 females, Age

mean ± std ¼ 24.9 ± 2.8, range ¼ 21e30). The sample size was

determined based on the sample sizes used in other published

materials on the topic of depth resolved fMRI. Three subjects

were excluded due to missing data and two additional sub-

jects were removed due to excessive headmotion. Therefore 9

subjects (6 males, 3 females, Age mean ± std ¼ 24.8 ± 2.6,

range ¼ 21e30) were included in our analyses. Upon arrival

the subjects were screened, as predefined in the ethic appli-

cation, for MRI compatibility and were familiarized with the

MRI setup. All subjects reported being right handed and hav-

ing no psychological or neurological disorders. All of themhad

a normal or corrected to normal vision. Subjects were

compensated 10 Euros/hour and all subjects signed the

informed consent before the beginning of the experimental

session.

2.2. Stimuli

Eighteen movies containing different daily actions (e.g., pre-

paring sandwicheswith butter and jam; see Table 1 for the full

list) were simultaneously recorded by two video cameras

(Sony MC50, 29 frames/s) at an angle of 45�. The videos were

edited using ADOBE Premiere ProCS5 running on Windows.

Each movie was subdivided into shots containing one mean-

ingful motor act each (e.g., taking bread, opening the butter

dish, scooping butter with a knife, etc.). This was done on

recordings from both camera angles. Thesemotor acts (mean/

standard deviation duration 2s ± 1s) were then assembled to

build two types of ~1 min long stimuli (Fig. 1).

For the Intact (I) presentation, the natural temporal

sequence in which the acts were recorded was maintained,

but a camera angle changewas introduced between every two

consecutive acts by alternate sampling from the recordings of

the two cameras. In the Scrambled (S) versions, the acts

remained the same, but the order of the acts was randomly re-

arranged, and a camera angle changewas introduced between

every two consecutive acts. Camera angle changes were

imposed at each act transition in both types of movies to

compensate for the visual transients that would otherwise be

present only in the scrambled movies.

This resulted in 18 intact and 18 scrambled movies. These

movies were presented to the subjects in 4 blocks. Block 1 (220

fMRI scans), 2 (160 fMRI scans) and 3 (190 fMRI scans) each
consisted of 5 unique intact movies and the corresponding 5

scrambled movies. Block 4 (145 fMRI scans) consisted of the

remaining 3 intact movies and the 3 corresponding scrambled

movies. The stimuli in each block were separated by inter-

movie interval varying from 8 to 12 sec. The unique combi-

nation of videos in each block was kept constant across par-

ticipants to ensure that each subject always viewed the

scrambled version of a movie before its intact version. All

stimuli and the presentation code are available in the direc-

tory Stimuli at OSF.io at http://doi.org/10.17605/OSF.IO/

NG7AZ.

2.3. Experimental procedure

Each subject was invited twice, around one week apart

(Mean ¼ 5 days, Range ¼ 2e10 days). On the first day, they

viewed blocks 1 and 2 of Intact and Scrambled movies, in two

separate but consecutive 3DEPI fMRI data acquisitions. This

was followed by the acquisition of anatomical images

(MP2RAGE and T1-3DEPI). Subjects then viewed the same 2

blocks of the movies again while we collected new 3DEPI im-

ages. The order of the blocks was pseudo-randomized across

subjects. During the second day, subjects saw blocks 3 and 4 of

Intact movies and their temporally Scrambled versions. This

was followed by a T1-3DEPI image acquisition followed by

repetition of the blocks. Similar to the first session, blocks

were randomized across subjects. Videos were presented

using the Presentation software (Neurobehavioral Systems,

Inc., Albany, CA, USA). No behavioural response was required

during the four sessions, but participants were instructed to

carefully observe the videos. We ensured that subjects were

not in the scanner for more than 90 min during each session.

2.4. Image acquisition

All MRI images were acquired on a Philips 7T Achieva at the

Spinoza Center in Amsterdam (https://www.spinozacentre.

nl/) using a 32-channel receive and 2-channel transmit vol-

ume coil (Nova Medical, USA). On each experimental day, we

acquired 4 runs of partial fMRI brain images, and one

anatomical (T123DEPI) image, with the same field of view and

in-plane resolution of the 3D EPI fMRI images. Images were

centered on the inferior posterior parietal lobe (rectangle in

Fig. 2A), but also covered lateral portions of the temporal,

occipital and inferior frontal lobe. We manually adjusted the

bounding box to approximately cover the same brain regions

in all subjects. On the first day only, we additionally acquired

one high-resolution whole-brain anatomical image

(MP2RAGE). All images were acquired in sagittal orientation.

fMRI acquisition: 3D EPI sequence at .8 � .8 � .8 mm reso-

lution, FOV 169 � 150, 30 slices, reconstructed at .75 mm, each

3D volume acquired in 4.11 sec, EPI factor ¼ 27,

SENSE(AP) ¼ 3.9, flip angle ¼ 18�, TR/TE ¼ 54/28 msec.

Partial FOV anatomical acquisition: T123DEPI (van der Zwaag

et al., 2018a, 2018b) sequence at .8 � .8 � .8 mm resolution,

FOV 169 � 150, 30 slices, reconstructed at .75 mm,

SENSE(AP)¼ 3.9, inversion time (inv1/inv2) .8/2.7 sec, flip angle

20/16�, TR/TE ¼ 52/25 msec.

Whole-brain anatomical acquisition: MP2RAGE (Marques et al.,

2010) sequence at .64� .64� .64mmresolution, FOV 220� 220,

http://doi.org/10.17605/OSF.IO/NG7AZ
http://doi.org/10.17605/OSF.IO/NG7AZ
https://www.spinozacentre.nl/
https://www.spinozacentre.nl/
https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008
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Fig. 2 e Results of the Localizer-ISC. The first ISC was carried out in MNI space, to define patches of interest with brain

activity relating to hand action observation during either Intact or Scrambled movies, to be later used in the second, depth-

resolved ISC in native space. A. Results (significant voxels) for a logical OR between the contrasts ISCIntact > 0 or

ISCScrambled > 0 (red and orange), overlaid onto the initial regions of interest (yellow): BA44 and PFt from the Anatomy

toolbox, lateral occipital (latOCC) from the Harvard-Oxford cortical atlas. The latOCC was used as an anatomical region that

corresponds to the posterior mid temporal gyrus clusters often observed in previous studies of action observation.

Significantly active voxels co-located with voxels in the regions of interest are denoted in orange. The rectangle crossing the

coronal images approximates the field of view common to our participants afforded by our scans. Lack of ISC outside of this

box should and cannot be interpreted as suggesting that these regions do not show significant ISC. The exact extent of the

field of view across subjects can be found in Fig. S1. B. Comparison of the results obtained using bootstrap (punc < .001,

k ¼ 50 minimum voxels per cluster) and parametric inference (punc < .001, k ¼ 50 minimum voxels per cluster). Scrambled

activity was overall associated with smaller clusters mostly encompassed in regions activated by Intact movies. C. Median

ISC parameter estimates across 9 subjects. Significance was established according to the null distribution of median ISC

values obtained using bootstrap. Median ISC values lying beyond the 99.99th percentile of the null distribution (i.e., p ≤ .001)

were considered significant. In addition, a minimum cluster size of k ¼ 50 voxel was applied to determine significance.

c o r t e x 1 4 8 ( 2 0 2 2 ) 1 2 1e1 3 8 127
256 slices, reconstructed at .625 mm, inversion time (inv1/

inv2) .8/2.7 sec, flip angle 7/2�, TR/TE ¼ 6.2/2.2 msec.

2.5. Image preprocessing

In our preprocessing pipeline, we aimed at preserving the

ability to detect the cortical depth of the BOLD signal by

minimizing the amount of interpolation steps for the fMRI

images, and planned the other necessary preprocessing steps

involving anatomical images around this aim. Specifically, the
native space of the fMRI images was kept as the reference for

all subject-level and group-level inter-modal registration and

analysis, an approach also adopted by previous studies (Huber

et al., 2017) to preserve the layer-specific information in high-

resolution fMRI images.

The whole preprocessing pipeline can be accessed at the

official github repository for this study (https://github.com/

ldeangelisphys/layerfMRI). The scripts (in bash, Python, R)

employ routines from a variety of MRI image processing

packages: FSL (https://fsl.fMRIb.ox.ac.uk/fsl), nighres (https://

https://github.com/ldeangelisphys/layerfMRI
https://github.com/ldeangelisphys/layerfMRI
https://https://fsl.fMRIb.ox.ac.uk/fsl
https://nighres.readthedocs.io/
https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008
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nighres.readthedocs.io/) ANTs (https://stnava.github.io/

ANTs/), ITK-SNAP and associated command-line utilities

(http://www.itksnap.org/).

2.5.1. Image reconstruction
The PAR/REC stacks exported from the Philips scanner were

converted to NIFTI images using dcm2niix v1.0.20201102

(https://github.com/rordenlab/dcm2niix) and reoriented to

the standard RPI coordinate system using fslorient2std, to

enable inspecting the images in a familiar orientation. Facial

information was removed from whole-brain anatomical im-

ages using pydeface (https://github.com/poldracklab/

pydeface). Finally, the T1w and the quantitative T1 map im-

ages were reconstructed from the two inversions of the

MP2RAGE acquisitions using the nighres nighres.intensi-

ty.mp2rage_t1_mapping function and the appropriate acqui-

sition parameters. All the other parameters of the functions

were left at the default values. The T1 images were subse-

quently used to estimate the cortical depth and the registra-

tion with the fMRI images.

2.5.2. Skull stripping
Removal of the skull was necessary to carry out image regis-

tration across MRI modalities within subject andwith the MNI

template. A precise extraction of the cortical sheet was

instead carried out later (see below “Cortical depth estima-

tion”). For the full anatomical acquisition, we obtained the

best results by first correcting the second inversion image of

the MP2RAGE (inv2) for bias field using ANTs' N4BiasField-

Correction, then feeding this and the quantitative T1map into

the nighres' nighres.brain.intensity_based_skullstripping

function to carry out skull stripping. In the partial brain

anatomical images, we carried out the bias field correction on

the mean inv2 acquisition for each participant, and then

thresholded this image to an intensity of 1.5e5. In the partial

brain fMRI images, we thresholded the intensity-normalized

mean fMRI image to either .05 or .1 (2/9 and 7/9 participants,

respectively), and then generated the brain mask using

ants.get_mask with cleanup option set to 1 (erosion with a

radius of 2 voxels). These values of intensity threshold were

manually chosen based on visual inspection of the skull

stripping, after observing that the default parameters would

produce a suboptimal result (i.e., either removing brain tissue

or not identifying voxels in the skull for removal) whichwould

have had consequences during image registration.

2.5.3. FMRI image preprocessing
FMRI images underwent a minimal preprocessing pipeline,

which consisted of brain extraction, motion correction to the

middle image of each run using FSL MCFLIRT and detrending

using a gaussian-weighted line as implemented in FSL FEAT.

To preserve the cortical depth specificity of the fMRI signal, we

did not apply spatial smoothing to the images that were used

for the main analysis related to the cortical depth. Instead we

applied a 6 mm FWHM spatial smoothing only for the initial

group-level analysis which served to identify the regions of

interest later used in the cortical depth analysis. Details are

provided in the Analysis section.
2.5.4. Registration
All registrations between anatomical (T1w) images were car-

ried out using ANTs' SyN algorithm (symmetric diffeomorphic

registration preceded by an affine transformation) with

mutual information as optimization metric (Avants et al.,

2008, 2011; Klein et al., 2009) as implemented in ANTsPy. For

the registration between fMRI and partial FOV anatomical

image, we used the provided version of the SyN algorithm

optimized for BOLD images (SyNBoldAff). The registration

between the partial anatomical image (T1w) and the fMRI

image was estimated using the mean fMRI image of each run

and the partial anatomical image acquired in the same ses-

sion. Additionally to these within-subject registrations, we

also estimated the registration between the full anatomical

image and the standard MNI (the 1 mm isotropic

icbm152_2009_brain.nii.gz provided in nilearn e https://

nilearn.github.io/) using the same SyN algorithm and opti-

mization metric.

2.5.5. Cortical depth estimation
The estimation of the cortical depth from the high-resolution

whole-brain anatomical images was carried out with the

functions provided by nighres. This complex procedure in-

volves several steps which have been extensively detailed in

previous works (Bazin et al., 2014; Huntenburg et al., 2018).

Here we briefly describe the pipeline adopted for our images.

The skull stripped version of the inv2 and quantitative T1

map were obtained using the brain mask from the previous

skull stripping of the bias field corrected inv2 image. We then

estimated two probabilitymaps: one for the duramater (based

on the inv2 image), one for the sulcal ridges (based on the T1

map). Together with the initial brain mask, these additional

maps provided further information for carrying out brain

segmentation (Bazin et al., 2018) of the whole-brain anatom-

ical images.

Brain segmentation was then carried out using a Multi-

compartment Geometric Deformable Model (MGDM)

(Bogovic et al., 2013; Fan et al., 2008) implemented in the

nighres.brain.mgdm_segmentation function. The inputs to

the function were the skull-stripped T1 map and a stack

containing the dura and sulcal probabilistic maps. Since this

procedure is based on labelled atlas priors (provided in

nighres), the GM output map refers only to the cortex and

excludes deep brain nuclei. The boundaries of the cortex are

then extracted based on the results of the segmentation using

a single object Geometric Deformable Model, and the cortical

ribbon is reconstructed using the CRUISE algorithm (Han et al.,

2004).

The CRUISE reconstruction results in the definition of the

boundaries between GM/WM and GM/CSF, which are then

used to estimate cortical depth using a volume-preserving

method (Trampel et al., 2019; Waehnert et al., 2014, 2016).

Note that per the defaults of nighres (see https://nighres.

readthedocs.io/en/latest/laminar/volumetric_layering.html),

cortical depth values e ranging from 0 to 1 e are higher to-

wards the pial surface. We maintain this convention in pre-

senting the results and in numbering the bins which will be

used to pool voxels within different cortical depth ranges.

https://nighres.readthedocs.io/
https://stnava.github.io/ANTs/
https://stnava.github.io/ANTs/
http://www.itksnap.org/
https://github.com/rordenlab/dcm2niix
https://github.com/poldracklab/pydeface
https://github.com/poldracklab/pydeface
https://nilearn.github.io/
https://nilearn.github.io/
https://nighres.readthedocs.io/en/latest/laminar/volumetric_layering.html
https://nighres.readthedocs.io/en/latest/laminar/volumetric_layering.html
https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008
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2.6. Analytic strategy

We conducted our fMRI analysis in the framework of inter-

subject correlation (Hasson et al., 2004) and the related

ISFC (Nastase et al., 2019; Simony et al., 2016). ISC is a rela-

tively novel analytical paradigm where the significance of a

brain region for a certain task is determined by estimating the

similarity e using Pearson correlation e of the brain activity

between different participants involved in the same task over

time e e.g., while watching the same movie e rather than by

regressing a hemodynamicmodel of the task on brain activity.

Generally, ISC is carried out at the voxel level after align-

ment of the entire 4D fMRI volume in a common space like the

MNI. This however represented a limitation for the setting of

our experiment, since the spatial interpolations required to

move the native fMRI data into a common space (coregistra-

tion) decrease the spatial resolution of the BOLD signal. In

order to benefit from the ISC analytic strategy in our data,

while at the same time retaining the potential to resolve the

fMRI signal as a function of cortical depth, we devised a pro-

cedure that we denominate “dual-ISC”, which allows an ISC

analysis to be carried out on the fMRI data in native space.

The first ISC is carried out inMNI space after smoothing the

fMRI data. The results from this ISC are used to identify the

locations on the cortex where brain activity is significantly

consistent across subjects during the observation of either

Intact or Scrambled movies. The group-level binary masks of

the clusters identified in this analysis are then transformed

into the single subject native space, where they are used to

estimate an average time course for each cluster using the

original, non-smoothed data. Crucially, within each cluster

the time course averaging is carried out separately for voxels

at different cortical depths. This allows to carry out a second

ISC, where the unit of analysis is not each single voxel's fMRI

time course, but rather the averaged time course for all the

voxels within a certain cortical depth bin in each of the clus-

ters of activity. Similar to spatial smoothing in conventional-

resolution fMRI, the averaging also provides a way of denois-

ing the fMRI signal before conducting the analyses. We will

now describe the steps of this procedure in detail.

2.7. First ISC e localizer

The preprocessed fMRI images of each run for each subject

were spatially smoothed with a gaussian kernel of 6 mm

FWHM (8 times the original voxel size). The previously esti-

mated transformations (fMRI to partial T1w, partial to full

T1w, full T1w to MNI) were aggregated into one single trans-

formation using ants.apply_transforms, to limit the amount

of interpolation steps. This composite transformation was

applied to the 4D images using linear interpolation. This

allowed us to carry out the first standard voxelwise ISC anal-

ysis to define a group-level localizer of brain activity associ-

ated with the observation of intact or scrambled movies,

without biasing the analysis for one of the others.

We then used the registered 4D images to perform an

InterSubject Correlation (ISC) analysis. This approach

requires correlating the time courses recorded in every
voxel across different subjects to identify those that are

synchronized across subjects, therefore reflecting shared

stimulus-dependent fluctuations across subjects (Nastase

et al., 2019). We use ISC to determine which regions are

involved in the processing of either intact or scrambled clips

that we show to each participant.

The ordering and timing at which the clips are shown was

randomized across participants. Before carrying the inter-

subject correlation, we then extract the segment (i.e., series of

volumes) corresponding to each clip, we standardized each

segment (removed mean and divided by the standard devia-

tion) and concatenate them following the same order for every

participant. This generated one 4D dataset containing all the

data segments corresponding to intact movies concatenated

together in a cardinal order and one containing all the

scrambled movies. Note that although for both conditions

each movie was displayed twice, such repetitions are treated

as two independent movies and concatenated accordingly.

Following this processing of the data, we ran ISC in a leave-

one-out approach. This procedure consists in correlating the

time course of a voxel for one subject with the average time

course corresponding to all the other subjects (Nastase et al.,

2019). We then use a non parametric approach (bootstrap) to

identify the brain regions with a significant ISC (Chen et al.,

2016). Given the relatively low sample size (9 subjects), we

also performa traditional parametric t-test, which is predicted

to produce less false positives than non-parametric metrics in

the case of limited sample sizes (De Angelis et al., 2021).

Having observed that both thresholding methods yield

consistent results, we threshold the ISC map with the boot-

strap method, with a p-threshold of a ¼ .001 and a minimum

cluster size of k ¼ 50.

Having observed that both thresholding methods yield

consistent results, we estimated the significance of median

ISC values using bootstrap (Chen et al., 2016) across 5000

subject-wise resampling (with replacement). ISC values were

considered significant if they lied outside the mid 99.95%

(equivalent to a two-tailed p � .001) of the bootstrap distri-

bution, after adjusting (i.e., shifting) the distribution for the

median ISC of the actual sample. We then apply the cluster

size filter with a custom made python code based on the

sklearn-image library (cluster connectivity ¼ 2, as in SPM).

This result was used to produce a binary mask in MNI space

encompassing the brain locations where a significant degree

of synchronized activity was found across participants during

the observation of either intact or scrambled movies repre-

senting goal-directed actions.

2.8. Second ISC e cortical depth specific

The localizer in MNI space was taken into the native fMRI

space of each run for each subject using the inverse of the

previously estimated composite transformation from fMRI to

MNI space. Concerning this and all other transformation to

the native space, since we were transforming volumes con-

taining labels (either significantly active regions from ISC1,

atlas regions or cortical depth) the information of which

should be preserved as such (i.e., integers), we used a nearest

https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008
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neighbour interpolation (genericLabel option in ANTsPy, rec-

ommended by ANTs team for images of this kind).

As detailed in the Introduction, we had a strong anatomical

hypothesis about the location of the regions where we ex-

pected to observe a cortical-depth specific effect of observing

intact versus scrambled goal-directed actions. Specifically, we

focused our investigation of the inferior posterior parietal lobe

on area PFt (Caspers et al., 2006), of the ventral premotor

cortex to the posterior inferior frontal gyrus Brodmann area 44

(Amunts et al., 1999) and the higher-order lateral visual

cortices. We defined our regions of interest using a logical

AND between the functional localizer obtained by the first ISC

and the cytoarchitectonic maps from Juelich (Eickhoff et al.,

2005) for PFt and BA44.

Since these cytoarchitectonicmaps do not provide labels in

the lateral occipital lobe, we used in this case the lateral oc-

cipital cortex in the Harvard-Oxford atlas (https://fsl.fMRIb.ox.

ac.uk/fsl/fslwiki/Atlases), which provided a good approxima-

tion to the cluster yielded by the localizer ISC in the lateral

occipital lobe, and did not include any other cluster of activity

identified in the localizer ISC (See Fig. 2A). The Juelich maps

and the lateral occipital cluster were transformed from the

MNI into the native fMRI space using the same procedure used

for the localizer maps. The final regions of interest were

computed as the conjunction between the localizer and the

Juelich maps. Additionally, the cortical depth maps estimated

in each subject's whole-brain MP2RAGE scan were taken into

the native space using the same procedure.

Using these ROIs, we extracted the time courses to feed

into the second ISC. The time courses were extracted from the

fMRI data in native space after basic preprocessing (motion

correction þ trend removal and no spatial smoothing). For

each region of interest in PFt, BA44 and the latOCC region, the

encompassed voxels were binned according to their cortical

depth. For each cortical depth bin, we concatenated the seg-

ments of the time course containing movie stimuli, trans-

formed the intensity values in Z-scores and averaged the

resulting values across voxels (as in the first ISC). This resulted

in a time course containing the brain activity elicited by the

movies for each cortical depth bin, each region of interest and

each subject.

Given the nominal resolution of our data (.8 mm), it is not

possible to bin the cortical depth to selectively isolate the fMRI

signal specific to each cortical layer. However for our experi-

ment we did not aim to estimate the specific activity of each

layer, but rather to estimate differences between intact and

scrambled movies as a function of depth. For this reason, as

recommended by Uludag and Havlicek (2021), rather than

using the acquisition resolution, we carried out the second ISC

analysis after sampling the cortical depth in 6 depth bins. In

supplementary materials we further verify that results look

similar when using 8 and 10 bins. Correction for multiple

comparisons (using false discovery ratee FDR) was adapted to

the choice of number of bins. Inference on the difference be-

tween the ISC values for Intact and Scrambled in each cortical

depth bin and for each region of interest was carried out using

a paired t-test on the r/z transformed ISC values after veri-

fying normality using the ShapiroeWilk test. For illustration

in figures, we then z/r backtransformed the values to provide

the reader with the more familiar r values.
2.9. ISFC

In addition to the ISC, we performed a depth-resolved inter-

subject functional connectivity (ISFC) analysis. In this anal-

ysis, we compute the functional connectivity across each bin

(bin 1 e close to the GM/WM interface e to bin 6 e close to the

pial surface) and each region of interest (PF, BA44 and latOCC).

We compute this functional connectivity with a leave-one-out

ISFC approach. Precisely, this procedure consists in

computing the correlation of the time course associated to binj

in the region of interest JUi for subject s, with the leave-one-

out average time course associated to binl in the region of in-

terest JUk (averaged over all subjects except s). As a result, we

have for each combination of bin and JU and for each subject s

an estimate of the ISFC between binj in JUi and binl in JUk:

ISFC
�
JUi binj; JUk binl

� ¼ 1
N

X
s

r

�
tcs

�
JUi binj

�
; tcN�s ðJUk binlÞ

�

where tcs ðJUi binjÞ is the time course associated binj in JUi for

subject s and r is a Pearson correlation.

We transformed such correlation values to Z scores (using

Fisher r-to-Z transformation) and used them as input for a one

sample t-test to assess whether each condition exhibits non-

null functional connectivity across these regions. Addition-

ally, we perform a paired sample t-test between the intact and

scrambled condition, to determine whether the specific con-

dition has an impact on the functional connectivity that we

determine with ISFC.

Alongside the ISFC, we carry a more traditional PPI-like

functional connectivity analysis (Friston et al., 1997). In this

approach, we perform all the correlations in a within-subject

fashion and subsequently compute statistics across subjects,

i.e.,

FC
�
JUi binj; JUk binl

� ¼ 1
N

X
s

r
�
tcs

�
JUi binj

�
; tcs ðJUk binlÞ

�

where tcs ðJUi binjÞ is the time course associated binj in JUi for

subject s and r is a Pearson correlation. Inference on the dif-

ference between the ISFC values for Intact and Scrambled in

each cortical depth bin and for each region of interest was

carried out using a paired t-test.
3. Results

3.1. Premotor, parietal and lateral occipital cortices
show significant ISC for intact or scrambled sequences

First, we aimed to macroscopically localize premotor, parietal

and posterior temporal/lateral occipital patches of interest

with activity that carries movie-related information in intact

or scrambled movies. To do so, we transformed the pre-

processed 4D fMRI data into the MNI space, smoothed the

BOLD signal, and calculated the leave-one-out ISC for each

voxel separately for intact and scrambled sequences. This

revealed the expected network including the lateral premotor

cortex and BA44, the primary somatosensory cortex and the

inferior parietal lobule (including PFt) as well as lateral

extrastriate occipital regions (latOCC) (Fig. 2). This network

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://doi.org/10.1016/j.cortex.2021.12.008
https://doi.org/10.1016/j.cortex.2021.12.008


c o r t e x 1 4 8 ( 2 0 2 2 ) 1 2 1e1 3 8 131
resembles that found using the same stimuli in conventional

resolution 3T fMRI (Thomas et al., 2018). We then identified

voxels containing significant ISC for the intact or scrambled

movie in PFt, BA44 and latOCC as regions of interest, to then

resolve the ISC as a function of cortical depth. By selecting

them with a logical OR between the results of the ISC carried

out either on intact or scrambled movies (i.e., taking all voxels

surviving the threshold for ISCintact > 0, or for ISCscrambled > 0),

we avoid biasing the regions of interest towards intact or

scrambled movies in further analyses (Kriegeskorte et al.,

2009).

3.2. PFt shows increased stimulus related information at
depths corresponding to layers III, V and VI for
intact > scrambled sequences

The second ISC analysis aimed at resolving the cortical depth

of the fMRI BOLD signal synchronization in PFt for Intact

versus Scrambledmovies. Therefore, this analysis was carried

out using the preprocessed but unsmoothed data in the native

fMRI space of each participant. For each subject an average

time course was calculated across all voxels within each

depth-bin in PFt. Then, a leave-one-out ISC was carried out for

each bin, i.e., the signal of each subject i in a depth-bin was

correlated with the average signal of all other subjects in the

same depth bin of the same ROI.

The results of this depth-resolved ISC for PFt are displayed

in Fig. 3A and show how the difference in stimulus locked

signals between the observation of Intact and Scrambled

movies depends on the cortical depth. As predicted (Fig. 1),

during the observation of Intact movies, the synchronization

of the activity in deep layers (at depths aligning with layers V/

VI) of PFt significantly increased. We also observed significant

increases of ISC at depths aligning with layer III, in line with

the tracer studies in monkeys that suggest that feedback from

BA44 to PFt also terminates in layer III. Draining vein effects
Fig. 3 e Depth-resolved ISC for the contrast IntacteScrambledmo

PFt as a function of depth bin, together with the two-tailed p and

transformed leave-one-out ISC values per bin. Significant t-valu

indicated with an asterix. Results are shown next to a histolog

postmortem brains from Caspers et al. (2006) for visual guidanc

obtainedwith 8 or 10 bins is shown in Supplementary Fig. S3. (B

scrambled movies as a function of depth in PFt. Results were gen

calculating s.e.m., and then back-transformed into r-values for i

participant. Error bars are s.e.m. (C) r-value of the leave-one-out

(green) condition separately.
might also contribute to this increase in layer III synchroni-

zation, and these effects cannot be disentangled with BOLD

(Huber et al., 2017). For completeness, although we did not

have specific hypotheses for ISC in BA44 and LatOcc, we also

present the differential ISC as a function of depths for these

regions in Supplementary Fig. S2. For BA44, the activity was

significantly more synchronized in the superficial layers for

the intact, and in the deepest layers for the scrambled movies

(See Supplementary Fig. S2). Similar results are obtainedwhen

the cortical depth was sampled in either 8 or 10 bins (See

Supplementary Fig. S3). No significant changes were observed

in our latOcc patch of interest, with the Bayesian analysis

leaning towards the null hypothesis of no difference in all but

one bin, suggesting that participants processed intact and

scrambled movies similarly in the visual system. Examining

the individual contrast values in PFt (Fig. 3B) shows that the

individual participants showed relatively consistent effects in

our sample. Finally, examining the actual ISC values in the

two conditions (Fig. 3C and Supplementary Fig. S2) confirms

the general trend found in the literature, that ISC is highest in

earlier sensory regions (latOcc peak average ISC around r¼ .3),

lower in parietal cortices (PFt peak average ISC around r ¼ .2),

and lowest in frontal cortices (BA44 peak average ISC around

r ¼ .1).

To explore how the average activity level during the entire

Intact and Scrambled movies compare as a function of depth,

we also performed a traditional general linear model with the

duration of Intact and Scrambled movies as regressors

(Supplementary Fig. S4). This analysis showed that BOLD

signals were significantly higher in Intact than Scrambled

movies in PFt across all but the deepest depth-bin. Unlike the

ISC IntacteScrambled difference that peaked subgranularly,

the GLM results were strongest supragranularly. Also in BA44

and LatOCC, the z-values in the GLM were strongest in su-

perficial layers, but no significant differences in the GLMwere

observed between Intact and Scrambled movies.
vies in PFt. (A) t-values of the contrast intact > scrambled in

BF values all derived from a matched pair t-test of the r/z

es after FDR correction (q(FDR) ¼ .05) across the 6 bins are

ical reconstruction of the 6 cortical layers of PFt in

e only. The consistency between these results and those

) The difference in leave-one-out r-value between intact and

erated by Fisher r/z transformation before averaging and

llustration. For all bins in (A) we show the ISC value of each

ISC as a function of bin for the intact (pink) and scrambled
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3.3. Functional connectivity is increased across PFt and
BA44 for intact sequences

After we found evidence for increased ISC for Intact over

Scrambled movies in PFt, we probed the interaction between

PFt and either BA44 or latOCC in the two conditions. We hy-

pothesized that during the observation of Intact movies, brain

activity would bemore enhanced in the feed-back stream from

BA44 to PFt, terminating at depths aligning with layers III and/

or V/VI (Gerbella et al., 2011). Within the visual system, deep-

layers are particularly associated with predictive brain activ-

ity (Aitken et al., 2020; de Lange et al., 2018; Kok et al., 2016;

Shipp, 2007), but whether the same is true in the fronto-parietal

system was unclear. In contrast, for the information transfer

across latOCC and PFt, because the latOCC appears to represent

information at the short temporal scale of acts, too fast for the

Nyquist limit of our acquisition, we do not expect measurable

changes in ISFC. Had we had higher temporal resolution, we

might have expected the scrambled condition in particular, to

increase ISFC from latOCC towards the intermediate depth of

PFt aligning with the granular layers.

Fig. 4 (left column) represents the results of the ISFC. In

accordance with our hypothesis we found the information

transfer, as assessed using ISFC, between PFt and BA44 to be

increased for intact compared to scrambled conditions

(Fig. 4A). Comparing the depth bins with significant ISFC

changes with the anatomy of PFt and BA44 suggests that ISFC

is most increased across layer III in PFt and BA44, although a

significant increase was also found between depths corre-

sponding to layer VI in PFt and layers IeII in BA44. Hence, of

the 4 depths bins that showed increased ISC for Intact versus

Scrambled movies in PFt (Fig. 3), all but one (the 5th deepests)

showed increased ISFC with at least one depth-bin in BA44.

Why the 5th deepest bin, which had shown the most reliable

Intact > Scrambled ISC difference in PFt did not show a sig-

nificant increase of ISFC with BA44, is unclear. In line with the

idea that the additional exchange of information between PFt

and latOCC conveying prediction errors in the scrambled

condition would occur at a time-scale too fast for our acqui-

sition to capture, we did not find a significant contrast in ISFC

across conditions between these regions. Examining the ISFC

values in the individual conditions for PFt � BA44 (Fig. 4 left

middle and bottom row) confirms that although some signif-

icant ISFC occurs in all conditions, the intact condition stands

out with more consistent ISFC in the intact condition.

To illustrate the advantage of ISFC over traditional within-

subject functional connectivity, we used the same data, but

calculated the correlation between the time course of one area

and that of another within each participant, rather than

across a participant and the average of the others (Fig. 4 right

column). Contrasting this within subject correlation across

our two conditions is then equivalent to a traditional PPI

(Psycho-Physiological Interaction (Friston et al., 1997)), but

could not reveal a specific change in our sample. The advan-

tages of ISFC over a traditional PPI are in line with previous

studies and are thought to be due to the fact that calculating

correlations across participants rather than within partici-

pants reduces the impact of common noise across voxels

(Nastase et al., 2019; Simony et al., 2016).
4. Discussion

Our aim was to shed further light onto the functional archi-

tecture of action observation by providing depth-resolved

fMRI data that could help evaluate one of the core notions of

predictive coding: that parietal nodes receive increased feed-

back from premotor region BA44 when actions organize into

predictable sequences. Specifically, we wanted to test

whether sequence level information e isolated through the

contrast intactescrambled e (1) can be found in layers of PFt

known to receive feedback connections from BA44, namely

layers V/VI and III (Gerbella et al., 2011), and (2) is shared with

layers of BA44 that could be sending feedback to PFt (layers II/

III and V/VI). The analytical methods of ISC and ISFC were

used to tackle the first and the second question, respectively.

In brief, the data confirms these predictions derived from

predictive coding: PFt indeed shows increased ISC for

Intact > Scrambled at depths that overlapwith layers V/VI and

III, and ISFC shows that BOLD signals in PFt at depths aligning

with layer VI and III do share more variance with BA44 layers

II/III during Intact than Scrambled movies. Together this

provides support for the notion that when action sequences

become predictable, premotor regions increase their feed-

back influence on parietal regions. Together with the reduc-

tion in the evoked potentials observed in the visual cortex for

intact relative to scrambled acts in an EEG study using the

same stimuli (Thomas et al., 2018), this increased premotor

influence during predictable sequences is likely to suppress

and partially substitute expected visual input.

As in our previous 3TMRI study (Thomas et al., 2018), at the

macroscopic level we found that premotor, parietal and lateral

occipital clusters of voxels encoded information about the

observed motor acts, as measured by significant intersubject

correlationwhile viewing the intact or scrambledmovies. This

was true whether we used non-parametric methods advised

in the literature (Chen et al., 2016), or parametric methods we

have recently shown to be more sensitive while at the same

time controlling for Type-I errors (De Angelis et al., 2021). We

then focused on PFt because predictive coding models and

traditional feed-forward models of action observation make

predictions that differ regarding the recruitment of layers in

PFt receiving feedback from premotor regions: only predictive

coding models predict that feed-back information should in-

crease in intact over scrambled sequences, and hence that the

contrast intact > scrambled should reveal increased ISC in

layer III or V/VI of PFt. To focus on voxels in PFt that represent

the movies, we thus transformed the coordinates of the MNI

voxels with significant information in at least one of the

conditions at the group level (intact or scrambled) into the

participants' native, unsmoothed space to define our PFt patch

of interest. This patch was not defined based on a particular

relationship between intact and scrambled ISC, and is thus

not biased towards either condition (Kriegeskorte et al., 2009).

In native space, using unsmoothed data, we then calculated

the leave-one-out ISC between a participant's average activity

in that bin and the average of the other participants in the

same bin, and compared ISC in the intact and scrambled

condition. As in our previous 3T study (Thomas et al., 2018),

we found that PFt showed higher ISC while participants
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Fig. 4 e Results of the ISFC. Left column: Significant ISFC differences for the IntacteScrambled contrast (top row), as well as

for the Intact > 0 (middle) and Scrambled > 0 (bottom) contrast separately. Right column: Same but using a traditional PPI

analysis using the same dataset. Note: ISFC calculates the correlation between time-courses in region A of each of the N
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viewed intact than scrambled sequences. Importantly, for the

first timewe resolved the depth-profile of such sequence-level

information. In accordance with predictive coding and the

notion that predictive top-down information should be pre-

sent in deeper layers (Aitken et al., 2020; de Lange et al., 2018;

Kok et al., 2016), we found the significant difference with ISC

intact > ISC scrambled to peak in the deeper parts of PFt, at a

depth that aligns with layer V/VI in postmortem histological

examinations of the brains of other individual (Caspers et al.,

2006). In line with anatomical tracing studies in monkeys,

suggesting that feedback connections from BA44 to PFt should

terminate in layer III in addition to layers V/VI, this increased

ISC was significant also at depth compatible with the location

of layer III. Although we had no particular hypotheses for the

depth profile of latOcc and BA44, as in our previous 3T study,

we found that latOCC does not show significant differences in

ISC between intact and scrambled sequences, irrespective of

cortical depth, while BA44 did show significantly more ISC for

intact versus scrambled conditions in superficial layers. See

Supplementary Note 1 for further details. Importantly, that
latOCC shows high ISC values of similar strength for the intact

and scrambled condition shows that participants engaged

with the material under both conditions, and that differences

in regions such as PFt or BA44 are unlikely to be due to reduced

information processing in visual cortices.

To also explore how the average activity differed between

Intact and Scrambled movies, we compared Intact and

Scrambled movies in our ROIs using a general linear model

(GLM) approach. This GLM revealed that in addition to having

more stimulus-locked information (as revealed by ISC), PFt

had significantly higher BOLD activity for the Intact than

Scrambled movies. The depth profile of the stimulus-locked

information (ISC) and of the average activity level (GLM)

however were somewhat different. The stimulus-locked in-

formation difference peaked deeper in PFt than the average

activity difference, with the ISC peaking at depths aligning

with subgranular layers and the GLM at depths aligning with

supragranular layers. That the average BOLD level peaks close

to the surface is unsurprising, given that the hemodynamic

response measured by the BOLD signal is strongest in
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superficial layers due to the architecture of the vascular sys-

tem (Jin & Kim, 2008; Markuerkiaga et al., 2021; Siero et al.,

2015). It is however important to consider why the ISC, that

is ultimately based on the BOLD signal, may reveal a peak

condition difference deeper than the GLM. A critical difference

between the methods is that the ISC analysis isolates activity

that fluctuates systematically with the movie in ways

consistent across participants, i.e., that are time-locked to the

stimulus, and similar across participants (Nastase et al., 2019).

The GLM additionally considers activity with a timing unique

to some of the participants and activity that is tonic

throughout a movie e such as attention-related activity

thought to be strongest in superficial layers (Lawrence et al.,

2018; Lawrence, Norris, & de Lange, 2019) and activity that

fluctuates at frequencies faster than the Nyquist frequency of

our acquisition rate. This exclusion of idiosyncratically timed

BOLD signals in ISC could make ISC analyses less susceptible

to leakage, if the leakage of activity to superficial layers were

to be desynchronized relative to its initial source e a question

that future studies should explore. The difference between the

results of the GLM and ISC for the contrast IntacteScrambled

thus speak to the fact that the sequence-level stimulus-locked

information in PFt is significantly increased in layers III and V/

VI, while the overall measured BOLD response is also

increased in the most superficial layers. Future studies could

explore whether the focus on stimulus-locked timing may

make ISC less sensitive to the superficial bias of the BOLD

signal. In BA44, the GLMonly revealed small increases of BOLD

signals relative to the baseline, and there were no significant

differences between Intact and Scrambled conditions. The ISC

differences in BA44 thus pick up on fluctuations of activity

within a movie that are more reliable across participants for

Intact than Scrambled movies in superficial layers, while the

average activity level remains similar and modest across

conditions. Finally, in LatOCC, the GLM found robust increases

in average BOLD activation at all depths, but there were no

significant differences between conditions for the GLM or ISC,

suggesting a robust representation for both conditions. Un-

fortunately, BOLD activity cannot reveal whether the balance

of inhibition and excitation may differ in these visual regions

based on the predictability of the sequence.

By combining our comparatively higher spatial resolution

with ISFC e to avoid the issue of shared noise across brain re-

gions (Nastase et al., 2019; Simony et al., 2016) e we could also

verify the prediction that the sequence level information at PFt

depths aligning with layers III and VI is shared with depths

aligning with supragranular layers of BA44 but not with any

depth of LatOcc. Because this increased ISFC is calculated

across different subjects, it indicates that it is signal relating to

the intactness of the sequence in the stimuli that synchronizes

across BA44 and PFt (Nastase et al., 2019; Simony et al., 2016).

The depth of increased ISFC across PFt and BA44 suggests that

feedback information was most strongly increased across

supragranular layers between PFt and BA44. This is compatible

with findings of tracing studies inmacaquemonkeys that show

connections from BA44 terminating in layers III (Gerbella et al.,

2011), and data showing that feedback connections can origi-

nate from layers II/III (Shipp, 2007). However, a smaller increase

was also observed between superficial layers of BA44 and the

deepest depth of PFt. Why the 5th deepest bin of PFt, which had
shown the most consistent ISC increase for Intact over

Scrambled movies, did not show increased ISFC with BA44,

remains unclear to us, and merits further investigation in the

future. A possible interpretation might be that this depth-bin

receives its feed-back input from one of the other frontal re-

gions with increased ISC for the Intact movies (Fig. 2). In

contrast, in the visual system proper, predictive processeswere

mainly accompanied by an increased recruitment of the deeper

layers of the cortical visual system (Aitken et al., 2020; de Lange

et al., 2018; Kok et al., 2016). This difference is perhaps not

surprising given that the prototypical pattern of feed-forward

versus feed-back connectivity originally described by

Felleman and Van Essen (1991) is clearest in early sensory brain

regions, but becomes increasingly columnar or idiosyncratic in

association brain regions and the motor system (Finn et al.,

2020). Performing such studies in association regions, as we

have done here,may thus be critical to shed light on how easily

results from the much-studied visual system apply to other

cortical loops.

Although it is difficult to equate BOLD signal at a certain

cortical depth with activity in a particular cortical layer, it

should be noted that the depth bins aligning with layer III in

PFt, in which we measure increased ISC and ISFC for intact

sequences, inevitably also partially aligns with the depth of

the thin layer IV in PFt. This makes it impossible to verify our

prediction that layer IV, thought to receive feed-forward in-

formation from visual regions, should not show increased ISC

or ISFC for the Intact sequences. Even increasing the number

of bins in our depth analysis cannot overcome this issue for

two reasons: first, because capillaries flow through layer IV to

reach layers V, VI so that any increase in ISC/ISFC in neurons

in layers V or VI will also increase the ISC/ISFC in the BOLD

signal in layer IV (Stephan et al., 2019); second, because

resampling data in an increasing number of depth-bins after

acquisition at 0.8 mm voxel size will lead to vertical blurring.

Our study has a number of additional limitations. First, as

often at high-field fMRI, we used fewer participants scanned

twice rather thanmore participants (Baker et al., 2021; Cai et al.,

2021) due to the difficulty of finding participants that can limit

head movement to ensure stability at 0.8 mm resolution. This

may limit the degree to which we can extrapolate our findings

to the general population, although the similarity of our results

with those of a larger group acquired at 3T at the macroscopic

level (Thomas et al., 2018), and the limited spread of our par-

ticipant's r-values illustrates that the effects we report were

quite robustly observed across participants. Second, to main-

tain our processing pipeline as close as possible to the actual

data, we did not attempt to remove the bleeding of activation

from deeper to more superficial layers due to the organization

of the cortical vascularization (Markuerkiaga et al., 2016;

Stephan et al., 2019; Uludag & Havlicek, 2021). Future studies

using more elaborate models of how blood flows through the

depth of the cortex may provide a clearer picture on whether

signal changes in the intermediate levels aligning with layer IV

across PFt and BA44 do or do not lead to local changes in ISFC.

Third, the comparatively slow acquisition rate of our fMRI

signal makes it impossible for us to tune accurately in the

prediction error signals that we expect to occur at each camera

change in our datasets. We are currently analysing data ac-

quired using ECoG in epileptic patients to try to shed light on
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this faster temporal scale. Fourth, BA44, PFt and LatOCC are not

the only brain regions containing stimulus-relevant informa-

tion in our task (Fig. 2 and Thomas et al., 2018). Accordingly, as

in any connectivity analysis, shared, stimulus-locked signals

across a particular depth in BA44 and PFt could be due to

common input or indirect connections rather than direct

feedback connections from BA44 to PFt.

Finally, although we use depth resolved fMRI to quantify

the level of feed-back input to PFt across conditions in ways

that have become relatively frequent in the 7T literature,

attributing activity at a particular depth to feed-back versus

feed-forward information flowhinges (a) on the separability of

these information flows along the cortical depth and (b) on our

knowledge of where these inputs terminate. While in primary

sensory regions such as V1 both these conditions appear to be

met, with feed-forward signals peaking in Layer IV while

feedback signals alter activity elsewhere (Self et al., 2019), the

connectivity pattern between parietal and premotor regions in

monkeys are, as we mentioned, more complex, with some

frontal input to parietal regions terminating throughout all

layers in a lateral connectivity pattern while others are

multilayered, avoiding layer VI, albeit with a pattern that

differs from the prototypical pattern described in early visual

regions (Felleman & Van Essen, 1991; Gerbella et al., 2010,

2011; Rozzi et al., 2006; Shipp, 2007). While studies like ours

have thus been argued to be necessary to start exploring

whether the prevalence of predictive feed-back signals in deep

layers observed in the visual system applies elsewhere (Finn

et al., 2020), there is also urgent need to perform the kind of

laminar recordings that have benchmarked the foundations

of this approach in the visual system (Self et al., 2019) across

posterior parietal and premotor regions.

Despite these limitations, we hope that this study will

serve as a proof of concept that depth-resolved analyses can

be performed during naturalistic viewing in higher cognitive

brain regions using intersubject correlation-based ap-

proaches, and that we may contribute to what Finn and col-

leagues called for: “layer fMRI is now at a point where we can

expand from tightly controlled experiments in sensory cortex

with clear hypothesesdwhich were necessary to show feasi-

bility of the techniquedto more exploratory, data-driven in-

vestigations of functional dynamics both across the cortical

hierarchy as well as within higher-order regions themselves.

[…] Data acquired during naturalistic stimulationde.g., movie

watchingdlend itself to both connectivity and activation an-

alyses” (Finn et al., 2020). Ultimately such studiesmay literally

contribute to a deeper understanding of social cognition.
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