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Abstract 

The hippocampal-entorhinal region supports memory for episodic details, such as temporal relations of 
sequential events, and mnemonic constructions combining experiences for inferential reasoning. However, it is 
unclear whether hippocampal event representations reflect temporal relations derived from mnemonic 
constructions, event order, or elapsing time, and whether they generalize temporal relations across similar 
sequences. Here, participants mnemonically constructed times of events from multiple sequences using 
infrequent cues and their experience of passing time. After learning, event representations in the anterior 
hippocampus reflected sequence relations based on constructed times. These event representations 
generalized across sequences, revealing distinct representational formats for events from the same or different 
sequences. Structural knowledge about time patterns, abstracted from different sequences, biased the 
construction of specific event times. These findings demonstrate that the hippocampus reconciles 
representations of specific relations with the generalization across different episodes, consistent with memory-
based constructions combining episodic details and general knowledge to simulate scenarios. 

Introduction 

Our memories are not veridical records, but 
constructions of our past (Bartlett, 1932). When 
constructing scenarios of the past or future, we often 
combine specific episodic details with general, 
semantic knowledge (Cheng et al., 2016; Hassabis and 
Maguire, 2007; Irish and Piguet, 2013; Schacter and 
Addis, 2007, 2020; Schacter et al., 2017). For example, 
we can infer the time when an event took place not only 
from episodic details but also from associative or 
contextual information and general knowledge 
(Friedman, 1993, 2004). To answer the question when 
you left for work yesterday, you may combine 
knowledge about usually departing from home around 
8:30 a.m. with the specific sequence of events that 
unfolded – eating breakfast while listening to the 8 
a.m. news and arriving at work a few minutes late for 
the 9 a.m. meeting despite good traffic conditions on 
your commute. You infer that you left later than usual, 
at around 8:40 a.m. Thus, constructive mnemonic 
processes allow you to estimate when this event 
occurred, even if a specific event time is not part of the 
original memory (Friedman, 1993, 2004). Event 
representations in the hippocampal-entorhinal region 
carry information about sequence relationships 
(Bellmund et al., 2020a; Ranganath and Hsieh, 2016), 
but whether this goes back to mnemonic construction 

is unclear. Next to its role in memory for specific 
sequences, the hippocampal-entorhinal region also 
generalizes across experiences via the abstraction of 
structural regularities and the recombination of 
information across episodes (Behrens et al., 2018; 
Zeithamova and Bowman, 2020), suggesting you may 
use knowledge about comparable mornings to recall 
your departure time. Here, we ask whether temporal 
event relations are generalized across sequences that 
share a similar structure and address the question how 
mnemonic construction and generalization combine in 
the hippocampus and in participants’ memory for event 
times. 

In line with its well-established role in episodic memory, 
the hippocampal-entorhinal region is centrally involved 
in processing and remembering specific event 
sequences (Bellmund et al., 2020a). For instance, 
learning sequences recruits the hippocampus and 
entorhinal cortex (Kumaran and Maguire, 2006a, 
2006b), and hippocampal activity increases at event 
boundaries delineating sequences (Baldassano et al., 
2017; Ben-Yakov and Dudai, 2011). Hippocampal multi-
voxel patterns are sensitive to objects shown at 
learned sequence positions (Hsieh et al., 2014), and 
recent work suggests that the hippocampus 
incorporates the duration of intervals between 
elements in sequence representations 
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(Thavabalasingam et al., 2018, 2019). Further, pattern 
correlations in the hippocampus and entorhinal cortex 
relate to memory for temporal relations (Deuker et al., 
2016; DuBrow and Davachi, 2014; Ezzyat and Davachi, 
2014; Jenkins and Ranganath, 2016; Kyle et al., 2015; 
Lositsky et al., 2016). 

Hippocampal and entorhinal representations of events 
occurring in sequence reflect the temporal relations of 
these events. In one experiment, participants learned 
the spatial and temporal relationships of events 
encountered in sequence along a route through a 
virtual city (Bellmund et al., 2019; Deuker et al., 2016). 
After relative to before learning, pattern similarity in the 
anterior hippocampus elicited by event images 
reflected the sequence relationships between pairs of 
events (Deuker et al., 2016). Pattern similarity 
correlated negatively with temporal distances, so that 
events close in time elicited more similar activity 
patterns relative to events separated by longer 
intervals. Within the entorhinal cortex, this effect was 
specific to the anterior-lateral subregion (Bellmund et 
al., 2019), consistent with the involvement of this area 
in precise temporal memory recall (Montchal et al., 
2019; Evensmoen et al., 2020). 

However, whether event representations in the anterior 
hippocampus and anterior-lateral entorhinal cortex 
reflect temporal distances based on actively 
constructed event times is unclear. Alternatively, these 
representations of temporal structure could go back to 
the order of events. For example, successive events 
could be linked together, resulting in representations of 
sequence order, where temporal distances are defined 
based on the number of associative links between 
events (Ebbinghaus, 1885; Lewandowsky and 
Murdock, 1989; Jensen and Lisman, 2005). Another 
possibility is that temporal structure representations 
arise through elapsing time more passively. For 
example, the firing of individual entorhinal neurons 
changes with varying time constants in rodents and 
non-human primates, allowing time to be decoded 
from population activity (Bright et al., 2020; Tsao et al., 
2018). Slowly drifting activity patterns could be 
incorporated into event memories as temporal tags, 
providing a potential mechanism for temporal memory 
(Howard and Kahana, 2002). Here, we tested whether 
event representations reflect temporal relations based 
on mnemonically constructed event times, even when 
accounting for event order and objectively elapsing 
time. 

In contrast to its role in memory for specific 
associations such as temporal relations of events in a 
sequence, the hippocampal-entorhinal region also 
integrates information across different episodes for  
inferential reasoning and generalization (Behrens et al., 
2018; Kumaran and McClelland, 2012; Zeithamova and 
Bowman, 2020). Work in rodents and humans 
demonstrates that the hippocampus supports 
transitive inference, which requires inferring novel 

relations between stimulus pairs from knowledge 
about previously learned premise pairs (Bunsey and 
Eichenbaum, 1996; Heckers et al., 2004; Park et al., 
2020). Further, it combines separately learned  
associations, enabling inferences about shared 
associations (Dusek and Eichenbaum, 1997; Koster et 
al., 2018; Preston et al., 2004; Schlichting et al., 2015; 
Shohamy and Wagner, 2008; Zeithamova and Preston, 
2010; Zeithamova et al., 2012). How the hippocampus 
contributes to both memory specificity and 
generalization is a long-standing debate (McClelland et 
al., 1995; Kumaran and McClelland, 2012; Schapiro et 
al., 2017). 

Recent work suggests a central role for the entorhinal 
cortex in the abstraction of structural knowledge that 
is linked to sensory experience in the hippocampus 
(Behrens et al., 2018; Whittington et al., 2020). Indeed, 
entorhinal activity patterns reflected structural 
similarities between choice options in a reinforcement 
learning task (Baram et al., 2020). Furthermore, in an 
associative inference task, hippocampal activity 
patterns carried information about the shared internal 
structure of image triads such that the hippocampal 
representational geometry was generalized across 
triads (Morton et al., 2020). Applying abstract 
structural knowledge enables flexible behavior through 
the generalization of relations to novel situations 
(Behrens et al., 2018; Whittington et al., 2020). In 
concert with representations of temporal relations 
between events in the hippocampal-entorhinal region 
(Bellmund et al., 2019; Deuker et al., 2016), this raises 
the question whether event representations generalize 
temporal relations across sequences sharing an 
underlying structure.  

Notably, prior knowledge about structural regularities 
and semantic associations can bias mnemonic 
constructions. When estimating the size of studied 
images, participants’ reconstructions were 
systematically distorted towards category averages 
(Hemmer and Steyvers, 2009; Hemmer et al., 2015). For 
relatively small fruits like strawberries, participants 
tended to overestimate the studied size, whereas they 
consistently underestimated sizes of large fruits like 
pineapples. This resulted in an overall bias towards the 
category mean of all fruits (Hemmer and Steyvers, 
2009). Consistent with the notion that learned event 
structures contribute to event cognition (Franklin et al., 
2020; Radvansky and Zacks, 2014; Zacks, 2020), 
external and semantic details are used to furnish past 
and future scenarios when few episodic details are 
generated (Irish et al., 2012; Devitt et al., 2017). When 
estimating the times of events from a movie, which 
was terminated prematurely, participants 
underestimated when events took place for events 
close to the end of the presented section, possibly due 
to prior knowledge about the typical structure of movie 
plots (Frisoni et al., 2021). These findings suggest that 
abstract knowledge about general patterns could 
systematically distort mnemonic constructions of 
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event times. If, as in the introductory example, you 
usually leave for work at 8:30 a.m., this may bias the 
estimate of your departure time on the specific day you 
arrived late towards this time. 

Here, we combine functional magnetic resonance 
imaging (fMRI) with a sequence learning task requiring 
the active, memory-based construction of the times of 
events forming different sequences. We show that 

event representations in the anterior hippocampus 
change through learning to reflect actively constructed 
event times rather than sequence order or passively 
elapsing time. Furthermore, the anterior hippocampus 
generalizes temporal relations across sequences, and 
structural knowledge about other sequences 
systematically biases the construction of specific 
event times. While within- and across-sequence 
relations are detected in anatomically overlapping 

Figure 1. Experimental Design. A. Overview of the experiment. B. In the picture viewing tasks before and after learning, 
participants saw event images presented in the same random order and using identical stimulus timings. C. The day learning 
task took place in between the picture viewing tasks. Participants learned four sequences (virtual days) of five events each 
(Supplemental Figure 1) and inferred when events took place relative to a virtual clock. Left: The virtual clock ran hidden in 
the background for each sequence and was revealed only once in between successive events. These time cues varied across 
repetitions of a sequence, but events occurred at consistent points in virtual time. The duration of blank screen periods varied 
according to the interval between the indicated time and the event time. Thus, participants had to mentally construct event 
times by combining their experience of elapsing time with the time cues. Top right: The hidden clock ran at a fixed speed 
relative to real time for a given sequence, but its speed varied between sequences (Supplemental Figure 2). Bottom right: 
Different time metrics capture the temporal structure of the event sequences. Event relations can be quantified using 
temporal distances relative to the hidden clock (virtual time), sequence positions (order), and elapsed time in seconds (real 
time). While these metrics inevitably covary, they are partially dissociated by the clock speed manipulation. Virtual temporal 
distances can be quantified both within (solid lines) and across sequences (dotted lines). D,E. Participants' memory of the 
sequences was tested in two tasks. In the sorting task (D), participants sorted the scenes according to the four different 
sequences. In the timeline task (E), participants positioned the five event images of a given sequence next to a timeline to 
indicate constructed event times. B-E.The Sims 3 and screenshots of it are licensed property of Electronic Arts, Inc. 
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regions of the hippocampus, the mode of 
representation differs depending on whether events 
belong to the same sequence or not. In contrast, the 
anterior-lateral entorhinal cortex uses one shared 
representational format to map relationships of events 
from the same and from different sequences. 

Results 

We asked participants to learn four sequences that 
consisted of five unique event images each (Figure 1, 

Supplemental Figure 1). Participants were instructed 
that each sequence depicted events taking place on a 
specific day in the life of a family. Their task was to 
infer the time of each event relative to the temporal 
reference frame of a virtual clock (Figure 1C). The true 
virtual times of events were never revealed. Rather, the 
clock was running hidden from participants. It was 
uncovered only infrequently between event 
presentations to briefly show the current virtual time 
(Supplemental Figure 2, see Methods). Participants 
had to combine their subjective experience of passing 

Figure 2. Participants learn the temporal structure of the sequences relative to the virtual clock. A. Plot shows the 
percentage of correctly sorted event images in the sorting task. B. Constructed event times were assessed in the timeline 
task. Responses are shown separately for each of the five events (color coded according to true virtual time) of each of the 
four sequences (rows). Colored circles with gray outline at the bottom of each row show true event times. C, D. Mean absolute 
errors in constructed times (in virtual hours) are shown (C) averaged across events and sequences and (D) averaged 
separately for the five event positions. E. Z-values for the effects of different time metrics from participant-specific multiple 
regression analyses and permutation tests show that virtual time explained constructed event times with event order and real 
time in the model as control predictors. F. Likewise, parameter estimates and 95% confidence intervals for the fixed effects 
of the three time metrics from a linear mixed model indicate that virtual time relates to constructed event times beyond the 
effects of order and real time. G. Estimated marginal means (model predictions) illustrate the effects of the three time 
metrics. A-E. Circles are individual participant data; boxplots show median and upper/lower quartile along with whiskers 
extending to most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with 
error bars corresponds to mean±S.E.M.; distributions show probability density function of data points. *** p<0.001 
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time with these time cues to construct event times. 
Importantly, we manipulated the speed of the hidden 
clock between sequences so that different amounts of 
virtual time passed in the same real time intervals. With 
this paradigm, we partially dissociated the virtual time 
of events from the event order and objectively elapsing 
time (real time) to test whether actively constructed 
event times underlie participants’ memory for the 
temporal structure of the sequences. 

Successful construction of event times 
We assessed memory for the sequences using two 
behavioral tests administered at the end of the 
experimental session. First, participants sorted all 
event images according to sequence membership 
(Figure 1D). The high performance in this task (Figure 
2A; 86.43%±16.82% mean±standard deviation of 
correct sorts) demonstrates accurate memory for 
which events belonged to the same sequence. Second, 
to probe constructed event times, we asked 
participants to position the events of a sequence on a 
timeline (Figure 1E). Remembered times were highly 
accurate (Figure 2B-D; 0.91±0.47 mean±standard 
deviation of average absolute errors in virtual hours). 
To test whether these constructed event times were 
driven by the virtual time of events, we regressed 
remembered times on virtual times with event order 
and real time as control predictors of no interest. We 
did so in a summary statistics approach based on 
multiple regression for each participant, combined with 
permutation tests, and using a linear mixed effects 
model (see Methods). The effect of virtual time on 
constructed event times was significant when 
controlling for variance accounted for by event order 
and real time (Figure 2E-F; summary statistics: 
t27=10.62, p<0.001; mixed model: χ2(1)=115.95, 
p<0.001, Supplemental Table 1). Together, these 

findings demonstrate that participants formed precise 
memories of the different sequences and accurately 
constructed event times. 

Hippocampal representations of within-
sequence relations reflect constructed event 
times 
Before and after learning the event sequences, 
participants viewed the event images in random order 
while undergoing fMRI (Figure 1AB). We quantified 
changes in the similarity of multi-voxel patterns 
between pairs of events from before to after learning 
(Figure 3, see Methods). Using two approaches to 
model-based representational similarity analysis, we 
tested whether changes in pattern similarity could be 
explained by the temporal relationships between pairs 
of events. Temporal distances between events were 
measured in virtual time, real elapsing time in seconds 
and as differences in sequence order position (Figure 
1C). In the summary statistics approach, we compared 
the fit of linear models predicting pattern similarity 
changes from temporal distances to shuffle 
distributions for each participant and assessed the 
resulting Z-values on the group level using 
permutation-based tests. Second, we fit linear mixed 
effects models to quantify whether sequence 
relationships explained pattern similarity changes. 
Rather than performing inferential statistics on one 
summary statistic per participant, mixed models 
estimate fixed effects and their interactions using all 
data points. We used temporal distance measures as 
fixed effects while capturing within-participant 
dependencies with random intercepts and random 
slopes (see Methods). Based on our previous work 
(Bellmund et al., 2019; Deuker et al., 2016), we focused 
our analyses on the anterior hippocampus and the 
anterior-lateral entorhinal cortex (see Methods). 

Figure 3. Representational Similarity Analysis Logic. We 
quantified the representational similarity of all event pairs 
before and after learning. Representational change was 
defined by subtracting pre-learning from post-learning 
pattern similarity (top row). Using two approaches to model-
based representational similarity analysis (RSA, see 
Methods), we analyzed whether pattern similarity changes 
reflected the temporal structure of the sequences (bottom 
left). In the summary statistics approach (middle right), we 
regressed pattern similarity change on temporal distances 
between events using participant-specific linear models that 
were compared to null distributions obtained from shuffling 
similarity change against temporal distances. The resulting 
Z-values were used for permutation-based group-level 
statistics. In the mixed model approach (bottom right), we 
estimated the influence of temporal distances on pattern 
similarity change using fixed effects, with random effects 
accounting for within-subject dependencies. The statistical 
significance of fixed effects was assessed using likelihood 
ratio tests against reduced models excluding the fixed effect 
of interest. 
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We first tested whether pattern similarity changes in 
the anterior hippocampus (Figure 4A) could be 
explained by the virtual temporal distances between 
event pairs from the same sequence. We observed a 
positive relationship between similarity changes and 
temporal distances in both the summary statistics 
(Figure 4B; t27=3.07, p=0.006; α=0.025, corrected for 
separate tests of events of the same and different 
sequences) and the mixed model approach (Figure 
4CD; χ2(1)=9.87, p=0.002, Supplemental Table 2). Thus, 
pattern similarity was higher for event pairs separated 
by longer temporal distances than for pairs separated 
by shorter intervals. A possible explanation for the 
positive correlation of pattern similarity and temporal 
distance could be that, in contrast to our previous work 
(Deuker et al., 2016), participants had to learn multiple 
sequences. To do so, they might strongly associate the 
first and last event of each sequence, which mark the 
transitions between the sequences. Importantly, the 
effect of virtual temporal distances on hippocampal 
pattern similarity changes remained significant when 
competing for variance with a control predictor 
accounting for these comparisons (Supplemental 

Figure 3A-C; summary statistics: t27=2.25, p=0.034; 
mixed model: χ2(1)=5.36, p=0.021, Supplemental Table 
3). Thus, hippocampal event representations changed 
through learning to reflect temporal distances.  

Next, to assess whether this effect was indeed driven 
by the constructed event times, we included the two 
additional time metrics as control predictors in the 
model. Virtual temporal distances significantly 
predicted hippocampal pattern similarity changes even 
when controlling for the effects of event order and real 
time in seconds (Figure 4E-F; summary statistics: 
t27=2.18, p=0.040, mixed model: χ2(1)=5.92, p=0.015, 
Supplemental Table 4). We further observed that the 
residuals of linear models, in which hippocampal 
representational change was predicted from order and 
real time, were related to virtual temporal distances 
(Supplemental Figure 3D; t27=2.23, p=0.034), 
demonstrating that virtual time accounts for variance 
that the other time metrics fail to explain. Together, 
these data show that hippocampal representations of 
events from the same sequence changed to reflect 
actively constructed event times. 

 
Figure 4. Sequence representations in anterior hippocampus reflect constructed event times. A. The anterior hippocampus 
region of interest is displayed on the MNI template with voxels outside the field of view shown in lighter shades of gray. Color 
code denotes probability of a voxel to be included in the mask based on participant-specific ROIs (see Methods). B. The Z-
values based on permutation tests of participant-specific linear models assessing the effect of virtual time on pattern 
similarity change for event pairs from the same sequence were significantly positive. C. Dot plot shows the parameter 
estimate and 95% confidence interval for the fixed effect of virtual time on hippocampal pattern similarity change for same-
sequence events from a linear mixed effects model. D. Estimated marginal means illustrate the positive relationship between 
virtual temporal distances and pattern similarity change. E. Z-values show the relationship of the different time metrics to 
representational change based on participant-specific multiple regression analyses. Virtual time predicts pattern similarity 
change with event order and real time in the model as control predictors of no interest. F,G. Parameter estimates with 95% 
confidence intervals (F) and estimated marginal means (G) show the fixed effects of the three time metrics from the 
corresponding mixed model. B,E. Circles are individual participant data; boxplots show median and upper/lower quartile along 
with whiskers extending to most extreme data point within 1.5 interquartile ranges above/below the upper/lower quartile; 
black circle with error bars corresponds to mean±S.E.M.; distributions show probability density function of data points. ** 
p<0.01; * p<0.05 
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The hippocampus generalizes temporal 
relations across sequences 
We next tested whether similarity changes of 
hippocampal representations of events from different 
sequences mirrored generalized temporal distances. 
When comparing pairs of events belonging to different 
sequences, we observed a significant negative effect 
of virtual temporal distances on pattern similarity 
change (Figure 5A, Supplemental Figure 4; summary 
statistics t27=-2.65, p=0.013; mixed model: χ2(1)=6.01, 
p=0.014, Supplemental Table 5; α=0.025, corrected for 
separate tests of events of the same and different 
sequences). This indicates that the hippocampus 
generalized temporal relations across sequences, 
resulting in systematic changes of representations of 
events from different sequences. Events occurring at 
similar times relative to the virtual clock, but in different 
sequences, were represented more similarly than 
those taking place at more different virtual times. 

How temporal relations were reflected in 
representational change depended on whether events 
were from the same sequence or not (Figure 5A-C, 
summary statistics: paired t-test t27=3.71, p=0.001, 
mixed model: interaction of sequence membership 
with virtual time χ2(1)=14.37, p<0.001, Supplemental 
Table 6). The positive correlation of temporal distance 
and pattern similarity change implies relatively higher 

similarity for events that are far apart than those that 
are close in time, whereas events close together in time 
became more similar relative to those separated by 
larger temporal distances when comparing across 
sequences (Figure 5D). Thus, the way relational 
knowledge was represented depended on whether 
events belonged to the same sequence or not. 

Sequence representations differ between 
hippocampus and entorhinal cortex 
In our second region of interest, the anterior-lateral 
entorhinal cortex (Figure 6A), the effect of virtual time 
on representational change did not differ statistically 
between event pairs from the same or from different 
sequences (summary statistics: paired t-test t27=0.07, 
p=0.942). We thus collapsed across comparisons from 
the same and different sequences and observed a 
significant effect of virtual temporal distances on 
entorhinal pattern similarity change (Figure 6B-D; 
summary statistics: t27=-2.31, p=0.029; mixed model: 
χ2(1)=4.39, p=0.036, Supplemental Table 7; see 
Supplemental Figure 5 for separate analyses of events 
from the same and from different sequences). In line 
with our previous work (Bellmund et al., 2019), events 
close together in time became more similar than those 
separated by longer temporal intervals (Figure 6E). We 
further corroborated that the temporal structure of the 
sequences was represented differently between the 

Figure 5. The anterior hippocampus generalizes temporal relations across sequences. A. Z-values show results of 
participant-specific linear models quantifying the effect of virtual time for event pairs from the same sequence (blue, as in 
Figure 4B) and from different sequences (red). Temporal distance is negatively related to hippocampal representational 
change for event pairs from different sequences. See Supplemental Figure 4 for mixed model analysis of across-sequence 
comparisons. The effect of virtual time differs for comparisons within the same sequence or between two different 
sequences. B. In the corresponding mixed effect model, a significant interaction between virtual time and sequence 
membership was observed. Dot plot shows fixed effect estimates with 95% confidence intervals. C. Estimated marginal 
means illustrate the diverging effects of virtual time as a function of sequence membership of event pairs. D. To visualize the 
interaction effect in A-C, raw pattern similarity change was averaged for events separated by low and high temporal distances, 
respectively. *** p≤0.001; ** p<0.01; * p<0.05 
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anterior-lateral entorhinal cortex and the anterior 
hippocampus (summary statistics: interaction 
between region and sequence membership in 
permutation-based repeated-measures ANOVA 
F1,27=7.76, p=0.010, main effect of region F1,27=3.10, 
p=0.086, main effect of sequence F1,27=7.41, p=0.012; 
mixed model: three-way interaction between virtual 
time, sequence membership and region of interest 
χ2(1)=6.31, p=0.012, Supplemental Table 8; see 
Supplemental Figure 6 for a comparison of the signal-
to-noise ratio in these regions). Whereas the 
hippocampus employed two distinct representational 
formats for temporal relations depending on whether 
events belonged to the same sequence or not, we 
observed consistent negative correlations between 
representational change and temporal distances when 
collapsing across all event pairs, but no statistically 
significant difference between representations of 
temporal relations from the same or different 
sequences in the entorhinal cortex. 

Anatomical overlap between representations of 
within-sequence relations and across-sequence 
generalization 
We next asked whether representations of same-
sequence relations are distinct from or overlap with the 
across-sequence generalization of temporal relations. 
For this purpose and to complement our region-of-
interest analyses described above, we performed a 

searchlight analysis that revealed significant effects of 
virtual temporal distances on representations of 
events from the same sequence in the bilateral anterior 
hippocampus (Figure 7A; peak voxel MNI x=-24, y=-13, 
z=-20; t=4.53, psvc=0.006, Supplemental Table 9). We 
used the same-sequence searchlight peak cluster to 
define a region of interest to test for the independent 
across-sequence generalization effect (see Methods). 
Indeed, virtual temporal distances explained pattern 
similarity change for events from different sequences 
in these voxels (Figure 7B-D; summary statistics t27=-
2.19, p=0.036; mixed model: χ2(1)=4.13, p=0.042, 
Supplemental Table 10), demonstrating an overlap 
between representations of within-sequence relations 
and their generalization across sequences. Further, we 
conducted a searchlight analysis looking for negative 
correlations of temporal distances and pattern 
similarity change for events from different sequences. 
We detected clusters in anterior hippocampus that 
overlapped with the same-sequence searchlight effect 
(Figure 7EF), though this searchlight generalization 
effect did not survive corrections for multiple 
comparisons (peak voxel MNI x=-26, y=-19, z=-15, t=-
3.96, psvc=0.071, Supplemental Table 11). Lastly, we 
directly searched for brain areas in which pattern 
similarity change differentially scaled with temporal 
distances depending on whether events were from the 
same or different sequences. The two largest clusters 
in our field of view were located in the left and right 

Figure 6. The anterior-lateral entorhinal cortex uses a shared representational format for relations of events from the same 
and different sequences. A. The anterior-lateral entorhinal cortex region of interest is displayed on the MNI template with 
voxels outside the field of view shown in lighter shades of gray. Color code denotes probability of a voxel to be included based 
on participant-specific masks (see Methods). B. Z-values for participant-specific RSA model fits show a negative relationship 
between pattern similarity change and virtual temporal distances when collapsing across all event pairs. C,D. Parameter 
estimate with 95% confidence intervals (C) and estimated marginal means (D) show the fixed effect of virtual time from the 
corresponding linear mixed effect model. E. To illustrate the effect in B-D, raw pattern similarity change in the anterior-lateral 
entorhinal cortex was averaged for events separated by low and high temporal distances. * p<0.05 
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anterior hippocampus (peak voxel MNI x=31, y=-16, z=-
21; t=4.25, psvc=0.007, Supplemental Table 12). Taken 
together, these findings highlight that hippocampal 
representations carry information about the specific 
sequence in which events occur, and that these 
temporal relations are generalized across similar 
sequences. 

Generalized knowledge about other sequences 
biases event time construction 
Having established generalized hippocampal event 
representations, we explored whether knowledge 
about the general structure of event times in other 
sequences influenced the construction of individual 
event times. For each event, we quantified when it took 
place relative to the average virtual time of the events 
at the same sequence position in the other three 
sequences (Figure 8A; see Methods). We reasoned that 

the construction of a specific event time could be 
biased by knowledge about the general pattern of event 
times at that sequence position. Indeed, we observed 
positive relationships between the relative time of 
other events and signed errors in constructed event 
times as assessed in the timeline task (Figure 8B-E, 
Supplemental Figure 8A; summary statistics: t27=5.32, 
p<0.001; mixed model: χ2(1)=17.90, p<0.001, 
Supplemental Table 13). This demonstrates that 
general knowledge about the sequences biased the 
construction of event times. When events at the same 
sequence position, but in different sequences, took 
place late relative to an event, the constructed virtual 
time for that event tended to be overestimated, and 
vice versa when the other events occurred relatively 
early. In an independent group of participants (Montijn 
et al., 2021), we replicated this generalization bias 
(Figure 8F-H, Supplemental Figure 8B; summary 

Figure 7. Overlapping representations of within- and across-sequence relations. A. Searchlight analysis results show a 
positive relationship between representational change and virtual temporal distances for event pairs from the same sequence 
in the bilateral anterior hippocampus. Statistical image is thresholded at puncorrected<0.01; voxels within black outline are 
significant after correction for multiple comparisons using small volume correction. B-D. In the peak cluster from the 
independent within-sequence searchlight analysis (A), representational change was negatively related to virtual temporal 
distances between events from different sequences. B. Circles show individual participant Z-values from summary statistics 
approach; boxplot shows median and upper/lower quartile along with whiskers extending to most extreme data point within 
1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; 
distribution shows probability density function of data points. C. Dot plot shows fixed effect estimate with 95% confidence 
interval from linear mixed model. D. The estimated marginal means from the linear mixed effect model illustrate the negative 
relationship between virtual temporal distances and representational change. E. Searchlight analysis results show negative 
relationship between representational change and temporal distances for different-sequence event pairs. Statistical image is 
thresholded at puncorrected <0.05. F. Within the anterior hippocampus, the effects for events from the same sequence and from 
two different sequences overlap. Visualization is based on statistical images thresholded at puncorrected <0.05 within small 
volume correction mask. G. Searchlight analysis results show a bilateral interaction effect in the anterior hippocampus that 
is defined by a differential relationship of virtual temporal distances and representational change for events from the same 
and different sequences. Statistical image is thresholded at puncorrected<0.01; voxels within black outline are significant after 
correction for multiple comparisons using small volume correction. A, E, G. Results are shown on the MNI template with 
voxels outside the field of view displayed in lighter shades of gray. See Supplemental Figure 7 for additional exploratory 
results. * p<0.05 
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statistics: t45=11.30, p<0.001 mixed model: χ2(1)= 
53.74, p<0.001, Supplemental Table 14), confirming the 
influence of generalized knowledge about the 
sequences on event time construction. One possibility 
is that structural knowledge about the sequences 
biases the construction of specific event times, in 
particular when uncertainty about the virtual time of 
events is high. Indeed, we observed a significant 
negative correlation between how strongly pattern 
similarity changes in the anterior hippocampus 
reflected temporal relations between events from the 
same sequence in the searchlight analysis (Figure 8IJ, 
Spearman r=-0.53, p=0.005; α=0.025 corrected for two 
comparisons; correlation with across-sequence effect: 
Spearman r=-0.19, p=0.322), suggesting that the 
construction of event times was less biased by time 
patterns generalized across sequences in those 

participants with precise representations of within-
sequence temporal relations. 

Discussion 

Our findings show that hippocampal event 
representations change through learning to reflect 
temporal relations based on mnemonically 
constructed event times. Converging region of interest 
and searchlight analyses demonstrate that, on the one 
hand, the hippocampus forms highly specific 
representations of temporal relations of the events in a 
sequence that mirror actively constructed event times 
beyond the effects of order and real time. On the other 
hand, temporal relations are generalized across 
sequences using a different representational format. In 
contrast, the similarity of event representations in the 

Figure 8. Structural knowledge biases construction of event times. A. The generalization bias quantifies the influence of 
structural knowledge on the construction of individual event times. For each event, the mean time of events at the same 
sequence position in the other sequences was calculated to test whether event times were biased towards the relative time 
of other events. B. The scatterplot illustrates the generalization bias for an example participant. Each circle corresponds to 
one event and the regression line highlights the relationship between the relative time of other events and the errors in 
constructed event times. The example participant was chosen to have a median-strength generalization bias. See 
Supplemental Figure 8 for the entire sample. C-E. The relative time of events from other sequences predicted signed event 
time construction errors as measured in the timeline task. C. Circles show individual participant Z-values from participant-
specific linear models (B); boxplot shows median and upper/lower quartile along with whiskers extending to most extreme 
data point within 1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars corresponds to 
mean±S.E.M.; distribution shows probability density function of data points. D. Dot plot shows fixed effect estimate with 95% 
confidence interval from linear mixed model. E. The estimated marginal means from the linear mixed effect model illustrate 
the positive relationship between the time of other events and constructed event times. When other events took place late 
relative to a specific event, the time of that event was estimated to be later than when other events were relatively early. F-H. 
The generalization bias in event time construction through structural knowledge was replicated in an independent sample 
(n=46) based on Montijn et al. (2021). Data shown as in C-E. I. The behavioral generalization bias (regression coefficients 
from summary statistics approach) did not correlate significantly with the across-sequence generalization effect in the 
anterior hippocampus (searchlight peak voxel t-values). J. We observed a significant negative correlation between the same-
sequence searchlight effect (peak voxel t-values) and the behavioral generalization bias (regression coefficients from 
summary statistics approach), suggesting that participants with strong hippocampal representations of the temporal 
relations between events from the same sequence were less biased by structural knowledge in their construction of event 
times. Statistics in I and J are based on Spearman correlation. 
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anterior-lateral entorhinal cortex scaled with temporal 
distances for events irrespective of sequence 
membership. The behavioral data demonstrate that the 
construction of specific event times is biased by 
structural knowledge abstracted from different 
sequences. 

The finding of two alternative representational formats 
for temporal relations of events from the same or 
different sequences possibly reconciles memory 
specificity and generalization in the hippocampus. The 
hippocampus has long been implicated in memory for 
specific episodes. It has been suggested to 
differentiate similar episodes (Chanales et al., 2017; 
Favila et al., 2016; Lohnas et al., 2018; Milivojevic et al., 
2015; Schlichting et al., 2015; Zeithamova et al., 2018), 
to form associations between related elements 
(Eichenbaum and Cohen, 1988; Cohen and 
Eichenbaum, 1993), and to bind events to 
spatiotemporal contexts (Diana et al., 2007). Our data 
show that the similarity of event representations in the 
anterior hippocampus scales with temporal distances 
between events and thus carries information about the 
specific sequence in which these events took place. 
Conversely, there is evidence that the hippocampus 
contributes to flexible cognition via the recombination 
of different experiences and statistical learning 
(Morton et al., 2020; Preston et al., 2004; Schapiro et 
al., 2012, 2017; Shohamy and Wagner, 2008; 
Zeithamova and Bowman, 2020; Zeithamova and 
Preston, 2010; Doeller et al., 2005, 2006). It enables 
inference and generalization by combining elements 
across episodes. In our paradigm, we observed that 
temporal relations were generalized across sequences, 
resulting in systematic changes of representations of 
events from different sequences. This finding is in line 
with the generalization of learned event dynamics to 
situations with different surface features, but similar 
relational structure, in a computational model of event 
memory (Franklin et al., 2020). Our findings further 
demonstrate that specific and generalized 
representations overlap anatomically in the anterior 
hippocampus. The way temporal relations shaped 
hippocampal multi-voxel pattern similarity differed 
between pairs of events from the same and different 
sequences. This might enable the anterior 
hippocampus to combine fine-grained knowledge 
about the temporal structure of specific sequences 
with the generalization across sequences, in line with 
its contributions to relational binding, memory 
specificity, and inferential reasoning. 

Learning the temporal relations of events in a 
sequence entails acquiring knowledge about the 
sequence structure. In navigation, cognitive maps of 
spatial relations enable flexible behavior (Tolman, 
1948). Foundational neuroscientific discoveries 
uncovered spatially tuned cells in the hippocampal-
entorhinal region as potential neural substrates for 
cognitive maps of space (Moser et al., 2017; O’Keefe 
and Nadel, 1978). Consistent with its involvement in 

various cognitive domains, the hippocampal-entorhinal 
region was suggested to form cognitive maps of 
relational knowledge more generally (Eichenbaum and 
Cohen, 1988; O’Keefe and Nadel, 1978). The 
characteristic activity patterns of spatially tuned cells 
also encode non-spatial dimensions, suggesting the 
organization of relational knowledge in cognitive 
spaces (Bellmund et al., 2018). In the temporal domain, 
neurons in the rodent hippocampus fire at specific time 
points during a delay, resulting in characteristic 
sequences of activity (Kraus et al., 2013; MacDonald et 
al., 2011; Pastalkova et al., 2008). These neurons are 
often referred to as time cells and have been 
suggested to support temporal memory (Eichenbaum, 
2014). Recent work characterized similar activity 
patterns also in the human hippocampus and 
entorhinal cortex during the encoding and retrieval of 
word lists (Umbach et al., 2020). In concert with the link 
between the similarity of event representations and 
temporal relations between these events (Bellmund et 
al., 2019; Deuker et al., 2016; Nielson et al., 2015), these 
findings raise the possibility that the hippocampal-
entorhinal region forms cognitive maps reflecting the 
temporal relational structure of events in a sequence. 
Knowledge of relational structures enables inference 
and generalization (Behrens et al., 2018; Park et al., 
2020; Whittington et al., 2020). Importantly, our 
findings demonstrate that fine-grained relational 
knowledge is stored in generalized event 
representations. 

Structural knowledge influences mnemonic 
construction. In two independent samples, we show 
that general time patterns, abstracted from other 
sequences, bias the construction of specific event 
times. When events at the same sequence position, but 
in other sequences, took place relatively late to the time 
of an event, the time of that event was remembered to 
be later than when the other events occurred relatively 
early. This generalization bias shows that knowledge 
about events at structurally similar positions 
contributes to constructive memory for specific 
events. It is in line with biases resulting from the 
exploitation of environmental statistics when 
reconstructing stimulus sizes from memory (Hemmer 
and Steyvers, 2009; Hemmer et al., 2015), when 
estimating brief time intervals (Jazayeri and Shadlen, 
2010; Polti et al., 2021), or when discriminating the 
order of previously presented stimuli (Orlov et al., 
2000). Likewise, prior knowledge can distort memories 
for short narratives (Bower et al., 1979), spatial 
associations (Tompary and Thompson-Schill, 2021) 
and temporal positions (Frisoni et al., 2021). 
Consistent with the suggested role of grid cells in the 
representation of spatial structure, distortions in 
mnemonic reconstructions of spatial relations induced 
through boundary geometry follow predictions from 
models of grid-cell functioning (Bellmund et al., 
2020b). Further, recombining information across 
episodes for associative inference can induce false 
memories for contextual details (Carpenter and 
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Schacter, 2017), illustrating that generalization 
impacts memory for specific associations. In line with 
the greater reproduction of episodic details by 
participants whose recall follows the temporal 
structure of an experience more closely (Diamond and 
Levine, 2020), these findings highlight that structural 
knowledge and mnemonic construction are 
intertwined. More broadly, abstract semantic or 
schematic knowledge may provide a scaffold for the 
recall of episodic details (Greenberg and Verfaellie, 
2010; Irish and Piguet, 2013; Schacter et al., 2017; 
Addis, 2020). However, our findings show that 
structural knowledge not only facilitates but can also 
bias constructive memory. 

The hippocampus supports constructive memory and 
generalization in concert with a distributed network of 
brain regions. In addition to medial temporal lobe 
structures, the mental simulation of past and future 
episodic scenarios recruits a core network including 
medial prefrontal and retrosplenial cortex as well as 
lateral parietal and temporal areas (Benoit and 
Schacter, 2015; Schacter et al., 2007). Notably, this 
network overlaps with areas supporting the 
recombination of elements and generalization. For 
example, both the construction of novel experiences 
based on the combination of multiple elements (Barron 
et al., 2013) and memory integration across episodes 
(Schlichting et al., 2015) are supported by the medial 
prefrontal cortex and the hippocampus. In sequence 
processing, representational similarity is increased for 
items occupying the same position in different 
sequences in parahippocampal, retrosplenial and 
medial prefrontal cortices as well as in the angular 
gyrus (Hsieh et al., 2014; Hsieh and Ranganath, 2015). 
Likewise, sequence positions can be decoded from 
magnetoencephalographic responses elicited by visual 
stimuli presented in scrambled order (Liu et al., 2019). 
In line with the suggestion that the posterior parietal 
cortex supports generalization by projecting stimuli 
onto a low-dimensional manifold (Summerfield et al., 
2019), neural magnitude representations that 
generalize across task contexts have been observed 
using EEG (Luyckx et al., 2019; Sheahan et al., 2021). 
While we did not observe effects outside the 
hippocampal-entorhinal region that survived 
corrections for multiple comparisons, we note that, 
based on our prior hypotheses, we opted for high-
resolution coverage of the medial temporal lobe at the 
cost of reducing the field of view of our MR images. As 
the events in our task can be conceived of as being 
arranged along one or multiple, parallel mental number 
lines, future research could test how the parietal cortex 
encodes event relations to explore commonalities with 
and differences to the generalization of event times 
observed in the hippocampus. 

Our paradigm allows a highly-controlled read-out of 
representational change relative to a pre-learning 
baseline scan. Events are shown in the same random 
order before and after learning, ruling out that prior 

associations or the temporal auto-correlation of the 
blood-oxygen-level-dependent signal drives our 
effects. Future studies could extend the paradigm to 
investigate how hierarchically nested sequences are 
represented, for example by introducing higher-order 
relations between sequences – akin to different days 
being grouped in weeks. The precise temporal 
dynamics of the generalized hippocampal event 
representation pose another intriguing question. Based 
on the report that the temporal organization of memory 
reactivation relative to the hippocampal theta phase 
reflects semantic relations between items (Estefan et 
al., 2021), a speculative hypothesis is that a theta 
phase code could also underlie memory for temporal 
relations of events from the same and different 
sequences.  

In conclusion, our findings show that the similarity of 
event representations in the hippocampus reflects 
relations between events that go back to mnemonically 
constructed event times, highlighting the impact of 
active mnemonic construction on sequence memory 
beyond the effects of event order and real elapsing 
time. Temporal relations are generalized to events 
from different sequences, in line with hippocampal 
contributions to both memory specificity and 
generalization across episodes. General time patterns 
abstracted from other sequences systematically 
influence the construction of specific event times, 
demonstrating that constructive memory for specific 
events builds on structural knowledge.  
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Methods 

Participants 
31 participants were recruited for this experiment. 
Participants gave written informed consent prior to 
participation. All proceedings were approved by the 
local ethics committee (CMO Regio Arnhem-
Nijmegen). One participant aborted the experiment due 
to feeling claustrophobic when entering the MR 
scanner. Two participants were excluded from further 
analysis due to bad memory performance and 
technical difficulties during data acquisition. Thus, the 
sample consisted of 28 participants (21 female, age: 
mean±standard deviation 23.04±3.21 years, range 18-
31 years). 

Procedure 
Overview 
The experiment consisted of four parts (Figure 1A) and 
lasted approximately 2.5 hours in total. The first three 
parts were performed inside the MR scanner and 
comprised a learning task lasting around 50 minutes 
that was completed in between two blocks of a picture 
viewing task of around 25 minutes each. The tasks 
inside the scanner were presented on a rear-projection 
screen with a resolution of 800x600 pixels and 
implemented using Presentation (version 16.2, 
Neurobehavioral Systems). Subsequently, outside of 
the scanner, participants performed two short memory 
tasks in front of a computer screen, implemented with 
custom Matlab code. The tasks are described in more 
detail below. Data analysis was carried out using FSL 
(version 5.0.4) (Smith et al., 2004) and R (version 3.6.1) 
(R Core Team, 2020). 

Stimuli 
The stimuli (Supplemental Figure 1) used throughout 
the experiment were created within the life-simulation 
computer game The Sims 3 (Electronic Arts) by taking 
screenshots. Each image featured a scene in the life of 
an affluent family. The main character, the family 
father, was visible in all scenes. In addition, the mother, 
son, daughter and family dog appeared in some of the 
images. All of the depicted events took place within the 
same family home, but showed activities in a number 
of different rooms. In an effort to design stimuli with 
minimal to no indication of day time, the house had 
constant artificial lighting, but no windows or clocks. 
The 21 pictures used in this study were selected from 
an initial set of 35 pictures based on an independent 
sample rating them as the most ambiguous with regard 
to the time of day they could take place. One image 
served as a target image for the picture viewing tasks 
(see below), while the other 20 event images were 
randomly assigned to different times and days for 
every participant. 

Picture Viewing Tasks 
In the picture viewing tasks (Figure 1B), participants 
viewed a stream of the event images. Their task was to 
look at the images attentively and to respond via button 

press whenever a target picture, which showed the 
father feeding the family’s dog, was presented (pre-
learning: 95.71%±7.90% mean±standard deviation of 
percentage of hits; 881.34ms±131.43ms 
mean±standard deviation of average reaction times; 
post-learning: 95.71%±6.90% mean±standard 
deviation of percentage of hits; 841.40ms±162.16ms 
mean±standard deviation of average reaction times). 
The task consisted of 10 mini-blocks. In each mini-
block, the target image and the 20 images, which would 
later make up the virtual days (see Day Learning Task), 
were shown in random order. Mini-blocks were 
separated by breaks of 15 s. Stimulus presentations 
lasted 2.5 s and were time-locked to fMRI volume 
acquisition onsets. Scene stimuli within a mini-block 
were separated by 2 or 3 repetition times (TR), 
randomly assigned so that both stimulus onset 
asynchronies occurred equally often. 

For each participant, we generated a random stimulus 
order with the constraint that no scene was 
consistently presented at early or late positions across 
mini-blocks. Specifically, we compared sequence 
positions across mini-blocks between the images 
using a one-way ANOVA. We discarded 
randomizations where this ANOVA was statistically 
significant to exclude biases in presentation order. 
Crucially, the same, participant-specific random order 
of stimuli and inter-stimulus intervals was used in both 
the pre-learning and the post-learning picture viewing 
task. Thus, any systematic differences in the 
representational similarity of event pairs between the 
two picture viewing tasks do not go back to differences 
in the timing of stimulus presentations or the temporal 
auto-correlation of the BOLD-signal. Rather, we 
interpret such changes to be a consequence of the 
learning task. 

Day Learning Task 
In this task, 20 of the 21 scenes, which were shown in 
the picture viewing tasks, were presented repeatedly. 
This time, however, they were grouped into multiple 
sequences introduced as “virtual days” to participants. 
There were four different sequences, each comprising 
5 events. Events from the same sequence were always 
shown in a specific order and with a specific time delay 
between them. Scenes were on screen for 1.5 s. At the 
end of each sequence, an image of a moon was shown 
for 5 s, then the next sequence began. Every sequence 
was presented 7 times. There were 7 mini-blocks in this 
task. Within each of these, every sequence was 
presented once. At the end of a mini-block, a 30-s break 
followed, then the next block started. The order in 
which the sequences were presented differed 
randomly across the 7 mini-blocks. 

 We instructed participants that the scenes depicted 
events from the life of a family and that the sequences 
of event images corresponded to different days in the 
family’s life. Participants were asked to memorize 
which events made up the different sequences (Figure 
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1C). We further instructed them to learn when during 
the respective sequence each event occurred. 
Specifically, we asked participants to learn event times 
relative to a virtual clock. This clock was running 
hidden from participants and event images were 
shown whenever the hidden clock reached the specific 
event time (Figure 1C, Supplemental Figure 2AB). The 
task was devised such that participants had to rely on 
their subjective experience and mnemonic processes 
to construct the times of events. 

To give participants an indication of virtual time, the 
hidden clock was made visible 6 times for every 
presentation of a sequence: once before the first event, 
once in between successive events, and once after the 
last event. Thus, participants had to focus on their 
experience of passing time between these time cues to 
infer the event times. Importantly, the exposure of the 
hidden clock occurred at random times for each 
sequence presentation (Supplemental Figure 2CD), 
with the constraint that it could not be revealed closer 
than 2 s to a preceding or subsequent event. Thus, 
participants saw different time cues in each repetition 
of a sequence. For example, while a specific event 
always happened at the same virtual time, e.g. 2:07 
p.m., the virtual clock could be exposed at any time 
before the event, e.g. corresponding to 1:32 p.m. in the 
first repetition of the sequence, and corresponding to 
1:17 p.m. in the second repetition. Because true event 
times were never revealed, participants could not 
exclusively rely on associative learning to solve the 
task. Time cues were visible for 1.5 s, but displayed 
only the time at the start of exposure, i.e. the displayed 
time did not change within the duration of its 
presentation.  

In short, participants had to combine their experience-
based estimates of passing time with the time cues 
provided by the exposures of the otherwise hidden 
clock to infer the time at which each event in each 
sequence took place. Crucially, we varied the speed of 
the hidden clock between sequences in an effort to 
partly dissociate real time (in seconds) from virtual 
time (in virtual hours). Thus, for two sequences more 
virtual time passed in a comparable amount of real 
elapsing time (Figure 1C, Supplemental Figure 2). This 
manipulation allowed us to determine in later analysis 
whether participants successfully constructed the 
temporal structure relative to the virtual clock or 
whether real elapsing time or the order of events 
determined their memories of the sequences. 

Sorting Task 
The day sorting task (Figure 1D) was performed in front 
of a computer screen. The 20 event images from the 
day learning task were presented on the screen in a 
miniature version. They were arranged in a circle 
around a central area displaying 4 rectangles. 
Participants were instructed to drag and drop all events 
of the same sequence into the same rectangle with a 
computer mouse. Participants freely chose which 

rectangle corresponded to which sequence as the 
sequences were not identifiable by any label and were 
presented in differing orders across mini-blocks during 
learning.  

Timeline Task 
In this task, participants saw a timeline ranging from 6 
a.m. to midnight together with miniature versions of 
the five event images belonging to one sequence 
(Figure 1E). Participants were instructed to drag and 
drop the event images next to the timeline so that 
scene positions reflected the event times they had 
inferred in the day learning task. To facilitate precise 
alignment to the timeline, event images were shown 
with an outward pointing triangle on their left side, on 
which participants were instructed to base their 
responses. 

MRI Acquisition 
MRI data were recorded with a 3T Siemens Skyra 
scanner (Siemens, Erlangen, Germany). A high-
resolution 2D EPI sequence was used for functional 
scanning (TR=2270 ms, TE=24 ms, 40 slices, distance 
factor 13%, flip angle 85°, field of view (FOV) 
210x210x68 mm, voxel size 1.5 mm isotropic). The 
field of view (FOV) was aligned to fully cover the medial 
temporal lobe, parts of ventral frontal cortex and (if 
possible) calcarine sulcus. Functional images for the 
two picture viewing tasks and the learning task were 
acquired in three runs. In addition to these partial-
volume acquisitions, 10 scans of a functional whole-
brain sequence were also acquired to improve 
registration during preprocessing. The sequence 
settings were identical to the functional sequence 
above, but instead of 40 slices, 120 slices were 
acquired, leading to a longer TR (6804.1ms). A 
structural scan was acquired for each participant (TR = 
2300 ms; TE = 315 ms; flip angle = 8°; in-plane 
resolution = 256x256 mm; number of slices = 224, 
voxel resolution = 0.8x0.8x0.8 mm). Lastly, a gradient 
field map was acquired (for n = 21 participants only due 
to time constraints), with a gradient echo sequence (TR 
= 1020 ms; TE1 = 10 ms; TE2 = 12.46 ms; flip angle = 
90°; volume resolution = 3.5x3.5x2 mm; FOV = 224x224 
mm). 

ROI Definition 
Following our previous work on sequence 
representations in the hippocampus and entorhinal 
cortex (Bellmund et al., 2019; Deuker et al., 2016), we 
focused our analysis on the anterior hippocampus and 
the anterior-lateral entorhinal cortex. Region of interest 
(ROI) masks were based on participant-specific 
FreeSurfer segmentations (version 6.0.0-2), which 
yielded masks for the entire hippocampus and 
entorhinal cortex. These were co-registered to 
participants’ functional space. We defined anterior 
hippocampus using the Harvard-Oxford atlas mask 
(thresholded at 50% probability), selecting all voxels 
anterior to MNI y=-21 based on Poppenk et al. (2013). 
The resulting anterior hippocampus mask was also co-
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registered to participants’ functional space and 
intersected with the participant-specific hippocampal 
mask from FreeSurfer. The mask for the anterior-lateral 
entorhinal cortex was based on Navarro Schröder et al. 
(2015). It was co-registered to participants’ functional 
space and intersected with the entorhinal cortex mask 
from FreeSurfer. 

Data Analysis 
Behavioral Data Analysis 
Sorting Task 
For analysis of the sorting task, we took the grouping 
of event images as provided by the participants and 
assigned them to the four sequences to ensure 
maximal overlap between actual and sorted sequence 
memberships. While the assignment of groupings to 
sequences is unambiguous when performance is, as in 
our sample, high, this procedure is potentially liberal at 
lower performance levels. We then calculated the 
percentage of correctly sorted event images for each 
participant, see the raincloud plot (Allen et al., 2019) in 
Figure 2A. 

Timeline Task 
We analyzed how well participants constructed the 
event times based on the day learning task. We 
quantified absolute errors across all events (Figure 2C) 
as well as separately for the five sequence positions 
(Figure 2D). Further, using two approaches we tested 
whether virtual time drove participants’ responses 
rather than the sequence order or objectively elapsing 
time. For the summary statistics approach, we ran a 
multiple regression analysis for each participant with 
virtual time, sequence position (order), and real time 
since the first event of a day as predictors of responses 
in the timeline task. To test whether virtual time indeed 
explained participants’ responses even when 
competing for variance with order and real time, 
included in the model as control predictors of no 
interest, we compared the participant-specific t-values 
of the resulting regression coefficients against null 
distributions obtained from shuffling the remembered 
times against the predictors 10,000 times. We 
converted the resulting p-values to Z-values and tested 
these against zero using a permutation-based t-test 
(10,000 random sign-flips, Figure 2E). 

Second, we addressed this question using linear mixed 
effects modeling. Here, we included the three z-scored 
time metrics as fixed effects. Starting from a maximal 
random effect structure (Barr et al., 2013), we 
simplified the random effects structure to avoid 
convergence failures and singular fits. The final model 
included random intercepts and random slopes for 
virtual time for participants. The model results are 
visualized by dot plots showing the fixed effect 
parameters with their 95% confidence intervals (Figure 
2F) and marginal effects (Figure 2G) estimated using 
the ggeffects package (Lüdecke, 2018). To assess the 
statistical significance of virtual time above and 
beyond the effects of order and real time, we compared 

this full model to a nested model without the fixed 
effect of virtual time, but including order and real time, 
using a likelihood ratio test. Supplemental Table 1 
provides an overview of the final model and the model 
comparison.  

To explore whether structural knowledge about general 
time patterns biases the construction of event times, 
we assessed errors in remembered event times. 
Specifically, when constructing the time of one specific 
event, participants could be biased in their response by 
the times of the events from other sequences at that 
sequence position. For each event, we quantified the 
average time of events in the other sequences at the 
same sequence position (Figure 8A). For example, for 
the fourth event of the first sequence, we calculated the 
average time of the fourth events of sequences two, 
three and four. We then asked whether the deviation 
between the average time of other events and an 
event’s true virtual time was systematically related to 
signed errors in constructed event times. A positive 
relationship between the relative time of other events 
and time construction errors indicates that, when other 
events at the same sequence position are relatively 
late, participants are biased to construct a later time for 
a given event than when the other events took place 
relatively early. In the summary statistics approach, we 
ran a linear regression for each participant (Figure 8B, 
Supplemental Figure 8) and tested the resulting 
coefficients for statistical significance using the 
permutation-based procedures described above 
(Figure 8C). The regression coefficients from this 
approach were used to test for a relationship between 
the behavioral generalization bias and the 
hippocampal searchlight effects (see below). Further, 
we analyzed these data using the linear mixed model 
approach (Figure 8DE, Supplemental Table 13).  

To replicate the results from this exploratory analysis, 
we conducted the same analysis in an independent 
group of participants. These participants (n=46) 
constituted the control groups of a behavioral 
experiment testing the effect of stress induction on 
temporal memory (Montijn et al., 2021). They 
underwent the same learning task as described above 
with the only difference being the duration of this 
learning phase (4 rather than 7 mini-blocks of training). 
The timeline task was administered on the day after 
learning. The procedures are described in detail in 
Montijn et al. (2021). The data from this independent 
sample are shown in Figure 8F-H and Supplemental 
Figure 8B. 

MRI Preprocessing 
Preprocessing was performed using FSL FEAT (version 
6.00). Functional scans from the picture viewing tasks 
and the whole-brain functional scan were submitted to 
motion correction and high-pass filtering using FSL 
FEAT. For the two picture viewing tasks, data from 
each mini-block was preprocessed independently. For 
those participants with a field map scan, distortion 
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correction was applied to the functional data sets. No 
spatial smoothing was performed. Functional images 
from the two picture viewing tasks were then 
registered to the preprocessed mean image of the 
whole-brain functional scan. The whole-brain 
functional images were registered to the individual 
structural scans. The structural scans were in turn 
normalized to the MNI template (1-mm resolution). 
Gray matter segmentation was done on the structural 
images, and the results were mapped back to the 
space of the whole-brain functional scan for later use 
in the analysis. 

Representational Similarity Analysis 
Representational similarity analysis (RSA) 
(Kriegeskorte et al., 2008) was first implemented 
separately for the pre- and post-learning picture 
viewing task. It was carried out in ROIs co-registered to 
the whole-brain functional image and in searchlight 
analyses (see below). For the ROI analyses, 
preprocessed data were intersected with the 
participant-specific anterior hippocampus and 
anterolateral entorhinal cortex ROI masks as well as a 
brain mask obtained during preprocessing (only voxels 
within the brain mask in all mini-blocks were analyzed) 
and the gray matter mask. For each voxel within the ROI 
mask, motion parameters from FSL MCFLIRT were 
used as predictors in a general linear model (GLM) with 
the voxel time series as the dependent variable. The 
residuals of this GLM (i.e. data that could not be 
explained by motion) were taken to the next analysis 
step. As the presentation of images in the picture 
viewing tasks was locked to the onset of a new volume 
(see above), the second volume after image onset was 
selected for every trial, effectively covering the time 
between 2270 and 4540 ms after stimulus onset. Only 
data for the 20 event images that were shown in the 
learning task were analyzed; data for the target 
stimulus were discarded. The similarity between the 
multi-voxel activity pattern for every event image in 
every mini-block with the pattern of every other event in 
every other mini-block was quantified using Pearson 
correlation coefficients. Thus, comparisons of scenes 
from the same mini-block were excluded. Next, we 
calculated mean, Fisher z-transformed correlation 
coefficients for every pair of events, yielding separate 
matrices of pattern similarity estimates for the pre- and 
the post-learning picture viewing tasks (Figure 3). 

In order to assess changes in representational 
similarity between the two picture viewing tasks, we 
quantified pattern similarity changes as the difference 
of the respective correlation coefficients for every pair 
of events between the post-learning picture viewing 
task and its pre-learning baseline equivalent (Figure 3). 
Then, we analyzed how these difference values related 
to temporal relations between events, which we 
quantified using the absolute distances in virtual time 
(“virtual time”) between events (Figure 1C, bottom 
right). We further tested whether the effect of virtual 
time on anterior hippocampal pattern similarity change 

persisted when including the absolute difference 
between sequence positions (“order”) and the interval 
in seconds between events (“real time”) as control 
predictors of no interest in the model. We separately 
tested the effect of virtual time for event pairs from the 
same or different sequences and used a Bonferroni-
corrected α-level of 0.025 for these tests. Time metrics 
were z-scored within each participant prior to analysis. 
To implement these tests, we employed two 
approaches to model-based RSA that are described in 
detail below. 

Summary Statistics Approach 
In the summary statistics approach, we used the 
different time metrics as predictors for pattern 
similarity change. We set up a GLM with the given 
variable from the day learning task as a predictor and 
the pairwise representational change values as the 
criterion for every participant. The t-values of the 
resulting model coefficients were then compared to a 
null distribution obtained from shuffling the dependent 
variable of the linear model (i.e. pattern similarity 
change) 10,000 times. This approach to permutation-
testing of regression coefficients controls Type I errors 
even under situations of collinear regressors 
(Anderson and Legendre, 1999). Resulting p-values for 
each coefficient were transformed to a Z-score. The Z-
scores were then used for group-level inferential 
statistics. 

Group-level statistics were carried out using 
permutation-based procedures. For t-tests, we 
compared the observed t-values against a surrogate 
distribution obtained from 10,000 random sign-flips to 
non-parametrically test against 0 or to assess within-
participant differences between conditions. 
Permutation-based repeated measures ANOVAs were 
carried out using the permuco package (Frossard and 
Renaud, 2019). 

Linear Mixed Effects 
Second, we employed linear mixed models to assess 
how learned sequence relationships were reflected in 
pattern similarity change using the lme4 package 
(Bates et al., 2015). Mixed models have the advantage 
of estimating fixed effects and their interactions using 
all data, rather than performing inferential statistics on 
just one value per participant. We used the different 
time metrics as the fixed effects of interest. Factorial 
predictors (region of interest: anterior hippocampus 
and anterior-lateral entorhinal cortex; sequence: same 
vs. different) were deviation-coded. Within-subject 
dependencies were captured using random effects. 
Following the recommendation by Barr et al. (2013), we 
always first attempted to fit a model with a maximal 
random effects structure including random intercepts 
and random slopes for participants. If these models did 
not converge or resulted in singular fits, we reduced the 
random effects structure. We always kept random 
slopes for the fixed effect of interest in the model to 
avoid anti-conservativity when testing fixed effects or 
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their interactions (Barr, 2013; Barr et al., 2013). The 
mixed effects models were fitted using maximum 
likelihood estimation.  

We assessed the statistical significance of fixed 
effects of interest using likelihood ratio tests. 
Specifically, the model including the fixed effect of 
interest was compared against a nested, reduced 
model excluding this effect, but with the same random 
effects structure. Throughout the manuscript we report 
the results of these model comparisons (χ2-tests with 
one degree of freedom) and refer to supplemental 
tables for summaries of the final mixed model 
parameters. We visualize fixed effect estimates with 
their 95% confidence intervals as dot plots and further 
illustrate effects using estimated marginal means 
(Lüdecke, 2018). 

Searchlight Analysis 
We further probed how temporal distances between 
events shaped representational change using 
searchlight analyses. Using the procedures described 
above, we calculated pattern similarity change values 
for search spheres with a radius of 3 voxels around the 
center voxel. Search spheres were centered on all brain 
voxels within our field of view. Within a given search 
sphere, only gray matter voxels were analyzed. Search 
spheres not containing more than 25 gray matter 
voxels were discarded. For each search sphere, we 
implemented linear models to quantify the relationship 
between representational change and the learned 
temporal structure. Specifically, we assessed the 
relationship of pattern similarity change and absolute 
virtual temporal distances, separately for event pairs 
from the same sequences and from pairs from 
different sequences. In a third model, we included all 
event pairs and tested for an interaction effect of 
sequence membership (same or different) predictor 
and virtual temporal distances. The t-values of the 

respective regressors of interest were stored at the 
center voxel of a given search sphere. 

The resulting t-maps were registered to MNI space for 
group level statistics and spatially smoothed (FWHM 
3mm). Group level statistics were carried out using 
random sign flipping implemented with FSL 
Randomise and threshold-free cluster enhancement. 
We corrected for multiple comparisons using a small 
volume correction mask including our a priori regions 
of interest, the anterior hippocampus and the anterior-
lateral entorhinal cortex. Further, we used a liberal 
threshold of puncorrected<0.001 to explore the data for 
additional effects within our field of view. Exploratory 
searchlight results are shown in Supplemental Figure 7 
and clusters with a minimum extent of 30 voxels are 
listed in Supplemental Tables 9, 11 and 12. 

To test whether within- and across-sequence 
representations overlap, we defined an ROI based on 
the within-sequence searchlight analysis. Specifically, 
voxels belonging to the cluster around the peak voxel, 
thresholded at p<0.01 uncorrected within our small 
volume correction mask, were included. The analysis 
of representational change was then carried out as 
described for the other ROIs above. 

Relationship to behavior 
We used the regression coefficients quantifying the 
strength of the behavioral generalization bias to test 
for an across-subject relationship with the RSA 
searchlight effects. For each participant, we extracted 
the t-value of the across-sequence and the within-
sequence searchlight effects from the peak voxel in 
our a priori regions of interest. We used Spearman 
correlations to test for a relationship of the RSA 
searchlight effects and the behavioral generalization 
bias (α=0.025, corrected for two comparisons).
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Supplemental Figures 

Supplemental Figure 1 

Supplemental Figure 1. Overview of the event images used as stimuli. All scenes were devoid of windows to exclude diurnal 
cues, such as shadows or light color, and were selected so they would be plausible at any time of day. For each participant, 
event images were randomly allocated to sequences and event times. Event images were created using the life-simulation 
computer game The Sims 3 (Electronic Arts). The Sims 3 and screenshots of it are licensed property of Electronic Arts, Inc.  
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Supplemental Figure 2 

Supplemental Figure 2. Design of the day learning task. A. Each of the four virtual days consisted of a sequence of five 
events. Event sequences are shown in virtual time, i.e. relative to the hidden clock. Less virtual time passes within the bottom 
two sequences because clock speed was manipulated between sequences. B. Event sequences shown in real time relative 
to the first event. A comparable amount of real time (in seconds) elapses during each event sequence despite different 
amounts of virtual time passing. C, D. Sequences in virtual and real time as shown in (A) and (B), respectively, but separately 
for each of the seven repetitions of each sequence during the learning task. Black diamonds indicate the time cues shown to 
one randomly chosen example participant during the task. Time cues varied across repetitions and differed across 
participants.  
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Supplemental Figure 3 

Supplemental Figure 3. The relationship of virtual time and hippocampal pattern similarity change is not driven by the first 
and last event of a sequence. A. Z-values from the summary statistics approach show a significant positive effect of virtual 
time on pattern similarity change in the anterior hippcampus when competing for variance with a control predictor of no 
interest accounting for variance explained by whether pairs of events were made up from the first and last event of a sequence 
or not. B, C. Fixed effect estimate with 95% confidence intervals (B) and estimated marginal means (C) visualize the results 
of the corresponding mixed model. D. We implemented participant-specific regression analyses with order and real time 
distances as predictors of hippocampal pattern similarity change. The plot shows a significant effect of virtual temporal 
distances when tested on the residuals of these linear models. Thus, variance that cannot be explained by the other time 
metrics can be accounted for by virtual temporal distances. This analysis was conducted only using the summary statistics 
approach because the residuals of a mixed model are more difficult to interpret than those of participant-specific regression 
analyses using ordinary least squares. A,D. Circles show individual participant Z-values from the summary statistics 
approach; boxplot shows median and upper/lower quartile along with whiskers extending to most extreme data point within 
1.5 interquartile ranges above/below the upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; 
distribution shows probability density function of data points. * p<0.05  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.23.440002doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.440002
http://creativecommons.org/licenses/by-nc/4.0/


 

21 

Supplemental Figure 4 

Supplemental Figure 4. Virtual time predicts hippocampal pattern similarity change for events from different sequences. A, 
B. Fixed effect estimate with 95% confidence interval (A) and estimated marginal means (B) for the effect of virtual time on 
pattern similarity for events from different sequences are shown to illustrate the across-sequences generalization effect as 
observed in the linear mixed model analysis. This mixed model complements the summary statistics results shown in Figure 
5A. * p<0.05  
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Supplemental Figure 5 

Supplemental Figure 5. Relationship of pattern similarity change and temporal distances between events from the same 
and different sequences in the anterior-lateral entorhinal cortex. There was no statistically significant difference between 
correlations of virtual temporal distances and representational change in the anterior-lateral entorhinal cortex depending on 
whether event pairs were from the same or different sequences. Entorhinal representational change was negatively related 
to temporal distances between events from the same sequence (summary statistics: t24=-3.54, p=0.002; α=0.025, corrected 
for separate tests of events of the same and different sequences; three outliers excluded based on the boxplot criterion). The 
relationship between entorhinal pattern similarity change for events from different sequences was not statistically different 
from zero (summary statistics: t27=-1.60, p=0.122; α=0.025, corrected for separate tests of events of the same and different 
sequences). Circles show participant-specific Z-values from summary statistics approach; boxplot shows median and 
upper/lower quartile along with whiskers extending to most extreme data point within 1.5 interquartile ranges above/below 
the upper/lower quartile; black circle with error bars corresponds to mean±S.E.M.; distribution shows probability density 
function of data points. ** p<0.01 after outlier exclusion  
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Supplemental Figure 6 

Supplemental Figure 6. Temporal signal-to-noise ratio in the anterior hippocampus and the anterior-lateral entorhinal cortex. 
A. The temporal signal-to-noise ratio was quantified as the mean unsmoothed signal over time divided by its standard 
deviation. It was calculated for each voxel and then averaged across voxels in a region of interest. The temporal signal-to-
noise ratio was higher in the anterior hippocampus (aHPC) than in the anterior-lateral entorhinal cortex (alEC, summary 
statistics: t27=12.43, p<0.001). Circles show individual participant values; boxplot shows median and upper/lower quartile 
along with whiskers extending to most extreme data point within 1.5 interquartile ranges above/below the upper/lower 
quartile; black circle with error bars corresponds to mean±S.E.M.; distribution shows probability density function of data 
points. *** p<0.001  
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Supplemental Figure 7 

Supplemental Figure 7. Exploratory searchlight results. A. For same-sequence event pairs, clusters of voxels in which pattern 
similarity change correlated positively with temporal distances were detected in the frontal pole, frontal medial cortex and 
left entorhinal cortex (see Supplemental Table 9). B. Pattern similarity change correlated negatively with temporal distances 
between events from different sequences in the cerebellum and lingual gyrus (see Supplemental Table 11). C. The interaction 
effect, defined as correlations of temporal distances and pattern similarity change depending on whether pairs of events 
belonged to the same sequence or not, was observed in the occipital pole, lingual gyrus, frontal pole, temporal fusiform cortex 
and the intracalcerine sulcus (see Supplemental Table 12). A-C. Statistical images are thresholded at p<0.01 uncorrected for 
display purposes. No clusters outside the hippocampal-entorhinal region survived corrections for multiple comparisons.  
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Supplemental Figure 8 

Supplemental Figure 8. Generalization bias in individual participants. A, B. Each panel shows the data from one participant. 
Each circle corresponds to one event. The x-axis indicates the average relative time of the events occupying the same 
sequence position in other sequences. The y-axis shows the signed error of constructed event times as measured in the 
timeline task. The regression line and its confidence interval are overlaid in red. Positive slopes of the regression line indicate 
that constructed event times are biased by the average time of events in the other sequences. A shows data from the main 
sample; B from the replication sample.  
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Supplemental Tables 

Supplemental Table 1 
Mixed Model: Virtual time explains constructed times with order and real time in the model 

fixed effects      

term estimate SE t-value 95% CI 

intercept 14.010019 0.069962 200.25 13.868056 14.151981 

virtual time 3.069324 0.259967 11.81 2.558874 3.579774 

order 1.667630 0.430230 3.88 0.822785 2.512476 

real time -0.332261 0.473306 -0.70 -1.261696 0.597173 

random effects   

group term estimate 

participant intercept 0.221991 

participant virtual time (SD) 0.232089 

participant correlation random intercepts and random slopes 0.165592 

residual SD 1.324919 

model comparison       

model npar AIC LL χ2 df p 

reduced model 7 2053.90 -1019.95    

full model 8 1939.95 -961.98 115.95 1 4.88e-27 

model: memory_time~virtual_time_z+order_z+real_time_z+(1+virtual_time_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 2 
Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 
hippocampus 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000326 0.000211 -1.54 -0.000740 0.000088 

virtual time 0.000751 0.000220 3.42 0.000307 0.001196 

random effects   

group term estimate 

participant intercept (SD) 0.000001 

participant virtual time 0.000257 

residual SD 0.006917 

model comparison       

model npar AIC LL χ2 df p 

reduced model 4 -7943.56 3975.78    

full model 5 -7951.43 3980.72 9.87 1 0.002 

model: ps_change~vir_time_diff+((1|sub_id)+(0+vir_time_diff|sub_id));  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 3 
Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 
hippocampus when controlling for the effect of first-last event pairs 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000015 0.000421 -0.04 -0.000841 0.000810 

virtual time 0.000626 0.000264 2.37 0.000099 0.001152 

first-last pair 0.000357 0.000418 0.85 -0.000462 0.001176 

random effects   

group term estimate 

participant intercept (SD) 0.000001 

participant virtual time (SD) 0.000258 

residual SD 0.006914 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -7946.81 3978.40    

full model 6 -7950.16 3981.08 5.36 1 0.021 

model: ps_change~vir_time_diff+first_last+((1|sub_id)+(0+vir_time_diff|sub_id));  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 4 
Mixed Model: Virtual time explains representational change for same-sequence events in the anterior 
hippocampus when including order and real time in the model 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000281 0.000219 -1.28 -0.000711 0.000149 

virtual time 0.001321 0.000541 2.44 0.000258 0.002383 

order 0.000012 0.000908 0.01 -0.001768 0.001793 

real time -0.000676 0.001019 -0.66 -0.002675 0.001323 

random effects   

group term estimate 

participant virtual time (SD) 0.000260 

residual SD 0.006913 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -7946.84 3978.42    

full model 6 -7950.76 3981.38 5.92 1 0.015 

model: ps_change~vir_time_diff+order_diff+real_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 5 
Mixed Model: Virtual time explains representational change for different-sequence events in the anterior 
hippocampus 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000061 0.000110 -0.55 -0.000276 0.000155 

virtual time -0.000275 0.000110 -2.51 -0.000491 -0.000058 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.007107 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -29621.39 14813.69    

full model 4 -29625.40 14816.70 6.01 1 0.014 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 6 
Mixed Model: The effect of virtual time differs between same-sequence and different-sequence events in the 
anterior hippocampus 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000193 0.000121 -1.60 -0.000430 0.000044 

virtual time 0.000238 0.000122 1.95 -0.000001 0.000478 

day -0.000133 0.000121 -1.10 -0.000370 0.000104 

interaction virtual time and day 0.000513 0.000127 4.05 0.000261 0.000765 

random effects   

group term estimate 

participant interaction virtual time and day (SD) 0.000176 

residual SD 0.007066 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 -37569.38 18789.69    

full model 6 -37581.75 18796.87 14.37 1 1.50e-04 

model: ps_change~vir_time_diff*same_day_dv+(0+vir_time_diff:same_day_dv|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 7 
Mixed Model: Virtual time explains representational change in the anterior-lateral entorhinal cortex (all events) 

fixed effects      

term estimate SE t-value 95% CI 

intercept 0.000167 0.000202 0.83 -0.000229 0.000563 

virtual time -0.000424 0.000202 -2.09 -0.000820 -0.000027 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.014734 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -29767.39 14886.69    

full model 4 -29769.77 14888.89 4.39 1 0.036 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 8 
Mixed Model: The effect of virtual time differentially depends on sequence membership in the anterior 
hippocampus and the anterior-lateral entorhinal cortex 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000193 0.000219 -0.89 -0.000622 0.000235 

virtual time 0.000238 0.000200 1.19 -0.000153 0.000630 

day -0.000133 0.000197 -0.67 -0.000520 0.000254 

ROI 0.000455 0.000279 1.63 -0.000093 0.001002 

virtual time * day 0.000513 0.000202 2.54 0.000117 0.000909 

virtual time * ROI -0.000810 0.000282 -2.87 -0.001363 -0.000257 

day * ROI 0.000261 0.000279 0.94 -0.000286 0.000808 

virtual time * day * ROI -0.000745 0.000294 -2.54 -0.001321 -0.000169 

random effects   

group term estimate 

participant intercept (SD) 0.000496 

participant corr. intercept, virtual time:day:ROI1 -1.000000 

participant corr. intercept, virtual time:day:ROI-1 -0.151340 

participant virtual time:day:ROI1 (SD) 0.000170 

participant corr. virtual time:day:ROI1, virtual time:day:ROI-1 0.151340 

participant virtual time:day:ROI-1 (SD) 0.000421 

residual SD 0.011540 

model comparison       

model npar AIC LL χ2 df p 

reduced model 14 -64699.87 32363.94    

full model 15 -64704.19 32367.09 6.31 1 0.012 

model: ps_change~vir_time_diff*same_day_dv*roi_dv+(1+vir_time_diff:same_day_dv:roi_dv|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 9 
Searchlight Analysis: Virtual time explains representational change for same-sequence events 

Searchlight results in a priori regions of interest, p-values corrected using small volume correction 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

left hippocampus 193 -24 -13 -20 -23.3  -13.1 -19.8  4.53 0.006  

right hippocampus 96 31 -16 -20 30.1  -16.7 -19.8  3.56 0.035  

left hippocampus 76 -27 -20 -15 -27.9  -19.5 -16.6  3.47 0.029  

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

frontal pole 399 50 44 16 48.3  41.6 19.2  3.96 0.0002 

frontal pole 173 53 41 -7 51.1  42.9 -4.45 4.56 0.0002 

left entorhinal cortex 119 -18 -16 -32 -21.2  -14.6 -31.2  3.45 0.0004 

inferior frontal gyrus 91 40 27 2 44.2  28   3.59 4.29 0.0002 

lingual gyrus 86 -17 -58 -15 -15.7  -56.9 -9.64 3.82 0.0002 

frontal medial cortex 49 7 35 -23 6.29 36.7 -24.1  4.28 0.0004 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 10 
Mixed Model: Virtual time explains representational change for different-sequence events in the peak cluster of 
the same-sequence searchlight analysis 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.000097 0.000234 -0.41 -0.000557 0.000362 

virtual time -0.000478 0.000234 -2.04 -0.000939 -0.000018 

random effects   

group term estimate 

participant virtual time (SD) 0.000000 

residual SD 0.015162 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 -23257.87 11631.93    

full model 4 -23260.00 11634.00 4.13 1 0.042 

model: ps_change~vir_time_diff+(0+vir_time_diff|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 11 
Searchlight Analysis: Virtual time explains representational change for different-sequence events 

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

cerebellum 314 19 -68 -34 19.1  -66.3 -29.6  -5.37 0.0002 

cerebellum 104 -1 -68 -14 -1.86 -69.1 -14.3  -3.44 0.0002 

lingual gyrus 100 -1 -70 4 -2.68 -70.5 4.56 -3.73 0.0002 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 12 
Searchlight Analysis: Interaction of virtual time and sequence membership 

Searchlight results in a priori regions of interest, p-values corrected using small volume correction 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

left hippocampus 359 -26 -20 -15 -23.4  -15.5 -18.6  4.15 0.014  

right hippocampus 335 31 -16 -21 30.7  -15.1 -20.1  4.25 0.007  

Exploratory searchlight results, p-values uncorrected 

Atlas Label Voxel Extent x y z COG x COG y COG z t p 

occipital pole 103 17 -91 -8 17.7  -90.6 -6.62 4.08 0.0002 

lingual gyrus 102 -5 -73 5 -3.59 -70.4 5.01 3.72 0.0002 

frontal pole 96 43 43 18 45.4  43.4 19.7  4.31 0.0006 

frontal pole 45 35 43 17 37    43.2 18.5  3.81 0.0006 

temporal fusiform cortex 40 -25 -10 -45 -25.3  -10.3 -42.9  3.14 0.0004 

intracalcarine sulcus 33 -4 -77 11 -2.85 -75.8 11.5  3.56 0.0002 

x, y, z refer to MNI coordinates of minimum p-value in cluster, t denotes the most extreme t-value, COG: center 
of gravity 
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Supplemental Table 13 
Mixed Model: Behavioral generalization bias 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.352481 0.069962 -5.04 -0.494444 -0.210518 

relative time other events 0.337262 0.067360 5.01 0.200579 0.473945 

random effects   

group term estimate 

participant intercept 0.220016 

participant relative time other events (SD) -0.114173 

participant correlation random intercepts and random slopes 0.183681 

residual SD 1.331485 

model comparison       

model npar AIC LL χ2 df p 

reduced model 5 1958.57 -974.29    

full model 6 1942.67 -965.34 17.90 1 2.32e-05 

model: timeline_error~rel_time_other_events_z+(1+rel_time_other_events_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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Supplemental Table 14 
Mixed Model: Behavioral generalization bias (replication) 

fixed effects      

term estimate SE t-value 95% CI 

intercept -0.320564 0.089155 -3.60 -0.495488 -0.145640 

relative time other events 0.863631 0.091472 9.44 0.684152 1.043110 

random effects   

group term estimate 

participant relative time other events (SD) 0.000000 

residual SD 2.704218 

model comparison       

model npar AIC LL χ2 df p 

reduced model 3 4501.04 -2247.52    

full model 4 4449.30 -2220.65 53.74 1 2.29e-13 

model: timeline_error~rel_time_other_events_z+(0+rel_time_other_events_z|sub_id);  
SE: standard error, CI: confidence interval, SD: standard deviation, npar: number of parameters, LL: log 
likelihood, df: degrees of freedom, corr.: correlation 
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