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Abstract

We analyze the sensitivity of the ocean’s thermohaline circulation using ideal-
ized models of the North Atlantic. The nonlinear Stommel (1961) box model
is solved exactly. Using the analytical solution of a coupled atmosphere-ocean
version of Stommel’s model, we derive the critical salinity perturbation, nec-
essary to induce a break down of the thermohaline circulation . We find
that the glacial oceanic circulation with a weaker meridional overturning is
more sensitive than the present one. The model reveals furthermore that the
optimal perturbation affecting long-term climate variability is by high lat-
itude haline forcing, although this perturbation has little resemblence with
the most unstable mode of the system and the leading EOF.

The linear stage of the forecast error growth is analyzed in the box model.
The amplification of the forecast error ellipsoide is largest for high latitude
haline forcing, associated with maximum energy growth on times less than
a decade. Sensitivity experiments with a more sophisticated coupled model
reveal the basic mechanisms involved in the thermohaline circulation’s re-
sponse to sea surface salinity perturbations. The results qualitatively agree
with those of the analytical model, although different mechanisms are re-
sponsible for the sensitivity. Our results are useful for the interpretation of
paleoclimatic records and interdecadal climate variability.
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1 Introduction

In the northern North Atlantic, warm and saline surface water is transported
northward and is cooled and freshened through surface fluxes. The large
amount of heat transported by the oceanic thermohaline circulation (THC)
is responsible for the relatively mild climate in northern Europe. Most of the
ocean’s northward heat transport is associated with the meridional overturn-
ing which is driven, at least partly, by deep water formation in the Labrador
and Nordic Seas.

In his pioneering work, Stommel (1961) has shown, using an ocean box model,
that the THC can have multiple equilibria under the same atmospheric forc—
ing. Stommel’s result has been confirmed with a three dimensional ocean
circulation model by Bryan (1986). Recently, numerical studies (Rahmstorf
and Willebrand, 1995; Manabe and Stouffer, 1995) and theoretical studies
(Marotzke and Stone, 1995; Lohmann et al., 1996 b) have shown that the
sensitivity of the ocean models is largely overestimated when using fixed
atmospheric temperature and fresh water flux because of atmospheric feed-
backs.

There is, however, mounting paleoclimatic evidence (Boyle and Keigwin,
1987; Fairbanks, 1989; Keigwin et al., 1991) that secular variability and
abrupt climate changes are linked to variations in the THC. Broecker et al.
(1985) speculated that massive discharges of meltwater into the northern
North Atlantic caused the Younger Dryas event where vegetation returned
to a cold climate state over Europe. Paleo-temperature records (Dansgaard
et al., 1993) show that after deglaciation the temperatures over North Amer-
ica and western Europe have dropped. Similar abrupt climate changes due
to large freshenings were found analyzing sediment cores (Bond et al., 1992;
Sarnthein et al., 1994).

Although the freshening—induced large cooling events occured during cold cli-
mates, sensitivity studies with coupled circulation models (e.g. Manabe and
Stouffer, 1995, 1996; Schiller et al., 1996) simulate melt water events to the
current interglacial rather than the last glacial. One aim of this paper is to
analyze the role of the background climate on the ocean’s sensitivity to fresh
water input. For this purpose, we analyze the climate model of Lohmann et
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a1. (1996 b) which is based on Stommel’s model.

Besides the paleoclimatic shifts, interdecadal climate variability may orig-

inate from changes of North Atlantic Deep Water (NADW) formation. A
large salinity fluctuation in the northern North Atlantic was observed in the

late sixties/early seventies, known as the “Great Salinity Anomaly” (Dickson

et al., 1988; Reverdin et al., 1994) which temporarily weakened deep water

formation in the Labrador Sea (Lazier, 1988). A fresh water anomaly devel-

oped in the Greenland-Iceland-Norwegian Sea and moved southward passing

the regions of deep water formation. It has been suggested that the Great
Salinity Anomaly originated from atmosphere-ocean interactions (Dickson et

al., 1988).
In order to detect the effect of anthropogenic greenhouse warming, the under-

standing of such variability is an important issue. Up to now, modelers have

not a consistent picture to understand the interdecadal climate variations

related to the THC. What they can do, is to analyze possible mechanisms

leading to variability in different models (see for a recent review: Stocker,

1996). Some examples of interdecadal modes simulated in coupled models

are given by Delworth et al. (1994), Griffies and Bryan (1997 a, b), and
Timmermann et al. (1997).

One may ask why salinity perturbations affect strongly the THC, and if

long—term climate variations are linked to fluctuations in high latitude sea

surface salinity. In our simple coupled model, we separate the density contri-

bution of salinity and temperature and find that sea surface salinity anomalies

are of great importance affecting the THC.

Although the typical predictability limit of weather phenomena is of the or-

der of about weeks, climate variations are much more predictable due to

the ocean’s large heat capacity and dynamical interia. The question of the

atmosphere’s predictability started with the work of Lorenz (1965). This
was later extented to a coupled atmosphere-ocean mixed layer model (Nese

and Dutton, 1993). Other modeling studies deal with the forecast of the
dominant interannual climate fluctuation, the El Nifio/Southern Oscillation
(Goswami and Shukla, 1991; Blumenthal, 1991; Eckert and Latif, 1997). For
the North Atlantic, predictability studies include an active THC which was
recently addressed by Griffies and Bryan (1997 a, b).
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Griffies and Bryan (1997 b) show that the leading empirical orthogonal func—

tions (EOFs) of the surface fields contribute mostly to the multidecadal
variability whereas higher EOFs have a neglible amount. In several pre-

dictability experiments with their complex coupled model, they estimated

the predictability of these dominant patterns. They concluded that the

ocean-atmosphere interaction lead to predictability limits beyond the intrin-

sic predictability limit of the atmosphere. Their finding that the dynamics

of their high dimensional model can be reduced to a few statistical modes,

encourages us to investigate the error growth dynamics in our simple coupled

box model.

Our model mimics the North Atlantic region which seems to be a very sen-

sitive part of the global thermohaline circulation. In our model study, we

concentrate on the northern source of the THC and deliberately exclude any

source of southern hemisphere forcing and the interaction of the THC with

wind.

We present the analytical solution of Stommel’s (1961) low order model.
Along with our coupled atmosphere-ocean version of Stommel’s model, we
analyze the qualitative behavior of the THC in terms of stability, variability,

and predictability.

Stability is understood here in the sense of Lyapunov:

If the initial condition is in the attractor of an equilibrium state, the system

reaches a neigbourhood of the equilibrium at finite times. The attractor can

be obtained by the Lyapunov function technique or by the direct solution

of the dynamical system. Under the system’s sensitivity, we understand a

parameter dependence of the stability properties. One particular interest

here is the most effective initial perturbation maximizing the response in our

system.

The variability of dynamical system can be explored by several concepts:

- The model may undergo a limit cycle or a more complex attractor which

implies at least one dominant negative feedback in the system.
- The model is forced by external forcing such as variations in solar activity.

- The system has two different inherent time scales, where the short-period

component lead to a response of the slower component (Hasselmann, 1978).
Variability is understood here as the amount of stationary variance of the
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dynamics. Our coupled box model is forced by stochastic atmospheric white

noise which stems in turn from the underlying dynamical processes in the

atmosphere. We are particularly interested in the type of forcing which leads

to maximal long-term variance.

The prediction of a process provides information how small perturbations in

the initial conditions cause significant changes in the subsequent evolution.

In our context, we define the predictability as the error growth amplification

and as the evolution of the probability distribution function in phase space.

The paper is organized as follows:

We present the exact solution of the nonlinear differential equations with

quadratic nonlinearity of Jacobi-type in section 2. We show that Stommel’s

(1961) box model falls into this class and give the solution of a coupled ver-
sion of this model. The critical perturbation in sea surface salinity inducing

a break down of the model’s THC is calculated.

In section 3, the box model’s dynamics are analyzed with respect to the

forecast properties and the most effective excitation of the model. These

concepts are used to understand the coupled box model’s climate variability

and error growth dynamics. In section 4 we analyze, how the THC’s stability

is affected by the background climate.

Section 5 deals with a coupled energy balance-ocean circulation model. We

analyze the feedbacks and compare the results with the sensitivity in the box

model. The conclusions are given in section 6.
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2 A simple climate model

In this section, a category of the nonlinear models following Stommel’s (1961)
ansatz is solved exactly and the feedbacks affecting the THC are analyzed.

The common assumption of Stommel (1961)-type box models is that the

oceanic overturning rate Q can be expressed by the meridional density dif-

ference:

Q = —c(aAT —,8AS) ‚ (1)

where a and ß are the thermal and haline expansion coefficients, c is a

tunable parameter, and A denotes the meridional difference operator. The

equations for temperature T and salinity S are the heat and salt budgets in

one oceanic box using an upstream scheme for the advective transport:

d Q F—T : — — AT —- m 2
dt V pocph ( )
d Q Sod—tS —- — 7 AS — I03 — E) ‚ (3)

where V is the volume of the box with depth h , (P — E) denotes the fresh

water flux (precipitation minus evaporation plus runoff). Foa is the heat
flux at the ocean-atmosphere interface, So is a reference salinity, and pgcp

denotes the heat capacity of the ocean.

For simplicity, we have restricted our notation to the case with high latitude

deep water formation and do not consider the equilibrium with sinking wa-

ter at low latitudes. In the solution of these types of models, the variable

(AT, AS) consists of the components to the meridional buoyancy gradient.

2.1 Exact solution of Stommel’s model

Schneider and Lohmann (1997) solve a class of nonlinear evolution equations
of the following structure:

dd—tX=AX+ <b|X> X, X(0)=XoeR" (4)

for X G R", n E N. The brackets < I > denote the euclidian scalar product.

The vector b and linear operator A are arbitrary as long as there exists a

solution g E R" for

A*€+b=0 , (5)
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where A" denotes the adjoint operator to A. Equation (4) is solved with

a transformation to the linearized evolution equation. With the definition

1X(t):= mexp(At)X0 , X0,X(t) E R" (6)

and the scaling function

7(t;X0)1=<§ l exp(At)Xo > — <£|Xo > + 1 ‚ (7)

one can verify that X(t) solves the differential equation (4):

d 1 A",EX — A ;eXp(At)X0 — ä exp(At)X0

= AX—<§|AX>X=AX+<b|X>X. (8)

The evolution (6) is defined for times t as long as 7(t;X0) > 0. How
this solution and that of the corresponding partial differential equation are

obtained, is described in a proper mathematical context in Schneider and

Lohmann (1997).

The models of Stommel (1961), Marotzke and Stone (1995), Lohmann et a1.
(1996 b), Ruddick and Zhang (1996), Winton (1997) and many others are
of the type of equation (4), and their dynamics are therefore exactly known.

For two-box ocean models, as e.g. Stommel (1961), the budget equations for

temperature and salinity (2, 3) for each box with volume V can be subtracted

from each other to get the form (4):

EAT = —2 9AT — Ai
dt V pg cph (9)
d <1) Sod—tAs —2 VAS — ATM—E) , (10)

We proceed with the notation of the Lohmann et al. (1996 b)-model which is
based on the Stommel’s ocean model and the linearized atmospheric energy

balance model of Chen et a1. (1995). This model consists of two boxes
for the upper ocean and two boxes for the atmosphere. The geometry of

the model (figure 1) mimics the North Atlantic, with an ocean box at low
latitudes ranging from the equator to 400 N, a high latitude box between 400
and 700 N, and one ocean box for the deep ocean. Both upper ocean boxes

are 100 m thick. This three-box model is of the type (4) after introducing
a climatological background state with meridional temperature and salinity

gradient, AT° and AS°, respectively. The model is tuned for the present
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climate which places it in the thermal regime of the THC (Lohmann et al.,
1996 b).

The atmosphere is vertically integrated and consists of a low latitude box
ranging from the equator to 400 N and a high latitude box between 400 N
and 800 N. The heat flux at the ocean-atmosphere interface is parameterized
linearly as

Foa = Q1 + Q2 (TA _T) (11)

with fixed values for Q1 and Q2 and sea surface temperature T and atmo-
spheric temperature TA at 1000 mb. The atmospheric part of the model is
a linear response model where the eddy fluxes in the atmospheric model are
parameterized as diffusion. The fresh water flux P — E is equal to the di-
vergence of vertically integrated water vapour transport. In the atmospheric
transport model, the anomalous heat and fresh water balances are related to
the change of meridional temperature gradient 5 TA:

K 6 TA = Q2 6 (TA — T) — B 6 TA (12)
K2 6 TA = 5 (P — E) , (13)

where K and K2 denote the coeflicients for the atmospheric heat trans-
port Which are estimated to be 7.2 Wm‘2 K‘1 and 40 mm yr‘l (Lohmann
et al., 1996 b). B is the coefficient for long wave radiation change
(B = 2 Wm‘2K‘1). For the thermal response, a parameter e is introduced.
This parameter accounts for changes of the atmospheric surface temperature
compared to changes in sea surface temperature:

6=5fl=_92__
5T Q2+B+K

The dynamics of the model is known, when the vector E = — (A*)'1 b of

(14)

equation (5) is specified:
ca<I>° — cßn SUV/h

f _ cß<I>° + cßq2(1 — e)
_ —2d>°<I>° + (caAT° — 2c‚ß AS°) q2(1 — e) — cß AT° nsoV/h

where q2 is an abbreviation for Q2 V/(pocph). The denominator in (15) is

‚ (15)

the negative of matrix A’s determinant. The units of vector 5 = (£1,§2) are
1 /K and 1 /psu‚ respectively. For mixed boundary conditions, as e.g. in
Stommel’s (1961) model, the atmospheric temperature and fresh water flux
are fixed. In this case, the parameters 6 and K2 are therefore set to zero.
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2.2 Critical salinity perturbation

The critical salinity perturbation causing a breakdown of the thermohaline

circulation is considered by means of the above exact solution. This question

can be reduced to the determination of the time interval where the solution

X(t) exists. By definition, 7 = 1 initially. If 7(t;X0) > 0 for all t 2 0,
the dynamical system (6) with initial condition X0 is stable. An analysis

shows that the sign of 7 is affected by the last two terms in (7) only, if we

assume salinity perturbations as initial conditions X0 = (0, _Scrit) in our

box model. The critical perturbation Sm, > 0 is:

6—12 (16)
With perturbations smaller than Sm}, the system recovers and returns to

Scrit

its basic state. With perturbations larger than Sarita the system goes into

another climate state with low latitude sinking. For t 2 t1, the parameter c

in (1) must then be substituted by — c (Stommel, 1961). Here, we analyze
only the high latitude sinking solution of the model and exclude deliberately

the bifurcation problem in the context of multiple equilibria (as e.g. in Rud-

dick and Zhang, 1996; Rahmstorf, 1996). Equation (16) is analyzed with

respect to the atmospheric response model (section 2.3) and the basic state

(section 4).

2.3 Uncertain atmospheric response

There are great uncertainties of the atmospheric thermal and fresh water flux

response. Our model and other simplified energy balance models (Chen et

al., 1995; Rahmstorf and Willebrand, 1995) assume a negative thermal feed-
back (damping SST-anomalies), whereas some other studies found a positive

feedback (Palmer and Sun, 1985; Latif and Barnett, 1994). The atmospheric
response to mid and high-latitude SST anomalies is, however, still a highly

controversial issue.

Furthermore, there are large uncertainties in estimating changes in the hy-

drological cycle. For example, it is not clear whether today’s fresh water

export from the North Atlantic (Zaucker and Broecker, 1992; Wijffels et al.,

1992) will change under different climate conditions. An enhanced export

would stabilize the THC in contrast to the anomalous meridional water va-

por transport. The geographic location of changed precipitation, evaporation

11

2.2 Critical salinity perturbation

The critical salinity perturbation causing a breakdown of the thermohaline

circulation is considered by means of the above exact solution. This question

can be reduced to the determination of the time interval where the solution

X(t) exists. By definition, 7 = 1 initially. If 7(t;X0) > 0 for all t 2 0,
the dynamical system (6) with initial condition X0 is stable. An analysis

shows that the sign of 7 is affected by the last two terms in (7) only, if we

assume salinity perturbations as initial conditions X0 = (0, _Scrit) in our

box model. The critical perturbation Sm, > 0 is:

6—12 (16)
With perturbations smaller than Sm}, the system recovers and returns to

Scrit

its basic state. With perturbations larger than Sarita the system goes into

another climate state with low latitude sinking. For t 2 t1, the parameter c

in (1) must then be substituted by — c (Stommel, 1961). Here, we analyze
only the high latitude sinking solution of the model and exclude deliberately

the bifurcation problem in the context of multiple equilibria (as e.g. in Rud-

dick and Zhang, 1996; Rahmstorf, 1996). Equation (16) is analyzed with

respect to the atmospheric response model (section 2.3) and the basic state

(section 4).

2.3 Uncertain atmospheric response

There are great uncertainties of the atmospheric thermal and fresh water flux

response. Our model and other simplified energy balance models (Chen et

al., 1995; Rahmstorf and Willebrand, 1995) assume a negative thermal feed-
back (damping SST-anomalies), whereas some other studies found a positive

feedback (Palmer and Sun, 1985; Latif and Barnett, 1994). The atmospheric
response to mid and high-latitude SST anomalies is, however, still a highly

controversial issue.

Furthermore, there are large uncertainties in estimating changes in the hy-

drological cycle. For example, it is not clear whether today’s fresh water

export from the North Atlantic (Zaucker and Broecker, 1992; Wijffels et al.,

1992) will change under different climate conditions. An enhanced export

would stabilize the THC in contrast to the anomalous meridional water va-

por transport. The geographic location of changed precipitation, evaporation

11



60 I | l I T

50

lA40

K
(

W/K
/m

2
8

o 20 4o 6l0 80 100
K 2 ( mm/yr/K )

Figure 2: Critical salinity perturbation for the coupled system in the parameter space
for the eddy coefficient of heat transport K and the sensitivity coefficient of the
hydrological cycle K2. The contour interval for Sm} is 0.1 psu. The coupled system
is unstable above the curve Sc,“ = O.

and runoff may furthermore influence the sensitivity of the THC.

Therefore, we calculate the critical perturbation (16) as a function of the
hydrological feedback K2 and the thermal feedback K (figure 2). K is
the meridional heat flux rate by transient eddies. Small numerical values of

(K2, K) indicate a small response of the atmosphere to changes in the ocean.

For small K2 and K, the critical perturbation Sm} is rather large (figure

2). For larger values, the coupled system becomes more unstable. Negative

Scrit indicate an unstable THC where the curve Sam = 0 coincides with the

line of neutral stability in the linear stability analysis (Lohmann et al., 1996

b, figure 2 therein).

The solution of the coupled model shows how the assumed strengths of the
atmospheric heat transport and freshwater flux determine the critical salinity

perturbation. Mixed boundary conditions with fixed atmospheric tempera-

ture and fresh water flux correspond to e = 0 (or K = oo) whereas an
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ocean model with fixed surface fluxes to e = 1 (or K = 0 ). Therefore, the
atmospheric transport feedbacks affect strongly the stability of the thermo—

haline circulation.

Lohmann et a1. (1996 a) look for the THC’s equilibrium response using

various upper boundary conditions for an ocean circulation model. They

conclude that multiple equilibria are not possible when using an atmospheric

model with small K2 and K, and conclude that such models provide for

a too strong constrain for the coupled atmosphere-ocean system whereas

mixed boundary conditions (corresponding to a very large K ) overestimate

the possible existence of multiple equilibria.

The question of adequate transport coefl‘icients K and K2 hints to the ques-

tion of the proper boundary conditions for ocean sensitivity experiments. In

principle, the slow parts of a system can be considered as prescribed bound-

ary conditions to the more mobile one to simulate climate variations at a

specific time scale. Therefore, there is still a controversial debate about the

proper boundary conditions for ocean sensitivity experiments. Sensitivity

studies with coupled general circulation models are too costly for comput-

ers of the present generation. Asynchronous integration techniques used to

reduce the computer time required in coupled GCM integrations cannot cir-

cumvent this problem, because such integrations may not provide the correct

feedbacks during the ocean only phase.

Each set of upper boundary conditions used implies an own atmospheric

model. In contrast to atmospheric studies with fixed SST as a relatively

persistent quantity to perform parameter sensitivity, the ocean’s sensitiv-

ity is not known in a coupled context, because the parameter sensitivity

of ocean-only models may not give the correct insight in that of a coupled

model. In a recent parameter study, Weber (1997) shows that the sensitivity

of the oceanic circulation with respect to subgrid—scale parameters, such as

the vertical diffusivity, is strongly affected by the boundary conditions or the

kind of atmospheric model used.

We shall see in section 3.4 that long-term climate variability must be seen in
the coupled atmosphere-ocean context rather than in a so called “ocean-only

mode”. In section 5, we will compare the response to sea surface salinity

anomalies in the box model to that of a more complex model.
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3 Optimal response analysis

In this section we analyze the box model’s sensitivity and variability. In par-

ticular, we examine why salinity perturbations are so important in changing

the THC. Furthermore, the predictability of the model is investigated using

the error growth analysis. We make use of the generalized stability theory of

non-normal operators, recently proposed by Farrell and Ioannou (1996) and

Palmer (1996). Throughout this section, we restrict our examination to the
current climate. In section 4, we discuss the dynamics for different climatic

states.

3.1 Regimes after a salinity perturbation

We analyze the time regimes of X(t) in the phase space spanned by salin-

ity and temperature anomalies. As in section 2.3, we investigate the box

model’s sensitivity under anomalous high latitude haline forcing as an initial
perturbation. The solid line in figure 3, denoted as b), is the phase space

trajectory of the system’s response to a negative salinity perturbation at high

latitudes for the present climate (Lohmann et al., 1996 b). The phase space

trajectory shows a decrease in temperature for the first 5 years, where the

distance of the trajectory from zero point increases temporarily. After about

10 years the trajectory in figure 3 points into a “mixed temperature/salinity

direction”, denoted further as 61. Our results imply that the adjustment of

the THC involves two phases: A fast thermal response and a slower response

on the tel—direction.1

Because the fast response is associated with temperature anomalies only

(figure 4), a rapid cooling takes place after a perturbation in salinity (not

in temperature) is introduced into the system. This is consistent with our

picture obtained from paleo data of rapid temperature changes occurring af-

ter high latitude freshening (Dansgaard et al., 1993). For the THC, this is

a stabilizing effect: A negative salinity perturbation accounts for a negative

temperature anomaly increasing the high latitude density.

The evolution of the nonlinear model can be characterized well with the

eigenvectors of the matrix A, because the scaling function 7(t) acts upon
both temperature and salinity (equation 6). This is done in section 3.2 where

1We shall see later that e1 is identical with the most unstable mode in the system.
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Figure 3: The dynamics in the thermo-haline phase space after a salinity anomaly.
The different climatic states a). b), c) are listed in table 1.

we examine that high growth rates can occur over intermediate times even

though both eigenmodes are damped.

3.2 The biorthogonal vector: Initial excitation

Our dynamical system (4)

ditx = f(X) , with X e R2 (17)

has the tangent linear operator A(X) on the tangent vector space with evo-
lution m:

Ex—dx
In our box model, the evolution X(t) is known. Thus, A(X) can be ob-

d fl(X) a: = A(X):v . (18)

tained analytically.

The operator A of the box model is found to be non-normal (AA* 75 A*A) ,
the eigenvectors of A, and 61 and 82, are not orthogonal (figure 4). One

eigenvalue (62) is closely related to temperature anomalies, whereas the other

(61) is a “mixed temperature/salinity eigenvector” (figure 4). The eigenvec-
tors of the adjoint matrix A* are denoted by e; and 6;, respectively.
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Figure 4: Eigenvectors e1,e2‚ and adjoint eigenvectors cits; of the tangent linear
operator A for the present climate. The dotted lines show the line of constant density
and the perpendicular.

For the non-normal matrix A, the eigenvectors of A and A* do not co-
incide. However, the eigenvectors of A and A“ are perpendicular to each

other, fulfilling the “biorthogonality condition”:

6:16, for iyéj . (19)

For the linear dynamics of as, we make the ansatz

m = c1 e1 exp(>\1t) + 62 e2 exp(>\2t) , (20)

where eigenvalue A1 corresponds to the most unstable eigenvector el and A2

is the eigenvalue to the temperature eigenvector 62. Multiplying (20) with
e; and e; for initial time and using condition (19), we get the coefficients

=__::l|‘:°: for i=1‚2 . (21)
In our system, both eigenvalues are real and negative. Because of A2 < A1,

the first term dominates for long times and the second for small times.

A perturbation is called “optimal”, if the initial error vector projects onto the

most growing subspace. It follows from (20) that the coefficient c1 for the

most unstable mode must be maximal. This is according to (21) equivalent
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with that x0 points into the direction of e’f . Note, that vector e‘f is closely
related to salinity anomalies of the high latitudinal box.

This unit vector e’f is called the “biorthogonal” to the most unstable eigen-
vector 61 which we want to excite. In order to make a picture for the

mathematical considerations, we assume that the tail of m0 is placed on

the el—line and its tip on the eg—line. This vector is stretched maximally

because the tail decays to zero quickly, whereas the tip is hardly unchanged

due to the larger eigenvalue A1 .

It is remarkable that the optimal initial perturbation vector wo does not

coincide with a perturbation in sea surface density at high latitudes which

would reside on the dotted line perpendicular to p = const. in figure 4. Even

when using a space spanned by (aT, ‚65) instead of (T, S) to take into ac-
count the different values for the thermal and haline expansion coefficients,

vector ef is much more dominated by the scaled salinity anomalies than

for temperature anomalies of the high latitudinal box. We have chosen the

(T, S)-space instead of (aT, ßS) , in order to make the phase space analogy
more clear and to discuss the effect of changed a under different climatic

conditions (section 4).

Our investigation of the most efficient initial excitation of the THC supports

the picture that the choice of proper boundary conditions is essential for

modeling the system’s qualitative behavior: The ocean model (2, 3) with

fixed fluxes (with K2 = 0, K = 0) can be reduced to a single density equa-
tion. This would imply, the most efficient perturbation would be a sea surface

density anomaly at high latitudes. The non-normality reflects therefore the

system’s different timescales: Sea surface temperature anomalies are quickly

damped whereas sea surface salinity anomalies can persist longer. Here, in

our two dimensional system, the most unstable mode 61 and its biorthogo-

nal e} differ greatly from each other, and the perturbation that optimally

excites the mode bears little resemblance to the mode itself.

This might explain the THC’s sensitivity to perturbations in high latitude

salinity, which has been observed in the northern North Atlantic for the re-

cent (Lazier, 1988) and the past climate (Bond et a1., 1993). The initial
error is most efficient when the projection of the perturbation onto salinity

is large, and the transient growth is almost entirely due to the temperature
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adjustment on short time scales.

3.3 The error growth: Forecast ellipsoid

Let us investigate the linear stage of the dynamics in order to obtain some

insight into the predictability of the system. The evolution on the tangent

vector space is given by

:L'(t) = exp(At) m0 =: \II .930 , (22)

defining an evolution operator ‘I! on the tangent vector space TXRZ. Unlike

‘I’ itself, the operator \II*\II is symmetric and provides a measure for the error

growth. The eigenvectors of \II*\II are called singular vectors. They define the

axes of the forecast ellipsoid for the probability distribution function. The

corresponding eigenvalues are called the singular values 01, 02 . Here, we an-

alyze the error growth with respect to the euclidic norm because our model

contains only the kinetic energy (proportional to <I>2) as a basic quantity.

Supposing that an error/uncertainty in the initial conditions is represented

by a normally distributed probability distribution function. This function

is represented by a circle in phase space (figure 5) where the axis units cor-

respond to the same density contribution. The development of the forecast
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Figure 5: Forecast ellipsoid after 1 day, 1 month, 6 months, 1 year, and 2 years. The
main axes of the ellipsiodes define the singular vectors of the system. After a year, the
dominant singular vector coincides allmost with sea surface salinity anomalies. The
axes are scaled for equal contributions of salinity and temperature to high latitude
density.
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It follows that high latitude sea surface temperatures (SST) are much more
predictable than sea surface salinities (SSS). Our explanation is that the at-
mospheric feedbacks damp strongly temperature anomalies which thins down

the forecast ellipsoid. In our buoyancy driven model of the THC, the time

necessary to transport low latitude warm surface waters to high latitudes is

longer than that for the local temperature effect. Salinity on the other hand

is dominated by the slow advective processes. The positive feedback due to

salinity advection, destabilizing the THC, increases the error growth further.

We find that a negative feedback (damping) of SST-anomalies in the northern

North Atlantic is essential for our conclusions. The time scales of the ampli-

fications of the stand deviations along the directions of singular vectors

are very different. Increasing the restoring times in the heat flux parame-

terization, the forecast ellipsoid becomes therefore more spherical. We find

furthermore that the dominant error growth vector changes only slightly for

different background climatic states and thus for a whole model trajectory

X(t) .

Often, Lyapunov exponents are used to quantify the time averaged pre-

dictability. The mean growth rate is given with the Ergodic theorem of

Oseldec (1968) defining Lyapunovnumbers /\1‚2, which are global character-
istica of the dynamical system:

A11: limM= lim % ‚ (23)
t——)oo t t—>oo t

where the second equation relates the singular values to the Lyapunov expo-

nents. The sum of the Lyapunovnumbers is related to the divergence rate of

(18) averaged over the stationary probability distribution function. We prefer

singular values instead of Lyapunovnumbers because they quantify only time

averaged predictability and do not take the transient growth into account.

Similarly to the singular vector analysis, one can describe the predictability

by local divergence rates within the framework of dynamical system theory

(e.g. Lorenz, 1965; Nese and Dutton, 1993).

3.4 Stochasic optimals: Maximal variance

In the previous sections 3.2 and 3.3, we have looked for the sensitivity of

the THC with respect to initial conditions. In contrast, we are interested
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here how the system responds to changes in some external forcing which is
interpreted as an uncertainty in the model formulation. In the long-term
predictability problem, the error growth arises from an ensemble of growing
perturbations that are excited. We want to look at the statistically steady
state, and investigate that permanent perturbation which most effectively
excites the stationary variance. Furthermore, we look for the eigenvectors
which span the maintained variance, commonly referred as to the empirical
orthogonal functions (EOFs).

We generalize (18) to the stochastically driven, linearized dynamical system

%m = Am +F17t ‚ w,17€R2 (24)

with m a white-noise forcing. The additive noise reflects the very different
time scales of ocean and atmosphere (Hasselmann, 1976): Large-scale atmo-
spheric fluctuations in the meridional transport processes are integrated by
the slower component, the ocean. Different realisations of the atmospheric
response are modelled as random heat and fresh water flux in the compo-
nents of m . A similar approach was used by Eckert and Latif (1997) studying
ENSO predictability.

The analytical solution of the linear stochastic differential equation (24) is
t

:1:(t) = f 6A(t—s) F773 ds . (25)
0

As in Farrel and Ioannou (1996), the spatial distribution of the forcing is
assumed to be represented by an unitary F, such that the resulting statistics
become independent of the particular choice of F.
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Figure 6: Development of the probability distribution function (PDF). Starting with a
6-function, the PDF is shown after one month together with the PDF for six months.
The axes are scaled for equal contributions of salinity and temperature to high latitude
density.
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Figure 7: The first EOF (eofl), the stochastic optimal ($01). For orientation, the
direction of eigenvectors €1,62 and adjoint eigenvector e’f are shown with dashed Iines.

We use an F such that the stochastic forcing components have equal

contributions to the high latitude density. The solution (25) corresponds
to the solution for a Fokker-Planck equation, an evolution equation for the

probability distribution function (PDF). Starting with a 6—function at ini-
tial time, the PDFs for one month and six months are plotted together in
figure 6. The variance increases in time and the figure shows furthermore

that sea surface salinity has a much larger variance compared to sea surface

temperature. Thus, the system’s response to an external forcing shows a

similar behaviour as the error growth dynamic on the tangent linear vector

space, conducted by the singular vector analysis in section 3.3. However, the

PDF-prediction is by construction not sensitive to initial conditions, because

the initial conditions are exactly known. Uncertainties/error growth of the

initial conditions further limit the system’s predictability and are largely af-

fected by the model’s nonnormality (section 3.3). In contrast, the stochastic

approach (24) measures the knowledge of the system’s variance. The sta-

tionary PDF has maximal variance and contains therefore less information

about the system. Thus, unpredictability can be associated with the overlap

of the actual PDF with the stationary PDF (Eckert and Latif, 1997).
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Figure 8: Ensemble response variance (solid line) compared with the ensemble
response variance for a system with orthogonal eigenvectors (dashed line). The
dotted lines in the vertical show the eigenfrequencies l/Al = 0.0431/yr and
1//\2 = 1.351/y'r, respectively.

In the following, another aspect of the stochastic dynamics (24) is discussed.

We seek for the stochastic forcing F which gives maximal variance of the

stationary solution. From (25), the variance maintained by the stochastic
forcing is

t
Var(a:) = E {272} = Trace [F* (/ eAiltflleAafilds) F]

O

= Trace [ F* B, F] (26)

with the positive hermitian B, accumulating the perturbation growth. The

variance (26) is maximal, if the matrix F consists of the eigenvectors of B, ,
because then the matrix F“ B, F has diagonal form and the trace is maxi-

mal.

Because the matrix A is asymptotically stable, the statistics are stationary.

For the statistically steady state, the eigenvectors of Boo are ordered accord-

ing to their contribution to the variance and are called “stochastic optimals”

(Farrell and Ioannou, 1996) for the linearized dynamics (24). The leading
stochastic optimal (shown as sol in figure 7), most effectively excites the
stationary variance. The stochastic optimals are different to the eigenvec-
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tors which span the maintained variance (EOFs). The leading EOF is the
first eigenvector of the covariance matrix (E{:c,~a:j}),-,j=1,2 and interestingly,
the first EOF coincides almost with the most unstable mode. The leading

stochastic optimal, however, points almost into the direction of the most ef-

ficient excitation vector ef (figure 7).

The long-term variance in an ensemble of trajectories is maximal, when the

permanent forcing is large for high latitude salinity. The different realizations

of a:(t) for (25) are due to the random weather fluctuations. Our stochastic
optimal vector suggests that the long-term predictability of the THC can be

therefore mainly limited by the knowledge of higher frequency atmospheric

fluctuations in the high latitude fresh water flux. The effective span of the

variance, the first EOF, is much different from the vector which most ef-

fectively excites the stationary variance - a common feature of non-normal

systems (Farrell and Ioannou, 1996).

It is useful to calculate the ensemble response variance E(w) which is given
by the Fourier transform of the variance

Var(m) — i fR E(w) dw . (27)
27r

The ensemble response variance E(w) , has a complicated polynomial struc-

ture and is shown in figure 8 (solid line). In order to make a: and E dimen—
sionless, salinity and temperature are scaled here by the haline and thermal

expansion coefficients. This figure shows that the long-term stochastic re-
sponse greatly exceeds the function Emma) (dashed line). This function is
obtained by the summation of the contributions from the poles of the resol-

vent, as is would be appropriate for a system with two orthogonal eigenmodes

with eigenvalues /\1 and A2:

1 Jr;
w2+Af w2+A§

The equality holds only for normal matrixes A (Farrell and Ioannou, 1996).2

E(w) > Earth(w) = (28)

3.5 Remarks

Several studies analyzed the THC’s long-term variance using stochastic up-

per boundary conditions. Mikolajewicz and Maier-Reimer (1990) used an
2In the mathematical literature, the greatly enhanced frequency response for non-

normal operators is considered in the framework of pseudospectral analysis (e.g. Trefethen
et al., 1993; Raddy, 1993).
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ocean general circulation model (OGCM) under mixed boundary conditions

with superimposed white noise forcing in the fresh water flux. They found a

strong secular mode of variability with a period of approximately 320 years.

Other studies using models with different levels of complexity (as e.g. Cessi,

1994; Weisse et al., 1994; Griffies and Tzipermann, 1995) find also that the

long-term variability is greatly enhanced when noise is added. In terms of

our terminology, their models are forced by perturbations that are close to

our leading stochastic optimals for the long-term variability. However, the

mechanisms responsible for the variability in more complex models is differ-

ent to those simulated in stochastical box models. We come to this point in

section 5 considering a coupled ocean circulation-energy balance model.

Our study shows that a proper conceptual model of the THC’s variability

and predictability can never be one-dimensional since two different regimes

exists. In one-dimensional models (as that suggested by Griffies and Bryan,

1997 b), the stochastic optimal, the optimal excitation vector and the most

unstable normal mode coincide with each other. Furthermore, the modes in-

teract such that the ensemble response variance is larger than the summation

of two different autoregressive processes for the distinct time-regimes. This

seems to be important since two different time regimes for t > 10 and < 10

years have been seen in the spectrum of the GFDL (Delworth et al., 1994;

Griffies and Bryan, 1997 b) and a MPI (Timmermann et al., 1997) coupled
models. It is conceivable that fluctuations in salinity explain most of the

interdecadal climate variability in these models.

Farrell and Ioannou’s (1996) concept and our analysis show the strong in—

fluence of non-normal operators on stability properties, which seems to be

a quite general feature of fluid dynamical systems (Reddy, 1993; Trefethen

et al., 1993).3 The methods presented here will be applied to other hy-

drodynamic instability problems, such as baroclinic instability (Farrell and

Ioannou, 1996).

We find that the information loss of the trajectory is due to the dominant

3Many instability analyses in fluid dynamics, based on normal mode theory, have been
revised after recognizing that a transient amplification can wrongly estimate the stability
and bifurcation (for a discussion see: Trefethen et al., 1993; Farrell and Ioannou, 1996).
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singular vector, associated with an amplification factor 01:

a: t

”5565130 (IIII mioi ill) = ”1 ' (29)
We want to know which processes in the coupled atmosphere-ocean system

may restrict the predictability. The definition of the singular vector with

amplification 01 demands that an instability mechanism must be responsi-

ble for the error growth. For our model, the basic instability mechanism is

due to high latitude salinity. We shall discuss this point in light of previous

predictability studies.

Nese and Dutton (1993) couple a low order atmospheric model based on the

Lorenz (1965)—model to an ocean shallow layer model with uniform depth

and no salinity effects. They found that the atmospheric predictability

regimes are more persistent in the presence of the ocean model due to the

strong thermal coupling which act as a stabilizing mechanisms for the Lorenz

(1965)—regimes. The dominant singular vector or the local divergence rate is

reduced due the presence of the underlying ocean component.

In our model, the basic instability mechanism is not due to the atmo—

sphere. The atmospheric model component removes temperature gradient

anomalies, providing for a climatological mean meridional temperature gra-

dient. The baroclinic instability mechanism, which sets the timescale for the

transitions between the weather regimes (Nese and Dutton, 1993; Palmer,

1996), is responsible for a poleward heat transport due to highs and lows

in a statistical sense. This effect is modeled by diffusion which makes the

SST therefore highly predictable, because the inherent atmospheric variabil-

ity/unpredictability is averaged out.

Griffies and Bryan (1997 b) investigated the predictability of temperature

and salinity anomalies in the North Atlantic using a coupled GCM. They

found that surface temperature is predictable for a few years only. After this

time, the information in the ensemble is of no more use than the information

already contained in the climatologic record. In their coupled GCM, salinity,

dynamic topography, and subsurface quantities are much more predictable

than SST. The predictability seems to be limited by the overlying chaotic

atmospheric variability. Additionally, their system is hardly predictable in

regions of active convection where the ocean shows an internal variability due
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to the convective adjustment scheme. Their ensembles diverge for different

realizations of the synoptic scale weather, whereas salinity and subsurface

quantities are much more persistent. In particular, the THC is relatively

well predictable in their ensemble experiments.

In contrast, our box model is designed to capture some basic features of the

climatological mean state. In contrast to sea surface temperature, there is no

fast removing mechanism for sea surface salinity anomalies and initial errors

can be amplified. It is likely that SST is predictable in the climate mode,

defined by an ensemble average over synoptic realizations. When neglecting

sea ice effects, SST is the only quantity which couples to the atmosphere.

Since there are indications for coupled modes in coupled GCMs (see e.g.
Timmermann et a1., 1997) on interdecadal time scale, SSTs should be pre-

dictable on this time scale leading to climate modes of variability. Coupled

atmosphere-ocean modes require therefore a negative (stabilizing) feedback

mechanism to observe these modes.
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4 Sensitivity to different climate conditions

Here, we want to explore the sensitivity of NADW formation to the mean cli-

mate. Our “coarse” box model may be useful to investigate the sensitivity of

the ocean circulation to salinity perturbations under different mean climatic

conditions. Little is known about the circulations during paleoclimatic states

in which large freshenings have occured because of the sparse data and the

data uncertainties. Furthermore, coupled circulation models need artificial

fluxes (flux corrections) to overcome model deficiencies and to simulate cor-
rectly the current climate. Locally, these flux corrections can be very large

(see Gates et a1. (1993) for some coupled GCMs). When simulating other
climate states the flux correction technique is not apropiate, because the cor-

rection fluxes are tuned for the present climate state.

In our nonlinear model, the sensitivity of the THC depends on the chosen

basic state of the model (AS°, AT°). If the heat and fresh water boundary
fluxes are fixed (corresponding to e = 1 and K2 = 0), the critical perturba-
tion Scrit in equation (16) reduces to

Sc... = 2 (— AS° + gmw) (30)

which is always negative for <I> = cßASO — cozAT0 > 0 considered here. In

this case the circulation is globally stable with respect to perturbations. For

a system with small thermal feedback and no anomalous fresh water flux

(K2 = 0 and 6 < 0.5), the critical perturbation is approximately

O 1 OSm, N 2 (— A8 + MAT) . (31)

Such systems are more sensitive than systems with fixed boundary fluxes with

Scrit in (30). We find that climate states with a strong thermally dominated

deep water formation (large | AT° | and small salinity differences | A80 |)
favor the stability of the THC expressed by large values of critical salinity

perturbation Sam. The dashed line in figure 9 shows the critical salinity

perturbation in the coupled case. The slopes of the curves ly between the

case (30) with slope ß/a (= 5.3 K/psu) and case (31) with slope 2,6/a.

With a changed background temperature, the thermal expansion coefficient

a will change. In order to include this effect, a simplified nonlinearity in the
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Figure 9: Critical salinity perturbation Sm} for the coupled system in the parameter
space (AT°‚AS°) with contour interval 0.5 psu. The dashed lines are for fixed ther-
mal expansion coefficient (1, whereas for the solid lines a changed thermal expansion
coefficient at is assumed. The coupled system is linearly unstable above the curve
Sam = 0. These climate states cannot be realized in nature.
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Figure 10: Same as figure 9 for the solid lines. The overturning rates <I’° are plotted
as dotted lines with contour interval 2 SV. The crosses (+) in the figure correspond
to the different climatic states in table 1.

equation of state as in Zhang et a1. (1993) is assumed:

p(T, S) = 1003.0 + 0.778 — 0.072 T (1 + 0.072 T) . (32)

This modification in the model is done such that the density for today’s

climate (tuned in Lohmann et al., 1996) is equal for the linear and non-
linear equation of state. Furthermore, the temperature dependent compo—

nents K2 and K in the model are included, which can be justified by the

Clausius-Clapeyron equation (Lohmann et al., 1996 b). The resulting criti-

cal salinity perturbations Sm, (figure 9, solid line) show a destabilizing effect

for cold temperatures and stabilizing effect for warm temperatures. The dif—

ferences between the solid and dashed lines are mainly due to the nonlinearity

in the equation of state (32), whereas the other nonlinear effects of K2 and K
are much weaker. Freshenings in colder climates are therefore more effective

in perturbing the THC than in warm climates. The colder the temperature,

the weaker is the effect of temperature variations on density. For cold cli-

mate states, the meridional overturning rates are reduced due to the changed

thermal expansion coefficient.
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Climate —AS° —AT° <I>0 a Sm't
psu K SV l/K psu
1.4 14 16 0.147 0.62
1.5 13.5 14 0.150 0.25
1.2 10 12 0.168 0.12
1.9 18 13 0.127 0.06

g:
O

v
v
g

v
Q.

Table 1: Table for critical salinity perturbations for different climates which can
also be obtained from figure 10. The dynamics for climates a)-c) are shown in the
thermo-haline phase space (figure 3).

Figure 10 indicates that the THC with North Atlantic Deep Water formation

is possible only in a specific parameter regime for temperature and salinity

and that the critical perturbation Sa.“ is mainly determined by <I>°, the

strength of the background meridional mass transport. Basic states with

small overturning are not stable and therefore not realized in nature. In the

box model, we find a critical transport of about 12 Sv. Four different climate

states are shown additionally, which are denoted as climates a)-d) in table 1.

The climate states are ordered according to the critical salinity perturba-

tion Sm}. Climate c) corresponds to a warmer climate, whereas climate d)

corresponds to a glacial climate with stronger temperature and salinity con-

trasts. The estimated perturbation associated With the recent Great Salinity

Anomaly (Dickson et a1., 1988) was of the order of SGSA = 0.048 psu for the

high latitude box. The critical perturbation for climate d) is therefore within

the range of the natural salinity fluctuations. For the climate states a)-c),

the thermo-haline phase space trajectories (figure 3) reveal that these climate

states have a slightly different long-term evolution because the eigenmode 61

depends on a/ß. The short-term response, corresponding to vector 62, is

very similar for all climate states. The non—normality of the eigenvectors

increases with colder climate due to eigenmode el . The angle between the

eigenvectors 61 and 62 decreases in a colder climate, which increases the

transient growth of temperature necessary to compensate the density reduc-

tion by salinity.

The long-term variance (26) in our coupled system is larger, relative to the

case of a normal matrix A. Let 6) denote the angle between the eigenmodes

el and 62. Farrell and Ioannou (1996) show that the increase in variance
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due to the non-normality is proportional to the square of the cotangens of 6,

vanishing for G = 7r/ 2. This means that the long-term variance increases for

colder climate states with smaller angle 6 (figure 3), which might explain a

stronger THC variability in the past.

The large sensitivity for cold climates relative to warm climate is consistent

with studies using models with different levels of complexity. Manabe and

Bryan (1985) found that the THC is very sensitive to a reduction of 50% in
the atmospheric 002 content and relatively insensitive to a doubled 002

content. In the reduction case, the poleward mass transport is reduced and

the surface density in high northern latitudes decreases as a net-effect. In

more recent experiments (Manabe and Stouffer, 1994), they find that after
initial weakening, the equilibrium strength of the THC hardly changes with

increased 002, because the increaSe in the meridional density gradient due

to the general increase in temperature compensates the reduction of the den-

sity gradient due to the reduction of high latitude salinity. Recent coupled

GCM experiments (Tzipermann, 1997) are consistent with our results that
the strength of the THC determines the sensitivity of the THC to salinity

fluctuations. Tzipermann (1997) finds a much greater climate instability for
a wide range of weak mean states of the THC.

A stabilizing temperature feedback for the THC (Rahmstorf and Willebrand,

1995) is due to a weakened overturning: Lower sea surface temperatures in-

crease the density at high latitudes. The temperature feedback is weaker
for colder climates than for warmer climates due to the nonlinearity in the

equation of state. The changed temperature feedback has also been found

by Winton (1997) and Prange et a1. (1997). Prange et a1. (1997) consider
the advective feedback in a coupled box model for a warmer and colder cli—

mate state, whereas Winton (1997) using a two dimensional ocean model

finds that convection is affected by the weakened temperature feedback in a

cold climate. It could be that glacial climate states are more unstable than
interglacial states due to the changed salinity effect on density. However, we

would like to emphasize that our mechanism for the relatively high sensitivity

of cold climate states could be one effect among several others in the climate

system, e.g. sea ice effects or changed high latitude vertical mixing.
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5 Experiments with a coupled ocean
circulation-energy balance model

The feedbacks involved in an ocean circulation model coupled to a moist

energy balance model of the atmosphere are analyzed and compared to those

from our box model.

5.1 Model

The ocean model used is the 1991-version of the GFDL primitive equation

model MOM (Pacanowski et al., 1993, 1991) which is based on the work

of Bryan (1969) and Cox (1984). The ocean model has a resolution of two
degrees in the horizontal and 16 vertical levels. The geometry of the ocean

model is a 640 wide sector with flat bottom topography (5700 m deep) rang-

ing from the equator to 700 N. Different time steps for tracer (12 h) and

velocity (1 h) are used. The model is forced by zonally averaged wind stress
computed from the data set of Hellerman and Rosenstein (1983).

The atmosphere model is a moist energy balance model (EBM), similar to

that described earlier (Lohmann et al., 1996 a; Lohmann and Gerdes, 1996).
The atmospheric transport processes by transient eddies are modeled by

diffusion.4 The only difference to earlier versions of the model is that it is

regionalized over the Atlantic basin: The atmosphere has almost identical ge-

ometry and river catchment area as the analytical box model. The resolution

of the atmospheric model is 100 in latitudinal direction. We have chosen this

resolution, because the atmospheric heat transport by baroclinic eddies can

be parameterized on scales 0(1000 km) by diffusion (Green, 1970; Lorenz,

1979) transporting in a statistical sense heat and moisture poleward. With

this resolution, we can avoid the unphysical interaction of the oceanic convec—

tion scheme (Cessi, 1996) and atmospheric diffusion on scales corresponding

to the oceanic grid.5
4The EBM is available under anonymous ftp at ftp.dkrz.de /pub/Outgoing/gerrit/EBM
5The diffusive parameterization is not justified physically on the finer oceanic grid, and

therefore, convection and diffusion should be modeled on different spatial scales.
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5.2 Experimental setup

The ocean was spun up under restoring boundary conditions for temperature

using simplified bulk formulas (as in Lohmann and Gerdes, 1996). The fresh

water flux field is obtained by multiplying the zonal mean fresh water fluxes

of Sellers (1969) by three. Comparing the zonally averaged fresh water fluxes

of Sellers (1969) and the fluxes diagnosed an ocean model integrated under

restoring condition for salinity, Lohmann et a1. (1996 a, figure 3) found that

a factor of about three seems to be adequate for the North Atlantic. This

is due to the enhanced hydrological cycle over the Atlantic compared to the

zonal mean.

The integration is then continued in a coupled mode until a steady state

is reached. The resulting mean meridional salinity gradient is about —1.3

psu, and the maximal overturning rate is 27.4 SV. The overturning stream

function of the reference state is shown in the upper panel of figure 11. Deep

water is formed north of 60° N, and upwelling is found elsewhere.

5.3 Sensitivity

In the coupled ocean circulation-energy balance model (OGCM-EBM), we
analyze the response of NADW formation with respect to a perturbation in

sea surface salinity and compare the results with those of our box model. A

large salinity perturbation of —1.5 psu is introduced in the region 600 — 700
N. The amount of deep water formation is strongly reduced in response to

this perturbation (figure 12). The coupled system recovers after about 100

years and reaches the initial state.

The lower panel in figure 11 shows the overturning stream function when

the THC is at its minimum. The deep water formation is interrupted, and a

strong halocline exists in the northern North Atlantic (not shown), inhibiting

convection. This mechanism responsible for the high sensitivity of the THC
was originally found by Bryan (1986) using a sector ocean model. Because
the halocline suppresses NADW formation, the mechanism is called “polar

halocline catastrophe”.

In our coupled OGCM-EBM, the vertical heat transfer is reduced in the

ocean, cooling the mixed layer and air temperatures. When the THC is min-
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Figure 11: Stream function for the zonally integrated transport in SV (106 m3s‘1)
for the North Atlantic. The upper panel shows the reference case with a maximal
overturning rate of 27.4 SV. The Iower panel shows the circulation, 4 years after the
perturbation in high latitude salinity, when the circulation has its minimal overturning.
The contour interval is 3 Sv.
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Figure 12: Time series of the maximal zonally integrated mass transport in the north-
ern hemisphere after a perturbation in sea surface salinity. The circulation recovers
completely after few hundred years.
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for the North Atlantic. The upper panel shows the reference case with a maximal
overturning rate of 27.4 SV. The Iower panel shows the circulation, 4 years after the
perturbation in high latitude salinity, when the circulation has its minimal overturning.
The contour interval is 3 Sv.
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Figure 12: Time series of the maximal zonally integrated mass transport in the north-
ern hemisphere after a perturbation in sea surface salinity. The circulation recovers
completely after few hundred years.
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Figure 13: Change of atmospheric surface temperature and fresh water flux. 4 years
after a salinity perturbation of —1.5 psu between 60° and 70°. The high latitude
temperature is decreased (solid line). The hydrological cycle is increased resulting in
positive 6(P — E) values for 40° — 60° (dashed line).

imal, the heat flux at the ocean-atmosphere interface is reduced, decreasing

the mixed layer depth due to less vertical mixing. SST and air temperature

at high latitudes are lowered by about 2 K (figure 13), whereas the low lati-

tude temperature is nearly unchanged.

The strong cooling increases the sea surface density at high latitudes, com-

pensating for the large fresh water input. However, the compensation due

to the temperature effect is not strong enough to overcome the effects of the

high latitude halocline which suppresses deep convection (figure 11, lower

panel). During the recovery towards the initial equilibrium state, the cold

temperatures enhance convection, mixing saline and warm subsurface water

to the surface. After a few hundred years, the circulation has recovered com-

pletely.

The increased meridional temperature gradient (öyTA) developing in re-

sponse to the salinity perturbation favors baroclinic eddy activity increas-

ing the atmospheric northward heat transport (figure 14). The strength of

the hydrological cycle increases too, and more atmospheric water vapour is

transported poleward. Positive fresh water flux anomalies are simulated in
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Figure 14: Change of northward heat transport in the coupled atmosphere-ocean
model. 4 years after the high latitude salinity perturbation. The oceanic heat transport
is reduced while the atmospheric sensible and latent heat transports are enhanced.

the region 40° — 60° N (figure 13, dashed line) whereas 6(P — E) is negative
elsewhere. Thus, the hydrological destabilizes the water column in the region

north of 60° N.

In figure 14, the heat transport contributions are shown as simulated 4 years

after the high latitude salinity perturbation was introduced. The oceanic

northward heat transport is reduced by about 40% of its initial value. The

cooling due to the reduced oceanic heat transport is partly compensated

by the atmospheric sensible and latent heat transports. A similar feature

has also been observed in coupled circulation models in which the atmo-

spheric dynamics are explicitly resolved (Schiller et al., 1996). The increased

atmospheric heat transport warms the air in mid-latitudes, which has a a

destabilizing effect on the THC.

5.4 Discussion

We have shown in the sensitivity experiment with the coupled OGCM-EBM

that a negative salinity anomaly at high latitudes causes a reduction in deep

water formation which is consistent with observational data from sediment

cores (Mc Cave et al., 1995). The coupled model’s response shows a reduced
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oceanic heat and enhanced atmospheric heat and moisture transports, when

the deep water formation is suppressed.

It is useful to compare the results obtained from the box model and the

OGCM-EBM. Recently, it has been shown that Stommel’s (1961) box model

dynamics can be retrieved from dynamical equations when neglecting rota-

tional effects (Maas, 1994; van der Schrier and Maas, 1997). Furthermore,
some ocean circulation studies (Hughes and Weaver, 1994; Rahmstorf, 1996;

Griffies and Bryan, 1997 b) find a close correlation between the meridional

density gradient and meridional mass transport. We hope therefore that the

box model dynamics captures some basic features of ocean circulation mod-

els.

From figure 13, we roughly estimate K2 for the oceanic basin north of 40° N

to be approximately 8 mm y'r‘l K‘1. Note the spatial structure of 6(P — E)

when the THC is in its minimum. Highly idealized box models, such as e.g.

Nakamura et al. (1994) and ours, overestimate the destabilizing effect of
the poleward water vapour transport. We find that the feedback on salin-

ity is more localized than that for temperature. However, the fresh water

balance of the North Atlantic is still an open question, whether the high

latitude salinity is affected by the oceanic conveyor itself or by the latent

heat transport. It is conceivable that both the oceanic salt transport into

the Atlantic basin (Rahmstorf, 1996) and the change of the atmospheric la-
tent heat transport affect sensitively the upper oceanic salt transport into

NADW formation areas. We address this question to a further study, where

the Atlantic’s equilibrium fresh water balance (as in Zaucker and Broecker,
1992) will be analyzed for different climatic states.

The heat flux parameterization in the OGCM-EBM is scale dependent (as
proposed by Rahmstorf and Willebrand, 1995) due to the diffusive tran-

sient eddy term part of the EBM. Therefore, the thermal response in the

OGCM-EBM cannot be tuned in a system using mixed boundary conditions

by changing the thermal adjustment Q2 locally. This could be done in the

box model, because the transport term is only due to the single parameter K

in the atmospheric model. With our temperature anomaly of —2 K (figure

13) and a change in atmospheric heat transport of 0.35 PW (figure 14),
we estimate the coefficient K to be of the order of 10 Wm"2K‘1 which is
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consistent with the box model estimate.

Different mechanisms in the OGCM-EBM and box model may be responsible

for the weakening of the THC. In the OGCM-EBM, a convective instability

mechanism triggers the advective instability (Lenderink and Haarsma, 1994;

Rahmstorf, 1995). The convective instability mechanism is not included in
the box model, but we find that both instability mechanisms work in the same

direction: A weakened overturning lead to colder air and colder high latitude

SST’s. This destabilizes the water column enhancing convection (convective
feedback) and leading to enhanced meridional transport (advective feedback)

stabilizing the THC.
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6 Summary and Conclusions

We have presented an analytical solution for the Stommel (1961)-type box
models. Starting from the analytical solution of Stommel’s model, we found

a class of exact solvable nonlinear differential equations. The method to ob-

tain the solution will be described in a corresponding mathematical paper
(Schneider and Lohmann, 1997).

Using the analytical solution of a coupled atmosphere-ocean version of Stom-

mel’s (1961) box model, the sensitivity of North Atlantic Deep Water for-
mation has been analyzed with respect to the atmospheric transport and

the mean basic state. We show that the representation of the atmospheric

model component does strongly determine the critical salinity perturbation

for which the linearly stable system breaks down.

The more complex OGCM-EBM shows a qualitative agreement with the

box model’s response, although different mechanisms are responsible for the

weakening of the THC. In both types of models, we found that the temper-

ature response is very fast compared to that of the most unstable modes,

which is due to a mixed temperature/salinity vector. This is consistent with

the rapid cooling associated with the time after the Younger Dryas event

(Dansgaard et al., 1993). We found that the box model overestimates the
destabilizing effect of the eddy moisture transport due to the coarse box

model’s resolution. The fresh water balance of the North Atlantic is still

an open question. This is subject of a further investigation using a cou-

pled GCM, analyzing fresh water transports for the present, a colder, and a

warmer climatic state, respectively.

In our simple coupled box model, haline perturbations in the northern North

Atlantic provide most effective excitations for the thermohaline circulation.

In the phase space, the optimal perturbation as an initial value problem is

perpendicular to the temperature eigenmode of the system and has little re-

semblance with the most unstable mode and the leading EOF. This feature

is independent on the climatic background state. The THC’s dynamics in

our box model is affected by the non-orthogonality of its eigenvectors and we

revealed that the simplest conceptual model for the THC’s variability must

be at least two-dimensional in phase space. Two distinct time regimes can
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be furthermore identified.

We address the question whether the climate predictability can be captured

by a simple low order model. The dominant error growth vector is closely

related to the salinity anomalies in the phase space of the box model. High

latitude haline anomalies are responsible for the short-term amplification of

the forecast ellipsoid, because haline perturbations provide for a instability

mechanism in the model. The climatological sea surface temperature is much

more predictable than sea surface salinity, because the atmospheric damping

is strong for temperature and weak for salinity. Our result differs from that of

Griffies and Bryan (1997 a, b) who use a coupled GCM. Their predictability

seems to be limited by the overlying chaotic atmospheric variability. Using a

model with much more degrees of freedom and other instability mechanisms,

their ensemble experiments show that sea surface temperature is predictable

for a few years only and the ensemble is of no more use than the information

already contained in the climatologic record. Our box model, however, deals

with the predictability of the climatological mean state and captures there-

fore a different feature of the coupled atmosphere-ocean system. Our analysis

suggests that the predictability limit is largely associated with the model’s

instabilities. More studies using models with different levels of complexity

are required to get more insight into the mechanisms of decadal climate pre-

dictability.

Considering the long—term variability in the North Atlantic, the atmo-

spheric noise is integrated by the THC. The leading EOF, a mixed tem-

perature/salinity vector, is optimally excited by salinity fluctuations in the

northern North Atlantic induced by the weather noise. With our low order

model, we can show that fresh water flux fluctuations play thus an important

role influencing the thermohaline circulation and long-term variability. In a

future study, we shall test our hypothesis that long-term fluctuations of the

THC are associated with fluctuations in high latitude sea surface salinity

with a coupled GCM.

The analytical box model reveals that the sensitivity is stronger for colder

than for warmer climate conditions because density is more affected by salin-

ity for lower temperatures. This effect may be important in order to un-

derstand paleoclimatic climate shifts associated with large freshenings (e.g.
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Boyle and Keigwin, 1987; Sarnthein et al., 1994). Our results suggest that

the strength of the NADW circulation determines the sensitivity of the THC

to salinity fluctuations. This is also supported by the recent coupled GCM

experiments of Tzipermann (1997) who find inherently unstable climate be-

havior due to weak THC. Beside several other effects, it may well be that

the different sensitivities of the THCs in the GFDL (Manabe and Stouffer,

1995, 1996) and a MPI (Schiller et al., 1996) coupled GCM are partly due

to the different overturning rates in the reference climates.

We think that our nonlinear systems presented here are good prototype mod-

els to understand climate variations related to salinity perturbations, and

we hope that our low-order box model is a helpful tool to understand the

long-term variability and predictability of the THC in more complex models.
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